JP5462823B2 - Engine exhaust treatment equipment - Google Patents

Engine exhaust treatment equipment Download PDF

Info

Publication number
JP5462823B2
JP5462823B2 JP2011052146A JP2011052146A JP5462823B2 JP 5462823 B2 JP5462823 B2 JP 5462823B2 JP 2011052146 A JP2011052146 A JP 2011052146A JP 2011052146 A JP2011052146 A JP 2011052146A JP 5462823 B2 JP5462823 B2 JP 5462823B2
Authority
JP
Japan
Prior art keywords
combustible gas
exhaust
air
passage
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011052146A
Other languages
Japanese (ja)
Other versions
JP2012188973A (en
Inventor
能和 竹本
慶太 内藤
崇之 大西
裕一 玉置
克明 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011052146A priority Critical patent/JP5462823B2/en
Publication of JP2012188973A publication Critical patent/JP2012188973A/en
Application granted granted Critical
Publication of JP5462823B2 publication Critical patent/JP5462823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

本発明は、エンジンの排気処理装置に関し、詳しくは、エンジン始動時に白煙が発生するのを防止することができるエンジンの排気処理装置に関する。   The present invention relates to an engine exhaust treatment apparatus, and more particularly to an engine exhaust treatment apparatus that can prevent white smoke from being generated when the engine is started.

従来、エンジンの排気処理装置として、可燃性ガス生成器で可燃性ガスを発生させ、この可燃性ガスを可燃性ガス放出口から排気通路に放出し、この可燃性ガスを燃焼触媒で触媒燃焼させ、その触媒燃焼熱で排気を昇温させ、燃焼触媒の下流に配置したDPFに溜まったPMを燃焼除去し、或いは、燃焼触媒の下流に配置した排気浄化触媒を活性化させるようにした、エンジンの排気処理装置がある(例えば、特許文献1参照)。
この種の排気処理装置によれば、排気の温度が比較的低い場合にも、触媒燃焼により可燃性ガスで排気を昇温させることができる利点がある。
しかし、この従来技術では、可燃性ガス生成器から流出した液体成分が排気通路に付着するのを防止する手段がないため、問題がある。
Conventionally, as an exhaust treatment device for an engine, a flammable gas is generated by a flammable gas generator, this flammable gas is discharged from a flammable gas discharge port to an exhaust passage, and this flammable gas is catalytically burned by a combustion catalyst. An engine that raises the temperature of the exhaust gas with the catalytic combustion heat and burns and removes PM accumulated in the DPF arranged downstream of the combustion catalyst, or activates the exhaust purification catalyst arranged downstream of the combustion catalyst. (For example, refer to Patent Document 1).
According to this type of exhaust treatment device, there is an advantage that even when the temperature of the exhaust gas is relatively low, the temperature of the exhaust gas can be raised with a combustible gas by catalytic combustion.
However, this conventional technique has a problem because there is no means for preventing the liquid component flowing out from the combustible gas generator from adhering to the exhaust passage.

特開2007−239734号公報(図1参照)JP 2007-239734 A (see FIG. 1)

《問題》 エンジン始動時に白煙が発生する。
可燃性ガス生成器から流出した液体成分が排気通路に付着するのを防止する手段がないため、この液体成分が排気通路に残留し、次のエンジン始動時に排気管から放出され、白煙が発生する。
<Problem> White smoke is generated when the engine is started.
Since there is no means to prevent the liquid component flowing out from the combustible gas generator from adhering to the exhaust passage, this liquid component remains in the exhaust passage and is discharged from the exhaust pipe at the next engine start, generating white smoke. To do.

本発明の課題は、エンジン始動時に白煙が発生するのを防止することができる、エンジンの排気処理装置を提供することにある。   An object of the present invention is to provide an engine exhaust treatment device that can prevent white smoke from being generated when the engine is started.

請求項1に係る発明の発明特定事項は、次の通りである。
図2に例示するように、可燃性ガス生成器(1)で可燃性ガス(2)を発生させ、この可燃性ガス(2)を可燃性ガス放出口(3)から排気通路(4)に放出し、この可燃性ガス(2)を燃焼触媒(5)で触媒燃焼させ、その触媒燃焼熱で排気(6)を昇温させ、燃焼触媒(5)の下流に配置したDPF(7)に溜まったPMを燃焼除去し、或いは、燃焼触媒(5)の下流に配置した排気浄化触媒を活性化させるようにした、エンジンの排気処理装置において、
図2に例示するように、燃焼触媒(5)の上流で排気通路(4)に可燃性ガス供給通路(8)を連通させ、この可燃性ガス供給通路(8)に空気供給手段(9)と着火手段(10)とを設け、この空気供給手段(9)と着火手段(10)とを制御手段(11)に連携させ、
図2に例示するように、可燃性ガス生成器(1)に液体燃料(26)と空気(25)とを供給して可燃性ガス生成触媒(22)で可燃性ガス(2)を生成するに当たり、
図2に例示するように、可燃性ガス生成触媒(22)の温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で可燃性ガス生成器(1)から流出した液体成分を気化させる、ことを特徴とするエンジンの排気処理装置。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 2, a combustible gas generator (1) generates a combustible gas (2), and the combustible gas (2) is discharged from the combustible gas discharge port (3) to the exhaust passage (4). This combustible gas (2) is catalytically combusted by the combustion catalyst (5), and the exhaust gas (6) is heated by the catalytic combustion heat, and the DPF (7) disposed downstream of the combustion catalyst (5) In the exhaust treatment apparatus for an engine, in which accumulated PM is burned and removed, or an exhaust purification catalyst disposed downstream of the combustion catalyst (5) is activated,
As illustrated in FIG. 2, a combustible gas supply passage (8) is connected to the exhaust passage (4) upstream of the combustion catalyst (5), and an air supply means (9) is connected to the combustible gas supply passage (8). And an ignition means (10), the air supply means (9) and the ignition means (10) are linked to the control means (11),
As illustrated in FIG. 2, liquid fuel (26) and air (25) are supplied to the combustible gas generator (1), and the combustible gas generating catalyst (22) generates the combustible gas (2). Hitting
As illustrated in FIG. 2, when the temperature of the combustible gas generation catalyst (22) is lower than a predetermined temperature, the control means (11) uses the air supply means (9) to convert the combustible gas (2) into air ( 12) and igniting the combustible gas (2) by the ignition means (10) to combust the combustible gas (2), and the combustible gas generator (1 An exhaust treatment device for an engine, characterized in that the liquid component flowing out from the gas is vaporized.

(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 エンジン始動時に白煙が発生するのを防止することができる。
図2に例示するように、可燃性ガス生成触媒(22)の温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(25)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で可燃性ガス生成器(1)から流出した液体成分を気化させるので、排気通路(4)内に可燃性ガス生成器(1)から流出した液体成分が付着せず、エンジン始動時に白煙が発生するのを防止することができる。
(Invention of Claim 1)
The invention according to claim 1 has the following effects.
<Effect> It is possible to prevent white smoke from being generated when the engine is started.
As illustrated in FIG. 2, when the temperature of the combustible gas generation catalyst (22) is lower than a predetermined temperature, the control means (11) uses the air supply means (9) to convert the combustible gas (2) into air ( 25) and igniting the combustible gas (2) by the ignition means (10) to combust the combustible gas (2), and the combustible gas generator (1 ) Vaporizes the liquid component flowing out from the exhaust passage (4), so that the liquid component flowing out from the combustible gas generator (1) does not adhere and prevents white smoke from being generated when starting the engine. it can.

(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》エンジン始動時に白煙が発生するのを防止することができる
図2に例示するように、排気温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で排気通路(4)中の排気(6)を昇温させるので、排気通路(4)内に可燃性ガス生成器(1)から流出した液体成分が付着せず、エンジン始動時に白煙が発生するのを防止することができる。
(Invention of Claim 2)
The invention according to claim 2 has the following effect in addition to the effect of the invention according to claim 1.
<Effect> It is possible to prevent white smoke from being generated when the engine is started. As illustrated in FIG. 2, when the exhaust gas temperature is lower than a predetermined temperature, the control means (11) controls the air supply means (9). In addition to supplying air (12) to the combustible gas (2), the combustible gas (2) is ignited by the ignition means (10) to combust the combustible gas (2). As the temperature of the exhaust gas (6) in the exhaust passage (4) is raised by the heat of the liquid, the liquid component flowing out from the combustible gas generator (1) does not adhere to the exhaust passage (4), and white smoke is generated when the engine is started. Can be prevented.

《効果》 エンジン始動直後や軽負荷運転時でもDPFに溜まったPMを燃焼させ、或いは、排気浄化触媒の活性化を図ることができる。
図2に例示するように、排気温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で排気通路(4)中の排気(6)を昇温させるので、エンジン始動直後や軽負荷運転時等、本来的に排気温度が燃焼触媒(5)の活性化温度に達しない場合でも、可燃性ガス(2)の火炎燃焼の熱で排気(4)の温度を昇温させ、排気温度を燃焼触媒(5)の活性化温度に到達させることが可能となり、エンジン始動直後や軽負荷運転時でもDPF(7)に溜まったPMを燃焼させ、或いは、排気浄化触媒の活性化を図ることができる。
<Effect> PM accumulated in the DPF can be burned immediately after the engine is started or during light load operation, or the exhaust purification catalyst can be activated.
As illustrated in FIG. 2, when the exhaust gas temperature is lower than a predetermined temperature, the control means (11) supplies air (12) to the combustible gas (2) by the air supply means (9) and ignites. The combustible gas (2) is ignited by means (10), the combustible gas (2) is flame-combusted, and the temperature of the exhaust (6) in the exhaust passage (4) is raised by the heat of the flame combustion. Therefore, even if the exhaust temperature does not essentially reach the activation temperature of the combustion catalyst (5), such as immediately after starting the engine or during light load operation, the heat of the combustion of the combustible gas (2) causes the exhaust (4) It is possible to raise the temperature and allow the exhaust temperature to reach the activation temperature of the combustion catalyst (5). The PM accumulated in the DPF (7) is burned immediately after the engine is started or during light load operation, or the exhaust is exhausted. The purification catalyst can be activated.

(請求項3に係る発明)
請求項3に係る発明は、請求項1または請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 排圧を上昇させることがない。
図1(A)に例示するように、排気通路(4)と可燃性ガス供給通路(8)とを並設し、可燃性ガス供給通路(8)の下流側で、排気通路(4)と可燃性ガス供給通路(8)の境界に放熱口(13)をあけ、この放熱口(13)で排気通路(4)と可燃性ガス供給通路(8)とを連通させ、この放熱口(13)に可燃性ガス供給通路(8)の下流側に配置した着火手段(10)を臨ませたので、可燃性ガス供給通路(8)や着火手段(10)により排気通路(4)の排気(9)の流れが邪魔されることがなく、排圧を上昇させることがない。
(Invention of Claim 3)
The invention according to claim 3 has the following effect in addition to the effect of the invention according to claim 1 or claim 2.
<Effect> The exhaust pressure is not increased.
As illustrated in FIG. 1A, an exhaust passage (4) and a combustible gas supply passage (8) are arranged in parallel, and an exhaust passage (4) and a downstream side of the combustible gas supply passage (8) A heat radiation port (13) is opened at the boundary of the combustible gas supply passage (8), and the heat radiation port (13) communicates the exhaust passage (4) with the combustible gas supply passage (8). ) Is exposed to the ignition means (10) disposed downstream of the combustible gas supply passage (8), so that the exhaust (4) is discharged into the exhaust passage (4) by the combustible gas supply passage (8) or the ignition means (10). The flow of 9) is not obstructed and the exhaust pressure is not increased.

《効果》排気の昇温効率が高い。
図1(A)に例示するように、放熱口(13)に可燃性ガス供給通路(8)の下流側に配置した着火手段(10)を臨ませたので、可燃性ガス(2)の火炎燃焼の熱が放熱口(13)から排気通路(4)に直接に放熱され、排気(6)の昇温効率が高い。
<Effect> The temperature raising efficiency of the exhaust is high.
As illustrated in FIG. 1 (A), since the ignition means (10) disposed on the downstream side of the combustible gas supply passage (8) is made to face the heat radiation port (13), the flame of the combustible gas (2) The heat of combustion is directly dissipated from the heat radiation port (13) to the exhaust passage (4), and the temperature raising efficiency of the exhaust (6) is high.

(請求項4に係る発明)
請求項4に係る発明は、請求項3に係る発明の効果に加え、次の効果を奏する。
《効果》排気の昇温効率がより高まる。
図1(A)に例示するように、排気通路(4)の下側に可燃性ガス供給通路(8)を並設し、排気通路(4)の周面下側に放熱口(13)をあけたので、可燃性ガス(2)の燃焼火炎の熱気が排気通路(4)に浮上し、排気(6)の温度を高め、排気(6)の昇温効率がより高まる。
(Invention of Claim 4)
The invention according to claim 4 has the following effect in addition to the effect of the invention according to claim 3.
<Effect> The temperature raising efficiency of the exhaust gas is further increased.
As illustrated in FIG. 1A, a combustible gas supply passage (8) is provided in parallel below the exhaust passage (4), and a heat radiation port (13) is provided below the peripheral surface of the exhaust passage (4). Since it opened, the hot air of the combustion flame of combustible gas (2) floats in the exhaust passage (4), raises the temperature of exhaust (6), and raises the temperature rise efficiency of exhaust (6) more.

(請求項4に係る発明)
請求項4に係る発明は、請求項1から請求項3のいずれかに係る発明の効果に加え、次の効果を奏する。
《効果》高い放熱量が得られる。
図1(B)に例示するように、旋回する空気(12)に可燃性ガス出口(17)から混合室(14)の径方向に供給した可燃性ガス(2)を混合させるので、可燃性ガス(2)と空気(12)との混合性が良好で、可燃性ガス(2)の着火により高い放熱量が得られる。
(Invention of Claim 4)
The invention according to claim 4 has the following effects in addition to the effects of the invention according to any one of claims 1 to 3.
<Effect> A high heat radiation amount can be obtained.
As illustrated in FIG. 1B, combustible gas (2) supplied in the radial direction of the mixing chamber (14) from the combustible gas outlet (17) is mixed with the swirling air (12). Mixability of gas (2) and air (12) is good, and a high heat radiation amount is obtained by ignition of combustible gas (2).

本発明の実施形態に係るディーゼルエンジンの排気処理装置を説明する図で、図1(A)は排気処理装置の縦断面図、図1(B)は図1(A)のB−B線断面図、図1(C)は可燃性ガスノズルの変形例の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the exhaust-gas treatment apparatus of the diesel engine which concerns on embodiment of this invention, FIG. 1 (A) is a longitudinal cross-sectional view of an exhaust-gas treatment apparatus, FIG.1 (B) is a BB sectional view of FIG. FIG. 1 (C) is a longitudinal sectional view of a modification of the combustible gas nozzle. 図1の排気処理装置とその周辺部品の模式図である。It is a schematic diagram of the exhaust treatment apparatus of FIG. 1 and its peripheral components. 図3(A)は図1の排気処理装置で用いる基本例の二重ガスケットを蓋載置面に載置した平面図、図3図(B)は図1(A)のIIIB部の拡大図である。3A is a plan view in which the double gasket of the basic example used in the exhaust treatment apparatus of FIG. 1 is placed on the lid placing surface, and FIG. 3B is an enlarged view of the IIIB portion of FIG. It is. 図4(A)は図3(A)の縮小図、図4(B)は液体燃料出口を備えた下側のガスケットの平面図、図4(C)は空気出口を備えた上側のガスケットの平面図である。4 (A) is a reduced view of FIG. 3 (A), FIG. 4 (B) is a plan view of the lower gasket with the liquid fuel outlet, and FIG. 4 (C) is an upper gasket with the air outlet. It is a top view. 図5は二重ガスケットの第1変形例を説明する図で、図5(A)は図3(A)相当図、図5(B)は図3(B)相当図、図5(C)は図3(C)相当図図である。FIG. 5 is a view for explaining a first modification of the double gasket. FIG. 5 (A) is a view corresponding to FIG. 3 (A), FIG. 5 (B) is a view corresponding to FIG. 3 (B), and FIG. FIG. 3 is a view corresponding to FIG. 図6は二重ガスケットの第2変形例を説明する図で、図6(A)は図3(A)相当図、図6(B)は図3(B)相当図、図6(C)は図3(C)相当図図である。FIG. 6 is a diagram for explaining a second modification of the double gasket. FIG. 6 (A) is a view corresponding to FIG. 3 (A), FIG. 6 (B) is a view corresponding to FIG. 3 (B), and FIG. FIG. 3 is a view corresponding to FIG. 図7は図1の排気処理装置の空気供給通路に設けたU字管を説明する図で、図7(A)は汚染物質が溜まった状態、図7(B)は汚染物質をパージしている状態を示している。7A and 7B are diagrams for explaining a U-shaped tube provided in the air supply passage of the exhaust treatment apparatus of FIG. 1, FIG. 7A is a state where contaminants are accumulated, and FIG. It shows the state. 図8は図1の排気処理装置で用いるモータの出力軸と排気ブロワの入力軸を接続するオルダム継手の説明図で、図8(A)は正面図、図8(B)は図1(A)のB−B線断面図である。8 is an explanatory view of an Oldham coupling that connects the output shaft of the motor and the input shaft of the exhaust blower used in the exhaust treatment apparatus of FIG. 1, FIG. 8 (A) is a front view, and FIG. 8 (B) is FIG. It is a BB line sectional view of). 図9は図1の排気処理装置によるDPF再生のフローチャートである。FIG. 9 is a flowchart of DPF regeneration by the exhaust treatment device of FIG.

図1〜図9は本発明の実施形態に係るエンジンの排気処理装置を説明する図であり、この実施形態では、ディーゼルエンジンの排気処理装置について説明する。   FIG. 1 to FIG. 9 are diagrams for explaining an exhaust treatment device for an engine according to an embodiment of the present invention. In this embodiment, an exhaust treatment device for a diesel engine will be explained.

図2に示すように、可燃性ガス生成器(1)で可燃性ガス(2)を発生させ、この可燃性ガス(2)を可燃性ガス放出口(3)から排気通路(4)に放出し、この可燃性ガス(2)を燃焼触媒(5)で触媒燃焼させ、その触媒燃焼熱で排気(6)を昇温させ、燃焼触媒(5)の下流に配置したDPF(7)に溜まったPMを燃焼除去するようにしている。
DPFは、ディーゼル・パティキュレート・フィルタの略称である。PMは粒子状物質の略称である。
この燃焼触媒(5)はDOCである。DOCはディーゼル酸化触媒の略称である。DPF(7)のPM除去と共に、或いは、DPF(7)のPM除去に代えて、燃焼触媒(5)の下流に配置した排気浄化触媒(SCR触媒やNO吸蔵触媒等)を活性化させるようにしてもよい。SCR触媒は選択還元触媒の略称である。
As shown in FIG. 2, the combustible gas generator (1) generates the combustible gas (2), and the combustible gas (2) is discharged from the combustible gas discharge port (3) to the exhaust passage (4). Then, the combustible gas (2) is catalytically combusted by the combustion catalyst (5), the exhaust gas (6) is heated by the catalytic combustion heat, and accumulated in the DPF (7) disposed downstream of the combustion catalyst (5). PM is burned and removed.
DPF is an abbreviation for diesel particulate filter. PM is an abbreviation for particulate matter.
This combustion catalyst (5) is DOC. DOC is an abbreviation for diesel oxidation catalyst. In order to activate the exhaust purification catalyst (SCR catalyst, NO X storage catalyst, etc.) disposed downstream of the combustion catalyst (5), together with PM removal of the DPF (7) or instead of PM removal of the DPF (7) It may be. The SCR catalyst is an abbreviation for selective reduction catalyst.

図2に示すように、燃焼触媒(5)の上流で排気通路(4)に可燃性ガス供給通路(8)を連通させ、この可燃性ガス供給通路(8)に空気供給手段(9)と着火手段(10)とを設け、この空気供給手段(9)と着火手段(10)とを制御手段(11)に連携させている。着火手段(10)はグロープラグである。図中の符号(72)は板材に多数の孔をあけた保炎スクリーンであり、排気ガス(4)による燃焼火炎の消炎を抑制する。
図2に示すように、排気温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で排気通路(4)中の排気(6)を昇温させるようにしている。
これにより、エンジン始動直後や軽負荷運転時等、本来的に排気温度が燃焼触媒(5)の活性化温度に達しない場合でも、可燃性ガス(2)の火炎燃焼の熱で排気(6)の温度を昇温させ、排気温度を燃焼触媒(5)の活性化温度に到達させることが可能となり、エンジン始動直後や軽負荷運転時でもDPF(7)に溜まったPMの燃焼、或いは、排気浄化触媒の活性化を図ることができる。
As shown in FIG. 2, a combustible gas supply passage (8) is connected to the exhaust passage (4) upstream of the combustion catalyst (5), and an air supply means (9) is connected to the combustible gas supply passage (8). An ignition means (10) is provided, and the air supply means (9) and the ignition means (10) are linked to the control means (11). The ignition means (10) is a glow plug. Reference numeral (72) in the figure denotes a flame-holding screen having a large number of holes in the plate material, which suppresses the extinction of the combustion flame caused by the exhaust gas (4).
As shown in FIG. 2, when the exhaust gas temperature is lower than the predetermined temperature, the control means (11) supplies air (12) to the combustible gas (2) by the air supply means (9), and the ignition means. In (10), the combustible gas (2) is ignited, the combustible gas (2) is flame-combusted, and the temperature of the exhaust (6) in the exhaust passage (4) is increased by the heat of the flame combustion. I have to.
As a result, even when the exhaust temperature does not reach the activation temperature of the combustion catalyst (5), such as immediately after starting the engine or during light load operation, the exhaust (6) is generated by the heat of flame combustion of the combustible gas (2). It is possible to raise the temperature of the exhaust gas so that the exhaust temperature reaches the activation temperature of the combustion catalyst (5). Combustion of PM accumulated in the DPF (7) or exhaust immediately after engine startup or during light load operation The purification catalyst can be activated.

図1(A)に示すように、排気通路(4)と可燃性ガス供給通路(8)とを並設し、可燃性ガス供給通路(8)の下流側で、排気通路(4)と可燃性ガス供給通路(8)の境界に放熱口(13)をあけ、この放熱口(13)で排気通路(4)と可燃性ガス供給通路(8)とを連通させ、この放熱口(13)に可燃性ガス供給通路(8)の下流側に配置した着火手段(10)を臨ませている。
これにより、可燃性ガス供給通路(8)や着火手段(10)により排気通路(4)の排気(6)の流れが邪魔されることがなく、排圧を上昇させることがない。また、可燃性ガス(2)の燃焼火炎で排気(6)が直接に昇温され、排気(6)の昇温効率が高い。
図1(A)に示すように、排気通路(4)の下側に可燃性ガス供給通路(8)を並設し、排気通路(4)の周面下側に放熱口(13)をあけている。これにより、可燃性ガス(2)の燃焼火炎の熱気が排気通路(4)に浮上し、排気通路(4)の排気(6)の温度を高め、排気(6)の昇温効率がより高まる。
As shown in FIG. 1 (A), the exhaust passage (4) and the combustible gas supply passage (8) are arranged in parallel, and the exhaust passage (4) and the combustible gas are provided downstream of the combustible gas supply passage (8). A heat radiation port (13) is opened at the boundary of the combustible gas supply passage (8), and the heat radiation port (13) communicates the exhaust passage (4) with the combustible gas supply passage (8). The igniting means (10) arranged on the downstream side of the combustible gas supply passage (8) is faced.
Thereby, the flow of the exhaust (6) in the exhaust passage (4) is not obstructed by the combustible gas supply passage (8) and the ignition means (10), and the exhaust pressure is not increased. Further, the temperature of the exhaust (6) is directly raised by the combustion flame of the combustible gas (2), and the temperature raising efficiency of the exhaust (6) is high.
As shown in FIG. 1 (A), a combustible gas supply passage (8) is arranged in parallel below the exhaust passage (4), and a heat radiation port (13) is opened below the peripheral surface of the exhaust passage (4). ing. Thereby, the hot air of the combustion flame of the combustible gas (2) rises to the exhaust passage (4), raises the temperature of the exhaust (6) in the exhaust passage (4), and increases the temperature raising efficiency of the exhaust (6). .

図1(A)(B)に示すように、着火手段(10)の上流で可燃性ガス供給通路(8)に沿って可燃性ガス(2)と空気(12)の混合室(14)を形成し、この混合室(14)に可燃性ガスノズル(15)と空気供給管(16)とを設け、可燃性ガスノズル(15)は混合室(14)の形成方向に沿う向きで混合室(14)の中心部に配置し、この可燃性ガスノズル(15)の周面に複数の可燃性ガス出口(17)をあけ、空気供給管(16)は混合室(14)の内周面の周方向に沿う向きで混合室(14)の内周面部に配置し、空気供給管(16)から供給した空気(12)を可燃性ガスノズル(15)の周囲で混合室(14)の内周面に沿って旋回させている。
この旋回する空気(12)に可燃性ガス出口(17)から混合室(14)の径方向に供給した可燃性ガス(2)を混合させるようにしている。これにより、可燃性ガス(2)と空気(12)との混合性が良好で、可燃性ガス(2)の着火により高い放熱量が得られる。
As shown in FIGS. 1 (A) and 1 (B), a mixing chamber (14) of combustible gas (2) and air (12) is provided along the combustible gas supply passage (8) upstream of the ignition means (10). A combustible gas nozzle (15) and an air supply pipe (16) are provided in the mixing chamber (14), and the combustible gas nozzle (15) is oriented in the direction along which the mixing chamber (14) is formed. ), A plurality of combustible gas outlets (17) are opened on the peripheral surface of the combustible gas nozzle (15), and the air supply pipe (16) is in the circumferential direction of the inner peripheral surface of the mixing chamber (14). The air (12) supplied from the air supply pipe (16) is placed around the combustible gas nozzle (15) on the inner peripheral surface of the mixing chamber (14). Swirling along.
The swirling air (12) is mixed with the combustible gas (2) supplied from the combustible gas outlet (17) in the radial direction of the mixing chamber (14). Thereby, the mixability of combustible gas (2) and air (12) is favorable, and high heat dissipation is obtained by ignition of combustible gas (2).

図2に示すように、可燃性ガス生成器(1)に液体燃料(26)と空気(25)とを供給して可燃性ガス生成触媒(22)で可燃性ガス(2)を生成するに当たり、可燃性ガス生成触媒(22)の温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(25)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で可燃性ガス生成器(1)から流出した液体成分を気化させるようにしている。これにより、排気通路(4)内に可燃性ガス生成器(1)から流出した液体成分が付着せず、エンジン始動時に白煙が発生するのを防止することができる。   As shown in FIG. 2, when the liquid fuel (26) and the air (25) are supplied to the combustible gas generator (1) and the combustible gas generating catalyst (22) generates the combustible gas (2). When the temperature of the combustible gas generating catalyst (22) is lower than the predetermined temperature, the control means (11) supplies air (25) to the combustible gas (2) by the air supply means (9), and The combustible gas (2) is ignited by the ignition means (10), the combustible gas (2) is flame-combusted, and the liquid component that has flowed out of the combustible gas generator (1) with the heat of this flame combustion I'm trying to vaporize. Thereby, the liquid component which flowed out from the combustible gas generator (1) does not adhere in the exhaust passage (4), and white smoke can be prevented from being generated when the engine is started.

図1(A)に示すように、可燃性ガス生成器(1)に可燃性ガス生成触媒室(21)を設け、この可燃性ガス生成触媒室(21)に可燃性ガス生成触媒(22)を収容し、可燃性ガス生成触媒室(21)の始端部に環状壁(23)を配置し、この環状壁(23)の内側に空燃混合室(24)を形成し、この空燃混合室(24)に空気(25)と液体燃料(26)とを供給することにより、空燃混合室(24)で空燃混合ガス(27)を形成し、この空燃混合ガス(27)を可燃性ガス生成触媒(22)に供給し、可燃性ガス生成触媒(22)で可燃性ガス(2)を生成させるに当たり、次のようにした。
図3(B)に示すように、環状壁(23)の始端部に蓋(28)を配置し、環状壁(23)の始端部に環状の蓋載置面(29)を設け、蓋(28)に被載置面(30)を設け、環状壁(23)の蓋載置面(29)に環状のガスケット(31)(32)を介して蓋(28)の被載置面(30)を載置固定した。
As shown in FIG. 1A, a combustible gas generating catalyst chamber (21) is provided in the combustible gas generator (1), and the combustible gas generating catalyst (22) is provided in the combustible gas generating catalyst chamber (21). An annular wall (23) is arranged at the start end of the combustible gas generating catalyst chamber (21), and an air / fuel mixing chamber (24) is formed inside the annular wall (23). By supplying air (25) and liquid fuel (26) to the chamber (24), an air-fuel mixture gas (27) is formed in the air-fuel mixture chamber (24), and this air-fuel mixture gas (27) is When the combustible gas generating catalyst (22) was supplied and the combustible gas generating catalyst (22) generated the combustible gas (2), the following procedure was performed.
As shown in FIG. 3 (B), a lid (28) is arranged at the start end of the annular wall (23), an annular lid placement surface (29) is provided at the start end of the annular wall (23), and the lid ( 28) is provided with a placement surface (30), and the placement surface (30) of the lid (28) is provided on the lid placement surface (29) of the annular wall (23) via the annular gaskets (31) and (32). ) Was fixed.

図3(A)に例示するように、ガスケット(31)にその周方向に所定間隔を保持して複数の液体燃料入口(33)と液体燃料出口(34)とを設け、液体燃料出口(34)は各液体燃料入口(33)からガスケット(31)の内側に向けて導出している。
図3(B)に例示するように、環状壁(23)の蓋載置面(29)と蓋(28)の被載置面(30)のいずれかの面にその周方向に沿う液体燃料ガイド溝(35)を凹設し、この液体燃料ガイド溝(35)の開口に各液体燃料入口(33)を連通させ、液体燃料ガイド溝(35)に供給された液体燃料(26)が各液体燃料入口(33)を介して液体燃料出口(34)から空燃混合室(24)に流出するようにしている。
これにより、環状壁(23)内に液体燃料ガイド通路や液体燃料出口を形成する場合に比べ、環状壁(23)の加工を容易にすることができる。
図3(A)に例示するように、空燃混合室(24)で空気(25)を旋回させるに当たり、液体燃料出口(34)を空燃混合室(24)の空気旋回方向の下流側に方向付けている。これにより、空燃混合室(24)での空気(25)と液体燃料(26)の混合が均一になる。
As illustrated in FIG. 3A, the gasket (31) is provided with a plurality of liquid fuel inlets (33) and liquid fuel outlets (34) while maintaining a predetermined interval in the circumferential direction thereof. ) Is led out from each liquid fuel inlet (33) toward the inside of the gasket (31).
As illustrated in FIG. 3 (B), the liquid fuel along the circumferential direction on one of the lid placement surface (29) of the annular wall (23) and the placement surface (30) of the lid (28). A guide groove (35) is provided in the recess, and each liquid fuel inlet (33) is communicated with the opening of the liquid fuel guide groove (35). The liquid fuel (26) supplied to the liquid fuel guide groove (35) is The liquid fuel outlet (34) flows out from the liquid fuel inlet (33) into the air / fuel mixing chamber (24).
Thereby, compared with the case where a liquid fuel guide channel | path and a liquid fuel exit are formed in an annular wall (23), the process of an annular wall (23) can be made easy.
As illustrated in FIG. 3A, when the air (25) is swirled in the air / fuel mixing chamber (24), the liquid fuel outlet (34) is placed downstream of the air / fuel mixing chamber (24) in the air swirling direction. Oriented. Thereby, the mixing of the air (25) and the liquid fuel (26) in the air-fuel mixing chamber (24) becomes uniform.

図3(A)に例示するように、ガスケット(32)にその周方向に所定間隔を保持して複数の空気入口(36)と空気出口(37)とを設け、空気出口(37)は各空気入口(36)からガスケット(32)の内側に向けて導出し、図3(B)に例示するように、環状壁(23)の蓋載置面(29)と蓋(28)の被載置面(30)のいずれかの面にその周方向に沿う空気ガイド溝(38)を凹設し、この空気ガイド溝(38)の開口に各空気入口(36)を連通させ、空気ガイド溝(38)に供給された空気(25)が各空気入口(36)を介して空気出口(37)から空燃混合室(24)に流出するようにしている。
これにより、環状壁(23)内に空気ガイド通路や空気出口を形成する場合に比べ、環状壁(23)の加工を容易にすることができる。
図3(A)に例示するように、空燃混合室(24)で空気(25)を旋回させるに当たり、空気出口(37)を空燃混合室(24)の空気旋回方向の下流側に方向付けている。これにより、空燃混合室(24)で容易に空気(25)を旋回させることができる。
As illustrated in FIG. 3A, the gasket (32) is provided with a plurality of air inlets (36) and air outlets (37) while maintaining a predetermined interval in the circumferential direction. Derived from the air inlet (36) toward the inside of the gasket (32), as shown in FIG. 3 (B), the lid mounting surface (29) and the lid (28) of the annular wall (23) are mounted. An air guide groove (38) extending along the circumferential direction is formed in any surface of the mounting surface (30), and each air inlet (36) is communicated with the opening of the air guide groove (38). The air (25) supplied to (38) flows out from the air outlet (37) to the air-fuel mixing chamber (24) through each air inlet (36).
Thereby, compared with the case where an air guide channel | path and an air exit are formed in an annular wall (23), the process of an annular wall (23) can be made easy.
As illustrated in FIG. 3A, when the air (25) is swirled in the air / fuel mixing chamber (24), the air outlet (37) is directed downstream of the air swirling direction of the air / fuel mixing chamber (24). Attached. Thereby, air (25) can be easily swirled in the air-fuel mixing chamber (24).

図4(B)に示す基本例では、ガスケット(31)にその周方向に一定間隔を保持して、4個の液体燃料出口(34)を配置している。
図5(B)に示す第1変形例では、ガスケット(31)にその周方向に一定間隔を保持して、6個の液体燃料出口(34)を配置している。
図6(B)に示す第2変形例では、ガスケット(31)にその周方向に一定間隔を保持して、12個の液体燃料出口(34)を配置している。
In the basic example shown in FIG. 4 (B), four liquid fuel outlets (34) are arranged in the gasket (31) at a constant interval in the circumferential direction.
In the first modification shown in FIG. 5 (B), six liquid fuel outlets (34) are arranged in the gasket (31) at a constant interval in the circumferential direction.
In the second modified example shown in FIG. 6B, twelve liquid fuel outlets (34) are arranged in the gasket (31) at a constant interval in the circumferential direction.

図6(B)に例示するように、ガスケット(31)に液体燃料出口(34)が12個あると、可燃性ガス生成器(1)の傾斜時に、傾斜下手側の6個の液体燃料出口(34)の総開口面積が比較的大きいため、必要な液体燃料(26)が傾斜下手側の液体燃料出口(34)から全て供給され、傾斜上手側の液体燃料出口(34)から液体燃料(26)が供給されなくなり、空燃混合室(24)での液体燃料(24)の分配が不均等になり、可燃性ガス生成触媒(22)全体を有効利用できず、可燃性ガス(2)の生成効率が低下する。   As illustrated in FIG. 6B, when there are twelve liquid fuel outlets (34) in the gasket (31), when the combustible gas generator (1) is inclined, the six liquid fuel outlets on the lower side of the inclination are inclined. Since the total opening area of (34) is relatively large, all of the necessary liquid fuel (26) is supplied from the liquid fuel outlet (34) on the lower side of the slope, and liquid fuel (34) is supplied from the liquid fuel outlet (34) on the upper side of the slope. 26) is not supplied, the distribution of the liquid fuel (24) in the air-fuel mixing chamber (24) becomes uneven, and the entire combustible gas generating catalyst (22) cannot be used effectively, and the combustible gas (2) The production efficiency is reduced.

これに対し、図5(B)に例示するように、ガスケット(31)にその周方向に一定間隔を保持して、6個の液体燃料出口(34)を配置した場合には、可燃性ガス生成器(1)の傾斜時でも、傾斜下手側の3個の液体燃料出口(34)の総開口面積が比較的小さいため、必要な液体燃料(26)を傾斜下手側の液体燃料出口(34)のみから全て供給することはできず、液体燃料(26)は傾斜上手側の液体燃料出口(34)からも供給され、空燃混合室(24)での液体燃料(26)の分配がより均等になり、可燃性ガス生成触媒(22)全体を有効利用でき、可燃性ガス(2)の生成効率が高まる。   On the other hand, as illustrated in FIG. 5B, when six liquid fuel outlets (34) are arranged in the gasket (31) at a constant interval in the circumferential direction, combustible gas is provided. Even when the generator (1) is inclined, since the total opening area of the three liquid fuel outlets (34) on the lower side of the inclination is relatively small, the required liquid fuel (26) is supplied to the liquid fuel outlet (34 on the lower side of the inclination). ) Alone, and the liquid fuel (26) is also supplied from the liquid fuel outlet (34) on the upper side of the slope, so that the liquid fuel (26) is more distributed in the air-fuel mixing chamber (24). It becomes equal, the whole combustible gas production | generation catalyst (22) can be used effectively, and the production | generation efficiency of combustible gas (2) increases.

図4(B)に例示するように、ガスケット(31)にその周方向に一定間隔を保持して、4個の液体燃料出口(34)を配置した場合には、可燃性ガス生成器(1)の傾斜時でも、傾斜下手側の2個の液体燃料出口(34)の総開口面積が比較的小さいため、必要な液体燃料(26)を傾斜下手側の液体燃料出口(34)のみから全て供給することはできず、液体燃料(26)は傾斜上手側の液体燃料出口(34)からも供給され、空燃混合室(24)での液体燃料(26)の分配がより均等になり、可燃性ガス生成触媒(22)全体を有効利用でき、可燃性ガス(2)の生成効率がより高まる。   As illustrated in FIG. 4B, when four liquid fuel outlets (34) are arranged in the gasket (31) at a constant interval in the circumferential direction, a combustible gas generator (1 ), Since the total opening area of the two liquid fuel outlets (34) on the lower side of the slope is relatively small, all of the necessary liquid fuel (26) is supplied only from the liquid fuel outlet (34) on the lower side of the slope. Liquid fuel (26) is also supplied from the liquid fuel outlet (34) on the inclined upper side, and the distribution of the liquid fuel (26) in the air-fuel mixing chamber (24) becomes more even, The entire combustible gas generation catalyst (22) can be effectively used, and the generation efficiency of the combustible gas (2) is further increased.

図7(A)(B)に例示するように、空気供給通路(41)の途中にU字管(42)を設け、図7(A)に例示するように、可燃性ガス生成器(1)で可燃性ガス(2)を生成していない時に、排気(6)の脈動により、可燃性ガス生成器(1)から空気供給通路(41)に流入した残留燃料等の汚染物質(43)をU字管(42)に溜め、図7(B)に例示するように、可燃性ガス生成器(1)で可燃性ガス(2)の生成を再開した時に、空気供給源(44)から供給される空気(25)でU字管(42)に溜まった汚染物質(43)を可燃性ガス生成器(1)に向けてパージすることができるようにしている。これにより、図2に示す空気供給源(44)や空気供給用の電磁弁(45)に汚染物質(43)が進入するのを防止することができる。   A U-shaped pipe (42) is provided in the middle of the air supply passage (41) as illustrated in FIGS. 7A and 7B, and a combustible gas generator (1) is illustrated as illustrated in FIG. 7A. ), When the combustible gas (2) is not generated, due to the pulsation of the exhaust (6), pollutants (43) such as residual fuel flowing into the air supply passage (41) from the combustible gas generator (1) Is stored in the U-tube (42), and when the generation of the combustible gas (2) is resumed in the combustible gas generator (1), as illustrated in FIG. 7B, the air supply source (44) The pollutant (43) accumulated in the U-shaped tube (42) can be purged toward the combustible gas generator (1) by the supplied air (25). Thereby, it is possible to prevent the contaminant (43) from entering the air supply source (44) and the air supply electromagnetic valve (45) shown in FIG.

図8に示すように、モータ(46)の出力軸(47)とブロワ(48)の入力軸(49)とをオルダム継手(50)で接続するに当たり、モータ(46)の出力軸(47)とブロワ(48)の入力軸(49)とをゴムパイプ(51)で連結し、ゴムパイプ(51)内にグリスを充填している。これにより、ゴムパイプ(51)でオルダム継手のガタによる衝撃を吸収するとともに、グリスの飛散を防ぐことができる。   As shown in FIG. 8, in connecting the output shaft (47) of the motor (46) and the input shaft (49) of the blower (48) with the Oldham coupling (50), the output shaft (47) of the motor (46). And an input shaft (49) of the blower (48) are connected by a rubber pipe (51), and the rubber pipe (51) is filled with grease. As a result, the rubber pipe (51) can absorb the impact caused by the looseness of the Oldham joint and can prevent the grease from being scattered.

DPF再生の制御は、次のようにして行う。
図1に示すエンジンECU(61)は、PM堆積量推定手段(62)とPM再生制御手段(63)とを備えている。エンジンECUはエンジン電子制御ユニットの略称である。
PM堆積量推定手段(62)は、エンジンECU(61)の所定の演算部であり、エンジン負荷、エンジン回転数、DPF上流側排気温度センサ(64)による検出排気温度、DPF上流側排気圧センサ(65)によるDPF(7)上流側の排気圧、差圧センサ(66)によるDPF(7)の上流と下流の差圧等に基づいて、予め実験的に求めたマップデータからPM堆積量を推定する。
Control of DPF regeneration is performed as follows.
The engine ECU (61) shown in FIG. 1 includes PM accumulation amount estimation means (62) and PM regeneration control means (63). Engine ECU is an abbreviation for engine electronic control unit.
The PM accumulation amount estimation means (62) is a predetermined calculation unit of the engine ECU (61), and is engine load, engine speed, detected exhaust temperature by the DPF upstream exhaust temperature sensor (64), and DPF upstream exhaust pressure sensor. Based on the map pressure data obtained experimentally in advance based on the exhaust pressure upstream of the DPF (7) by (65), the differential pressure upstream and downstream of the DPF (7) by the differential pressure sensor (66), etc. presume.

PM堆積量推定手段(62)によりPM堆積量推定値が所定の再生開始値に至ると、PM再生制御手段(63)は、ヒータ(67)を発熱させ、液体燃料ポンプ(68)とブロワ(48)のモータ(46)とを駆動する。これにより、空燃混合室(24)に液体燃料(26)と空気(25)が供給され、可燃性ガス生成触媒(22)で可燃性ガス(2)が発生する。ヒータ(67)の周囲は液体燃料を保持できる起動触媒(71)で囲まれ、起動触媒(71)に保持された液体燃料にヒータ(67)の熱が集中的に供給され、可燃性ガス(2)の生成が速やかに開始される。む
可燃性(4)の生成開始の初期には、所定時間、ヒータ(25)を発熱させるが、可燃性ガス(4)の生成が開始されると、可燃性ガス生成触媒(13)は発熱反応によって温度が上昇するため、可燃性ガス(4)の生成が開始されてから所定時間経過した場合には、タイマによりヒータ(25)の発熱を停止する。
When the PM accumulation amount estimation value reaches a predetermined regeneration start value by the PM accumulation amount estimation means (62), the PM regeneration control means (63) causes the heater (67) to generate heat, and the liquid fuel pump (68) and the blower ( 48) motor (46) is driven. Thereby, liquid fuel (26) and air (25) are supplied to the air-fuel mixing chamber (24), and combustible gas (2) is generated by the combustible gas generation catalyst (22). The periphery of the heater (67) is surrounded by an activation catalyst (71) capable of holding liquid fuel, and the heat of the heater (67) is intensively supplied to the liquid fuel held by the activation catalyst (71), so that a combustible gas ( The generation of 2) starts immediately. The heater (25) is heated for a predetermined time at the beginning of the start of generation of combustible (4), but when the generation of combustible gas (4) is started, the combustible gas generating catalyst (13) generates heat. Since the temperature rises due to the reaction, the heat generation of the heater (25) is stopped by a timer when a predetermined time has elapsed after the generation of the combustible gas (4) is started.

PM再生制御手段(63)には、可燃性ガス生成触媒(22)の温度センサ(68)と燃焼触媒(5)の入口側温度センサ(69)を連携させ、可燃性ガス生成触媒(22)の温度や、燃焼触媒(5)の入口側温度が所定温度よりも低い場合には、着火手段(10)で可燃性ガス(2)に着火させる。
PM再生制御手段(63)には、DPF(7)の出口側温度センサ(70)を連携させ、DPF(7)の出口側温度が異常に高い場合には、緊急に再生を中止する。
The PM regeneration control means (63) is linked with the temperature sensor (68) of the combustible gas generation catalyst (22) and the inlet side temperature sensor (69) of the combustion catalyst (5), so that the combustible gas generation catalyst (22). Or the combustion catalyst (5) has an inlet side temperature lower than a predetermined temperature, the ignition means (10) ignites the combustible gas (2).
The PM regeneration control means (63) is linked with the outlet side temperature sensor (70) of the DPF (7), and when the outlet side temperature of the DPF (7) is abnormally high, the regeneration is stopped urgently.

DPF再生のフローは次の通りである。
図9に示すように、ステップ(S1)でPM堆積推定値が再生開始値に至ったか否かが判定され、判定が肯定されると、ステップ(S2)で可燃性ガス生成を開始し、ステップ(S3)で燃焼触媒(5)の入口側排気温度が250°C以上かどうかが判定され、判定が肯定の場合にはステップ(S4)で可燃性ガス生成触媒(22)の温度が400°C以上か否かが判定され、判定が肯定の場合には、ステップ(S5)で可燃性ガス(2)に着火せず、可燃性ガス(2)を排気通路(4)に供給し、ステップ(S6)でPM堆積推定値が再生終了値に至ったか否かが判定され、判定が肯定の場合には、ステップ(S7)で可燃性ガス生成を終了し、DPFの再生を終了する。
ステップ(S6)での判定が否定の場合には、ステップ(S3)に戻る。ステップ(S3)とステップ(S4)の判定が否定の場合には、いずれの場合にもステップ(S8)で可燃性ガス(2)に着火して、火炎燃焼の熱を排気通路(4)に供給する。
The flow of DPF regeneration is as follows.
As shown in FIG. 9, it is determined in step (S1) whether or not the PM accumulation estimated value has reached the regeneration start value. If the determination is affirmative, in step (S2), combustible gas generation is started. In (S3), it is determined whether or not the exhaust gas temperature on the inlet side of the combustion catalyst (5) is 250 ° C or higher. If the determination is affirmative, the temperature of the combustible gas generating catalyst (22) is 400 ° in step (S4). If it is determined whether or not it is C or more and the determination is affirmative, in step (S5), the combustible gas (2) is not ignited, and the combustible gas (2) is supplied to the exhaust passage (4). In (S6), it is determined whether or not the PM accumulation estimated value has reached the regeneration end value. If the determination is affirmative, the combustible gas generation is terminated in step (S7), and the regeneration of the DPF is terminated.
If the determination in step (S6) is negative, the process returns to step (S3). If the determinations in step (S3) and step (S4) are negative, the combustible gas (2) is ignited in step (S8) in both cases, and the heat of flame combustion is transferred to the exhaust passage (4). Supply.

(1) 可燃性ガス生成器
(2) 可燃性ガス
(3) 可燃性ガス放出口
(4) 排気通路
(5) 燃焼触媒
(6) 排気
(7) DPF
(8) 可燃性ガス供給通路
(9) 空気供給手段
(10) 着火手段
(11) 制御手段
(12) 空気
(13) 放熱口
(14) 混合室
(15) 可燃性ガスノズル
(16) 空気供給管
(17) 可燃性ガス出口
(22) 可燃性ガス生成触媒
(1) Combustible gas generator
(2) Combustible gas
(3) Combustible gas outlet
(4) Exhaust passage
(5) Combustion catalyst
(6) Exhaust
(7) DPF
(8) Flammable gas supply passage
(9) Air supply means
(10) Ignition means
(11) Control means
(12) Air
(13) Heat radiation port
(14) Mixing chamber
(15) Combustible gas nozzle
(16) Air supply pipe
(17) Combustible gas outlet
(22) Combustible gas generation catalyst

Claims (5)

可燃性ガス生成器(1)で可燃性ガス(2)を発生させ、この可燃性ガス(2)を可燃性ガス放出口(3)から排気通路(4)に放出し、この可燃性ガス(2)を燃焼触媒(5)で触媒燃焼させ、その触媒燃焼熱で排気(6)を昇温させ、燃焼触媒(5)の下流に配置したDPF(7)に溜まったPMを燃焼除去し、或いは、燃焼触媒(5)の下流に配置した排気浄化触媒を活性化させるようにした、エンジンの排気処理装置において、
燃焼触媒(5)の上流で排気通路(4)に可燃性ガス供給通路(8)を連通させ、この可燃性ガス供給通路(8)に空気供給手段(9)と着火手段(10)とを設け、この空気供給手段(9)と着火手段(10)とを制御手段(11)に連携させ、
可燃性ガス生成器(1)に液体燃料(26)と空気(25)とを供給して可燃性ガス生成触媒(22)で可燃性ガス(2)を生成するに当たり、
可燃性ガス生成触媒(22)の温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で可燃性ガス生成器(1)から流出した液体成分を気化させる、ことを特徴とするエンジンの排気処理装置。
The combustible gas generator (1) generates a combustible gas (2), the combustible gas (2) is discharged from the combustible gas discharge port (3) to the exhaust passage (4), and the combustible gas ( 2) catalytic combustion with the combustion catalyst (5), the exhaust gas (6) is heated with the catalytic combustion heat, and PM accumulated in the DPF (7) disposed downstream of the combustion catalyst (5) is burned and removed. Alternatively, in an engine exhaust treatment device that activates an exhaust purification catalyst disposed downstream of the combustion catalyst (5),
The combustible gas supply passage (8) is connected to the exhaust passage (4) upstream of the combustion catalyst (5), and the air supply means (9) and the ignition means (10) are connected to the combustible gas supply passage (8). The air supply means (9) and the ignition means (10) are linked to the control means (11),
In supplying combustible gas generator (1) with liquid fuel (26) and air (25) and generating combustible gas (2) with combustible gas generating catalyst (22),
When the temperature of the combustible gas generating catalyst (22) is lower than the predetermined temperature, the control means (11) supplies air (12) to the combustible gas (2) by the air supply means (9) and ignites. The combustible gas (2) is ignited by means (10), the combustible gas (2) is flame-combusted, and the liquid component flowing out from the combustible gas generator (1) is vaporized by the heat of this flame combustion. An exhaust processing apparatus for an engine characterized by comprising:
請求項1に記載したエンジンの排気処理装置において、
排気温度が所定温度よりも低い場合には、制御手段(11)が空気供給手段(9)で可燃性ガス(2)に空気(12)を供給するとともに、着火手段(10)で可燃性ガス(2)に着火を起こさせて、可燃性ガス(2)を火炎燃焼させ、この火炎燃焼の熱で排気通路(4)中の排気(6)を昇温させる、ことを特徴とするエンジンの排気処理装置。
The engine exhaust treatment apparatus according to claim 1,
When the exhaust gas temperature is lower than the predetermined temperature, the control means (11) supplies air (12) to the combustible gas (2) by the air supply means (9) and the combustible gas by the ignition means (10). (2) is ignited, the combustible gas (2) is flame-combusted, and the exhaust (6) in the exhaust passage (4) is heated by the heat of the flame combustion. Exhaust treatment device.
請求項1または請求項2に記載したエンジンの排気処理装置において、
排気通路(4)と可燃性ガス供給通路(8)とを並設し、可燃性ガス供給通路(8)の下流側で、排気通路(4)と可燃性ガス供給通路(8)の境界に放熱口(13)をあけ、この放熱口(13)で排気通路(4)と可燃性ガス供給通路(8)とを連通させ、この放熱口(13)に可燃性ガス供給通路(8)の下流側に配置した着火手段(10)を臨ませた、ことを特徴とするエンジンの排気処理装置。
The engine exhaust treatment apparatus according to claim 1 or 2,
The exhaust passage (4) and the combustible gas supply passage (8) are arranged side by side, and at the boundary between the exhaust passage (4) and the combustible gas supply passage (8) on the downstream side of the combustible gas supply passage (8). The heat release port (13) is opened, the exhaust passage (4) and the combustible gas supply passage (8) are communicated with each other through the heat release port (13), and the combustible gas supply passage (8) is connected to the heat release port (13). An exhaust treatment apparatus for an engine, characterized in that an ignition means (10) disposed on the downstream side is faced.
請求項3に記載したエンジンの排気処理装置において、
排気通路(4)の下側に可燃性ガス供給通路(8)を並設し、排気通路(4)の周面下側に放熱口(13)をあけた、ことを特徴とするエンジンの排気処理装置。
The engine exhaust treatment apparatus according to claim 3,
Exhaust gas from an engine, characterized in that a combustible gas supply passage (8) is provided in parallel below the exhaust passage (4), and a heat radiation port (13) is opened below the peripheral surface of the exhaust passage (4). Processing equipment.
請求項1から請求項4のいずれかに記載したエンジンの排気処理装置において、
着火手段(10)の上流で可燃性ガス供給通路(8)に沿って可燃性ガス(2)と空気(12)の混合室(14)を形成し、この混合室(14)に可燃性ガスノズル(15)と空気供給管(16)とを設け、可燃性ガスノズル(15)は混合室(14)の形成方向に沿う向きで混合室(14)の中心部に配置し、この可燃性ガスノズル(15)の周面に複数の可燃性ガス出口(17)をあけ、空気供給管(16)は混合室(14)の内周面の周方向に沿う向きで混合室(14)の内周面部に配置し、空気供給管(16)から供給した空気(12)を可燃性ガスノズル(15)の周囲で混合室(14)の内周面に沿って旋回させ、
この旋回する空気(12)に可燃性ガス出口(17)から混合室(14)の径方向に供給した可燃性ガス(2)を混合させる、ことを特徴とするエンジンの排気処理装置。
The engine exhaust treatment apparatus according to any one of claims 1 to 4,
A combustible gas (2) and air (12) mixing chamber (14) is formed upstream of the ignition means (10) along the combustible gas supply passage (8), and a combustible gas nozzle is formed in the mixing chamber (14). (15) and an air supply pipe (16) are provided, and the combustible gas nozzle (15) is disposed in the center of the mixing chamber (14) in a direction along the forming direction of the mixing chamber (14), and this combustible gas nozzle ( 15) A plurality of combustible gas outlets (17) are opened on the peripheral surface of the mixing chamber (14), and the air supply pipe (16) is oriented along the circumferential direction of the inner peripheral surface of the mixing chamber (14). The air (12) supplied from the air supply pipe (16) is swung around the inner peripheral surface of the mixing chamber (14) around the combustible gas nozzle (15),
An exhaust treatment apparatus for an engine, characterized in that the swirling air (12) is mixed with the combustible gas (2) supplied from the combustible gas outlet (17) in the radial direction of the mixing chamber (14).
JP2011052146A 2011-03-09 2011-03-09 Engine exhaust treatment equipment Active JP5462823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052146A JP5462823B2 (en) 2011-03-09 2011-03-09 Engine exhaust treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052146A JP5462823B2 (en) 2011-03-09 2011-03-09 Engine exhaust treatment equipment

Publications (2)

Publication Number Publication Date
JP2012188973A JP2012188973A (en) 2012-10-04
JP5462823B2 true JP5462823B2 (en) 2014-04-02

Family

ID=47082412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052146A Active JP5462823B2 (en) 2011-03-09 2011-03-09 Engine exhaust treatment equipment

Country Status (1)

Country Link
JP (1) JP5462823B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878889B2 (en) 2012-12-26 2016-03-08 株式会社クボタ Engine exhaust treatment equipment
JP5894104B2 (en) 2013-03-29 2016-03-23 株式会社クボタ Engine exhaust treatment equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538429B2 (en) * 2006-02-09 2010-09-08 株式会社クボタ Diesel engine exhaust system
EP2025890B1 (en) * 2007-08-15 2010-11-10 Kubota Corporation Exhaust device for a diesel engine
JP5515385B2 (en) * 2009-04-15 2014-06-11 株式会社Ihi Ignition device and burner device

Also Published As

Publication number Publication date
JP2012188973A (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5520860B2 (en) Engine exhaust treatment equipment
JP5462822B2 (en) Engine exhaust treatment equipment
JP2009074533A (en) Exhaust system for diesel engine
JP2009299677A (en) Exhaust device for diesel engine
JP5750389B2 (en) Engine exhaust treatment equipment
JP2013245609A (en) Burner for exhaust gas cleaning device
JP5750390B2 (en) Engine exhaust treatment equipment
JP5462823B2 (en) Engine exhaust treatment equipment
JP5859412B2 (en) Diesel engine exhaust treatment equipment
JP2012188974A (en) Exhaust treatment device for engine
JP5894104B2 (en) Engine exhaust treatment equipment
JP5750416B2 (en) Diesel engine exhaust treatment equipment
JP6811368B2 (en) Exhaust temperature raising device
JP5959464B2 (en) Engine exhaust treatment equipment
JP2009074532A (en) Exhaust system for diesel engine
JP2941800B1 (en) Black smoke removal device
JP5959465B2 (en) Engine exhaust treatment equipment
KR102044560B1 (en) Exhaust treatment device of diesel engine
JP5878889B2 (en) Engine exhaust treatment equipment
JP2000087729A (en) Device for removing black smoke
KR101414738B1 (en) Bunner for combusting high temperature
WO2012131877A1 (en) Exhaust purification device for internal combustion engine
KR19980072893A (en) Exhaust gas purifier combustor
JP2011052600A (en) Device for treating exhaust gas from diesel engine
JP2011052601A (en) Device for treating exhaust gas from diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150