JP5463515B2 - Material with immobilized antimicrobial peptide - Google Patents

Material with immobilized antimicrobial peptide Download PDF

Info

Publication number
JP5463515B2
JP5463515B2 JP2009029726A JP2009029726A JP5463515B2 JP 5463515 B2 JP5463515 B2 JP 5463515B2 JP 2009029726 A JP2009029726 A JP 2009029726A JP 2009029726 A JP2009029726 A JP 2009029726A JP 5463515 B2 JP5463515 B2 JP 5463515B2
Authority
JP
Japan
Prior art keywords
arg
leu
ile
gly
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009029726A
Other languages
Japanese (ja)
Other versions
JP2010184022A (en
Inventor
純 石橋
稔 山川
崇 岩崎
允 中村
誠司 解野
成男 大萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Agrobiological Sciences
Wakayama Prefecture
Original Assignee
National Institute of Agrobiological Sciences
Wakayama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Agrobiological Sciences, Wakayama Prefecture filed Critical National Institute of Agrobiological Sciences
Priority to JP2009029726A priority Critical patent/JP5463515B2/en
Publication of JP2010184022A publication Critical patent/JP2010184022A/en
Application granted granted Critical
Publication of JP5463515B2 publication Critical patent/JP5463515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カブトムシディフェンシン由来改変ペプチドを固定化した素材、その製造方法および使用方法ならびに当該素材から成る成型品に関する。   The present invention relates to a material on which a modified peptide derived from beetle defensin is immobilized, a method for producing and using the same, and a molded article made of the material.

感染症とは、細菌などの微生物がヒトまたは動物の体内に侵入、増殖し、その結果として惹起される疾病をいい、その発症は、感染する微生物と感染した宿主の抵抗力のバランスに依存している。特に、医療機関内においては感染に対する抵抗力が低下した患者が多く、健常人には何ら病原性を示さない微生物が、抵抗力が低下した患者に対しては致死的な症状の原因となる場合がある。このような医療機関内における感染は、病院外でおこる感染症とは病原体も対策も異なる点が多いため、市中感染と区別して院内感染と呼ばれる。   An infectious disease is a disease caused by the invasion and proliferation of microorganisms such as bacteria into the human or animal body, and its onset depends on the balance between the resistance of the infecting microorganism and the infected host. ing. In particular, there are many patients with reduced resistance to infection in medical institutions, and microorganisms that do not show any pathogenicity to healthy people cause fatal symptoms for patients with reduced resistance There is. Such infections in medical institutions are often referred to as nosocomial infections, as they are different from community-acquired infections because there are many different pathogens and countermeasures from infections that occur outside hospitals.

院内感染の原因は主に接触感染であることから、手洗いや医療器具の消毒、滅菌等の対策が採られているが、MRSAを始めとする院内感染は増加傾向にあり、より効果的な対策が求められている。   Since the cause of nosocomial infection is mainly contact infection, measures such as hand washing, disinfection and sterilization of medical equipment are being taken, but nosocomial infections such as MRSA are on the rise, and more effective measures Is required.

また、縫合糸、人工血管、カテーテル等の施術後に体内に留置される医療機器は細菌の接着の足場となり易く、付着した細菌が増殖してバイオフィルムが形成される。このような医療器具の表面に形成されたバイオフィルム中の細菌は抗菌薬や免疫系に対して抵抗性を増し、治療に抵抗してしばしば慢性、再発性の感染症の原因となることから、留置用医療機器の使用には、このようなバイオフィルム感染症が問題となっている。   In addition, a medical device that is placed in the body after a surgical operation such as a suture thread, an artificial blood vessel, or a catheter is likely to be a scaffold for adhesion of bacteria, and the attached bacteria grow to form a biofilm. Bacteria in biofilms formed on the surface of such medical devices increase resistance to antibacterial drugs and the immune system, often resisting treatment and causing chronic and recurrent infections, Such biofilm infections are a problem for the use of indwelling medical devices.

本発明者らはカブトムシディフェンシン由来改変ペプチドが、薬剤耐性菌を含む広範な細菌、トリパノソーマ原虫等の病原微生物および骨髄腫、白血病等のガン細胞に対して細胞膜を破壊し、殺す活性を有することを見出した(特許文献1)。これらカブトムシディフェンシン由来改変ペプチドを医療器具、医療素材の表面に固定化することができれば、院内感染、術後感染の予防に有効であることが期待される。   The present inventors have found that beetle defensin-derived modified peptides have the activity of destroying and killing cell membranes against a wide range of bacteria including drug-resistant bacteria, pathogenic microorganisms such as trypanosoma protozoa, and cancer cells such as myeloma and leukemia. (Patent document 1). If these modified peptides derived from beetle defensin can be immobilized on the surface of a medical instrument or medical material, it is expected to be effective in preventing nosocomial infections and postoperative infections.

また、当該ペプチドを固定化した抗菌性素材を用いることにより、生体内に留置してもバイオフィルム形成の足場として利用されない医療素材を提供し得ることが期待される。   Moreover, it is expected that by using an antibacterial material in which the peptide is immobilized, it is possible to provide a medical material that is not used as a scaffold for biofilm formation even if it is placed in a living body.

しかし、従来、抗微生物ペプチドを効率よく固相表面に固定化した抗菌素材は報告されていない。   However, no antibacterial material in which antimicrobial peptides are efficiently immobilized on a solid surface has been reported.

特開2007−284421JP2007-284421A

本発明の課題は、MRSAを始めとする薬剤耐性菌を含む広範な細菌、トリパノソーマ原虫等の病原微生物および骨髄腫、白血病等のガンに対して傷害性を有するカブトムシディフェンシン由来改変ペプチドを素材表面上に固定化することにより、当該素材を用いた抗菌性医療器具、医療素材を提供することである。   An object of the present invention is to provide a wide range of bacteria including drug-resistant bacteria such as MRSA, pathogenic microorganisms such as trypanosoma protozoa and modified beetle defensin-derived modified peptides having toxicity against cancers such as myeloma and leukemia. It is providing the antibacterial medical instrument and medical material which used the said material by fixing to.

本発明者らは、鋭意努力の結果、自由度の高い固定化法を用いることにより、抗微生物ペプチドの活性を失わせることなく素材表面に固定化し得ること、および当該ペプチドの活性が洗浄を繰り返しても劣化しないことを見出し、本発明を完成するに至った。   As a result of diligent efforts, the present inventors have made it possible to immobilize on the surface of a material without losing the activity of the antimicrobial peptide by using a highly flexible immobilization method, and the activity of the peptide repeatedly washed. However, the present inventors have found that it does not deteriorate, and have completed the present invention.

本発明は上記知見に基づき、下記式で表されるアミノ酸配列を含むポリペプチドを固定化した素材を提供するものである。
X1−Lue−X2−Leu−X3−Ile−X4−Arg−Arg−NH
(式中、X1はArgまたはAlaであり、X2はTyr、ArgまたはLeuであり、X3はArgまたはAlaであり、X4はGlyまたはArgである。)
好ましくは、上記ポリペプチドはArg−Leu−Tyr−Leu−Arg−Ile−Gly−Arg−Arg−NH、Arg−Leu−Arg−Leu−Arg−Ile−Gly−Arg−Arg−NH、Ala−Leu−Tyr−Leu−Ala−Ile−Arg−Arg−Arg−NHまたはArg−Leu−Leu−Leu−Arg−Ile−Gly−Arg−Arg−NHから成る群より選択される。
Based on the above findings, the present invention provides a material in which a polypeptide containing an amino acid sequence represented by the following formula is immobilized.
X1-Lue-X2-Leu-X3-Ile-X4-Arg-Arg-NH 2
(Wherein X1 is Arg or Ala, X2 is Tyr, Arg or Leu, X3 is Arg or Ala, and X4 is Gly or Arg.)
Preferably, the polypeptide is Arg-Leu-Tyr-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 , Arg-Leu-Arg-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 , Ala It is selected from the group consisting of -Leu-Tyr-Leu-Ala- Ile-Arg-Arg-Arg-NH 2 or Arg-Leu-Leu-Leu- Arg-Ile-Gly-Arg-Arg-NH 2.

別の態様として本発明は、上記素材を製造する方法に関する。具体的には、以下の方法により抗菌ペプチドが結合した素材を製造する。   In another aspect, the present invention relates to a method for producing the above material. Specifically, a material to which an antimicrobial peptide is bound is produced by the following method.

基材表面上のヒドロキシル基とエピハロヒドリンを反応させて、基材表面をハロゲン化した後、1,3−ジアミノプロパンまたはジエチレングリコールビス(3−アミノプロピル)エーテルなどのジアミノ化合物を加えて、アミノ修飾基材を作製する。次に当該アミノ基に保護アミノ酸のカルボキシル基を反応させて、ペプチド結合を形成させる。結合しなかったアミノ酸を洗浄した後、ピペリジン等で基材上のアミノ基を脱保護し、新たな保護アミノ酸を結合させる。この工程を繰り返して所望のアミノ酸を順次結合させ、最後にアミノ酸を脱保護して本発明のポリペプチドが結合した素材を得る。   After reacting the hydroxyl group on the substrate surface with epihalohydrin to halogenate the substrate surface, a diamino compound such as 1,3-diaminopropane or diethylene glycol bis (3-aminopropyl) ether is added to form an amino-modified group Make the material. Next, the amino group is reacted with the carboxyl group of the protected amino acid to form a peptide bond. After washing the unbound amino acid, the amino group on the substrate is deprotected with piperidine or the like, and a new protected amino acid is bound. By repeating this process, desired amino acids are sequentially bound, and finally the amino acids are deprotected to obtain a material to which the polypeptide of the present invention is bound.

本発明で使用するカブトムシディフェンシン由来改変ペプチドは、薬剤耐性菌を含む広範な細菌、トリパノソーマ原虫等の病原微生物および骨髄腫、白血病等のガン細胞に対して傷害性を有しており、当該ペプチドを結合した本発明の素材はこれら生物活性を安定的に維持している。本発明の素材は洗浄やオートクレーブによる加熱滅菌処理によってその活性を喪失しないことから、当該素材を用いることにより、抗微生物または抗ガン活性を有する成型品が得られる。   The modified peptide derived from beetle defensin used in the present invention is toxic to a wide range of bacteria including drug-resistant bacteria, pathogenic microorganisms such as Trypanosoma protozoa, and cancer cells such as myeloma and leukemia. The bonded material of the present invention stably maintains these biological activities. Since the material of the present invention does not lose its activity by washing or heat sterilization by autoclaving, a molded product having antimicrobial or anticancer activity can be obtained by using the material.

したがって、本発明はまた、当該基材を所望の形に成型した抗微生物または抗ガン活性を有する成型品に関する。   Therefore, the present invention also relates to a molded article having antimicrobial or anticancer activity obtained by molding the base material into a desired shape.

例えば、本発明の素材を用いた創傷被覆材を使用することにより、創傷部位における細菌感染を予防し得ることが期待できる。また、本発明の素材を透析膜に用いることにより、人工透析器具の細菌汚染の可能性を軽減し得るとともに、血液中の病原微生物やガン細胞等を殺す効果が期待できる。また、例えば本発明の素材を用いた衣服を使用することにより、衣服に付着した病原微生物による感染を予防し得ることが期待できる。   For example, it can be expected that bacterial infection at the wound site can be prevented by using the wound dressing material using the material of the present invention. Further, by using the material of the present invention for the dialysis membrane, the possibility of bacterial contamination of the artificial dialysis device can be reduced, and the effect of killing pathogenic microorganisms, cancer cells and the like in the blood can be expected. In addition, for example, by using clothes using the material of the present invention, it can be expected that infection by pathogenic microorganisms attached to the clothes can be prevented.

更に、本発明の素材を用いた人工血管、ステント等の生体留置用器具は、細菌増殖の足場として利用されることを回避できるため、バイオフィルム感染症を予防することができる。   Furthermore, since the indwelling devices such as artificial blood vessels and stents using the material of the present invention can be avoided as a scaffold for bacterial growth, biofilm infection can be prevented.

また、本発明の素材の抗微生物活性を利用して液体中の病原性微生物を殺すことができる。したがって、本発明は一態様として、血液または血漿などの液体を本発明の素材と接触させることを特徴とする液体の殺菌方法を提供する。   Further, pathogenic microorganisms in the liquid can be killed by utilizing the antimicrobial activity of the material of the present invention. Therefore, this invention provides the liquid sterilization method characterized by making liquids, such as blood or plasma, contact with the raw material of this invention as one aspect | mode.

本発明は、より具体的には以下の物および方法を提供する。
(1)下記式で表されるアミノ酸配列:
X1−Lue−X2−Leu−X3−Ile−X4−Arg−Arg−NH
(式中、X1はArgまたはAlaであり、X2はTyr、ArgまたはLeuであり、X3はArgまたはAlaであり、X4はGlyまたはArgである。)を含むポリペプチドを固定化した素材。
(2)前記ポリペプチドがArg−Leu−Tyr−Leu−Arg−Ile−Gly−Arg−Arg−NH、Arg−Leu−Arg−Leu−Arg−Ile−Gly−Arg−Arg−NH、Ala−Leu−Tyr−Leu−Ala−Ile−Arg−Arg−Arg−NHまたはArg−Leu−Leu−Leu−Arg−Ile−Gly−Arg−Arg−NHである(1)に記載の素材。
(3)前記ポリペプチドがスペーサーを介してC末端側で基材と結合していることを特徴とする(1)または(2)に記載の素材。
(4)基材が高分子または金属である(1)乃至(3)のいずれかに記載の素材。
(5)基材がセルロースである(4)に記載の素材。
(6)基材にエピハロヒドリンを反応させて表面をハロゲン化した後、1,3−ジアミノプロパンまたはジエチレングリコールビス(3−アミノプロピル)エーテルを加えてアミノ修飾し、当該アミノ基に保護アミノ酸を順次結合させ、最後に保護基を脱離させることを特徴とする(1)乃至(5)のいずれかに記載の素材の製造方法。
(7)(1)乃至(5)のいずれかに記載の素材から成る抗微生物または抗ガン活性を有する成型品。
(8)創傷被覆材、縫合糸、人工血管、カテーテル、透析膜、衣服およびステントからなる群より選択される(7)に記載の成型品。
(9)液体を(1)乃至(5)のいずれかに記載の素材と接触させることを特徴とする液体の殺菌方法。
(10)液体が血液または血漿である(9)に記載の殺菌方法。
More specifically, the present invention provides the following items and methods.
(1) Amino acid sequence represented by the following formula:
X1-Lue-X2-Leu-X3-Ile-X4-Arg-Arg-NH 2
(Wherein X1 is Arg or Ala, X2 is Tyr, Arg or Leu, X3 is Arg or Ala, and X4 is Gly or Arg).
(2) the polypeptide is Arg-Leu-Tyr-Leu- Arg-Ile-Gly-Arg-Arg-NH 2, Arg-Leu-Arg-Leu-Arg-Ile-Gly-Arg-Arg-NH 2, Ala The material according to (1), which is Leu-Tyr-Leu-Ala-Ile-Arg-Arg-Arg-Arg-NH 2 or Arg-Leu-Leu-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 .
(3) The material according to (1) or (2), wherein the polypeptide is bound to a substrate on the C-terminal side through a spacer.
(4) The material according to any one of (1) to (3), wherein the base material is a polymer or a metal.
(5) The material according to (4), wherein the substrate is cellulose.
(6) After reacting epihalohydrin with the substrate to halogenate the surface, 1,3-diaminopropane or diethylene glycol bis (3-aminopropyl) ether is added to perform amino modification, and protected amino acids are sequentially bonded to the amino groups. And finally removing the protective group. The method for producing a material according to any one of (1) to (5),
(7) A molded article having antimicrobial or anticancer activity, comprising the material according to any one of (1) to (5).
(8) The molded article according to (7), which is selected from the group consisting of a wound dressing, a suture, an artificial blood vessel, a catheter, a dialysis membrane, clothes, and a stent.
(9) A method for sterilizing a liquid, wherein the liquid is brought into contact with the material according to any one of (1) to (5).
(10) The sterilization method according to (9), wherein the liquid is blood or plasma.

本発明者らは、自由度の高い固定化法を用いることにより、抗微生物活性を維持しつつ、カブトムシディフェンシン由来改変ペプチドを固相に固定化し得ることを見出した。また、固定化されたペプチドは非常に安定であり、繰返しの洗浄、オートクレーブによる滅菌処理を行っても活性を維持していることが確認された。   The present inventors have found that a modified beetle defensin-derived modified peptide can be immobilized on a solid phase while maintaining antimicrobial activity by using a highly flexible immobilization method. It was also confirmed that the immobilized peptide was very stable and maintained its activity even after repeated washing and sterilization by autoclaving.

よって、本発明のカブトムシディフェンシン由来改変ペプチドを固定化した素材を用いることにより、長期間の再利用が可能な抗微生物処理された医療機器を提供することが可能となる。   Therefore, by using a material in which the modified peptide derived from beetle defensin of the present invention is used, it becomes possible to provide an antimicrobial-treated medical device that can be reused for a long period of time.

更に、長期間にわたって抗微生物活性を維持し得ることから、当該素材を用いることにより、バイオフィルム感染症を誘発し難い生体内留置用の医療機器を提供することも可能となる。   Furthermore, since antimicrobial activity can be maintained over a long period of time, it is possible to provide a medical device for in-vivo placement that is unlikely to induce a biofilm infection by using the material.

ペプチドを基材に固定化する反応の模式図である。It is a schematic diagram of reaction which fix | immobilizes a peptide to a base material. カブトムシディフェンシン由来改変ペプチドを固定化した綿布のマウス骨髄腫細胞P3−X63−Ag8.653およびヒト白血病細胞Jurkatに対する活性を示す。図中「布なし」は布が入っていない群、「未処理布」はペプチドが固定されていない布が入っている群、「ペプチド固定綿布1」および「ペプチド固定綿布2」はそれぞれ配列番号4のペプチドが1,3−ジアミノプロパンまたはジエチレングリコールビス(3−アミノプロピル)エーテルを介して固定された布が入っている群を示す。The activity with respect to mouse | mouth myeloma cell P3-X63-Ag8.653 and human leukemia cell Jurkat of the cotton fabric which fix | immobilized the modified peptide derived from a beetle defensin is shown. In the figure, “no cloth” is a group containing no cloth, “untreated cloth” is a group containing a cloth on which no peptide is fixed, “peptide-fixed cotton cloth 1” and “peptide-fixed cotton cloth 2” are SEQ ID NOs: 4 shows a group containing a fabric in which four peptides are fixed via 1,3-diaminopropane or diethylene glycol bis (3-aminopropyl) ether.

本発明の素材は、アミノ酸配列X1−Lue−X2−Leu−X3−Ile−X4−Arg−Arg−NH(式中、X1はArgまたはAlaであり、X2はTyr、ArgまたはLeuであり、X3はArgまたはAlaであり、X4はGlyまたはArgである。)を含むポリペプチドを基材上に固定化したものである。 The material of the present invention is an amino acid sequence X1-Lue-X2-Leu-X3-Ile-X4-Arg-Arg-NH 2 (wherein X1 is Arg or Ala, X2 is Tyr, Arg or Leu, X3 is Arg or Ala, and X4 is Gly or Arg)).

本発明において使用するポリペプチドの好ましい例としては、
Arg−Leu−Tyr−Leu−Arg−Ile−Gly−Arg−Arg−NH(配列番号1)、
Arg−Leu−Arg−Leu−Arg−Ile−Gly−Arg−Arg−NH(配列番号2)、
Ala−Leu−Tyr−Leu−Ala−Ile−Arg−Arg−Arg−NH(配列番号3)、または
Arg−Leu−Leu−Leu−Arg−Ile−Gly−Arg−Arg−NH(配列番号4)を含むポリペプチドを挙げることができる。
As preferable examples of the polypeptide used in the present invention,
Arg-Leu-Tyr-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 (SEQ ID NO: 1),
Arg-Leu-Arg-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 (SEQ ID NO: 2),
Ala-Leu-Tyr-Leu-Ala-Ile-Arg-Arg-Arg-NH 2 (SEQ ID NO: 3), or Arg-Leu-Leu-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 (SEQ ID NO: 3) Mention may be made of the polypeptide comprising 4).

本発明において「基材」とは、カブトムシディフェンシン由来改変ペプチドを結合させる固相をいう。また、「素材」とは上記ポリペプチドを結合させた基材をいい、人工血管や透析膜などに成型することにより、医療用機器等の成型品に加工し得るものである。したがって、基材および素材の形状は繊維、膜、粒状など、成型品としての機能を奏するものであればいずれの形状であってもよい。   In the present invention, the “substrate” refers to a solid phase to which a modified peptide derived from beetle defensin is bound. The “material” refers to a base material to which the polypeptide is bound, and can be processed into a molded product such as a medical device by molding it into an artificial blood vessel or a dialysis membrane. Therefore, the shape of the base material and the material may be any shape as long as it has a function as a molded product, such as a fiber, a film, and a granule.

当該基材は、セルロースなどのポリマーや金属などペプチドを固定化し得るものではあればどのような材質から成るものであっても良い。
スペーサー付きのペプチドを共有結合により固定化するために、すでに基材中に固定化に利用できる適当な官能基を有しているか、あるいは官能基を容易に導入できる素材を使用することが好ましい。
具体的には、セルロース、ナイロン、ポリスチレンなどの高分子の使用が好ましく、特にセルロースは、官能基として水酸基を持っており、その水酸基に他の官能基を導入することも容易である。また、金はそれ自体がチオール基と容易に反応し、また様々な素材を金に蒸着させることが容易であることから特に好ましい。
The substrate may be made of any material as long as it can immobilize a peptide such as a polymer such as cellulose or a metal.
In order to immobilize a peptide with a spacer by covalent bonding, it is preferable to use a material that already has an appropriate functional group that can be used for immobilization in the substrate or that can easily introduce a functional group.
Specifically, it is preferable to use a polymer such as cellulose, nylon, and polystyrene. In particular, cellulose has a hydroxyl group as a functional group, and other functional groups can be easily introduced into the hydroxyl group. Gold is particularly preferable because it itself easily reacts with a thiol group and various materials can be easily deposited on gold.

本発明において「ポリペプチド」はL型アミノ酸、D型アミノ酸のいずれのアミノ酸から成るものであってもよい。   In the present invention, the “polypeptide” may be composed of either an L-type amino acid or a D-type amino acid.

ポリペプチドはペプチド固相合成法に準じた方法によって、固相上にスペーサーを介して順次アミノ酸を結合させることにより製造することができる。ここで、「スペーサー」とは、上記の構造において固相とアミノ酸を結合させる能力を有する化合物であり、固相上の官能部位と反応してスペーサーを固相上に結合させ得る官能部位を有するものである。
固相とスペーサーは共有結合に限らず、イオン結合や疎水結合、抗原抗体反応など固相とスペーサーを固定し得るものであれば、結合の種類に限られず、どのような結合であっもよい。
Polypeptides can be produced by sequentially binding amino acids on a solid phase via a spacer by a method according to the peptide solid phase synthesis method. Here, the “spacer” is a compound having the ability to bind a solid phase and an amino acid in the above structure, and has a functional site that can react with a functional site on the solid phase to bind the spacer on the solid phase. Is.
The solid phase and the spacer are not limited to covalent bonds, and are not limited to the type of bond as long as they can fix the solid phase and the spacer, such as ionic bond, hydrophobic bond, and antigen-antibody reaction.

反応する官能部位の組合わせは、固相上の官能部位とスペーサーの官能部位の間で交換が可能であり、どちらにどの官能部位が導入されるかは限定されない。   The combination of the functional site to react can be exchanged between the functional site on the solid phase and the functional site of the spacer, and which functional site is introduced is not limited.

反応する官能部位の組合わせとしては、ハロゲン、カルボキシル基およびアルデヒド基とアミノ基、特にジアミノアルキル基またはジアミノエーテル基等のジアミノ基の組合わせが好ましい。また、チオエステル基、アルデヒド、ブロモアセチル基およびマレイミド基とチオール基との組合わせも好ましい。   As a combination of functional sites to be reacted, a combination of a halogen, a carboxyl group, an aldehyde group and an amino group, particularly a diamino group such as a diaminoalkyl group or a diaminoether group is preferable. Also preferred are combinations of thioester groups, aldehydes, bromoacetyl groups and maleimide groups with thiol groups.

スペーサーは、固相上の官能部位と結合する官能部位に加えて、ペプチドのC末端と結合する官能部位を有する必要がある。当該官能部位の組み合わせとしては、アルデヒド、ブロモアセチル基およびマレイミド基とチオールの組み合わせが好ましい。またペプチドのC末端と結合し得るアミノ基を有するものも好ましい。スペーサーとペプチドとの結合は、固相とスペーサーとの結合と同様に、結合の種類に限られず、どのような結合であってもよい。
また、どちらにどの官能部位を入れるかは限定されず、反応する2つの官能部位をどちらか一方ずつに導入すればよい。
The spacer must have a functional site that binds to the C-terminus of the peptide in addition to the functional site that binds to the functional site on the solid phase. As the combination of the functional sites, an aldehyde, a bromoacetyl group, and a combination of a maleimide group and a thiol are preferable. Moreover, what has an amino group which can couple | bond with the C terminal of a peptide is also preferable. The bond between the spacer and the peptide is not limited to the type of bond, as with the bond between the solid phase and the spacer, and any bond may be used.
Moreover, which functional site is put in which is not limited, and two functional sites to be reacted may be introduced into either one.

本発明で「保護アミノ酸」とは、9−フルオレニルメチルオキシカルボニル基(Fmoc基)やt−ブチルカルボニル基(Boc基)などの保護基でアミノ基が保護されたアミノ酸をいう。   In the present invention, the “protected amino acid” refers to an amino acid whose amino group is protected with a protecting group such as a 9-fluorenylmethyloxycarbonyl group (Fmoc group) or a t-butylcarbonyl group (Boc group).

本発明で「成型品」とは、素材を所望の形状に加工した製品をいう。例えば、創傷被覆材、縫合糸、人工血管、カテーテル、透析膜、ステントおよび衣服などが本発明の好適な成型品である。   In the present invention, the “molded product” refers to a product obtained by processing a material into a desired shape. For example, wound dressings, sutures, artificial blood vessels, catheters, dialysis membranes, stents and clothes are suitable molded articles of the present invention.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

実施例1
カブトムシディフェンシン由来改変ペプチドのスペーサーを介したC末端での固定化
1)綿布にエピブロモヒドリンを反応させ表面をブロモ化した後、1,3−ジアミノプロパンを加え、アミノ修飾綿布を合成した。これらのアミノ基に9−フルオレニルメトキシ基(Fmoc基)で保護したD型アミノ酸を結合させ、ピペリジンで保護基を脱離させた後に、新たにFmocで保護したアミノ酸を結合させた。このようにD型アミノ酸を順次結合させて、RLLLRIGRR(配列番号4)のD型ペプチドをC末端で固定化した綿白布を合成した。但し、第1段階のアミノ酸の反応効率が他のアミノ酸に比較して低いために、最初にグリシンを結合させた後に、上記アミノ酸を順次結合させた。単位面積当たりのペプチド結合量は0.25 μg/cmであった(ペプチド固定綿布1)。
Example 1
Immobilization of a modified peptide derived from beetle defensin at the C-terminal through a spacer 1) After epibromohydrin was reacted with cotton cloth to brominate the surface, 1,3-diaminopropane was added to synthesize an amino-modified cotton cloth. A D-type amino acid protected with a 9-fluorenylmethoxy group (Fmoc group) was bound to these amino groups, and after the protecting group was removed with piperidine, an amino acid newly protected with Fmoc was bound. In this way, a D-type amino acid was sequentially bonded to synthesize a cotton white cloth in which the D-type peptide of RLLLRIGRRR (SEQ ID NO: 4) was immobilized at the C-terminus. However, since the reaction efficiency of the first-stage amino acid was lower than that of other amino acids, the amino acids were sequentially bound after first binding glycine. The amount of peptide bond per unit area was 0.25 μg / cm 2 (peptide-immobilized cotton cloth 1).

2)1,3−ジアミノプロパンに代えてジエチレングリコールビス(3−アミノプロピル)エーテルを用いて、同様の工程によってRLLLRIGRR(配列番号4)を結合させた綿白布を合成した。単位面積当たりのペプチド結合量は0.13 μg/cmであった(ペプチド固定綿布2)。 2) Using a diethylene glycol bis (3-aminopropyl) ether instead of 1,3-diaminopropane, a cotton white cloth to which RLLLRIGRRR (SEQ ID NO: 4) was bound was synthesized by the same process. The amount of peptide bond per unit area was 0.13 μg / cm 2 (peptide-immobilized cotton cloth 2).

実施例2
カブトムシディフェンシン由来改変ペプチドの結合部位を制御しない固定化
綿布にエピブロモヒドリンを反応させて、布の表面をブロモ化した。当該綿布にペプチドを反応させ、分子中のいずれかのアミノ基と綿布のブロモ基とを結合させた。配列番号1、2、3および4のペプチドを固定化させた綿布をA、B、CおよびDとした。
Example 2
Epibromohydrin was reacted with an immobilized cotton cloth that does not control the binding site of the modified peptide derived from beetle defensin , and the surface of the cloth was brominated. The peptide was reacted with the cotton cloth to bind any amino group in the molecule to the bromo group of the cotton cloth. Cotton fabrics on which the peptides of SEQ ID NOs: 1, 2, 3 and 4 were immobilized were designated as A, B, C and D.

実施例3
カブトムシディフェンシン由来改変ペプチド固定化綿布の抗微生物活性
i)スペーサーを介してペプチドをC末端で固定化した綿布の抗微生物活性試験
実施例1においてペプチドを間接的に固定化した綿布について、抗微生物活性試験を行った。ペプチド固定化綿布を培養液中に入れ、18時間培養した後に生菌は認められなかった(実験1)。実験1で用いた布を超純粋で手振り洗浄(振幅30cm×30回振とう×3回)およびオートクレーブによる滅菌操作を4回繰り返し行った後も抗菌活性が維持されていることが認められた(実験2−5)。また、実験5の後、当該ペプチド固定綿布を家庭用洗濯機を用いて界面活性剤を使用せずに洗濯し(洗い→すすぎ→脱水)、再度上記条件で手振り洗浄を行った後にオートクレーブ処理し、実験6に使用した。
本実験により、スペーサーを介してC末端でペプチドを固定化することにより、抗菌活性が安定的に維持されることが示めされた。
Example 3
Antimicrobial activity of cotton cloth with modified peptide-immobilized peptide derived from beetle defensin i) Antimicrobial activity test of cotton cloth with peptide immobilized at the C-terminal via a spacer. Antimicrobial activity of cotton cloth with peptide immobilized indirectly in Example 1 A test was conducted. After putting the peptide-immobilized cotton cloth in the culture solution and culturing for 18 hours, no viable bacteria were observed (Experiment 1). It was found that the antibacterial activity was maintained even after the cloth used in Experiment 1 was ultrapure and was subjected to hand-washing (amplitude 30 cm × 30 times shaking × 3 times) and sterilization by autoclave four times. Experiment 2-5). In addition, after Experiment 5, the peptide-immobilized cotton cloth was washed using a household washing machine without using a surfactant (washing → rinsing → dehydration), washed again under the above conditions, and then autoclaved. , Used in Experiment 6.
This experiment showed that the antibacterial activity was stably maintained by immobilizing the peptide at the C-terminus via a spacer.

Figure 0005463515
* 表中各数値は細菌数(CFU)を示す。
Figure 0005463515
* Each value in the table indicates the number of bacteria (CFU).

ii)ペプチドの結合部位を制御せず固定化した綿布の抗微生物活性試験
実施例2において作製した、ペプチドの結合部位を制御せず固定化した綿布A、B、CおよびDについて、JIS規格に基づく抗菌試験法を用いて黄色ブドウ球菌(Staphylococcus aureus)に対する抗菌活性を測定した。ペプチド固定化綿布を培養液中に入れ、18時間培養した後に生菌は認められなかった(実験1)。実験1で用いた綿布を前記条件で手振り洗浄し、オートクレーブによる滅菌操作を行った後に再度抗菌試験を行った。当該洗浄及び抗菌試験を繰返し実施した結果、2回以上洗浄を繰り返すことにより全てのペプチド固定化綿布において生菌が認められた(実験2−5)。

Figure 0005463515
* 表中各数値は細菌数(CFU)を示す。 ii) Antimicrobial activity test of cotton cloth immobilized without controlling the peptide binding site The cotton cloths A, B, C and D immobilized without controlling the peptide binding site prepared in Example 2 are in accordance with JIS standards. The antibacterial activity against Staphylococcus aureus was measured using a based antibacterial test method. After putting the peptide-immobilized cotton cloth in the culture solution and culturing for 18 hours, no viable bacteria were observed (Experiment 1). The cotton cloth used in Experiment 1 was washed by shaking under the above conditions, sterilized by an autoclave and then subjected to an antibacterial test again. As a result of repeating the washing and the antibacterial test, viable bacteria were observed in all the peptide-immobilized cotton cloths by repeating washing twice or more (Experiment 2-5).
Figure 0005463515
* Each value in the table indicates the number of bacteria (CFU).

実施例4
カブトムシディフェンシン由来改変ペプチド固定化綿布の抗ガン活性
カブトムシディフェンシン由来改変ペプチド固定化綿布のマウス骨髄腫細胞P3−X63−Ag8.653およびヒト白血病細胞Jurkatに対する活性を測定した。
Example 4
Anticancer activity of beetle defensin-derived modified peptide-immobilized cotton cloth The activity of beetle defensin-derived modified peptide-immobilized cotton cloth on mouse myeloma cells P3-X63-Ag8.653 and human leukemia cells Jurkat was measured.

ペプチドを固定化した綿布と固定化していない綿布をともに5mm×5mmの大きさに切断し、超純水1ml中で洗浄(ボルテックスmax×10秒)後、オートクレーブ処理を行い、試験に用いた。96ウェルプレートの各ウェルの底に布を置き、その上からマウス骨髄腫細胞P3−X63−Ag8.653またはヒト白血病細胞Jurkatを8×10個/100μl/ウェル添加し、5%CO・37℃で24時間培養後、生存率を測定した。培地はRPMI1640(Gibco11875−085:グルコース2000mg/L、L−グルタミン300mg/L)にウシ血清(最終濃度20%)とペニシリン−ストレプトマイシン(最終濃度50mg/L)を添加したものを使用した。
ペプチド固定化綿布を培地中に入れた場合、ガン細胞の生存率はいずれも大幅に減少した。ペプチド固定化綿布の洗浄、滅菌を行い、再び試験を行った結果も同様に繰返しの実験で抗ガン活性は維持された。
Both the cotton fabric with the peptide immobilized and the cotton fabric with no peptide immobilized were cut into a size of 5 mm × 5 mm, washed in 1 ml of ultrapure water (vortex max × 10 seconds), autoclaved and used for the test. Place a cloth on the bottom of each well of a 96-well plate, and add mouse myeloma cell P3-X63-Ag8.653 or human leukemia cell Jurkat 8 × 10 3 cells / 100 μl / well from above, and add 5% CO 2. After culturing at 37 ° C. for 24 hours, the survival rate was measured. The medium used was RPMI1640 (Gibco11875-085: glucose 2000 mg / L, L-glutamine 300 mg / L) supplemented with bovine serum (final concentration 20%) and penicillin-streptomycin (final concentration 50 mg / L).
When the peptide-immobilized cotton cloth was placed in the medium, the survival rate of all cancer cells was greatly reduced. The peptide-immobilized cotton cloth was washed, sterilized, and tested again. The anticancer activity was maintained in repeated experiments.

Claims (12)

下記式で表されるアミノ酸配列:
X1−Lue−X2−Leu−X3−Ile−X4−Arg−Arg−NH
(式中、X1はArgまたはAlaであり、X2はTyr、ArgまたはLeuであり、X3はArgまたはAlaであり、X4はGlyまたはArgである。)を含むポリペプチドのC末端側をスペーサーを介して基材に固定化した素材。
Amino acid sequence represented by the following formula:
X1-Lue-X2-Leu-X3-Ile-X4-Arg-Arg-NH 2
(Wherein, X1 is Arg or Ala, X2 is Tyr, is Arg or Leu, X3 is Arg or Ala, X4 is Gly or Arg.) Spacers C-terminal side of a polypeptide comprising Material fixed to the substrate via
前記アミノ酸配列がArg−Leu−Tyr−Leu−Arg−Ile−Gly−Arg−Arg−NH、Arg−Leu−Arg−Leu−Arg−Ile−Gly−Arg−Arg−NH、Ala−Leu−Tyr−Leu−Ala−Ile−Arg−Arg−Arg−NHまたはArg−Leu−Leu−Leu−Arg−Ile−Gly−Arg−Arg−NHである請求項1に記載の素材。 Wherein said amino acid sequence is Arg-Leu-Tyr-Leu- Arg-Ile-Gly-Arg-Arg-NH 2, Arg-Leu-Arg-Leu-Arg-Ile-Gly-Arg-Arg-NH 2, Ala-Leu- The material according to claim 1, which is Tyr-Leu-Ala-Ile-Arg-Arg-Arg-Arg-NH 2 or Arg-Leu-Leu-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 . アミノ酸配列がArg−Leu−Leu−Leu−Arg−Ile−Gly−Arg−Arg−NHThe amino acid sequence is Arg-Leu-Leu-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 である請求項2に記載の素材。The material according to claim 2. スペーサーが
Figure 0005463515
又は
Figure 0005463515
を含む請求項1〜3のいずれかに記載の素材。
Spacer
Figure 0005463515
Or
Figure 0005463515
The raw material in any one of Claims 1-3 containing.
基材が高分子または金属である請求項1〜4のいずれかに記載の素材。   The material according to any one of claims 1 to 4, wherein the substrate is a polymer or a metal. 基材がセルロースである請求項5に記載の素材。   The material according to claim 5, wherein the substrate is cellulose. 請求項1〜6のいずれかに記載の素材から成る抗微生物または抗ガン活性を有する成型品。   The molded article which has the antimicrobial or anticancer activity which consists of the raw material in any one of Claims 1-6. 創傷被覆材、縫合糸、人工血管、カテーテル、透析膜、衣服およびステントからなる群より選択される請求項7に記載の成型品。   The molded article according to claim 7, wherein the molded article is selected from the group consisting of wound dressings, sutures, artificial blood vessels, catheters, dialysis membranes, clothes and stents. (i)基材表面のヒドロキシル基にエピハロヒドリンを反応させて基材表面をハロゲン化する工程と、(I) reacting an epihalohydrin with a hydroxyl group on the substrate surface to halogenate the substrate surface;
(ii)前記基材に、1,3−ジアミノプロパンまたはジエチレングリコールビス(3−アミノプロピル)エーテルを加えて、1,3−ジアミノプロパンまたはジエチレングリコールビス(3−アミノプロピル)エーテルのアミノ基の一方と基材表面上のエピハロヒドリンのハロゲン基を反応させて、アミノ修飾基材を得る工程と、(Ii) 1,3-diaminopropane or diethylene glycol bis (3-aminopropyl) ether is added to the substrate, and one of the amino groups of 1,3-diaminopropane or diethylene glycol bis (3-aminopropyl) ether Reacting a halogen group of epihalohydrin on the substrate surface to obtain an amino-modified substrate;
(iii)1,3−ジアミノプロパンまたはジエチレングリコールビス(3−アミノプロピル)エーテルの他方のアミノ基に、アミノ酸を順次ペプチド結合させて、下記式で表されるアミノ酸配列:(Iii) An amino acid sequence represented by the following formula, wherein an amino acid is sequentially peptide-bonded to the other amino group of 1,3-diaminopropane or diethylene glycol bis (3-aminopropyl) ether:
X1−Lue−X2−Leu−X3−Ile−X4−Arg−Arg−NHX1-Lue-X2-Leu-X3-Ile-X4-Arg-Arg-NH 2
(式中、X1はArgまたはAlaであり、X2はTyr、ArgまたはLeuであり、X3はArgまたはAlaであり、X4はGlyまたはArgである。)(Wherein X1 is Arg or Ala, X2 is Tyr, Arg or Leu, X3 is Arg or Ala, and X4 is Gly or Arg.)
を有するポリペプチドを基材に固定化する工程とImmobilizing a polypeptide having a base on a substrate;
を含む、素材の製造方法。A method of manufacturing a material, including
アミノ酸配列が、Arg−Leu−Leu−Leu−Arg−Ile−Gly−Arg−Arg−NH である請求項9に記載の方法 The method according to claim 9, wherein the amino acid sequence is Arg-Leu-Leu-Leu-Arg-Ile-Gly-Arg-Arg-NH 2 . 請求項9又は10の方法により作製される素材。The raw material produced by the method of Claim 9 or 10. 液体(体液を除く)を請求項1〜6及び11のいずれかに記載の素材と接触させることを特徴とする液体の殺菌方法。 A liquid sterilization method comprising contacting a liquid (excluding body fluid) with the material according to any one of claims 1 to 6.
JP2009029726A 2009-02-12 2009-02-12 Material with immobilized antimicrobial peptide Expired - Fee Related JP5463515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029726A JP5463515B2 (en) 2009-02-12 2009-02-12 Material with immobilized antimicrobial peptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029726A JP5463515B2 (en) 2009-02-12 2009-02-12 Material with immobilized antimicrobial peptide

Publications (2)

Publication Number Publication Date
JP2010184022A JP2010184022A (en) 2010-08-26
JP5463515B2 true JP5463515B2 (en) 2014-04-09

Family

ID=42765037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029726A Expired - Fee Related JP5463515B2 (en) 2009-02-12 2009-02-12 Material with immobilized antimicrobial peptide

Country Status (1)

Country Link
JP (1) JP5463515B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039190A1 (en) * 2011-09-15 2013-03-21 和歌山県 Peptide-containing polymer, and method for peptide immobilization on fiber
JP6090569B2 (en) * 2012-09-14 2017-03-08 和歌山県 Antibacterial peptide
JP6362878B2 (en) * 2013-03-12 2018-07-25 国立研究開発法人農業・食品産業技術総合研究機構 Fusion protein containing modified peptide repeat peptide and silk fiber containing the fusion protein
EP2977383B1 (en) * 2014-07-23 2018-06-06 Universitätsmedizin der Johannes Gutenberg-Universität Mainz An in-vitro method and purification system for blood samples
GB201512031D0 (en) * 2015-07-09 2015-08-19 Univ Birmingham Functionalized surface
CN107997984A (en) * 2017-11-27 2018-05-08 肽源(广州)生物科技有限公司 A kind of antibacterial peptide-chitosan complexes, its preparation method and its application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0513096D0 (en) * 2005-06-28 2005-08-03 Strathclyde Treatment of microbial infections
JP5100152B2 (en) * 2006-02-28 2012-12-19 独立行政法人農業生物資源研究所 Insect antimicrobial protein modified peptides and uses thereof
JP4481260B2 (en) * 2006-03-16 2010-06-16 株式会社カネカ Antibody binding peptide
WO2007126392A1 (en) * 2006-04-27 2007-11-08 Singapore Health Services Pte Ltd Antimicrobial peptides

Also Published As

Publication number Publication date
JP2010184022A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5463515B2 (en) Material with immobilized antimicrobial peptide
Yazici et al. Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants
Wronska et al. Adding functions to biomaterial surfaces through protein incorporation
US8598269B2 (en) Antimicrobial constructs
US9181290B2 (en) Inhibition of biofilm formation by 1,2,3,4,6-penta-O-galloyl-D-glucopyranose
US20190076818A1 (en) Methods And Materials For Microorganism Capture
Acosta et al. Recombinant AMP/polypeptide self-assembled monolayers with synergistic antimicrobial properties for bacterial strains of medical relevance
CN104918492A (en) Antimicrobial coating compositions
US20170044222A1 (en) Anti-Microbial Coatings and Devices
De Zoysa et al. Feasibility study exploring the potential of novel battacin lipopeptides as antimicrobial coatings
JP2009526862A (en) Medical devices and coatings containing non-exudable antimicrobial peptides
WO1992009198A1 (en) Polyelectrolyte complex antibacterial agent and antibacterial material
WO2008085578A2 (en) Anti-microbial compositions and devices and methods of using the same
WO2009075788A1 (en) Synthetic non-fouling amino acids
US20180051061A1 (en) Anti-Microbial Peptides and Coatings
Sun et al. The overview of antimicrobial peptide‐coated implants against oral bacterial infections
Pinto et al. Utilization of antimicrobial peptides, analogues and mimics in creating antimicrobial surfaces and bio-materials
Boix-Lemonche et al. Covalent grafting of titanium with a cathelicidin peptide produces an osteoblast compatible surface with antistaphylococcal activity
JP2022084752A (en) Cyclic antimicrobial pseudopeptides and uses thereof
JP2000217579A (en) New antibacterial peptide
Yao et al. Mussel-inspired clickable antibacterial peptide coating on ureteral stents for encrustation prevention
WO2008070083A2 (en) Filter media using peptide-based antimicrobials
Juanes‐Gusano et al. Self‐assembling systems comprising intrinsically disordered protein polymers like elastin‐like recombinamers
CN112841222A (en) Antibacterial and antivirus material and application thereof
JP7017726B2 (en) Use of peptides that specifically bind to vascular endothelial cells, and peptides

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120208

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees