JP5462568B2 - Method for determining the number of graphite particles in spheroidal graphite cast iron - Google Patents

Method for determining the number of graphite particles in spheroidal graphite cast iron Download PDF

Info

Publication number
JP5462568B2
JP5462568B2 JP2009220760A JP2009220760A JP5462568B2 JP 5462568 B2 JP5462568 B2 JP 5462568B2 JP 2009220760 A JP2009220760 A JP 2009220760A JP 2009220760 A JP2009220760 A JP 2009220760A JP 5462568 B2 JP5462568 B2 JP 5462568B2
Authority
JP
Japan
Prior art keywords
graphite
cast iron
grains
graphitization
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009220760A
Other languages
Japanese (ja)
Other versions
JP2011069711A (en
Inventor
利猛 菅野
一求 姜
祐貴 岩見
俊至 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novacast Foundry Solutions AB
Original Assignee
Novacast Foundry Solutions AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novacast Foundry Solutions AB filed Critical Novacast Foundry Solutions AB
Priority to JP2009220760A priority Critical patent/JP5462568B2/en
Publication of JP2011069711A publication Critical patent/JP2011069711A/en
Application granted granted Critical
Publication of JP5462568B2 publication Critical patent/JP5462568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、球状黒鉛鋳鉄中の黒鉛粒数を判定する方法に係り、特に、溶解炉等で溶解して得られる鋳鉄溶湯に黒鉛球状化処理や接種処理を施してなる、球状黒鉛鋳鉄溶湯の凝固後における球状黒鉛の粒数を、効果的に把握し得る方法に関するものである。   The present invention relates to a method for determining the number of graphite particles in spheroidal graphite cast iron, and in particular, a spheroidal graphite cast iron melt obtained by subjecting a cast iron melt obtained by melting in a melting furnace or the like to spheroidizing graphite or inoculation treatment. The present invention relates to a method capable of effectively grasping the number of spheroidal graphite particles after solidification.

従来から、鋳鉄の主要成分である炭素は、非特許文献1(平成7年1月30日、産業図書株式会社発行、中江秀雄著、「鋳造工学」、第17〜27頁)にも明らかにされている如く、鋳鉄溶湯の凝固温度を下げ、溶融時の流動性を良くすると共に、炭素が黒鉛として晶出して体積が膨張するために、凝固による体積収縮を減少させることが知られている。そして、それらの性質は、鋳鉄が多用されてきた理由でもあり、その晶出した黒鉛相が、基地であるフェライト相やパーライト相と比較して、圧倒的に強度が低く、熱伝導性や振動減衰能が高いために、鋳鉄の材料特性は、黒鉛の晶出量や分布に強く影響されることとなる。   Conventionally, carbon, which is the main component of cast iron, is also apparent in Non-Patent Document 1 (January 30, 1995, published by Sangyo Tosho Co., Ltd., Hideo Nakae, “Casting Engineering”, pp. 17-27). It is known that the solidification temperature of the cast iron melt is lowered to improve the fluidity at the time of melting, and the volume of crystal expands due to the crystallization of carbon as graphite. . And these properties are also the reason why cast iron has been used a lot, and the crystallized graphite phase is overwhelmingly lower in strength than the base ferrite phase and pearlite phase, and it has thermal conductivity and vibration. Since the damping capacity is high, the material properties of cast iron are strongly influenced by the crystallization amount and distribution of graphite.

そして、そのような鋳鉄の一つであるダクタイル鋳鉄、即ち球状黒鉛鋳鉄は、晶出する黒鉛の形状を球状化して、強度や延性の向上を意図したものであり、そこにおいて、球状化した黒鉛の粒数を増加させると、強度や伸びの増加の他、組織の均一性、チル化傾向・ひけ巣の発生の低減、フェライト率の上昇等、材料としての特性の向上が期待されるのである。   Ductile cast iron, that is, spheroidal graphite cast iron, which is one of such cast irons, is intended to improve the strength and ductility by spheroidizing the shape of the crystallized graphite. Increasing the number of grains is expected to improve the properties of the material, such as the increase in strength and elongation, as well as the uniformity of the structure, the tendency to chilling / reducing the occurrence of shrinkage, and the increase in ferrite rate. .

ところで、球状黒鉛鋳鉄において、その黒鉛粒数を確認するためには、一般に、黒鉛球状化処理及び接種処理を終了した鋳鉄溶湯を、所定形状の試験片鋳型に注入して、凝固せしめ、その凝固完了を待って、得られた鋳物から、顕微鏡検査用試験片が作製される。かかる試験片は、鋳物から切り出されて、研磨された後、その顕微鏡検査や画像処理によって、単位面積当たりの黒鉛粒数を数視野から得て、その平均黒鉛粒数が求められているのである。また、それに代えて、鋳造後の製品の一部から試験片を切り出して、同様に、黒鉛粒数を求める試験も、採用される場合があった。   By the way, in order to confirm the number of graphite particles in spheroidal graphite cast iron, generally, the cast iron melt after the graphite spheroidizing treatment and inoculation treatment is injected into a test piece mold of a predetermined shape, solidified, and then solidified. After completion, a test piece for microscopic inspection is produced from the obtained casting. After such a test piece is cut out from a casting and polished, the number of graphite grains per unit area is obtained from several fields of view by microscopic inspection and image processing, and the average number of graphite grains is obtained. . Alternatively, a test in which a test piece is cut out from a part of a product after casting and the number of graphite grains is similarly obtained may be employed.

しかしながら、そのような方法で得られた黒鉛粒数に関するデータは、球状黒鉛鋳鉄製品の品質管理に供されてはいるものの、そのデータを取得するまでに時間がかかるところから、黒鉛球状化処理や接種処理の改善に利用したり、鋳造に際してのリスク回避に利用したりすることは、殆ど為されることがなかった。また、鋳鉄溶湯を鋳型に鋳込む前に、得られる球状黒鉛鋳鉄における黒鉛粒数を推定することが出来ることとなるならば、鋳鉄溶湯の接種処理や黒鉛球状化処理の良否判断や、凝固後の鋳鉄製品の性状を予知することが、可能となるのである。   However, although the data regarding the number of graphite grains obtained by such a method is used for quality control of the spheroidal graphite cast iron product, it takes time to obtain the data. It was rarely used to improve the inoculation process or to avoid risk during casting. In addition, if the number of graphite grains in the resulting spheroidal graphite cast iron can be estimated before casting the cast iron melt into the mold, whether or not the cast iron melt inoculation treatment or graphite spheroidization treatment is acceptable, or after solidification It is possible to predict the properties of cast iron products.

一方、鋳鉄溶湯を鋳型に鋳込む前に、凝固後の鋳鉄の性状を予知する手法として、本発明者等のうちの一人は、他の発明者と共に、特許文献1(特許第2750832号公報)において、鋳鉄溶湯が凝固するときに、炭素が黒鉛として晶出する場合(安定系)と、セメンタイトとして晶出する場合(準安定系)とがあることに着目して、黒鉛共晶温度(TEG)とセメンタイト共晶温度(TEC)を測定し、被検査鋳鉄溶湯の過冷最低温度(TEL)との関係から、黒鉛核生成能力を判定して、指数化する方法を提案し、これによって、片状黒鉛鋳鉄における微量元素等の影響も含めたチル化傾向等の、鋳鉄溶湯の性状と凝固後の鋳鉄の性状の把握を可能ならしめたのである。   On the other hand, as a method for predicting the properties of cast iron after solidification before casting the cast iron melt into a mold, one of the inventors, together with other inventors, is disclosed in Patent Document 1 (Japanese Patent No. 2750832). Note that, when the cast iron melt solidifies, carbon is crystallized as graphite (stable system) and crystallized as cementite (metastable system). ) And cementite eutectic temperature (TEC), and based on the relationship with the minimum cooling temperature (TEL) of the cast iron melt to be inspected, a method for determining and indexing the graphite nucleation ability was proposed. It has become possible to grasp the properties of molten cast iron and the properties of cast iron after solidification, such as the tendency to chill, including the effects of trace elements in flake graphite cast iron.

そして、そこでは、3個の熱分析用試料採取容器が使用され、その第一の容器にチル化剤を添加して、セメンタイト共晶温度(TEC)を測定し、また第二の容器には、添加剤を加えることなく、被検査鋳鉄溶湯の共晶凝固温度変化を把握し、更に第三の容器には、黒鉛化剤を添加して、黒鉛共晶温度(TEG)を測定して、第二の容器から得られた共晶凝固温度変化との関係から、鋳鉄溶湯の性状を判定しているのであるが、かかる手法は、片状黒鉛鋳鉄の溶湯性状を判定するに過ぎないものであって、球状黒鉛鋳鉄の黒鉛粒数を求めることは出来ないものであった。   And there are three sampling containers for thermal analysis used, the chilling agent is added to the first container, the cementite eutectic temperature (TEC) is measured, and the second container Without adding additives, grasp the eutectic solidification temperature change of the cast iron melt to be inspected, and further add a graphitizing agent to the third container, measure the graphite eutectic temperature (TEG), From the relationship with the eutectic solidification temperature change obtained from the second container, the properties of the cast iron melt are judged, but such a method is merely to judge the melt properties of flake graphite cast iron. Thus, the number of graphite grains of spheroidal graphite cast iron could not be obtained.

上記特許文献1にて提案の方法は、片状黒鉛鋳鉄の溶湯(元湯)の性状を把握するに過ぎないものであって、球状黒鉛鋳鉄用の鋳鉄溶湯で、その凝固後の黒鉛粒数を推定することは困難であったのであり、また、第一の容器にテルル等のチル化剤を添加して、セメンタイト共晶温度(TEC)を測定する場合において、CV黒鉛鋳鉄や球状黒鉛鋳鉄の球状化処理後の鋳鉄溶湯では、球状化剤であるマグネシウムとテルルが反応するために、チル化が困難となるのであり、そのために、セメンタイト共晶温度(TEC)を測定することが出来ないものであった。   The method proposed in the above-mentioned Patent Document 1 is merely to grasp the properties of the flake graphite cast iron melt (original hot water), and is a cast iron melt for spheroidal graphite cast iron. In addition, when a chilling agent such as tellurium is added to the first container and the cementite eutectic temperature (TEC) is measured, CV graphite cast iron and spheroidal graphite cast iron In the cast iron melt after spheroidizing treatment, magnesium and tellurium, which are spheroidizing agents, react with each other, making chilling difficult, and therefore, the cementite eutectic temperature (TEC) cannot be measured. It was a thing.

特許第2750832号公報Japanese Patent No. 2750832

中江秀雄著、「鋳造工学」、第17〜27頁(平成7年1月30日、産業図書株式会社発行)Nakao Hideo, “Casting Engineering”, pp. 17-27 (published on January 30, 1995, Sangyo Tosho Co., Ltd.)

かかる状況下、本発明者等が、黒鉛球状化処理や接種処理の施された鋳鉄溶湯と、それから得られる球状黒鉛鋳鉄における黒鉛粒数との関係について、鋭意検討した結果、そのような黒鉛球状化処理等された鋳鉄溶湯の冷却過程から得られる冷却曲線とその微分曲線から、少なくとも過冷反転温度(TSC)を求める一方、かかる鋳鉄溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求め、そしてそれらの温度から算出される黒鉛化度[ΔT1/ΔTE=(TSC−TEC)/(TEG−TEC)]が、かかる鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数に対して、良好な相関関係を有していることを見出し、そして、その相関関係に基づいて、検査対象とされた鋳鉄溶湯から同様にして求められた黒鉛化度より、鋳造される球状黒鉛鋳鉄における黒鉛粒数を良好に判定乃至は推定し得ることに到達し、本発明を完成するに至ったのである。   Under such circumstances, the present inventors have intensively investigated the relationship between the cast iron melt subjected to the graphite spheroidizing treatment and the inoculation treatment and the number of graphite particles in the spheroidal graphite cast iron obtained therefrom. While determining at least the supercooling inversion temperature (TSC) from the cooling curve obtained from the cooling process of the cast iron melt subjected to the crystallization treatment and its differential curve, the graphite eutectic temperature (TEG) and cementite eutectic temperature ( TEC) and the degree of graphitization calculated from those temperatures [ΔT1 / ΔTE = (TSC−TEC) / (TEG−TEC)] is calculated with respect to the number of graphite grains in the spheroidal graphite cast iron obtained from the molten cast iron. From the graphitization degree obtained in the same manner from the cast iron melt to be inspected based on the correlation and found to have a good correlation As a result, it has been reached that the number of graphite grains in the cast spheroidal graphite cast iron can be satisfactorily determined or estimated, and the present invention has been completed.

従って、本発明の解決課題とするところは、黒鉛球状化処理や接種処理の施されてなる球状黒鉛鋳鉄溶湯の段階で、それから得られる球状黒鉛鋳鉄における黒鉛粒数を、迅速に且つ容易に判定し得る方法を提供することにある。   Therefore, the problem to be solved by the present invention is to quickly and easily determine the number of graphite grains in the spheroidal graphite cast iron obtained from the spheroidal graphite cast iron melt subjected to the spheroidizing treatment and inoculation treatment. It is to provide a possible method.

そして、本発明は、上記した課題を解決するために、以下に列挙せる如き各種の態様において、好適に実施され得るものであるが、また以下に記載の各態様は、任意の組合せにて、採用可能である。なお、本発明の態様乃至は技術的特徴は、以下に記載のものに何等限定されることなく、明細書全体の記載及び図面に記載の発明思想に基づいて、認識され得るものであることが、理解されるべきである。   And, in order to solve the above-mentioned problems, the present invention can be suitably implemented in various aspects as listed below, but each aspect described below can be combined in any combination, It can be adopted. It should be noted that the aspects or technical features of the present invention are not limited to those described below, and can be recognized based on the description of the entire specification and the inventive concept described in the drawings. Should be understood.

(1) 黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯を、所定の試料採取容器に収容して冷却せしめ、その冷却過程から得られる冷却曲線とその微分曲線から、少なくとも過冷反転温度(TSC)を求める一方、かかる鋳鉄溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求め、そしてそれらの温度から算出される黒鉛化度[ΔT1/ΔTE=(TSC−TEC)/(TEG−TEC)]に基づき、予め求められている黒鉛粒数と黒鉛化度の相関関係より、該鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を判定することを特徴とする球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(2) 前記黒鉛共晶温度が、前記冷却曲線の微分曲線における谷部に相当する温度及び共晶最高温度のうち、何れか高い方の温度として求められる上記態様(1)に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(3) 前記セメンタイト共晶温度が、黒鉛球状化処理の施されていない前記鋳鉄溶湯を、チル化剤と共に、試料採取容器に収容して、冷却せしめることにより、得られた冷却曲線から求められる上記態様(1)又は(2)に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(4) 前記黒鉛共晶温度及び/又は前記セメンタイト共晶温度が、黒鉛球状化処理若しくは黒鉛球状化処理の後に接種処理が施されてなる前記鋳鉄溶湯の化学成分から求められる上記態様(1)乃至(3)の何れか一つに記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(5) 前記黒鉛共晶温度(TEG)が、下式:
TEG(℃)=1149.6+4.7×Si%−4×Mn%−44×P%+2.7 ×Cu%+1.0×Ni%−10.5×Cr%−17.7×Mo% −14.8×V%−6.1×W%−80.3×B%−9.3×Sn %−3.7×Nb%−5.2×Sb%+13.9×Al%+1.8 ×Co%
に基づいて算出される上記した態様(4)に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(6) 前記セメンタイト共晶温度(TEC)が、下式:
TEC(℃)=1142.7−11.6×Si%−0.75×Mn%−46.2× P%−1.4×Cu%−1.1×Ni%+5.9×Cr%−14. 5×Mo%+3.3×V%−2.8×W%−26.0×B%−6. 0×Sn%−0.0×Nb%−5.1×Sb%−1.8×Al%− 0.7×Co%
に基づいて算出される上記した態様(4)に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(7) 黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯を、所定の試料採取容器に収容して冷却せしめ、その冷却過程から得られる冷却曲線とその微分曲線から、少なくとも過冷反転温度(TSC)を求める一方、該鋳鉄溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求め、そしてそれらの温度から黒鉛化度[ΔT1/ΔTE=(TSC−TEC)/(TEG−TEC)]を算出すると共に、かかる鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を測定して、それら得られた黒鉛粒数と黒鉛化度との間の相関関係を、予め求める工程と、
被検査鋳鉄溶湯について、上記の相関関係を求めた場合と同様にして、黒鉛化度を算出する工程と、
該被検査鋳鉄溶湯について得られた黒鉛化度に基づき、前記予め求められた黒鉛粒数と黒鉛化度の相関関係より、該被検査鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を判定する工程と
を含むことを特徴とする球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(8) 前記相関関係が、前記被検査鋳鉄溶湯から球状黒鉛鋳鉄を得るに際しての冷却速度を考慮して求められる上記態様(7)に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
(1) A cast iron melt subjected to inoculation after graphite spheroidization or graphite spheroidization is placed in a predetermined sampling container and cooled, and at least from the cooling curve obtained from the cooling process and its differential curve, While determining the supercooling reversal temperature (TSC), the graphite eutectic temperature (TEG) and the cementite eutectic temperature (TEC) of the molten cast iron were determined, and the degree of graphitization calculated from these temperatures [ΔT1 / ΔTE = ( TSC-TEC) / (TEG-TEC)], and determining the number of graphite grains in spheroidal graphite cast iron obtained from the molten cast iron based on the correlation between the number of graphite grains obtained in advance and the degree of graphitization A method for determining the number of graphite grains in spheroidal graphite cast iron.
(2) The spherical graphite according to the above aspect (1), in which the graphite eutectic temperature is determined as the higher one of the temperature corresponding to the valley in the differential curve of the cooling curve and the maximum eutectic temperature. A method for determining the number of graphite grains in cast iron.
(3) The cementite eutectic temperature is obtained from a cooling curve obtained by cooling the cast iron melt not subjected to the graphite spheroidization treatment together with a chilling agent in a sampling container. A method for determining the number of graphite grains in the spheroidal graphite cast iron according to the aspect (1) or (2).
(4) The above aspect (1), wherein the graphite eutectic temperature and / or the cementite eutectic temperature is determined from a chemical component of the cast iron melt obtained by performing graphite spheroidization treatment or inoculation treatment after graphite spheroidization treatment. The method to determine the graphite particle number in the spheroidal graphite cast iron as described in any one of thru | or (3).
(5) The graphite eutectic temperature (TEG) is expressed by the following formula:
TEG (° C.) = 1149.6 + 4.7 × Si% −4 × Mn% −44 × P% + 2.7 × Cu% + 1.0 × Ni% −10.5 × Cr% −17.7 × Mo% − 14.8 × V% −6.1 × W% −80.3 × B% −9.3 × Sn% −3.7 × Nb% −5.2 × Sb% + 13.9 × Al% + 1.8 × Co%
The method of determining the number of graphite grains in the spheroidal graphite cast iron according to the above aspect (4) calculated based on the above.
(6) The cementite eutectic temperature (TEC) is:
TEC (° C.) = 1142.7-11.6 × Si% −0.75 × Mn% −46.2 × P% −1.4 × Cu% −1.1 × Ni% + 5.9 × Cr% − 14 5 × Mo% + 3.3 × V% −2.8 × W% −26.0 × B% −6. 0 × Sn% −0.0 × Nb% −5.1 × Sb% −1.8 × Al% −0.7 × Co%
The method of determining the number of graphite grains in the spheroidal graphite cast iron according to the above aspect (4) calculated based on the above.
(7) The cast iron melt that has been inoculated after graphite spheroidization or graphite spheroidization is placed in a predetermined sampling container and cooled, and from a cooling curve obtained from the cooling process and its differential curve, at least While determining the supercooling reversal temperature (TSC), the graphite eutectic temperature (TEG) and the cementite eutectic temperature (TEC) of the molten cast iron were determined, and the degree of graphitization [ΔT1 / ΔTE = (TSC−TEC) ) / (TEG-TEC)], and the number of graphite grains in the spheroidal graphite cast iron obtained from the cast iron melt is measured, and the correlation between the number of graphite grains obtained and the degree of graphitization is expressed as follows: A step of obtaining in advance;
For the molten cast iron to be inspected, the step of calculating the degree of graphitization in the same manner as the case of obtaining the above correlation,
Based on the degree of graphitization obtained for the molten cast iron to be inspected, the number of graphite grains in the spheroidal graphite cast iron obtained from the molten iron to be inspected is determined from the correlation between the previously obtained number of graphite grains and the degree of graphitization. And a step of determining the number of graphite grains in the spheroidal graphite cast iron.
(8) The method for determining the number of graphite grains in the spheroidal graphite cast iron according to the above aspect (7), wherein the correlation is determined in consideration of a cooling rate when obtaining the spheroidal graphite cast iron from the molten cast iron to be inspected.

このように、本発明にあっては、黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯を鋳型に鋳込む前に、その一部を採取して、その冷却過程から、冷却曲線とその微分曲線を得て、少なくとも過冷反転温度(TSC)乃至は共晶最低温度(TEL)を求める一方、更に、黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求めて、黒鉛化度(ΔT1/ΔTE)を算出するだけで、その算出された黒鉛化度に基づいて、予め求められている黒鉛粒数と黒鉛化度の相関関係より、凝固後の黒鉛粒数を迅速に且つ容易に把握することが出来るのであり、これによって、黒鉛球状化処理や接種処理が適正に行なわれ得たか、否かの確認も、容易に可能となったのである。   Thus, in the present invention, before casting the cast iron melt that has been inoculated after the graphite spheroidizing treatment or graphite spheroidizing treatment into a mold, a part thereof is collected from the cooling process, While obtaining a cooling curve and its derivative curve, at least the supercooling inversion temperature (TSC) or the eutectic minimum temperature (TEL) is obtained, and further, the graphite eutectic temperature (TEG) and the cementite eutectic temperature (TEC) are obtained. Thus, only by calculating the degree of graphitization (ΔT1 / ΔTE), based on the calculated degree of graphitization, the number of graphite particles after solidification can be calculated from the correlation between the number of graphite grains determined in advance and the degree of graphitization. Therefore, it is possible to easily confirm whether or not the graphite spheroidization treatment and the inoculation treatment have been properly performed.

また、そのような黒鉛球状化処理や接種処理が施された鋳鉄溶湯の凝固後の黒鉛粒数を予測することで、溶融状態の鋳鉄を最適化することが可能となり、これによって、ひけ巣対策のために設置される押湯の最適化も可能となるのであり、以て、生産コストの低減にも寄与せしめ得た他、更に、凝固後の球状黒鉛鋳鉄製品の品質が安定して、工業上においても有益な利点がもたらされ得ることとなる。   In addition, by predicting the number of graphite particles after solidification of cast iron melt that has been subjected to such graphite spheroidization treatment and inoculation treatment, it becomes possible to optimize the cast iron in the molten state, thereby As a result, it is possible to optimize the feeders installed for this purpose, and in addition to helping to reduce production costs, the quality of spheroidal graphite cast iron products after solidification is stable and Even in the above, a beneficial advantage can be provided.

本発明の実施に好適な装置構成の一例を示す説明図である。It is explanatory drawing which shows an example of an apparatus structure suitable for implementation of this invention. 本発明方法において求められた冷却曲線とその微分曲線の代表例を示す説明図である。It is explanatory drawing which shows the representative example of the cooling curve calculated | required in the method of this invention, and its differential curve. 本発明に関連する実験において得られた過冷度(ΔT)と球状黒鉛鋳鉄中の黒鉛粒数(N)との関係をプロットした説明図である。It is explanatory drawing which plotted the relationship between the supercooling degree ((DELTA) T) obtained in the experiment relevant to this invention, and the number of graphite grains (N) in spheroidal graphite cast iron. 本発明の実施例において実測された過冷反転温度及び、鋳鉄溶湯の化学成分から算出された黒鉛共晶温度及びセメンタイト共晶温度を用いて求められた黒鉛化度(ΔT1/ΔTE)と、球状黒鉛鋳鉄中の黒鉛粒数(N)との関係を示す説明図である。The degree of graphitization (ΔT1 / ΔTE) determined using the undercooling inversion temperature actually measured in the examples of the present invention, the graphite eutectic temperature and the cementite eutectic temperature calculated from the chemical components of the cast iron melt, and spherical It is explanatory drawing which shows the relationship with the graphite particle number (N) in graphite cast iron. 本発明の実施例において得られた過冷反転温度と黒鉛共晶温度の実測値及び、鋳鉄溶湯の化学成分から算出されたセメンタイト共晶温度を用いて求められた黒鉛化度(ΔT1/ΔTE)と、球状黒鉛鋳鉄中の黒鉛粒数(N)との関係を示す説明図である。Graphitization degree (ΔT1 / ΔTE) obtained by using the measured values of the undercooling inversion temperature and the graphite eutectic temperature obtained in the examples of the present invention and the cementite eutectic temperature calculated from the chemical components of the molten cast iron It is explanatory drawing which shows the relationship between graphite particle number (N) in spheroidal graphite cast iron. 鋳造されるテストピースの大きさが異なる場合の過冷度(ΔT)と黒鉛粒数(N)との関係を示す、図3に対応する説明図である。It is explanatory drawing corresponding to FIG. 3 which shows the relationship between the degree of supercooling ((DELTA) T) and the number of graphite grains (N) when the magnitude | sizes of the test piece cast are different. 鋳造されるテストピースの大きさが異なる場合の黒鉛化度(ΔT1/ΔTE)と黒鉛粒数(N)の関係を示す、図4に対応する説明図である。FIG. 5 is an explanatory diagram corresponding to FIG. 4 and showing the relationship between the degree of graphitization (ΔT1 / ΔTE) and the number of graphite grains (N) when the sizes of test pieces to be cast are different. 鋳造されるテストピースの大きさが異なる場合の黒鉛化度(ΔT1/ΔTE)と黒鉛粒数(N)の関係を示す、図5に対応する説明図である。It is explanatory drawing corresponding to FIG. 5 which shows the relationship between the degree of graphitization ((DELTA) T1 / (DELTA) TE) and the number of graphite grains (N) in case the magnitude | size of the test piece cast is different. 鋳造されるテストピースの大きさが異なる他の場合の過冷度(ΔT)と黒鉛粒数(N)との関係を示す、図3に対応する説明図である。It is explanatory drawing corresponding to FIG. 3 which shows the relationship between the degree of supercooling ((DELTA) T) and the number of graphite grains (N) in the case where the magnitude | size of the test piece cast is different. 鋳造されるテストピースの大きさが異なる他の場合の黒鉛化度(ΔT1/ΔTE)と黒鉛粒数(N)の関係を示す、図4に対応する説明図である。It is explanatory drawing corresponding to FIG. 4 which shows the relationship between the degree of graphitization ((DELTA) T1 / (DELTA) TE) and the number of graphite grains (N) in the case where the magnitude | size of the test piece cast is different. 鋳造されるテストピースの大きさが異なる他の場合の黒鉛化度(ΔT1/ΔTE)と黒鉛粒数(N)の関係を示す、図5に対応する説明図である。It is explanatory drawing corresponding to FIG. 5 which shows the relationship between the degree of graphitization ((DELTA) T1 / (DELTA) TE) and the number of graphite grains (N) in the case where the magnitude | size of the test piece cast is different. 図4、図7及び図10の結果から求められた、球状黒鉛鋳鉄(製品)の鋳造に際しての冷却速度(R)と黒鉛粒数(N)との関係を、黒鉛化度に応じて示す説明図である。An explanation showing the relationship between the cooling rate (R) and the number of graphite grains (N) during casting of the spheroidal graphite cast iron (product) obtained from the results of FIGS. 4, 7, and 10 according to the degree of graphitization. FIG.

要するに、本発明は、黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理が施された、所謂球状黒鉛鋳鉄溶湯の冷却過程から得られる冷却曲線とその微分曲線から、少なくとも過冷反転温度(TSC)を求める一方、かかる鋳鉄溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求め、そしてそれら3つの温度から算出される黒鉛化度(ΔT1/ΔTE)が、そのような鋳鉄溶湯から得られる球状黒鉛鋳鉄製品の黒鉛粒数(N)に良好な相関関係を有していることに基づいて、かかる鋳鉄溶湯の状態において、目的とする球状黒鉛鋳鉄製品中の黒鉛粒数(N)を判定乃至は推定するようにしたものであって、そのような本発明に従う方法の実施に際して好適に採用されるシステムの一例が、図1に示されている。   In short, the present invention provides at least a supercooling reversal temperature (TSC) from a cooling curve obtained from a cooling process of a so-called spheroidal graphite cast iron melt that has been subjected to graphite spheroidization treatment or inoculation treatment after graphite spheroidization treatment and its differential curve. On the other hand, the graphite eutectic temperature (TEG) and the cementite eutectic temperature (TEC) of such a cast iron melt are obtained, and the degree of graphitization (ΔT1 / ΔTE) calculated from these three temperatures is such a cast iron melt. The number of graphite grains (N in the target spheroidal graphite cast iron product in the state of the molten cast iron based on having a good correlation with the number (N) of graphite grains in the spheroidal graphite cast iron product obtained from FIG. 1 shows an example of a system that can be suitably used for carrying out such a method according to the present invention.

そして、そのような図1において、2は、熱電対等の温度を検知する公知の温度検知センサが具備せしめられた試料採取容器であって、そこには、測定されるべき鋳鉄溶湯が収容せしめられるようになっている。また、試料採取容器2は、支持台4にて支持されると共に、温度検知センサからの信号が、導線6を通じて取り出され得るように、かかる支持台4に対する電気的な接続が図られている。そして、導線6は、信号変換装置8に接続され、温度検知センサからの信号を検出・増幅して、アナログ信号をデジタル化するようになっている。更に、かかる信号変換装置8は、そのデジタル化したデータを演算装置10に送り、そこにおいて、図2に示される如き冷却曲線及びその微分曲線が作成されるようになっている。   In FIG. 1, reference numeral 2 denotes a sampling container equipped with a known temperature detection sensor for detecting the temperature of a thermocouple or the like, in which a cast iron melt to be measured is accommodated. It is like that. Further, the sample collection container 2 is supported by the support base 4 and is electrically connected to the support base 4 so that a signal from the temperature detection sensor can be taken out through the conductor 6. And the conducting wire 6 is connected to the signal converter 8, and detects and amplifies the signal from a temperature detection sensor, and digitizes an analog signal. Further, the signal converter 8 sends the digitized data to the arithmetic unit 10 where a cooling curve and its differential curve as shown in FIG. 2 are created.

なお、かかる図示のようなシステムにおいて、試料採取容器2に収容せしめられる測定用の鋳鉄溶湯は、黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯であって、目的とする球状黒鉛鋳鉄製品を与える通常の処理溶湯である。ここで、黒鉛球状化処理は、一般に、マグネシウムを用いて、従来と同様にして実施されるものであり、また接種処理も、黒鉛系、Ba系、Ca−Si系、Ce系、Bi系等の公知の各種の接種剤を適宜に用いて、従来と同様にして実施され、そうして得られる鋳鉄溶湯が用いられることとなる。   In the system as shown in the figure, the cast iron melt for measurement accommodated in the sampling container 2 is a cast iron melt that has been subjected to a graphite spheroidization treatment or an inoculation treatment after the graphite spheroidization treatment. It is a normal processing melt that gives a spheroidal graphite cast iron product. Here, the graphite spheroidization treatment is generally carried out in the same manner as before using magnesium, and the inoculation treatment is also graphite-based, Ba-based, Ca-Si-based, Ce-based, Bi-based, etc. The known cast inoculum is appropriately used in the same manner as before, and the cast iron melt thus obtained is used.

また、そのような黒鉛球状化処理若しくは黒鉛球状化処理の後に接種処理が施されてなる鋳鉄溶湯は、その所定量が試料採取容器2内に収容されて、冷却せしめられる際に、その冷却過程において温度検知センサにて検知される溶湯温度信号に基づいて、信号変換装置8を介して、演算装置10において、冷却曲線(イ)とその微分曲線(ロ)が、図2に示されるように作成されるのである。   Further, the cast iron melt that is inoculated after such graphite spheroidizing treatment or graphite spheroidizing treatment is cooled when a predetermined amount is accommodated in the sampling container 2 and cooled. As shown in FIG. 2, the cooling curve (A) and its differential curve (B) are calculated in the arithmetic unit 10 via the signal converter 8 based on the molten metal temperature signal detected by the temperature detection sensor in FIG. It is created.

さらに、その得られた冷却曲線(イ)及び微分曲線(ロ)からは、少なくとも過冷反転温度(TSC)、即ち冷却曲線(イ)における谷部に相当する温度(B点の温度)、所謂共晶最低温度(TEL)が決定されて、求められることとなる。また、そのような冷却曲線(イ)と微分曲線(ロ)より、共晶開始温度、換言すれば微分曲線(ロ)における谷部に相当する温度(A点の温度)を決定して、それが、共晶最高温度(TEH)である、冷却曲線(イ)における山部に相当する温度(C点の温度)よりも高い温度であれば、かかる共晶開始温度を黒鉛共晶温度(TEG)と見做し、またそれよりも低ければ、共晶最高温度(TEH)が黒鉛共晶温度(TEG)として用いられることとなる。   Further, from the obtained cooling curve (A) and differential curve (B), at least the supercooling inversion temperature (TSC), that is, the temperature corresponding to the valley in the cooling curve (A) (the temperature at the point B), so-called The eutectic minimum temperature (TEL) is determined and determined. Further, the eutectic start temperature, in other words, the temperature corresponding to the valley in the differential curve (b) (the temperature at point A) is determined from such a cooling curve (b) and the differential curve (b). Is the eutectic maximum temperature (TEH), which is higher than the temperature corresponding to the peak in the cooling curve (b) (the temperature at the point C), the eutectic start temperature is determined as the graphite eutectic temperature (TEG). ) And lower than that, the eutectic maximum temperature (TEH) is used as the graphite eutectic temperature (TEG).

ここで、図2においても一部示されているところであるが、本発明において定義される共晶温度差(ΔTE)、共晶最低温度(TEL)乃至は過冷反転温度(TSC)とセメンタイト共晶温度(TEC)の温度差(ΔT1)、更には、黒鉛化度(ΔT1/ΔTE)及び過冷度(ΔT)は、以下の通りである。
ΔTE=TEG−TEC,ΔT1=TSC−TEC
ΔT1/ΔTE=(TSC−TEC)/(TEG−TEC)
ΔT=TEH−TSC
Here, although partially shown in FIG. 2, the eutectic temperature difference (ΔTE), eutectic minimum temperature (TEL) or subcooling inversion temperature (TSC) and cementite co-defined as defined in the present invention are also shown. The temperature difference (ΔT1) of the crystal temperature (TEC), the degree of graphitization (ΔT1 / ΔTE) and the degree of supercooling (ΔT) are as follows.
ΔTE = TEG-TEC, ΔT1 = TSC-TEC
ΔT1 / ΔTE = (TSC-TEC) / (TEG-TEC)
ΔT = TEH-TSC

また、上述の黒鉛共晶温度(TEG;℃)やセメンタイト共晶温度(TEC;℃)は、黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施されている鋳鉄溶湯の化学成分から、又は黒鉛球状化処理前の鋳鉄溶湯(元湯)の化学成分から、計算により求めることが可能であり、具体的には、本発明者等の一人が他の研究者と共に発表した、「鋳鉄の共晶温度に対する各種合金元素の影響」なる論文[「鋳造工学」第70巻(1998)第7号、第465〜470頁]に明らかにされている如く、それぞれ、以下の計算式に従って、算出されることとなる。
TEG=1149.6+4.7×Si%−4×Mn%−44×P%+2.7×Cu %+1.0×Ni%−10.5×Cr%−17.7×Mo%−14.8× V%−6.1×W%−80.3×B%−9.3×Sn%−3.7×Nb% −5.2×Sb%+13.9×Al%+1.8×Co%
TEC=1142.7−11.6×Si%−0.75×Mn%−46.2×P%− 1.4×Cu%−1.1×Ni%+5.9×Cr%−14.5×Mo%+ 3.3×V%−2.8×W%−26.0×B%−6.0×Sn%−0.0 ×Nb%−5.1×Sb%−1.8×Al%−0.7×Co%
Further, the graphite eutectic temperature (TEG ; ° C ) and cementite eutectic temperature (TEC ; ° C ) described above are derived from the chemical components of the cast iron melt subjected to inoculation after graphite spheroidization or graphite spheroidization, or It can be obtained by calculation from the chemical composition of the cast iron melt before the spheroidizing spheroidization process (gentoyu). Specifically, one of the present inventors and others announced with other researchers, As has been clarified in a paper entitled “Effects of various alloying elements on crystal temperature” [“Casting Engineering” Vol. 70 (1998) No. 7, pp. 465 to 470], each was calculated according to the following calculation formula. The Rukoto.
TEG = 1149.6 + 4.7 × Si% −4 × Mn% −44 × P% + 2.7 × Cu% + 1.0 × Ni% −10.5 × Cr% −17.7 × Mo% −14.8 X V%-6.1 x W%-80.3 x B%-9.3 x Sn%-3.7 x Nb%-5.2 x Sb% + 13.9 x Al% + 1.8 x Co%
TEC = 1142.7-11.6 × Si% −0.75 × Mn% −46.2 × P% − 1.4 × Cu% −1.1 × Ni% + 5.9 × Cr% −14.5 × Mo% + 3.3 × V% −2.8 × W% −26.0 × B% −6.0 × Sn% −0.0 × Nb% −5.1 × Sb% −1.8 × Al% -0.7 × Co%

なお、上記の計算式において、Si%やMn%等の元素記号と百分率記号の組合せは、それぞれ、鋳鉄溶湯中の元素の含有量(質量基準)を示すものであるが、特に本発明にあっては、黒鉛球状化剤や接種剤の添加によって溶湯中の化学成分が少し変化するようになるところから、好ましくは、黒鉛球状化処理若しくはその後に接種処理が施されてなる鋳鉄溶湯の化学成分量を用いて求められることとなる。また、上記のTEC計算式における0.0×Nb%は、Nbの寄与率が0であることを明らかにしている。更に、それら2つの計算式におけるSi以外の元素の含有量は少なく、従って全体として、その寄与率が低くなるところから、Siの含有量のみを考慮して、それら2つの計算式を、簡略的に、TEG=1149.6+4.7×Si%及びTEC=1142.7−11.6×Si%として、用いることも可能である。   In the above calculation formulas, the combination of element symbols such as Si% and Mn% and percentage symbols each indicate the content (mass basis) of the element in the molten cast iron. From the point where the chemical component in the molten metal changes slightly due to the addition of the graphite spheroidizing agent and the inoculant, preferably, the chemical component of the molten cast iron that is subjected to the graphite spheroidizing treatment or the inoculating treatment thereafter It will be determined using the quantity. Further, 0.0 × Nb% in the above TEC calculation formula clarifies that the contribution ratio of Nb is zero. Furthermore, since the content of elements other than Si in these two calculation formulas is small, and the contribution ratio is low as a whole, these two calculation formulas are simplified considering only the Si content. Further, TEG = 1149.6 + 4.7 × Si% and TEC = 1142.7-11.6 × Si% can also be used.

さらに、本発明において用いられるセメンタイト共晶温度(TEC)は、また、他の公知の手法に従って実測することも可能であり、例えば、前述の特許文献1に明らかにされている如く、黒鉛球状化処理や接種処理が施されていない鋳鉄溶湯(元湯)を用いて、それを、テルルやその一部をSe,Bi,Cr等に置き換えてなるもの等の公知のチル化剤と共に、試料採取容器に収容して、冷却せしめることにより、その得られる冷却曲線から求めるようにすることも、可能である。   Furthermore, the cementite eutectic temperature (TEC) used in the present invention can also be actually measured according to other known methods. For example, as disclosed in Patent Document 1 described above, graphite spheroidization is possible. Sampling with cast iron melt (source hot water) that has not been treated or inoculated with known chilling agents such as tellurium or a part of which is replaced with Se, Bi, Cr, etc. It is also possible to obtain it from the obtained cooling curve by storing it in a container and allowing it to cool.

そして、上記で規定せる黒鉛化度(ΔT1/ΔTE)が、球状黒鉛鋳鉄中の黒鉛粒数と如何なる関係を有しているかを調べるべく、以下の熱分析実験が行なわれたのである。   The following thermal analysis experiment was conducted in order to examine how the graphitization degree (ΔT1 / ΔTE) defined above has a relationship with the number of graphite grains in the spheroidal graphite cast iron.

先ず、高周波炉を用いて鋳鉄材料を溶解した後、黒鉛球状化剤としてマグネシウムを用いて、置注ぎ法にて黒鉛球状化処理を施し、Si含有量が1.9%、2.0%、2.1%、2.5%、2.7%又は3.0%である各種の鋳鉄溶湯50kgを調製した。なお、各鋳鉄溶湯の他の化学成分は、それぞれ、3.7%C、0.20%Mn、0.060%Mg及び0.0040%Sbとなるように調整された。ここで、%は、何れも、質量基準にて表されるものである。   First, after melting the cast iron material using a high frequency furnace, using magnesium as a graphite spheroidizing agent, a graphite spheroidizing treatment is performed by a pouring method, and the Si content is 1.9%, 2.0%, 50 kg of various cast iron melts of 2.1%, 2.5%, 2.7% or 3.0% were prepared. The other chemical components of each cast iron melt were adjusted to 3.7% C, 0.20% Mn, 0.060% Mg, and 0.0040% Sb, respectively. Here, all the percentages are expressed on a mass basis.

次いで、このSi含有量の異なる、各種の黒鉛球状化処理済みの鋳鉄溶湯を、それぞれ別個に高周波炉に戻して、1350℃で保持するフェーディング試験を行なった。このとき、各溶湯には、黒鉛系、Ba系、Ca−Si系、Ce系又はBi系の各種接種剤を、種々のタイミングで添加し、0分、1分、2.5分、5分、7.5分、10分、15分、20分毎に、熱分析用のCEメータカップ(直径30mm×高さ50mm)(試料採取容器)に注湯して、自然冷却させることにより、図1に示される装置構成に基づき、その冷却過程から得られる冷却曲線及びその微分曲線から、それぞれ、過冷反転温度(TSC)及び黒鉛共晶温度(TEG)を求めた。また、それぞれの溶湯のセメンタイト共晶温度(TEC)については、黒鉛共晶温度(TEG)と共に、発光分析機器を用いた成分分析値から、先の計算式に基づいて求めた。   Next, various types of graphite spheroidized cast iron melts having different Si contents were individually returned to the high-frequency furnace, and a fading test was carried out at 1350 ° C. At this time, graphite-based, Ba-based, Ca-Si-based, Ce-based, or Bi-based inoculums are added to each molten metal at various timings, and 0 minutes, 1 minute, 2.5 minutes, and 5 minutes. 7.5 minutes, 10 minutes, 15 minutes, every 20 minutes, poured into a CE meter cup for thermal analysis (diameter 30 mm x height 50 mm) (sample collection container) and allowed to cool naturally. Based on the apparatus configuration shown in FIG. 1, the supercooling inversion temperature (TSC) and the graphite eutectic temperature (TEG) were determined from the cooling curve obtained from the cooling process and the differential curve, respectively. Moreover, about the cementite eutectic temperature (TEC) of each molten metal, it calculated | required based on the previous formula from the elemental analysis value using the emission analysis apparatus with the graphite eutectic temperature (TEG).

また、それぞれの鋳鉄溶湯から得られた、直径30mm×高さ50mmのサイズの球状黒鉛鋳鉄(鋳塊)からなるテストピースを用いて、それから、顕微鏡検査用試験片を切り出し、研磨した後、顕微鏡検査によって、単位面積当たりの黒鉛粒数(N、個/mm2 )を測定した。なお、黒鉛粒数は、直径が10μm以上の大きな粒子について数え、それよりも小さなものはカットすると共に、各試験片について、28箇所で測定した値の平均値として求めた。 In addition, using a test piece made of spheroidal graphite cast iron (ingot) having a diameter of 30 mm × height of 50 mm obtained from each cast iron melt, a test piece for microscopic inspection was cut out and polished, and then a microscope By inspection, the number of graphite grains per unit area (N, pieces / mm 2 ) was measured. The number of graphite particles was counted for large particles having a diameter of 10 μm or more, and smaller particles were cut, and the average value of values measured at 28 locations for each test piece was obtained.

かくして得られた、黒鉛粒数(N)と熱分析曲線(冷却曲線)から得られた過冷度(ΔT)との関係を、図3にプロットして示すが、そこでは、それら黒鉛粒数(N)と過冷度(ΔT)との間には、何等の相関関係も認めることが出来ないのである。なお、この図3において、それぞれの接種剤の右側に括弧して示されるSiと%の数字は、鋳鉄溶湯(元湯)中のSi含有量を示すものであり、また、図中におけるCa−Si系接種剤を用いた結果を示す記号において、矢印にて示されるもののみが、そこに示されたSi含有量の鋳鉄溶湯を用いて実験されたものであり、矢印のついていないCa−Si系の記号は、全て、Si含有量が2.1%の鋳鉄溶湯を用いた場合の結果を示している。なお、このような表示形態は、以下に説明する図4〜図11においても、同様である。   The relationship between the number of graphite grains (N) thus obtained and the degree of supercooling (ΔT) obtained from the thermal analysis curve (cooling curve) is plotted in FIG. 3, where the number of graphite grains is shown. No correlation can be observed between (N) and the degree of supercooling (ΔT). In addition, in this FIG. 3, the numbers of Si and% shown in parentheses on the right side of each inoculum indicate the Si content in the cast iron molten metal (former hot water), and Ca- In the symbols indicating the results using the Si-based inoculant, only those indicated by arrows were tested using the cast iron melt having the Si content indicated therein, and Ca-Si without arrows. All the system symbols indicate the results when a cast iron melt having a Si content of 2.1% is used. Such a display form is the same in FIGS. 4 to 11 described below.

また、上記の熱分析によって得られた、各種の鋳鉄溶湯についての冷却曲線とその微分曲線から、過冷反転温度(TSC)を求める一方、それぞれの溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を、それぞれの溶湯の成分分析結果から、前記したTEG計算式及びTEC計算式に基づいてそれぞれ算出し、そして、それら3つの温度から黒鉛化度[ΔT1/ΔTE]を算出して、その得られた黒鉛化度と、それぞれの鋳鉄溶湯から得られた球状黒鉛鋳鉄(テストピース)における黒鉛粒数(N)との関係をプロットすると、図4に示される如く、良好な相関関係を得ることが出来た。   In addition, while obtaining the supercooling reversal temperature (TSC) from the cooling curves and their differential curves for various cast iron melts obtained by the thermal analysis described above, the graphite eutectic temperature (TEG) and the cementite coexistence of each melt are obtained. The crystallization temperature (TEC) is calculated from the component analysis results of each molten metal based on the TEG calculation formula and the TEC calculation formula described above, and the graphitization degree [ΔT1 / ΔTE] is calculated from these three temperatures. When the relationship between the obtained graphitization degree and the number of graphite grains (N) in the spheroidal graphite cast iron (test piece) obtained from each cast iron melt is plotted, a good correlation is obtained as shown in FIG. I was able to get a relationship.

すなわち、図4では、接種剤の種類や溶湯中の化学成分(Si)の含有量を変化させても、黒鉛化度と黒鉛粒数の間には高い相関が認められるのであり、そこにおいて、黒鉛化度をΔT1/ΔTE、黒鉛粒数をNとすると、N=613×(ΔT1/ΔTE)−126として示される近似直線式(相関係数r=0.97)を認めることが出来るのである。   That is, in FIG. 4, even if the type of the inoculum and the content of the chemical component (Si) in the molten metal are changed, a high correlation is observed between the degree of graphitization and the number of graphite grains, If the degree of graphitization is ΔT1 / ΔTE and the number of graphite grains is N, an approximate linear equation (correlation coefficient r = 0.97) shown as N = 613 × (ΔT1 / ΔTE) −126 can be recognized. .

また、過冷反転温度(TSC)に加えて、黒鉛共晶温度(TEG)を、上記の熱分析により得られた冷却曲線とその微分曲線から実測して、セメンタイト共晶温度(TEC)のみを前記計算式から算出して、黒鉛化度[ΔT1/ΔTE]を求め、それぞれの球状黒鉛鋳鉄(テストピース)中の黒鉛粒数(N)と対比しても、図5に示される如く、良好な相関関係を認めることが出来た。即ち、接種剤の種類や溶湯中の化学成分たるSiの含有量を変化させても、黒鉛化度と黒鉛粒数との間には高い相関が認められ、黒鉛化度をΔT1/ΔTEとし、黒鉛粒数をNとしたときに、近似直線式として、N=614×(ΔT1/ΔTE)−205(相関係数r=0.95)を得ることが出来たのである。   In addition to the overcooling inversion temperature (TSC), the graphite eutectic temperature (TEG) was measured from the cooling curve obtained by the thermal analysis and its differential curve, and only the cementite eutectic temperature (TEC) was measured. As shown in FIG. 5, the graphitization degree [ΔT1 / ΔTE] was calculated from the above calculation formula, and compared with the number of graphite grains (N) in each spheroidal graphite cast iron (test piece). It was possible to recognize a significant correlation. That is, even if the kind of inoculum and the content of Si as a chemical component in the molten metal are changed, a high correlation is observed between the degree of graphitization and the number of graphite grains, and the degree of graphitization is ΔT1 / ΔTE, When the number of graphite grains is N, N = 614 × (ΔT1 / ΔTE) −205 (correlation coefficient r = 0.95) can be obtained as an approximate linear equation.

さらに、上記の熱分析実験において、熱分析用のCEメータカップ(試料採取容器)の大きさを変えて、得られるテストピースのサイズを変化させ、鋳造条件、特に冷却速度を変化させた場合にあっても、黒鉛化度と黒鉛粒数との間には良好な関係が認められるのであり、その結果が、図6〜図11に示されている。即ち、図6〜図8は、直径が40mm、高さが50mmのCEメータカップを用い、従ってテストピースとしては、直径が40mm、高さが50mmのサイズのものを鋳造したときに得られた結果を示す、それぞれ図3〜図5に対応する説明図であり、また図9〜図11は、直径が200mm、高さが200mmのテストピースを鋳造した際に得られた結果を示すものであって、それぞれ、図3〜図5に対応する説明図である。   Furthermore, in the above thermal analysis experiment, when the size of the CE tester cup (sampling container) for thermal analysis is changed, the size of the obtained test piece is changed, and the casting conditions, particularly the cooling rate, are changed. Even so, a good relationship is recognized between the degree of graphitization and the number of graphite grains, and the results are shown in FIGS. That is, FIGS. 6 to 8 were obtained when a CE meter cup having a diameter of 40 mm and a height of 50 mm was used, and therefore a test piece having a diameter of 40 mm and a height of 50 mm was cast. FIGS. 9 to 11 show the results obtained when casting a test piece having a diameter of 200 mm and a height of 200 mm, respectively. FIG. 6 is an explanatory diagram corresponding to FIGS. 3 to 5, respectively.

そこにおいて、直径が40mm、高さが50mmのテストピースを作製した場合における、黒鉛化度と黒鉛粒数との関係を示す図7及び図8から明らかな如く、それら黒鉛化度と黒鉛粒数とは、接種剤の種類や溶湯中のSi含有量を変化させても、黒鉛化度と黒鉛粒数の間には高い相関が認められ、図7においては、近似直線式:N=564×(ΔT1/ΔTE)−132(相関係数r=0.97)が得られ、また図8においては、近似直線式:N=529×(ΔT1/ΔTE)−173(相関係数r=0.95)が得られるのである。   As shown in FIGS. 7 and 8 showing the relationship between the degree of graphitization and the number of graphite grains when a test piece having a diameter of 40 mm and a height of 50 mm was produced, the degree of graphitization and the number of graphite grains Is a high correlation between the degree of graphitization and the number of graphite grains even when the type of inoculum and the Si content in the melt are changed. In FIG. 7, the approximate linear equation: N = 564 × (ΔT1 / ΔTE) −132 (correlation coefficient r = 0.97) is obtained, and in FIG. 8, the approximate linear equation: N = 529 × (ΔT1 / ΔTE) −173 (correlation coefficient r = 0. 95) is obtained.

また、テストピースのサイズが直径200mm、高さ200mmの場合における、黒鉛化度と黒鉛粒数の関係を示す図10及び図11は、それぞれ、先の図4及び図5に対応するものであるが、それらの図と同様に、接種剤の種類や溶湯中のSi含有量を変化させても、黒鉛化度と黒鉛粒数の間には高い相関が認められるのである。なお、図10における近似直線式は、N=154×(ΔT1/ΔTE)−29(相関係数r=0.96)となり、図11における近似直線式は、N=155×(ΔT1/ΔTE)−48(相関係数r=0.97)である。   FIGS. 10 and 11 showing the relationship between the degree of graphitization and the number of graphite grains when the test piece size is 200 mm in diameter and 200 mm in height correspond to FIGS. 4 and 5, respectively. However, as in these figures, a high correlation is recognized between the degree of graphitization and the number of graphite grains even when the type of inoculum and the Si content in the molten metal are changed. The approximate linear equation in FIG. 10 is N = 154 × (ΔT1 / ΔTE) −29 (correlation coefficient r = 0.96), and the approximate linear equation in FIG. 11 is N = 155 × (ΔT1 / ΔTE). -48 (correlation coefficient r = 0.97).

以上のことより、球状黒鉛鋳鉄における黒鉛粒数は、溶湯成分を考慮した核生成能力、即ち黒鉛化度(ΔT1/ΔTE)に比例するものであるところから、そのような黒鉛粒数と黒鉛化度の相関関係を予め求めておき、それに基づいて、黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯から、同様な手順にて求められた黒鉛化度と対比し、かかる黒鉛球状化処理・接種処理された鋳鉄溶湯から得られる球状黒鉛鋳鉄製品における黒鉛粒数を、効果的に判定乃至は推定することが出来るのであり、また、そのような黒鉛化度は、基本的には、冷却曲線とその微分曲線や計算式にて得られる値を用いて求めることが出来るところから、迅速に且つ容易に、黒鉛粒数の判定乃至は推定が可能となるのである。   From the above, the number of graphite particles in spheroidal graphite cast iron is proportional to the nucleation capacity taking into account the molten metal component, that is, the degree of graphitization (ΔT1 / ΔTE). Correlation with the degree of graphitization is obtained in advance, based on the graphite spheroidization treatment or the cast iron melt that has been inoculated after the graphite spheroidization treatment and compared with the degree of graphitization obtained in the same procedure. The number of graphite particles in a spheroidal graphite cast iron product obtained from a graphite iron spheroidized / inoculated cast iron melt can be effectively judged or estimated, and such a degree of graphitization is basically Since it can be obtained using the value obtained from the cooling curve and its differential curve or calculation formula, the number of graphite grains can be judged or estimated quickly and easily.

なお、黒鉛粒数と黒鉛化度との間の相関関係は、図4と図5との対比や図7と図8との対比、更には図10と図11との対比から明らかな如く、黒鉛化度の算出に際して、一つの実測値(TSC)を用いるか、二つの実測値(TSC及びTEG)を用いるかによって、少し異なる近似直線式を与えるものとなるところから、目的とする球状黒鉛鋳鉄中の黒鉛粒数の判定に際しては、相関関係を求めるための黒鉛化度の算出条件と該球状黒鉛鋳鉄を与える鋳鉄溶湯の黒鉛化度の算出条件とを統一する、換言すれば用いられる実測値の対象数を同じくすることが望ましく、これによって、黒鉛粒数の判定の精度がより高められ得ることとなる。   Note that the correlation between the number of graphite grains and the degree of graphitization is clearly shown in the comparison between FIG. 4 and FIG. 5, the comparison between FIG. 7 and FIG. 8, and the comparison between FIG. 10 and FIG. In calculating the degree of graphitization, depending on whether one actual measurement value (TSC) or two actual measurement values (TSC and TEG) are used, a slightly different approximate linear equation is given. In determining the number of graphite grains in cast iron, the calculation conditions for the degree of graphitization for obtaining the correlation and the calculation conditions for the degree of graphitization of the molten cast iron that gives the spheroidal graphite cast iron are unified, in other words, the actual measurement used. It is desirable to make the number of values the same, and this can improve the accuracy of determination of the number of graphite grains.

また、図4,5と図7,8と図10,11との対比から明らかなように、テストピースの大きさが変化した場合、即ち鋳造条件、特に冷却速度(条件)が異なる場合にも、黒鉛粒数と黒鉛化度との相関関係は影響を受けることとなるために、相関関係を求めるためのテストピースの大きさを、目的とする球状黒鉛鋳鉄製品の大きさと一致させたり、それらの鋳造に際しての冷却条件を一致させたりする等、鋳造条件を一致させて、目的とする球状黒鉛鋳鉄製品により近いものの黒鉛粒数と黒鉛化度との相関関係を求めるようにすることによって、更に黒鉛粒数の判定の精度を高めることが出来る。   As is clear from the comparison between FIGS. 4 and 5 and FIGS. 7 and 8 and FIGS. 10 and 11, also when the size of the test piece changes, that is, when the casting conditions, particularly the cooling rate (conditions) are different. Since the correlation between the number of graphite grains and the degree of graphitization is affected, the size of the test piece for obtaining the correlation may be matched with the size of the target spheroidal graphite cast iron product. By matching the casting conditions, for example, by matching the cooling conditions during casting, the correlation between the number of graphite grains and the degree of graphitization of those closer to the target spheroidal graphite cast iron product is further obtained. The accuracy of determining the number of graphite grains can be increased.

さらに、上記とは別に、そのような黒鉛粒数と黒鉛化度との相関関係を、検査対象とされた鋳鉄溶湯から、目的とする球状黒鉛鋳鉄製品を鋳造するに際しての冷却速度を考慮して(加味して)求めるようにすることも、有効であり、その一例が、図12に示されている。この図12は、図4、図7及び図10に示される結果を用いて、黒鉛化度に応じて、各テストピースの製造時の冷却速度と黒鉛粒数の関係をプロットしたグラフであって(但し、黒鉛化度が0.3及び1.0の場合は、前記近似直線式からの推定値であり、冷却速度200℃/minの場合は、何れも、経験値又は推定値をもって示されている)、何れの黒鉛化度の場合においても、有効な近似直線式をもって、冷却速度と黒鉛粒数とが関連付けられ得るのである。そして、それらの近似直線式から、冷却速度(R)を考慮した黒鉛化度(ΔT1/ΔTE)と黒鉛粒数(N)との関係式:N=[4.26×(ΔT1/ΔTE)−0.9]×(R+30)(相関係数r=0.99)を求めることが出来るのであり、以て、テストピースと球状黒鉛鋳鉄製品との鋳造時の冷却速度(製品サイズ)が異なっていても、球状黒鉛鋳鉄製品の冷却速度が明らかであれば、テストピースで求められる黒鉛化度を用いて、前記関係式より製品中の黒鉛粒数を判定乃至は推定することが出来るのである。なお、黒鉛化度が0.3以下となると、「チル」が発生するようになるところから、図12において、黒鉛化度が0.3の近似直線式:N=0.56×R+18を基準にして、チルの発生の判定にも用いることが出来る。   Furthermore, apart from the above, the correlation between the number of graphite grains and the degree of graphitization is considered in consideration of the cooling rate when casting the target spheroidal graphite cast iron product from the cast iron melt to be inspected. It is also effective to obtain (in consideration), and an example is shown in FIG. FIG. 12 is a graph plotting the relationship between the cooling rate and the number of graphite grains during the production of each test piece according to the degree of graphitization using the results shown in FIGS. 4, 7 and 10. (However, when the degree of graphitization is 0.3 and 1.0, it is an estimated value from the approximate linear equation, and when the cooling rate is 200 ° C./min, both are shown as empirical values or estimated values. In any case of graphitization, the cooling rate and the number of graphite grains can be related with an effective approximate linear equation. Then, from these approximate linear expressions, the relational expression between the degree of graphitization (ΔT1 / ΔTE) and the number of graphite grains (N) in consideration of the cooling rate (R): N = [4.26 × (ΔT1 / ΔTE) − 0.9] × (R + 30) (correlation coefficient r = 0.99), and the cooling rate (product size) at the time of casting between the test piece and the spheroidal graphite cast iron product is different. However, if the cooling rate of the spheroidal graphite cast iron product is clear, the number of graphite grains in the product can be determined or estimated from the above relational expression using the degree of graphitization required for the test piece. When the graphitization degree is 0.3 or less, “chill” is generated. In FIG. 12, an approximate linear expression with a graphitization degree of 0.3: N = 0.56 × R + 18 is used as a reference. Thus, it can be used to determine the occurrence of chill.

その他、テストピースにおける黒鉛粒数と目的とする球状黒鉛鋳鉄製品における黒鉛粒数との関係を求めて、その関係に基づき、相関関係を換算して、該テストピースを与える鋳鉄溶湯の黒鉛化度より、目的とする球状黒鉛鋳鉄製品における黒鉛粒数を求めることも出来、更には、テストピースを与える鋳鉄溶湯から得られる黒鉛化度を、直接に、目的とする球状黒鉛鋳鉄製品における黒鉛粒数に関連付けて、その相関関係を求め、そしてその相関関係に基づいて、テストピースを与える鋳鉄溶湯から得られる黒鉛化度より、黒鉛粒数を判定することも可能である。   In addition, the relationship between the number of graphite particles in the test piece and the number of graphite particles in the target spheroidal graphite cast iron product is obtained, and based on the relationship, the correlation is converted and the degree of graphitization of the cast iron melt that gives the test piece In addition, the number of graphite particles in the target spheroidal graphite cast iron product can also be obtained, and furthermore, the degree of graphitization obtained from the cast iron melt giving the test piece is directly determined by the number of graphite particles in the target spheroidal graphite cast iron product. It is also possible to determine the number of graphite grains from the degree of graphitization obtained from the cast iron melt that gives the test piece based on the correlation.

何れにしても、球状黒鉛鋳鉄製品中の黒鉛粒数と、それを与える球状黒鉛鋳鉄溶湯との間には、基本的に、所定の相関関係が存するものであり、そして、そのような相関関係に基づいて、目的とする球状黒鉛鋳鉄製品中の黒鉛粒数を有効に判定乃至は推定することが出来るのである。   In any case, there is basically a predetermined correlation between the number of graphite grains in the spheroidal graphite cast iron product and the spheroidal graphite cast iron melt that gives it, and such a correlation. Based on the above, it is possible to effectively determine or estimate the number of graphite grains in the target spheroidal graphite cast iron product.

ところで、本発明を具体的に実施するに際しては、一般に、(a)黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯を、所定の試料採取容器に収容して冷却せしめ、その冷却過程から得られる冷却曲線とその微分曲線から、少なくとも過冷反転温度(TSC)を求める一方、該鋳鉄溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求め、そしてそれらの温度から黒鉛化度[ΔT1/ΔTE=(TSC−TEC)/(TEG−TEC)]を算出すると共に、かかる鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を測定して、それら得られた黒鉛粒数と黒鉛化度との間の相関関係を、予め求める工程と、(b)被検査鋳鉄溶湯について、上記の相関関係を求めた場合と同様にして、黒鉛化度を算出する工程と、(c)該被検査鋳鉄溶湯について得られた黒鉛化度に基づき、前記予め求められた黒鉛粒数と黒鉛化度の相関関係より、該被検査鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を判定する工程とを含む手法が、好適に採用されることとなる。そして、その際、相関関係を求めるための鋳鉄溶湯と被検査鋳鉄溶湯とは、一般に、Si以外の化学成分を略同様な割合において含有しており、更に、基本的には、冷却速度を含む鋳造条件も略同様に設定することにより、目的とする球状黒鉛鋳鉄製品における黒鉛粒数の判定の精度を、より一層高めることが可能となる。また、そこでは、前述の如く、相関関係を、前記被検査鋳鉄溶湯から球状黒鉛鋳鉄を得るに際しての冷却速度を考慮して求めることも、有利に採用されることとなる。   By the way, when concretely carrying out the present invention, generally, (a) a cast iron melt subjected to inoculation after graphite spheroidization or graphite spheronization is accommodated in a predetermined sampling container and cooled. From the cooling curve obtained from the cooling process and its differential curve, at least the supercooling inversion temperature (TSC) is obtained, while the graphite eutectic temperature (TEG) and the cementite eutectic temperature (TEC) of the molten cast iron are obtained, and The degree of graphitization [ΔT1 / ΔTE = (TSC-TEC) / (TEG-TEC)] was calculated from the temperature of the steel, and the number of graphite particles in the spheroidal graphite cast iron obtained from the cast iron melt was measured and obtained. The step of obtaining the correlation between the number of graphite grains and the degree of graphitization in advance, and (b) calculating the degree of graphitization in the same manner as the case of obtaining the above correlation for the molten cast iron to be inspected. And (c) a spheroidal graphite obtained from the molten cast iron to be inspected based on the correlation between the number of graphite grains and the degree of graphitization determined in advance based on the degree of graphitization obtained for the molten cast iron to be inspected. A method including a step of determining the number of graphite grains in cast iron is suitably employed. At that time, the molten cast iron for obtaining the correlation and the molten cast iron to be inspected generally contain chemical components other than Si in substantially the same proportion, and basically include the cooling rate. By setting the casting conditions in substantially the same manner, it is possible to further increase the accuracy of determining the number of graphite grains in the target spheroidal graphite cast iron product. In addition, as described above, it is also advantageously employed to obtain the correlation in consideration of the cooling rate when obtaining spheroidal graphite cast iron from the molten cast iron to be inspected.

以上、本発明の代表的な実施形態について詳述してきたが、それは、あくまでも、例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。   The exemplary embodiments of the present invention have been described in detail above, but these are merely examples, and the present invention is not limited in any way by specific descriptions according to such embodiments. It should be understood that this is not to be interpreted.

例えば、黒鉛球状化処理や接種処理の施された鋳鉄溶湯を冷却して、その冷却過程から得られる冷却曲線とその微分曲線は、図2の如く実際に図示する必要はなく、温度検知センサからの信号に基づいてコンピュータにて処理して、過冷反転温度(TSC)や黒鉛共晶温度(TEG)を直接取り出すようにすることも可能であり、そうすることによって、より一層迅速且つ簡便な黒鉛化度の検出が可能となるのであり、更に、それに基づいて、コンピュータにて予め記憶せしめられている黒鉛化度と黒鉛粒数との相関関係から、目的とする球状黒鉛鋳鉄中の黒鉛粒数を有利に求めることが可能である。   For example, it is not necessary to actually show the cooling curve and its differential curve obtained by cooling a cast iron melt subjected to graphite spheroidization treatment or inoculation treatment, as shown in FIG. It is also possible to directly take out the supercooling inversion temperature (TSC) and the graphite eutectic temperature (TEG) by processing on the computer based on this signal, which makes it even faster and simpler The degree of graphitization can be detected, and further, based on the correlation between the degree of graphitization and the number of graphite grains stored in advance by a computer, the graphite grains in the target spheroidal graphite cast iron can be detected. The number can be determined advantageously.

また、図1に示される、本発明を実施するに好適なシステムの例において、信号変換装置8は、演算装置10に一体化して組み込むことが可能であり、更に、指数のみの表示・伝送としたり、或いは、印刷装置を設けて、印刷による出力としたりすることも可能である。   Further, in the example of the system suitable for carrying out the present invention shown in FIG. 1, the signal conversion device 8 can be integrated and incorporated in the arithmetic device 10, and further, only the exponent is displayed / transmitted. Alternatively, it is possible to provide a printing device and output by printing.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施され得るものであり、そして、そのような実施態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。   In addition, although not listed one by one, the present invention can be implemented in a mode with various changes, modifications, improvements, and the like based on the knowledge of those skilled in the art. It goes without saying that any one of them falls within the scope of the present invention without departing from the spirit of the invention.

2 試料採取容器
4 支持台
6 導線
8 信号変換装置
10 演算装置
2 Sampling container 4 Support base 6 Conductor 8 Signal converter 10 Arithmetic unit

Claims (8)

黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯を、所定の試料採取容器に収容して冷却せしめ、その冷却過程から得られる冷却曲線とその微分曲線から、少なくとも過冷反転温度(TSC)を求める一方、かかる鋳鉄溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求め、そしてそれらの温度から算出される黒鉛化度[ΔT1/ΔTE=(TSC−TEC)/(TEG−TEC)]に基づき、予め求められている黒鉛粒数と黒鉛化度の相関関係より、該鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を判定することを特徴とする球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。   Cast iron melt that has been inoculated after graphite spheroidizing or graphite spheroidizing treatment is placed in a predetermined sampling container and cooled, and at least supercooling is reversed from the cooling curve obtained from the cooling process and its differential curve. While obtaining the temperature (TSC), the graphite eutectic temperature (TEG) and the cementite eutectic temperature (TEC) of the molten cast iron were obtained, and the degree of graphitization [ΔT1 / ΔTE = (TSC−TEC) calculated from these temperatures. ) / (TEG-TEC)], the number of graphite grains in the spheroidal graphite cast iron obtained from the cast iron melt is determined from the correlation between the number of graphite grains obtained in advance and the degree of graphitization. A method for determining the number of graphite grains in graphite cast iron. 前記黒鉛共晶温度が、前記冷却曲線の微分曲線における谷部に相当する温度及び共晶最高温度のうち、何れか高い方の温度として求められる請求項1に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。   2. The graphite grains in the spheroidal graphite cast iron according to claim 1, wherein the graphite eutectic temperature is determined as a higher one of a temperature corresponding to a valley in the differential curve of the cooling curve and a maximum eutectic temperature. How to determine the number. 前記セメンタイト共晶温度が、黒鉛球状化処理の施されていない前記鋳鉄溶湯を、チル化剤と共に、試料採取容器に収容して、冷却せしめることにより、得られた冷却曲線から求められる請求項1又は請求項2に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。   The said cementite eutectic temperature is calculated | required from the cooling curve obtained by accommodating the said cast iron molten metal in which the graphite spheroidization process is not given with a chilling agent, and cooling it. Alternatively, a method for determining the number of graphite grains in the spheroidal graphite cast iron according to claim 2. 前記黒鉛共晶温度及び/又は前記セメンタイト共晶温度が、黒鉛球状化処理若しくは黒鉛球状化処理の後に接種処理が施されてなる前記鋳鉄溶湯の化学成分から求められる請求項1乃至請求項3の何れか1項に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。   The graphite eutectic temperature and / or the cementite eutectic temperature is obtained from a chemical component of the cast iron melt obtained by inoculation after graphite spheroidization or graphite spheroidization. A method for determining the number of graphite grains in the spheroidal graphite cast iron according to any one of the above items. 前記黒鉛共晶温度(TEG)が、下式:
TEG(℃)=1149.6+4.7×Si%−4×Mn%−44×P%+2.7 ×Cu%+1.0×Ni%−10.5×Cr%−17.7×Mo% −14.8×V%−6.1×W%−80.3×B%−9.3×Sn %−3.7×Nb%−5.2×Sb%+13.9×Al%+1.8 ×Co%
に基づいて算出される請求項4に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
The graphite eutectic temperature (TEG) is represented by the following formula:
TEG (° C.) = 1149.6 + 4.7 × Si% −4 × Mn% −44 × P% + 2.7 × Cu% + 1.0 × Ni% −10.5 × Cr% −17.7 × Mo% − 14.8 × V% −6.1 × W% −80.3 × B% −9.3 × Sn% −3.7 × Nb% −5.2 × Sb% + 13.9 × Al% + 1.8 × Co%
The method of determining the number of graphite grains in the spheroidal graphite cast iron according to claim 4 calculated based on the above.
前記セメンタイト共晶温度(TEC)が、下式:
TEC(℃)=1142.7−11.6×Si%−0.75×Mn%−46.2× P%−1.4×Cu%−1.1×Ni%+5.9×Cr%−14. 5×Mo%+3.3×V%−2.8×W%−26.0×B%−6. 0×Sn%−0.0×Nb%−5.1×Sb%−1.8×Al%− 0.7×Co%
に基づいて算出される請求項4に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
The cementite eutectic temperature (TEC) is expressed by the following formula:
TEC (° C.) = 1142.7-11.6 × Si% −0.75 × Mn% −46.2 × P% −1.4 × Cu% −1.1 × Ni% + 5.9 × Cr% − 14 5 × Mo% + 3.3 × V% −2.8 × W% −26.0 × B% −6. 0 × Sn% −0.0 × Nb% −5.1 × Sb% −1.8 × Al% −0.7 × Co%
The method of determining the number of graphite grains in the spheroidal graphite cast iron according to claim 4 calculated based on the above.
黒鉛球状化処理若しくは黒鉛球状化処理後に接種処理の施された鋳鉄溶湯を、所定の試料採取容器に収容して冷却せしめ、その冷却過程から得られる冷却曲線とその微分曲線から、少なくとも過冷反転温度(TSC)を求める一方、該鋳鉄溶湯の黒鉛共晶温度(TEG)及びセメンタイト共晶温度(TEC)を求め、そしてそれらの温度から黒鉛化度[ΔT1/ΔTE=(TSC−TEC)/(TEG−TEC)]を算出すると共に、かかる鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を測定して、それら得られた黒鉛粒数と黒鉛化度との間の相関関係を、予め求める工程と、
被検査鋳鉄溶湯について、上記の相関関係を求めた場合と同様にして、黒鉛化度を算出する工程と、
該被検査鋳鉄溶湯について得られた黒鉛化度に基づき、前記予め求められた黒鉛粒数と黒鉛化度の相関関係より、該被検査鋳鉄溶湯から得られる球状黒鉛鋳鉄における黒鉛粒数を判定する工程と
を含むことを特徴とする球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。
Cast iron melt that has been inoculated after graphite spheroidizing or graphite spheroidizing treatment is placed in a predetermined sampling container and cooled, and at least supercooling is reversed from the cooling curve obtained from the cooling process and its differential curve. While determining the temperature (TSC), the graphite eutectic temperature (TEG) and the cementite eutectic temperature (TEC) of the molten cast iron were determined, and the degree of graphitization [ΔT1 / ΔTE = (TSC−TEC) / ( TEG-TEC)] and calculating the correlation between the number of graphite grains obtained and the degree of graphitization in advance by measuring the number of graphite grains in the spheroidal graphite cast iron obtained from the cast iron melt When,
For the molten cast iron to be inspected, the step of calculating the degree of graphitization in the same manner as the case of obtaining the above correlation,
Based on the degree of graphitization obtained for the molten cast iron to be inspected, the number of graphite grains in the spheroidal graphite cast iron obtained from the molten iron to be inspected is determined from the correlation between the previously obtained number of graphite grains and the degree of graphitization. And a step of determining the number of graphite grains in the spheroidal graphite cast iron.
前記相関関係が、前記被検査鋳鉄溶湯から球状黒鉛鋳鉄を得るに際しての冷却速度を考慮して求められる請求項7に記載の球状黒鉛鋳鉄中の黒鉛粒数を判定する方法。   The method for determining the number of graphite grains in the spheroidal graphite cast iron according to claim 7, wherein the correlation is determined in consideration of a cooling rate when obtaining the spheroidal graphite cast iron from the molten cast iron to be inspected.
JP2009220760A 2009-09-25 2009-09-25 Method for determining the number of graphite particles in spheroidal graphite cast iron Expired - Fee Related JP5462568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220760A JP5462568B2 (en) 2009-09-25 2009-09-25 Method for determining the number of graphite particles in spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220760A JP5462568B2 (en) 2009-09-25 2009-09-25 Method for determining the number of graphite particles in spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JP2011069711A JP2011069711A (en) 2011-04-07
JP5462568B2 true JP5462568B2 (en) 2014-04-02

Family

ID=44015119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220760A Expired - Fee Related JP5462568B2 (en) 2009-09-25 2009-09-25 Method for determining the number of graphite particles in spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP5462568B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829992A (en) * 2018-06-22 2018-11-16 哈尔滨理工大学 A kind of method of spheroidal graphite cast-iron ingot casting graphite nodule dimensional values prediction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596343A (en) * 1991-10-04 1993-04-20 Hitachi Metals Ltd Method for designing casting plan for iron casting utilizing solidification analysis
JP2750832B2 (en) * 1995-05-16 1998-05-13 株式会社木村鋳造所 Method for determining the properties of molten cast iron
JPH09113505A (en) * 1995-10-24 1997-05-02 Hitachi Metals Ltd Chill tendency evaluating method for molten metal and manufacture of cast iron using it
JP2003121395A (en) * 2001-10-09 2003-04-23 Metal Science Kk Method for determining spheroidal graphite shape and flake graphite shape in molten metal of cast iron and measuring ratio of graphite spheroidization and number of eutectic cell

Also Published As

Publication number Publication date
JP2011069711A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
US3546921A (en) Method of producing an initial thermal arrest in the cooling curve of hypereutectic cast iron
JP2510947B2 (en) Method for discriminating presence / absence of spheroidizing agent or CV agent in molten cast iron and chilling tendency of flake graphite cast iron, and sampling container used therefor
CN108132277B (en) Method for predicting vermicular rate of hypereutectic composition vermicular graphite cast iron
JPH0545643B2 (en)
Stan et al. Application of thermal analysis to monitor the quality of hypoeutectic cast irons during solidification in sand and metal moulds
JP2750832B2 (en) Method for determining the properties of molten cast iron
Liu et al. Effect of cooling rate on microstructure and inclusion in non-quenched and tempered steel during horizontal directional solidification
Riposan et al. Simultaneous thermal and contraction/expansion curves analysis for solidification control of cast irons
Cojocaru et al. Solidification influence in the control of inoculation effects in ductile cast irons by thermal analysis
Boeri The solidification of ductile cast iron
JP5462568B2 (en) Method for determining the number of graphite particles in spheroidal graphite cast iron
Elmquist et al. Relation between SDAS and eutectic cell size in grey iron
Górny et al. Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy
Hernando et al. Evolution of primary austenite during coarsening and impact on eutectic microstructure in Fe–C–Si alloys
Riposan et al. Identifying chill tendency of cast iron melts by thermal analysis
Stan et al. Integrated system of thermal/dimensional analysis for quality control of gray and ductile iron castings solidification
Elbel et al. Behaviour of oxygen in cast irons
JP3612677B2 (en) Method for determining graphite shape of spheroidal graphite cast iron and CV-shaped graphite cast iron
US5305815A (en) Method and apparatus for predicting microstructure of cast iron
Hampl et al. On modelling of the effect of oxygen on graphite morphology and properties of modified cast irons
Stan et al. Simultaneous thermal and contraction/expansion analyses of cast iron solidification process
Svidró et al. Determination of the columnar to equiaxed transition in hypoeutectic lamellar cast iron
Bhat et al. Speed of recalescence as a measure of graphite nucleation in spheroidal graphite cast iron castings
Hao et al. Study on the microstructure evolution mechanism of copper single phase alloys under deep undercooling conditions
CN105969930A (en) Optimal control method for base iron overheating temperature and heat preservation time of ductile iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees