JP5461812B2 - Rubber composition, method for producing the same, and tire using the same - Google Patents
Rubber composition, method for producing the same, and tire using the same Download PDFInfo
- Publication number
- JP5461812B2 JP5461812B2 JP2008262847A JP2008262847A JP5461812B2 JP 5461812 B2 JP5461812 B2 JP 5461812B2 JP 2008262847 A JP2008262847 A JP 2008262847A JP 2008262847 A JP2008262847 A JP 2008262847A JP 5461812 B2 JP5461812 B2 JP 5461812B2
- Authority
- JP
- Japan
- Prior art keywords
- butadiene
- polymer
- rubber composition
- rubber
- carbonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0025—Compositions of the sidewalls
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C1/00—Treatment of rubber latex
- C08C1/02—Chemical or physical treatment of rubber latex before or during concentration
- C08C1/04—Purifying; Deproteinising
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/22—Incorporating nitrogen atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Tires In General (AREA)
Description
本発明は、低発熱性(低ロス性)および耐破壊性(耐亀裂成長性)に優れたゴム組成物およびその製造方法ならびにそれを用いたタイヤに関する。 The present invention relates to a rubber composition excellent in low heat build-up (low loss) and fracture resistance (crack growth resistance), a method for producing the same, and a tire using the same.
近年、省エネルギー、省資源の社会的要請の下、自動車の燃料消費量を節約するため、優れた耐久性を有するタイヤが求められ、従来よりもさらに低発熱性(低ロス性)および耐破壊性(耐亀裂成長性)に優れたゴム組成物が強く望まれている。
こうしたなか、タイヤの転がり抵抗を低減する手法として、低発熱性のゴム組成物を用いるのが一般的である。低発熱性を実現するためにはフィラーを低減する手段もとり得るが、耐破壊性の悪化が懸念される。その一方、低発熱性および耐破壊性をともに向上させるには、特許文献1に開示されるような、ゴム組成物中の充填剤と相互作用する官能基を導入した変性重合体をゴム成分として使用することが極めて有効な手段である。
In recent years, tires with excellent durability have been demanded in order to save automobile fuel consumption in response to social demands for energy and resource saving, and even lower heat generation (low loss) and fracture resistance than before. A rubber composition excellent in (crack growth resistance) is strongly desired.
Under these circumstances, as a method for reducing the rolling resistance of the tire, it is common to use a rubber composition having low heat generation. In order to achieve low heat build-up, a means for reducing the filler can be taken, but there is a concern about deterioration of fracture resistance. On the other hand, in order to improve both low heat buildup and fracture resistance, a modified polymer having a functional group that interacts with a filler in the rubber composition as disclosed in Patent Document 1 is used as a rubber component. It is a very effective means to use.
しかしながら、導入する官能基の種類によっては充填剤との反応性が異なり、得られるゴム組成物の性能に大きな影響を及ぼしかねない。したがって、低発熱性および耐破壊性ともに一層向上させることのできるゴム組成物を実現するという観点からは、依然として改善されるべき余地が残されている。 However, depending on the type of the functional group to be introduced, the reactivity with the filler is different, which may greatly affect the performance of the resulting rubber composition. Therefore, there is still room for improvement from the viewpoint of realizing a rubber composition that can further improve both low heat buildup and fracture resistance.
そこで、本発明は、ゴム成分と充填剤との親和性の向上を図りつつ、より高い低発熱性と耐亀裂成長性とを兼ね備えたゴム組成物およびその製造方法ならびにそれを用いたタイヤを提供することを目的としている。 Accordingly, the present invention provides a rubber composition having higher low heat generation and crack growth resistance while improving the affinity between the rubber component and the filler, a method for producing the same, and a tire using the same. The purpose is to do.
本発明者らは、上記課題を解決すべく、特定の重合体を含むゴム成分と、低級カーボンブラックとを配合したゴム組成物およびその製造方法を見出し、本発明を完成させるに至った。 In order to solve the above problems, the present inventors have found a rubber composition containing a rubber component containing a specific polymer and lower carbon black and a method for producing the same, and have completed the present invention.
すなわち、本発明のゴム組成物は、式(I)または式(II)で表される複素環式ニトリル化合物である変性剤で変性されてなる、シス含量が40%以上の共役系変性基を有するブタジエン系重合体を含むゴム成分と、
窒素吸着比表面積が20〜100m2/gであるカーボンブラックとを含むことを特徴とする。
θ−C≡N ・・・(I)
θ−R−C≡N ・・・(II)
(式(I)および(II)中、θは2−ピリジル、3−ピリジル、および4−ピリジルからなる群から選択される少なくとも1種を示し、Rは2価の炭化水素基を示す。)
That is, the rubber composition of the present invention has a conjugated modified group having a cis content of 40% or more, which is modified with a modifier that is a heterocyclic nitrile compound represented by formula (I) or formula (II). A rubber component containing a butadiene-based polymer having,
And carbon black having a nitrogen adsorption specific surface area of 20 to 100 m 2 / g.
θ-C≡N (I)
θ-R-C≡N (II)
(In formulas (I) and (II), θ represents at least one selected from the group consisting of 2-pyridyl, 3-pyridyl, and 4-pyridyl, and R represents a divalent hydrocarbon group.)
前記ゴム成分に、天然ゴムおよび/またはポリイソプレンゴムを含むのが望ましく、ゴム成分100質量%中、前記ブタジエン系重合体を10質量%以上含むのが望ましく、前記ブタジエン系重合体のシス含量は90%以上であるのが望ましい。
また、前記ブタジエン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が、1.3〜3.5であるのが望ましい。
さらに、前記ゴム成分100質量部に対し、前記カーボンブラックを10質量部以上含んでもよく、また、前記カーボンブラックの窒素吸着比表面積が40〜80m2/gであるのが好ましい。
The rubber component preferably contains natural rubber and / or polyisoprene rubber, and preferably contains 10% by mass or more of the butadiene polymer in 100% by mass of the rubber component, and the cis content of the butadiene polymer is It is desirable that it is 90% or more.
Moreover, it is preferable that the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the butadiene-based polymer is 1.3 to 3.5.
Further, 10 parts by mass or more of the carbon black may be included with respect to 100 parts by mass of the rubber component, and the nitrogen adsorption specific surface area of the carbon black is preferably 40 to 80 m 2 / g.
本発明の上記ゴム組成物の製造方法は、末端リビング率が20%以上のブタジエン系重合体に変性剤を投入する工程を含むことを特徴とする。
また、本発明のタイヤは上記ゴム組成物を用いることを特徴とし、該ゴム組成物をサイドウォール部材に用いるものであってもよい。
The method for producing the rubber composition of the present invention includes a step of adding a modifier to a butadiene-based polymer having a terminal living ratio of 20% or more.
Further, the tire of the present invention is characterized by using the above rubber composition, and the rubber composition may be used for a sidewall member.
本発明のゴム組成物によれば、ゴム成分として用いる比較的高シス含量のブタジエン系重合体は、特定の窒素吸着比表面積を有するカーボンブラックとの親和性が極めて高く、これらを組み合わせることにより、従来よりも優れた低発熱性と耐亀裂成長性を兼ね備えたゴム組成物を実現することができる。
また、ブタジエン系重合体に導入する共役系変性基を選択することで、さらに高い低発熱性を確保することも可能である。
According to the rubber composition of the present invention, the butadiene-based polymer having a relatively high cis content used as a rubber component has extremely high affinity with carbon black having a specific nitrogen adsorption specific surface area, and by combining these, It is possible to realize a rubber composition having both a low heat generation property and crack growth resistance which are superior to those of conventional ones.
Further, by selecting a conjugated modifying group to be introduced into the butadiene polymer, it is possible to ensure even higher low heat generation.
以下、本発明について詳細に説明する。
本発明のゴム組成物は、上記式(I)または式(II)で表される複素環式ニトリル化合物である変性剤で変性されてなる、シス含量が40%以上の共役系変性基を有するブタジエン系重合体を含むゴム成分と、
窒素吸着比表面積が20〜100m2/gであるカーボンブラックとを含むことを特徴としている。
Hereinafter, the present invention will be described in detail.
The rubber composition of the present invention has a conjugated modification group having a cis content of 40% or more, which is modified with a modifier which is a heterocyclic nitrile compound represented by the above formula (I) or formula (II). A rubber component containing a butadiene-based polymer;
And carbon black having a nitrogen adsorption specific surface area of 20 to 100 m 2 / g.
[ブタジエン系重合体]
本発明のゴム組成物には、ゴム成分として、シス含量(1,4−シス結合含量)が40%以上、好ましくは90%以上、より好ましくは96%以上、最も好ましくは98%以上である、共役系変性基を有するブタジエン系重合体(以下、「変性ブタジエン系重合体」ともいう)を用いる。シス含量が40%未満では、本発明の効果が発現しにくい傾向となり、上記範囲内であると、伸張結晶性の増加により、優れた耐亀裂成長性を発揮することが可能となる。なお、シス含量とは、ブタジエン系重合体中のブタジエン化合物単位における1,4−シス結合の割合を意味する。
[Butadiene polymer]
In the rubber composition of the present invention, the rubber component has a cis content (1,4-cis bond content) of 40% or more, preferably 90% or more, more preferably 96% or more, and most preferably 98% or more. A butadiene-based polymer having a conjugated modified group (hereinafter also referred to as “modified butadiene-based polymer”) is used. When the cis content is less than 40%, the effect of the present invention tends to be hardly exhibited. When the cis content is within the above range, it is possible to exhibit excellent crack growth resistance due to an increase in stretch crystallinity. In addition, cis content means the ratio of the 1, 4- cis bond in the butadiene compound unit in a butadiene-type polymer.
上記ブタジエン系重合体は、1,3−ブタジエン単量体からなるのが好ましく、1,3−ブタジエン単量体のみからなるのが特に好ましく、いわゆるポリブタジエンゴム(BR)であるのが望ましい。なお、1,3−ブタジエン単量体単位が80〜100質量%で、1,3−ブタジエンと共重合可能なその他の単量体単位が20〜0質量%であるのが好ましい。重合体中の1,3−ブタジエン単量体単位含量が80質量%未満では、重合体全体に対する1,4−シス結合含量が低下するため、本発明の効果が発現しにくくなる。 The butadiene-based polymer is preferably composed of 1,3-butadiene monomer, particularly preferably composed of only 1,3-butadiene monomer, and is desirably so-called polybutadiene rubber (BR). The 1,3-butadiene monomer unit is preferably 80 to 100% by mass, and the other monomer unit copolymerizable with 1,3-butadiene is preferably 20 to 0% by mass. When the 1,3-butadiene monomer unit content in the polymer is less than 80% by mass, the 1,4-cis bond content with respect to the whole polymer is lowered, and thus the effect of the present invention is hardly exhibited.
ここで、1,3−ブタジエンと共重合可能なその他の単量体としては、例えば、炭素数5〜8の共役ジエン単量体、芳香族ビニル単量体等が挙げられ、これらの中でも、炭素数5〜8の共役ジエン単量体が好ましい。上記炭素数5〜8の共役ジエン単量体としては、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン等が挙げられる。上記芳香族ビニル単量体としては、スチレン、p−メチルスチレン、α−メチルスチレン、ビニルナフタレン等が挙げられる。 Here, other monomers copolymerizable with 1,3-butadiene include, for example, conjugated diene monomers having 5 to 8 carbon atoms, aromatic vinyl monomers and the like. Among these, A conjugated diene monomer having 5 to 8 carbon atoms is preferred. Examples of the conjugated diene monomer having 5 to 8 carbon atoms include 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and the like. Can be mentioned. Examples of the aromatic vinyl monomer include styrene, p-methylstyrene, α-methylstyrene, and vinylnaphthalene.
なお、上記ブタジエン系重合体のビニル含量(1,2−ビニル結合含量)は、好ましくは1.5%以下、より好ましくは1.0%以下である。ビニル含量が上記範囲外であると、重合体の結晶性が低下するおそれがあり、好ましくない。ここで、ビニル含量とは、ブタジエン系重合体中のブタジエン化合物単位における1,2−ビニル結合の割合を意味する。 In addition, the vinyl content (1,2-vinyl bond content) of the butadiene-based polymer is preferably 1.5% or less, more preferably 1.0% or less. If the vinyl content is outside the above range, the crystallinity of the polymer may be lowered, which is not preferable. Here, the vinyl content means the proportion of 1,2-vinyl bonds in the butadiene compound units in the butadiene polymer.
さらに、上記共役系変性基を有するブタジエン系重合体(変性ブタジエン系重合体)の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、1.3〜3.5、好ましくは1.3〜3.0である。ここで、MnおよびMw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求められる値を意味する。 Furthermore, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the butadiene-based polymer (modified butadiene-based polymer) having the conjugated modified group is 1.3-3. 5, preferably 1.3 to 3.0. Here, Mn and Mw / Mn mean values obtained using polystyrene as a standard substance by gel permeation chromatography (GPC).
本発明で用いる共役系変性基を有するブタジエン系重合体(変性ブタジエン系重合体)は、以下に詳述する(A)成分、(B)成分および(C)成分からなる触媒系の存在下、25℃以下の温度で少なくとも1,3−ブタジエンのようなジエン系単量体を含む単量体を重合させることで得られる変性前のブタジエン系重合体を用いる。ここで、単量体としては、たとえば1,3−ブタジエンの他、上述した1,3−ブタジエンと共重合可能なその他の単量体などが挙げられる。 The butadiene-based polymer having a conjugated modified group used in the present invention (modified butadiene-based polymer) is described below in detail in the presence of a catalyst system comprising a component (A), a component (B), and a component (C). A butadiene polymer before modification obtained by polymerizing a monomer containing at least a diene monomer such as 1,3-butadiene at a temperature of 25 ° C. or lower is used. Here, examples of the monomer include 1,3-butadiene and other monomers copolymerizable with the above-described 1,3-butadiene.
上記変性前のブタジエン系重合体の製造に使用する触媒系の(A)成分は、周期律表の原子番号57〜71の希土類元素を含有する化合物、又はこれらの化合物とルイス塩基との反応物である。ここで、原子番号57〜71の希土類元素の中でも、ネオジム、プラセオジウム、セリウム、ランタン、ガドリニウム等、又はこれらの混合物が好ましく、ネオジムが特に好ましい。 The component (A) of the catalyst system used in the production of the butadiene polymer before modification is a compound containing a rare earth element having an atomic number of 57 to 71 in the periodic table, or a reaction product of these compounds and a Lewis base. It is. Here, among the rare earth elements having atomic numbers 57 to 71, neodymium, praseodymium, cerium, lanthanum, gadolinium, or the like, or a mixture thereof is preferable, and neodymium is particularly preferable.
上記希土類元素含有化合物としては、炭化水素溶媒に可溶な塩が好ましく、具体的には、上記希土類元素のカルボン酸塩、アルコキサイド、β−ジケトン錯体、リン酸塩及び亜リン酸塩が挙げられ、これらの中でも、カルボン酸塩及びリン酸塩が好ましく、カルボン酸塩が特に好ましい。ここで、炭化水素溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4〜10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数5〜20の飽和脂環式炭化水素、1−ブテン、2−ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、トリクロロエチレン、パークロロエチレン、1,2−ジクロロエタン、クロロベンゼン、ブロモベンゼン、クロロトルエン等のハロゲン化炭化水素が挙げられる。 The rare earth element-containing compound is preferably a salt soluble in a hydrocarbon solvent, and specifically includes the rare earth element carboxylates, alkoxides, β-diketone complexes, phosphates and phosphites. Of these, carboxylates and phosphates are preferable, and carboxylates are particularly preferable. Here, examples of the hydrocarbon solvent include saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane, saturated alicyclic hydrocarbons having 5 to 20 carbon atoms such as cyclopentane and cyclohexane, -Monoolefins such as butene, 2-butene, aromatic hydrocarbons such as benzene, toluene, xylene, methylene chloride, chloroform, trichloroethylene, perchloroethylene, 1,2-dichloroethane, chlorobenzene, bromobenzene, chlorotoluene, etc. A halogenated hydrocarbon is mentioned.
上記希土類元素のカルボン酸塩としては、下記一般式(VII):
(R4−CO2)3M ・・・ (VII)
(式中、R4は炭素数1〜20の炭化水素基で、Mは周期律表の原子番号57〜71の希土類元素である)で表される化合物が挙げられる。ここで、R4は、飽和又は不飽和でもよく、アルキル基及びアルケニル基が好ましく、直鎖状、分岐状及び環状のいずれでもよい。また、カルボキシル基は、1級、2級又は3級の炭素原子に結合している。該カルボン酸塩として、具体的には、オクタン酸、2−エチルヘキサン酸、オレイン酸、ネオデカン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸[シェル化学(株)製の商品名であって、カルボキシル基が3級炭素原子に結合しているカルボン酸]等の塩が挙げられ、これらの中でも、2−エチルヘキサン酸、ネオデカン酸、ナフテン酸、バーサチック酸の塩が好ましい。
As the rare earth element carboxylate, the following general formula (VII):
(R 4 -CO 2 ) 3 M (VII)
(Wherein, R 4 is a hydrocarbon group having 1 to 20 carbon atoms, and M is a rare earth element having an atomic number of 57 to 71 in the periodic table). Here, R 4 may be saturated or unsaturated, is preferably an alkyl group or an alkenyl group, and may be linear, branched or cyclic. The carboxyl group is bonded to a primary, secondary or tertiary carbon atom. Specific examples of the carboxylate include octanoic acid, 2-ethylhexanoic acid, oleic acid, neodecanoic acid, stearic acid, benzoic acid, naphthenic acid, versatic acid [trade names of Shell Chemical Co., Ltd. , A carboxylic acid in which a carboxyl group is bonded to a tertiary carbon atom] and the like. Among these, salts of 2-ethylhexanoic acid, neodecanoic acid, naphthenic acid, and versatic acid are preferable.
上記希土類元素のアルコキサイドとしては、下記一般式(VIII):
(R5O)3M ・・・ (VIII)
(式中、R5は炭素数1〜20の炭化水素基で、Mは周期律表の原子番号57〜71の希土類元素である)で表される化合物が挙げられる。R5Oで表されるアルコキシ基としては、2−エチル−ヘキシルアルコキシ基、オレイルアルコキシ基、ステアリルアルコキシ基、フェノキシ基、ベンジルアルコキシ基等が挙げられる。これらの中でも、2−エチル−ヘキシルアルコキシ基、ベンジルアルコキシ基が好ましい。
As the alkoxide of the rare earth element, the following general formula (VIII):
(R 5 O) 3 M (VIII)
(Wherein, R 5 is a hydrocarbon group having 1 to 20 carbon atoms, and M is a rare earth element having an atomic number of 57 to 71 in the periodic table). The alkoxy group represented by R 5 O, 2-ethyl - hexyl alkoxy group, oleyl alkoxy group, stearyl alkoxy group, phenoxy group, and benzylalkoxy group. Among these, a 2-ethyl-hexylalkoxy group and a benzylalkoxy group are preferable.
上記希土類元素のβ−ジケトン錯体としては、上記希土類元素のアセチルアセトン錯体、ベンゾイルアセトン錯体、プロピオニトリルアセトン錯体、バレリルアセトン錯体、エチルアセチルアセトン錯体等が挙げられる。これらの中でも、アセチルアセトン錯体、エチルアセチルアセトン錯体が好ましい。 Examples of the rare earth element β-diketone complex include the rare earth element acetylacetone complex, benzoylacetone complex, propionitrileacetone complex, valerylacetone complex, and ethylacetylacetone complex. Among these, an acetylacetone complex and an ethylacetylacetone complex are preferable.
上記希土類元素のリン酸塩及び亜リン酸塩としては、上記希土類元素と、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、(1−メチルヘプチル)(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸等との塩が挙げられ、これらの中でも、上記希土類元素と、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、ビス(2−エチルヘキシル)ホスフィン酸との塩が好ましい。 Examples of the rare earth element phosphate and phosphite include the rare earth element, bis (2-ethylhexyl) phosphate, bis (1-methylheptyl phosphate), bis (p-nonylphenyl) phosphate, phosphorus Acid bis (polyethylene glycol-p-nonylphenyl), phosphoric acid (1-methylheptyl) (2-ethylhexyl), phosphoric acid (2-ethylhexyl) (p-nonylphenyl), 2-ethylhexylphosphonic acid mono-2-ethylhexyl 2-ethylhexylphosphonic acid mono-p-nonylphenyl, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, bis (p-nonylphenyl) phosphinic acid, (1-methylheptyl) (2 -Ethylhexyl) phosphinic acid, (2-ethylhexyl) (p-nonylphenyl) phosphine Among these, the rare earth elements, bis (2-ethylhexyl) phosphate, bis (1-methylheptyl) phosphate, mono-2-ethylhexyl 2-ethylhexylphosphonate, bis A salt with (2-ethylhexyl) phosphinic acid is preferred.
上記希土類元素含有化合物の中でも、ネオジムのリン酸塩、及びネオジムのカルボン酸塩が更に好ましく、特にネオジムの2−エチルヘキサン酸塩、ネオジムのネオデカン酸塩、ネオジムのバーサチック酸塩等のネオジムの分岐カルボン酸塩が最も好ましい。 Among the rare earth element-containing compounds, neodymium phosphate and neodymium carboxylate are more preferable, and in particular, neodymium branching such as neodymium 2-ethylhexanoate, neodymium neodecanoate, neodymium versatate, etc. Carboxylate is most preferred.
また、(A)成分は、上記希土類元素含有化合物とルイス塩基との反応物でもよい。該反応物は、ルイス塩基によって、希土類元素含有化合物の溶剤への溶解性が向上しており、また、長期間安定に貯蔵することができる。上記希土類元素含有化合物を溶剤に容易に可溶化させるため、また、長期間安定に貯蔵するために用いられるルイス塩基は、希土類元素1モル当り0〜30モル、好ましくは1〜10モルの割合で、両者の混合物として、又は予め両者を反応させた生成物として用いられる。ここで、ルイス塩基としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N,N−ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、1価又は2価のアルコールが挙げられる。 The component (A) may be a reaction product of the rare earth element-containing compound and a Lewis base. The reaction product has improved solubility of the rare earth element-containing compound in the solvent due to the Lewis base, and can be stably stored for a long period of time. In order to easily solubilize the rare earth element-containing compound in a solvent and to store stably for a long period of time, the Lewis base is used in a proportion of 0 to 30 mol, preferably 1 to 10 mol, per mol of rare earth element. Or as a mixture of the two or as a product obtained by reacting both in advance. Here, examples of the Lewis base include acetylacetone, tetrahydrofuran, pyridine, N, N-dimethylformamide, thiophene, diphenyl ether, triethylamine, an organic phosphorus compound, and a monovalent or divalent alcohol.
以上に述べた(A)成分としての希土類元素含有化合物又はこれらの化合物とルイス塩基との反応物は、1種単独で使用することも、2種以上を混合して用いることもできる。 The rare earth element-containing compound as the component (A) described above or a reaction product of these compounds and a Lewis base can be used singly or in combination of two or more.
上記変性前のブタジエン系重合体の製造に使用する触媒系の(B)成分は、下記一般式(II):
AlR1R2R3 ・・・ (II)
(式中、R1及びR2は同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよい)で表される有機アルミニウム化合物である。式(II)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(B)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。
The component (B) of the catalyst system used for the production of the butadiene polymer before the modification is represented by the following general formula (II):
AlR 1 R 2 R 3 ... (II)
(In the formula, R 1 and R 2 are the same or different and are a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 represents the above R 1 or R 2 , which may be the same as or different from R 2 ). Examples of the organoaluminum compound of the formula (II) include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Trihexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl hydride Aluminum, dioctyl aluminum hydride, diisooctyl aluminum hydride; ethyl aluminum dihydride, n-propyl aluminum Hydride, include isobutyl aluminum dihydride and the like, among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. The organoaluminum compound as component (B) described above can be used alone or in combination of two or more.
上記変性前のブタジエン系重合体の製造に使用する触媒系の(C)成分は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物、及び活性ハロゲンを含む有機化合物からなる群から選択される少なくとも一種のハロゲン化合物である。 The component (C) of the catalyst system used for the production of the butadiene polymer before modification is selected from the group consisting of Lewis acids, complex compounds of metal halides and Lewis bases, and organic compounds containing active halogens. It is at least one halogen compound.
上記ルイス酸は、ルイス酸性を有し、炭化水素に可溶である。具体的には、二臭化メチルアルミニウム、二塩化メチルアルミニウム、二臭化エチルアルミニウム、二塩化エチルアルミニウム、二臭化ブチルアルミニウム、二塩化ブチルアルミニウム、臭化ジメチルアルミニウム、塩化ジメチルアルミニウム、臭化ジエチルアルミニウム、塩化ジエチルアルミニウム、臭化ジブチルアルミニウム、塩化ジブチルアルミニウム、セスキ臭化メチルアルミニウム、セスキ塩化メチルアルミニウム、セスキ臭化エチルアルミニウム、セスキ塩化エチルアルミニウム、二塩化ジブチルスズ、三臭化アルミニウム、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化スズ、四塩化ケイ素等が例示できる。これらの中でも、塩化ジエチルアルミニウム、セスキ塩化エチルアルミニウム、二塩化エチルアルミニウム、臭化ジエチルアルミニウム、セスキ臭化エチルアルミニウム、及び二臭化エチルアルミニウムが好ましい。また、トリエチルアルミニウムと臭素の反応生成物のようなアルキルアルミニウムとハロゲンの反応生成物を用いることもできる。 The Lewis acid has Lewis acidity and is soluble in hydrocarbons. Specifically, methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl bromide Aluminum, diethylaluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, Examples include antimony pentachloride, phosphorus trichloride, phosphorus pentachloride, tin tetrachloride, and silicon tetrachloride. Among these, diethylaluminum chloride, sesquiethylaluminum chloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, and ethylaluminum dibromide are preferable. Alternatively, a reaction product of an alkylaluminum and a halogen such as a reaction product of triethylaluminum and bromine can be used.
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。 Examples of the metal halide constituting the complex compound of the above metal halide and Lewis base include beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine. Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Of these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride, and copper chloride are preferred. , Magnesium chloride, manganese chloride, zinc chloride, copper chloride being particularly preferred.
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。 Moreover, as a Lewis base which comprises the complex compound of the said metal halide and a Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol, etc. are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone , Propionitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethyl-hexanoic acid, olein Acid, stearic acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether, 2-ethyl-hexyl alcohol Examples include oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, and lauryl alcohol. Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone, 2-ethylhexanoic acid, versatic acid, 2 -Ethylhexyl alcohol, 1-decanol and lauryl alcohol are preferred.
上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
The Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
Examples of the organic compound containing the active halogen include benzyl chloride.
上記変性前のブタジエン系重合体の製造に使用する触媒系には、上記(A)〜(C)成分の他に、更に(D)成分として、有機アルミニウムオキシ化合物、所謂アルミノキサンを添加するのが好ましい。ここで、該アルミノキサンとしては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、クロロアルミノキサン等が挙げられる。(D)成分としてアルミノキサンを加えることで、分子量分布がシャープになり、触媒としての活性も向上する。 In addition to the components (A) to (C), an organoaluminum oxy compound, so-called aluminoxane, is further added as a component (D) to the catalyst system used for the production of the butadiene-based polymer before modification. preferable. Here, examples of the aluminoxane include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, chloroaluminoxane and the like. By adding aluminoxane as the component (D), the molecular weight distribution becomes sharp and the activity as a catalyst is improved.
本発明で使用する触媒系の各成分の量又は組成比は、その目的又は必要性に応じて適宜選択される。このうち、(A)成分は、たとえば1,3−ブタジエン 100gに対し、0.00001〜1.0ミリモル用いるのが好ましく、0.0001〜0.5ミリモル用いるのが更に好ましい。(A)成分の使用量が0.00001ミリモル未満では、重合活性が低くなり、1.0ミリモルを超えると、触媒濃度が高くなり、脱灰工程が必要となる。また、(A)成分と(B)成分の割合は、モル比で、(A)成分:(B)成分が1:1〜1:700、好ましくは1:3〜1:500である。更に、(A)成分と(C)成分中のハロゲンの割合は、モル比で、1:0.1〜1:30、好ましくは1:0.2〜1:15、更に好ましくは1:2.0〜1:5.0である。また、(D)成分中のアルミニウムと(A)成分との割合は、モル比で、1:1〜700:1、好ましくは3:1〜500:1である。これらの触媒量または構成成分比の範囲外では、高活性な触媒として作用せず、または、触媒残渣を除去する工程が必要になるため好ましくない。また、上記の(A)〜(C)成分以外に、重合体の分子量を調節する目的で、水素ガスを共存させて重合反応を行ってもよい。 The amount or composition ratio of each component of the catalyst system used in the present invention is appropriately selected according to its purpose or necessity. Of these, the component (A) is preferably used in an amount of 0.00001 to 1.0 mmol, more preferably 0.0001 to 0.5 mmol, with respect to 100 g of 1,3-butadiene, for example. When the amount of component (A) used is less than 0.00001 mmol, the polymerization activity is low, and when it exceeds 1.0 mmol, the catalyst concentration increases and a deashing step is required. Moreover, the ratio of (A) component and (B) component is molar ratio, (A) component: (B) component is 1: 1-1: 700, Preferably it is 1: 3-1: 500. Furthermore, the ratio of the halogen in the component (A) and the component (C) is in the molar ratio of 1: 0.1 to 1:30, preferably 1: 0.2 to 1:15, more preferably 1: 2. 0 to 1: 5.0. Moreover, the ratio of the aluminum in (D) component and (A) component is 1: 1-700: 1 by molar ratio, Preferably it is 3: 1-500: 1. Outside the range of these catalyst amounts or component ratios, it is not preferable because it does not act as a highly active catalyst or requires a step of removing the catalyst residue. In addition to the above components (A) to (C), the polymerization reaction may be carried out in the presence of hydrogen gas for the purpose of adjusting the molecular weight of the polymer.
触媒成分として、上記の(A)成分、(B)成分、(C)成分以外に、必要に応じて、1,3−ブタジエン等の共役ジエン単量体を少量、具体的には、(A)成分の化合物1モル当り0〜1000モルの割合で用いてもよい。触媒成分としての1,3−ブタジエン等の共役ジエン単量体は必須ではないが、これを併用すると、触媒活性が一段と向上する利点がある。 As a catalyst component, in addition to the components (A), (B), and (C), a small amount of a conjugated diene monomer such as 1,3-butadiene, if necessary, specifically (A ) You may use in the ratio of 0-1000 mol per 1 mol of compounds of a component. A conjugated diene monomer such as 1,3-butadiene as a catalyst component is not essential, but when used in combination, there is an advantage that the catalytic activity is further improved.
上記触媒の製造は、例えば、溶媒に(A)成分〜(C)成分を溶解させ、さらに必要に応じて、1,3−ブタジエン等の単量体を反応させることによる。その際、各成分の添加順序は、特に限定されず、更に(D)成分としてアルミノキサンを添加してもよい。重合活性の向上、重合開始誘導期間の短縮の観点からは、これら各成分を、予め混合して、反応させ、熟成させることが好ましい。ここで、熟成温度は、0〜100℃であり、20〜80℃が好ましい。0℃未満では、充分に熟成が行われず、100℃を超えると、触媒活性の低下や、分子量分布の広がりが起こる。また、熟成時間は、特に制限なく、重合反応槽に添加する前にライン中で接触させることでも熟成でき、通常は、0.5分以上あれば充分であり、数日間は安定である。 The production of the catalyst is, for example, by dissolving the components (A) to (C) in a solvent and further reacting a monomer such as 1,3-butadiene as necessary. In that case, the addition order of each component is not specifically limited, Furthermore, you may add an aluminoxane as (D) component. From the viewpoint of improving the polymerization activity and shortening the polymerization initiation induction period, it is preferable that these components are mixed in advance, reacted and aged. Here, the aging temperature is 0 to 100 ° C, and preferably 20 to 80 ° C. If the temperature is less than 0 ° C., the aging is not sufficiently performed. If the temperature exceeds 100 ° C., the catalytic activity is lowered and the molecular weight distribution is widened. The aging time is not particularly limited, and can be ripened by contacting in the line before adding to the polymerization reaction tank. Usually, 0.5 minutes or more is sufficient, and stable for several days.
上記変性前のブタジエン系重合体の製造は、溶液重合で行うことが好ましい。ここで、溶液重合の場合、重合溶媒としては、不活性の有機溶媒を用いる。不活性の有機溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4〜10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数5〜20の飽和脂環式炭化水素、1−ブテン、2−ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、1,2−ジクロロエタン、クロロベンゼン、ブロモベンゼン、クロロトルエン等のハロゲン化炭化水素が挙げられる。これらの中でも、炭素数5〜6の脂肪族炭化水素、脂環式炭化水素が特に好ましい。これらの溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The production of the butadiene-based polymer before modification is preferably performed by solution polymerization. Here, in the case of solution polymerization, an inert organic solvent is used as the polymerization solvent. Examples of the inert organic solvent include saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane, saturated alicyclic hydrocarbons having 5 to 20 carbon atoms such as cyclopentane and cyclohexane, 1- Monoolefins such as butene and 2-butene, aromatic hydrocarbons such as benzene, toluene and xylene, methylene chloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, 1,2-dichloroethane, chlorobenzene, bromobenzene, chloro And halogenated hydrocarbons such as toluene. Among these, a C5-C6 aliphatic hydrocarbon and alicyclic hydrocarbon are especially preferable. These solvents may be used alone or in combination of two or more.
上記変性前のブタジエン系重合体の製造は、25℃以下の重合温度で行う必要があり、10〜−78℃で行うのが好ましい。重合温度が25℃を超えると、重合反応を充分に制御することができず、生成したブタジエン系重合体のシス−1,4結合含量が低下し、ビニル結合含量が上昇してしまう。また、重合温度が−78℃未満では、溶媒の凝固点を下まわってしまうため、重合を行うことができない。 The production of the butadiene-based polymer before the modification needs to be performed at a polymerization temperature of 25 ° C. or less, and is preferably performed at 10 to −78 ° C. When the polymerization temperature exceeds 25 ° C., the polymerization reaction cannot be sufficiently controlled, and the cis-1,4 bond content of the produced butadiene polymer is lowered and the vinyl bond content is raised. On the other hand, when the polymerization temperature is lower than -78 ° C, the freezing point of the solvent falls below, so that the polymerization cannot be performed.
上記変性前のブタジエン系重合体の製造は、回分式及び連続式のいずれで行ってもよい。また、上記ブタジエン系重合体の製造において、上記希土類元素化合物系触媒及び重合体を失活させないために、重合の反応系内に酸素、水、炭酸ガス等の失活作用のある化合物の混入を極力なくすような配慮が必要である。 Production of the butadiene-based polymer before the modification may be performed either batchwise or continuously. In addition, in the production of the butadiene-based polymer, in order not to deactivate the rare earth element compound-based catalyst and the polymer, mixing of a deactivating compound such as oxygen, water, carbon dioxide gas in the polymerization reaction system. Consideration to eliminate as much as possible is necessary.
上記共役系変性基を有するブタジエン系重合体(変性ブタジエン系重合体)は、後述する特定の変性剤で上記変性前のブタジエン系重合体が変性されてなる重合体であって、共役系変性基を有する。ここで共役系変性基とは、共役する官能基を意味し、該変性基を介して変性基および該変性基を有する重合体の少なくとも一部が共役することとなる。このような共役系変性基を有するブタジエン系共重合体であると、該重合体に存在する非局在化した電子が作用して、カーボンブラックに対する親和性をより向上させることができ、これら充填剤を極めて効果的に分散させることが可能となって、より優れた低発熱性を実現できる。 The butadiene-based polymer having a conjugated modified group (modified butadiene-based polymer) is a polymer obtained by modifying the butadiene-based polymer before modification with a specific modifying agent described later, which is a conjugated modified group. Have Here, the conjugated modification group means a functional group to be conjugated, and at least a part of the modification group and the polymer having the modification group are conjugated via the modification group. With such a butadiene-based copolymer having a conjugated modification group, delocalized electrons existing in the polymer act to improve the affinity for carbon black. It becomes possible to disperse the agent extremely effectively, and a more excellent low heat generation property can be realized.
本発明で用いる上記変性ブタジエン系重合体を製造する際には、末端リビング率が20%以上、好ましくは30%以上である上記変性前のブタジエン系重合体を用いる。そして、このような末端リビング率を有する変性前のブタジエン系重合体に、以下に示す変性剤を投入することにより、上記変性ブタジエン系重合体を得る。 When the modified butadiene polymer used in the present invention is produced, the butadiene polymer before modification having a terminal living ratio of 20% or more, preferably 30% or more is used. And the said modified | denatured butadiene type polymer is obtained by throwing the modifier | denaturant shown below into the butadiene type polymer before a modification | denaturation which has such a terminal living ratio.
なお、ここで「末端リビング率」とは、重合反応後のポリマー末端における反応性を意味し、4,4’−ジメチルアミノベンゾフェノンを以下のような条件で反応させ、得られたポリマーのUV吸収を測定および定量することにより求めることができる。 Here, the “terminal living ratio” means the reactivity at the polymer terminal after the polymerization reaction, and 4,4′-dimethylaminobenzophenone is reacted under the following conditions, and the resulting polymer has UV absorption. Can be determined by measuring and quantifying.
上記末端リビング率について、図1に基づいて具体的に説明する。
縦軸は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって得られたUV/RIの値を示す。UVはポリマーと反応した変性剤に起因するUV吸光度から得られるピーク面積値を示し、RIはポリマーそのものの示差屈折率(RI)から得られるピーク面積値を示す。
The terminal living ratio will be specifically described with reference to FIG.
The vertical axis indicates the value of UV / RI obtained by gel permeation chromatography (GPC) measurement. UV indicates a peak area value obtained from the UV absorbance caused by the modifier that has reacted with the polymer, and RI indicates a peak area value obtained from the differential refractive index (RI) of the polymer itself.
横軸は(1/Mn)×103の値を示し、Mnは絶対分子量(数平均分子量)である。図1においてLowCisBRはLi系触媒によるアニオン重合によって重合され、変性剤4,4’−ビス(ジエチルアミノベンゾフェノン)(以下、「DEAB」ともいう)によって変性されたものであり、数分子量Mnが異なった3種類のUV/RIの値がプロットされ、直線として近似することができる。アニオン重合の場合は100%変性されることから、LowCisBRのUV/RIを100%として、次式のようにAで表す。
UV(Li−Br)/RI(Li−Br)=A
The horizontal axis indicates a value of (1 / Mn) × 10 3 , and Mn is the absolute molecular weight (number average molecular weight). In FIG. 1, LowCisBR was polymerized by anionic polymerization using a Li-based catalyst, and was modified with a modifier 4,4′-bis (diethylaminobenzophenone) (hereinafter also referred to as “DEAB”), which had different molecular weights Mn. Three types of UV / RI values are plotted and can be approximated as a straight line. In the case of anionic polymerization, since it is modified by 100%, the UV / RI of LowCisBR is defined as 100%, and is represented by A as shown in the following formula.
UV (Li-Br) / RI (Li-Br) = A
一方、配位重合である本発明におけるランタン系列希土類元素(Nd)含有化合物を含む触媒を用い、DEABで変性したHighCisBRについても数分子量Mnが異なった5種類のUV/RIの値がプロットされ、上記同様に直線として近似することができる。配位重合の場合は、重合中にリビングでなくなる部分があり、100%変性することは難しい。 On the other hand, using a catalyst containing a lanthanum series rare earth element (Nd) -containing compound according to the present invention which is coordination polymerization, high UVisRI values with different molecular weights Mn are plotted for HighCisBR modified with DEAB, Similar to the above, it can be approximated as a straight line. In the case of coordination polymerization, there are portions that are not living during polymerization, and it is difficult to modify 100%.
HighCisBRのUV/RIを次式で示すようにBで表したとき、
UV(Nd−Br)/RI(Nd−Br)=B
本発明における末端リビング率を以下のように定義する。
末端リビング率=B/A×100(%)
When the UV / RI of HighCisBR is represented by B as shown in the following formula,
UV (Nd-Br) / RI (Nd-Br) = B
The terminal living ratio in the present invention is defined as follows.
Terminal living ratio = B / A x 100 (%)
なお、末端リビング率はHighCisBRと同じ絶対分子量(数平均分子量)のLowCisBRを用いて得られたA値およびB値から本発明における末端リビング率が算出される。 In addition, the terminal living rate in this invention is computed from A value and B value obtained using LowCisBR of the same absolute molecular weight (number average molecular weight) as HighCisBR.
さらに、イソプロパノールと反応させた無変性の重合体の末端リビング率を0%として、図1に示す無変性のラインの値を差し引いたUV/RIの値を真値として用いる。A値およびB値についても図1に示す。 Further, the terminal living ratio of the unmodified polymer reacted with isopropanol is set to 0%, and the UV / RI value obtained by subtracting the value of the unmodified line shown in FIG. 1 is used as the true value. The A value and B value are also shown in FIG.
図1に示す3本の直線は検量線として用いることができ、たとえば、HihCisBRの絶対分子量Mn(数平均)がわかれば本発明における末端リビング率を算出することができる。 The three straight lines shown in FIG. 1 can be used as a calibration curve. For example, if the absolute molecular weight Mn (number average) of HihCisBR is known, the terminal living ratio in the present invention can be calculated.
なお、図1からわかるように、絶対分子量Mn(数平均)が大きくなるに従い、末端リビング率が小さくなり、変性剤による変性が困難になることがわかる。
また、変性剤が変われば、その都度検量線を作成する必要がある。
As can be seen from FIG. 1, as the absolute molecular weight Mn (number average) increases, the terminal living ratio decreases and it becomes difficult to modify with a modifier.
Moreover, it is necessary to create a calibration curve each time the modifier changes.
このような共役系変性基を導入し得る変性剤は、後述するカーボンブラックとの親和性向上に寄与し得る共役系変性基を導入するものであり、下記式(I)または式(II)で表される複素環式ニトリル化合物である。
θ−C≡N ・・・(I)
θ−R−C≡N ・・・(II)
Such a modifier capable of introducing a conjugated modifying group introduces a conjugated modifying group that can contribute to improving the affinity with carbon black described later, and is represented by the following formula (I) or formula (II): It is a heterocyclic nitrile compound represented.
θ-C≡N (I)
θ-R-C≡N (II)
上記式(I)および(II)中、θは複素環基を示す。さらにθが窒素原子を含む複素環基であるのが好ましく、また酸素原子を含む複素環基、硫黄原子を含む複素環基、2以上のヘテロ原子を含む複素環基、および1以上のシアノ基を含む複素環基からなる群より選ばれる少なくとも1種の複素環基であるのが好ましい。さらに、チオフェン、ピリジン、フラン、ピペリジン、ジオキサンなどの複素芳香環基または複素非芳香環基であってもよく、さらに単環式、二環式、三環式、または多環式の複素環基であってもよい。 In the above formulas (I) and (II), θ represents a heterocyclic group. Further, θ is preferably a heterocyclic group containing a nitrogen atom, a heterocyclic group containing an oxygen atom, a heterocyclic group containing a sulfur atom, a heterocyclic group containing two or more heteroatoms, and one or more cyano groups. It is preferably at least one heterocyclic group selected from the group consisting of heterocyclic groups containing. Further, it may be a heteroaromatic group or a non-aromatic ring group such as thiophene, pyridine, furan, piperidine, dioxane, and also a monocyclic, bicyclic, tricyclic, or polycyclic heterocyclic group. It may be.
従来、ブタジエン系重合体に導入し得る変性基は−CN、−SiCl、−SiOR、C=Oのような特定の基に限られていたが、本発明では、より優れた低発熱性の実現化という観点から、さらに好適な共役系変性基を導入することができる。このような共役系変性基は、より確実にブタジエン系共重合体等を共役させることができ、カーボンブラックに対する親和性の向上に寄与することとなる。 Conventionally, the modifying groups that can be introduced into the butadiene-based polymer have been limited to specific groups such as —CN, —SiCl, —SiOR, and C═O. However, in the present invention, more excellent low heat generation is realized. From the viewpoint of conversion, a more preferable conjugated modifying group can be introduced. Such a conjugated modification group can more reliably conjugated a butadiene copolymer or the like, and contributes to an improvement in affinity for carbon black.
このようなθとして具体的には、たとえば、窒素原子を含む複素環基として、2−ピリジル、3−ピリジル、4−ピリジル、ピラジニル、2−ピリミジニル、4−ピリミジニル、5−ピリミジニル、3−ピリダジニル、4−ピリダジニル、N−メチル−2−ピロリル、N−メチル−3−ピロリル、N−メチル−2−イミダゾリル、N−メチル−4−イミダゾリル、N−メチル−5−イミダゾリル、N−メチル−3−ピラゾリル、N−メチル−4−ピラゾリル、N−メチル−5−ピラゾリル、N−メチル−1,2,3−トリアゾール−4−イル、N−メチル−1,2,3−トリアゾール−5−イル、N−メチル−1,2,4−トリアゾール−3−イル、N−メチル−1,2,4−トリアゾール−5−イル、1,2,4−トリアジン−3−イル、1,2,4−トリアジン−5−イル、1,2,4−トリアジン−6−イル、1,3,5−トリアジニル、N−メチル−2−ピロリン−2−イル、N−メチル−2−ピロリン−3−イル、N−メチル−2−ピロリン−4−イル、N−メチル−2−ピロリン−5−イル、N−メチル−3−ピロリン−2−イル、N−メチル−3−ピロリン−3−イル、N−メチル−2−イミダゾリン−2−イル、N−メチル−2−イミダゾリン−4−イル、N−メチル−2−イミダゾリン−5−イル、N−メチル−2−ピラゾリン−3−イル、N−メチル−2−ピラゾリン−4−イル、N−メチル−2−ピラゾリン−5−イル、2−キノリル、3−キノリル、4−キノリル、1−イソキノリル、3−イソキノリル、4−イソキノリル、N−メチルインドール−2−イル、N−メチルインドール−3−イル、N−メチルイソインドール−1−イル、N−メチルイソインドール−3−イル、1−インドリジニル、2−インドリジニル、3−インドリジニル、1−フタラジニル、2−キナゾリニル、4−キナゾリニル、2−キノキサリニル、3−シンノリニル、4−シンノリニル、1−メチルインダゾール−3−イン、1,5−ナフチリジン−2−イル、1,5−ナフチリジン−3−イル、1,5−ナフチリジン−4−イル、1,8−ナフチリジン−2−イル、1,8−ナフチリジン−3−イル、1,8−ナフチリジン−4−イル、2−プテリジニル、4−プテリジニル、6−プテリジニル、7−プテリジニル、1−メチルベンズイミダゾール−2−イル、6−フェナンスリジニル、N−メチル−2−プリニル、N−メチル−6−プリニル、N−メチル−8−プリニル、N−メチル−β−カルボリン−1−イル、N−メチル−β−カルボリン−3−イル、N−メチル−β−カルボリン−4−イル、9−アクリジニル、1,7−フェナントロリン−2−イル、1,7−フェナントロリン−3−イル、1,7−フェナントロリン−4−イル、1,10−フェナントロリン−2−イル、1,10−フェナントロリン−3−イル、1,10−フェナントロリン−4−イル、4,7−フェナントロリン−1−イル、4,7−フェナントロリン−2−イル、4,7−フェナントロリン−3−イル、1−フェナジニル、2−フェナジニル、ピロリジノ、ピペリジノが挙げられる。 Specific examples of such θ include 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl as a heterocyclic group containing a nitrogen atom. 4-pyridazinyl, N-methyl-2-pyrrolyl, N-methyl-3-pyrrolyl, N-methyl-2-imidazolyl, N-methyl-4-imidazolyl, N-methyl-5-imidazolyl, N-methyl-3 -Pyrazolyl, N-methyl-4-pyrazolyl, N-methyl-5-pyrazolyl, N-methyl-1,2,3-triazol-4-yl, N-methyl-1,2,3-triazol-5-yl N-methyl-1,2,4-triazol-3-yl, N-methyl-1,2,4-triazol-5-yl, 1,2,4-triazin-3-yl, , 2,4-Triazin-5-yl, 1,2,4-triazin-6-yl, 1,3,5-triazinyl, N-methyl-2-pyrrolin-2-yl, N-methyl-2-pyrroline -3-yl, N-methyl-2-pyrrolin-4-yl, N-methyl-2-pyrrolin-5-yl, N-methyl-3-pyrrolin-2-yl, N-methyl-3-pyrrolin-3 -Yl, N-methyl-2-imidazolin-2-yl, N-methyl-2-imidazolin-4-yl, N-methyl-2-imidazolin-5-yl, N-methyl-2-pyrazolin-3-yl N-methyl-2-pyrazolin-4-yl, N-methyl-2-pyrazolin-5-yl, 2-quinolyl, 3-quinolyl, 4-quinolyl, 1-isoquinolyl, 3-isoquinolyl, 4-isoquinolyl, N -Methylindole-2-y N-methylindol-3-yl, N-methylisoindol-1-yl, N-methylisoindol-3-yl, 1-indolidinyl, 2-indolidinyl, 3-indolidinyl, 1-phthalazinyl, 2-quinazolinyl 4-quinazolinyl, 2-quinoxalinyl, 3-cinnolinyl, 4-cinnolinyl, 1-methylindazol-3-yne, 1,5-naphthyridin-2-yl, 1,5-naphthyridin-3-yl, 1,5- Naphthyridin-4-yl, 1,8-naphthyridin-2-yl, 1,8-naphthyridin-3-yl, 1,8-naphthyridin-4-yl, 2-pteridinyl, 4-pteridinyl, 6-pteridinyl, 7- Pteridinyl, 1-methylbenzimidazol-2-yl, 6-phenanthridinyl, N-methyl-2-purinyl, -Methyl-6-purinyl, N-methyl-8-purinyl, N-methyl-β-carbolin-1-yl, N-methyl-β-carbolin-3-yl, N-methyl-β-carbolin-4-yl 9-acridinyl, 1,7-phenanthroline-2-yl, 1,7-phenanthroline-3-yl, 1,7-phenanthroline-4-yl, 1,10-phenanthroline-2-yl, 1,10-phenanthroline -3-yl, 1,10-phenanthroline-4-yl, 4,7-phenanthroline-1-yl, 4,7-phenanthroline-2-yl, 4,7-phenanthroline-3-yl, 1-phenazinyl, 2 -Phenazinyl, pyrrolidino, piperidino.
酸素原子を含む複素環基として、2−フリル、3−フリル、2−ベンゾ[b]フリル、3−ベンゾ[b]フリル、1−イソベンゾ[b]フリル、3−イソベンゾ[b]フリル、2−ナフト[2,3−b]フリル、3−ナフト[2,3−b]フリルが挙げられる。 Examples of the heterocyclic group containing an oxygen atom include 2-furyl, 3-furyl, 2-benzo [b] furyl, 3-benzo [b] furyl, 1-isobenzo [b] furyl, 3-isobenzo [b] furyl, 2 -Naphtho [2,3-b] furyl, 3-naphtho [2,3-b] furyl.
硫黄原子を含む複素環基として、2−チエニル、3−チエニル、2−ベンゾ[b]チエニル、3−ベンゾ[b]チエニル、1−イソベンゾ[b]チエニル、3−イソベンゾ[b]チエニル、2−ナフト[2,3−b]チエニル、3−ナフト[2,3−b]チエニルが挙げられる。 Examples of the heterocyclic group containing a sulfur atom include 2-thienyl, 3-thienyl, 2-benzo [b] thienyl, 3-benzo [b] thienyl, 1-isobenzo [b] thienyl, 3-isobenzo [b] thienyl, 2 -Naphtho [2,3-b] thienyl, 3-naphtho [2,3-b] thienyl.
2以上のヘテロ原子を含む複素環基として、2−オキサゾリル、4−オキサゾリル、5−オキサゾリル、3−イソオキサゾリル、4−イソオキサゾリル、5−イソオキサゾリル、2−チアゾリル、4−チアゾリル、5−チアゾリル、3−イソチアゾリル、4−イソチアゾリル、5−イソチアゾリル、1,2,3−オキサジアゾール−4−イル、1,2,3−オキサジアゾール−5−イル、1,3,4−オキサジアゾール−2−イル、1,2,3−チアジアゾール−4−イル、1,2,3−チアジアゾール−5−イル、1,3,4−チアジアゾール−2−イル、2−オキサゾリン−2−イル、2−オキサゾリン−4−イル、2−オキサゾリン−5−イル、3−イソオキサゾリニル、4−イソオキサゾリニル、5−イソオキサゾリニル、2−チアゾリン−2−イル、2−チアゾリン−4−イル、2−チアゾリン−5−イル、3−イソチアゾリニル、4−イソチアゾリニル、5−イソチアゾリニル、2−ベンゾチアゾリル、モルホリノが挙げられる。 Examples of the heterocyclic group containing two or more heteroatoms include 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3- Isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl, 1,3,4-oxadiazol-2- Yl, 1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-5-yl, 1,3,4-thiadiazol-2-yl, 2-oxazolin-2-yl, 2-oxazoline- 4-yl, 2-oxazolin-5-yl, 3-isoxazolinyl, 4-isoxazolinyl, 5-isoxazolinyl, 2-thia Phosphorus-2-yl, 2-thiazoline-4-yl, 2-thiazoline-5-yl, 3-isothiazolinyl, 4-isothiazolinyl, 5- isothiazolinyl, 2-benzothiazolyl, and morpholino.
これらのなかでも、θは窒素原子を含む複素環基であるのが好ましく、特に2−ピリジル、3−ピリジル、4−ピリジルであるのが好ましい。 Among these, θ is preferably a heterocyclic group containing a nitrogen atom, and 2-pyridyl, 3-pyridyl, and 4-pyridyl are particularly preferable.
上記式(I)および(II)中、Rは2価の炭化水素基を示し、後述する複素環式ニトリル化合物に対応したアルキレン基、アルケニレン基、アリーレン基などに相当する。 In the above formulas (I) and (II), R represents a divalent hydrocarbon group and corresponds to an alkylene group, an alkenylene group, an arylene group, or the like corresponding to a heterocyclic nitrile compound described later.
このような複素環式ニトリル化合物としては、具体的には、たとえば、窒素原子を含む複素環基を有する化合物として、2−ピリジンカルボニトリル、3−ピリジンカルボニトリル、4−ピリジンカルボニトリル、ピラジンカルボニトリル、2−ピリミジンカルボニトリル、4−ピリミジンカルボニトリル、5−ピリミジンカルボニトリル、3−ピリダジンカルボニトリル、4−ピリダジンカルボニトリル、N−メチル−2−ピロールカルボニトリル、N−メチル−3−ピロールカルボニトリル、N−メチル−2−イミダゾールカルボニトリル、N−メチル−4−イミダゾールカルボニトリル、N−メチル−5−イミダゾールカルボニトリル、N−メチル−3−ピラゾールカルボニトリル、N−メチル−4−ピラゾールカルボニトリル、N−メチル−5−ピラゾールカルボニトリル、N−メチル−1,2,3−トリアゾール−4−カルボニトリル、N−メチル−1,2,3−トリアゾール−5−カルボニトリル、N−メチル−1,2,4−トリアゾール−3−カルボニトリル、N−メチル−1,2,4−トリアゾール−5−カルボニトリル、1,2,4−トリアジン−3−カルボニトリル、1,2,4−トリアジン−5−カルボニトリル、1,2,4−トリアジン−6−カルボニトリル、1,3,5−トリアジンカルボニトリル、N−メチル−2−ピロリン−2−カルボニトリル、N−メチル−2−ピロリン−3−カルボニトリル、N−メチル−2−ピロリン−4−カルボニトリル、N−メチル−2−ピロリン−5−カルボニトリル、N−メチル−3−ピロリン−2−カルボニトリル、N−メチル−3−ピロリン−3−カルボニトリル、N−メチル−2−イミダゾリン−2−カルボニトリル、N−メチル−2−イミダゾリン−4−カルボニトリル、N−メチル−2−イミダゾリン−5−カルボニトリル、N−メチル−2−ピラゾリン−3−カルボニトリル、N−メチル−2−ピラゾリン−4−カルボニトリル、N−メチル−2−ピラゾリン−5−カルボニトリル、2−キノリンカルボニトリル、3−キノリンカルボニトリル、4−キノリンカルボニトリル、1−イソキノリンカルボニトリル、3−イソキノリンカルボニトリル、4−イソキノリンカルボニトリル、N−メチルインドール−2−カルボニトリル、N−メチルインドール−3−カルボニトリル、N−メチルイソインドール−1−カルボニトリル、N−メチルイソインドール−3−カルボニトリル、1−インドリジンカルボニトリル、2−インドリジンカルボニトリル、3−インドリジンカルボニトリル、1−フタラジンカルボニトリル、2−キナゾリンカルボニトリル、4−キナゾリンカルボニトリル、2−キノキサリンカルボニトリル、3−シンノリンカルボニトリル、4−シンノリンカルボニトリル、1−メチルインダゾール−3−カルボニトリル、1,5−ナフチリジン−2−カルボニトリル、1,5−ナフチリジン−3−カルボニトリル、1,5−ナフチリジン−4−カルボニトリル、1,8−ナフチリジン−2−カルボニトリル、1,8−ナフチリジン−3−カルボニトリル、1,8−ナフチリジン−4−カルボニトリル、2−プテリジンカルボニトリル、4−プテリジンカルボニトリル、6−プテリジンカルボニトリル、7−プテリジンカルボニトリル、1−メチルベンズイミダゾール−2−カルボニトリル、フェナントリジン−6−カルボニトリル、N−メチル−2−プリンカルボニトリル、N−メチル−6−プリンカルボニトリル、N−メチル−8−プリンカルボニトリル、N−メチル−β−カルボリン−1−カルボニトリル、N−メチル−β−カルボリン−3−カルボニトリル、N−メチル−β−カルボリン−4−カルボニトリル、9−アクリジンカルボニトリル、1,7−フェナントロリン−2−カルボニトリル、1,7−フェナントロリン−3−カルボニトリル、1,7−フェナントロリン−4−カルボニトリル、1,10−フェナントロリン−2−カルボニトリル、1,10−フェナントロリン−3−カルボニトリル、1,10−フェナントロリン−4−カルボニトリル、4,7−フェナントロリン−1−カルボニトリル、4,7−フェナントロリン−2−カルボニトリル、4,7−フェナントロリン−3−カルボニトリル、1−フェナジンカルボニトリル、2−フェナジンカルボニトリル、1−ピロリジンカルボニトリル、1−ピペリジンカルボニトリルが挙げられる。 Specific examples of such heterocyclic nitrile compounds include 2-pyridinecarbonitrile, 3-pyridinecarbonitrile, 4-pyridinecarbonitrile, and pyrazinecarbohydrate as compounds having a heterocyclic group containing a nitrogen atom. Nitrile, 2-pyrimidinecarbonitrile, 4-pyrimidinecarbonitrile, 5-pyrimidinecarbonitrile, 3-pyridazinecarbonitrile, 4-pyridazinecarbonitrile, N-methyl-2-pyrrolecarbonitrile, N-methyl-3-pyrrolecarb Nitrile, N-methyl-2-imidazolecarbonitrile, N-methyl-4-imidazolecarbonitrile, N-methyl-5-imidazolecarbonitrile, N-methyl-3-pyrazolecarbonitrile, N-methyl-4-pyrazolecarbonitrile Nitrile, N- Til-5-pyrazolecarbonitrile, N-methyl-1,2,3-triazole-4-carbonitrile, N-methyl-1,2,3-triazole-5-carbonitrile, N-methyl-1,2, 4-triazole-3-carbonitrile, N-methyl-1,2,4-triazole-5-carbonitrile, 1,2,4-triazine-3-carbonitrile, 1,2,4-triazine-5-carbonitrile Nitrile, 1,2,4-triazine-6-carbonitrile, 1,3,5-triazinecarbonitrile, N-methyl-2-pyrroline-2-carbonitrile, N-methyl-2-pyrroline-3-carbonitrile N-methyl-2-pyrroline-4-carbonitrile, N-methyl-2-pyrroline-5-carbonitrile, N-methyl-3-pyrroline-2-carbonitrile N-methyl-3-pyrroline-3-carbonitrile, N-methyl-2-imidazoline-2-carbonitrile, N-methyl-2-imidazoline-4-carbonitrile, N-methyl-2-imidazoline-5 Carbonitrile, N-methyl-2-pyrazolin-3-carbonitrile, N-methyl-2-pyrazoline-4-carbonitrile, N-methyl-2-pyrazolin-5-carbonitrile, 2-quinolinecarbonitrile, 3- Quinolinecarbonitrile, 4-quinolinecarbonitrile, 1-isoquinolinecarbonitrile, 3-isoquinolinecarbonitrile, 4-isoquinolinecarbonitrile, N-methylindole-2-carbonitrile, N-methylindole-3-carbonitrile, N- Methyl isoindole-1-carbonitrile, N-methyl iso Indole-3-carbonitrile, 1-indolizinecarbonitrile, 2-indolizinecarbonitrile, 3-indolizinecarbonitrile, 1-phthalazinecarbonitrile, 2-quinazolinecarbonitrile, 4-quinazolinecarbonitrile, 2-quinoxaline Carbonitrile, 3-cinnolinecarbonitrile, 4-cinnolinecarbonitrile, 1-methylindazole-3-carbonitrile, 1,5-naphthyridine-2-carbonitrile, 1,5-naphthyridine-3-carbonitrile, 1 , 5-naphthyridine-4-carbonitrile, 1,8-naphthyridine-2-carbonitrile, 1,8-naphthyridine-3-carbonitrile, 1,8-naphthyridine-4-carbonitrile, 2-pteridinecarbonitrile, 4 -Pteridinecarbonitrile, -Pteridinecarbonitrile, 7-pteridinecarbonitrile, 1-methylbenzimidazole-2-carbonitrile, phenanthridine-6-carbonitrile, N-methyl-2-purinecarbonitrile, N-methyl-6-purinecarbonitrile N-methyl-8-purinecarbonitrile, N-methyl-β-carboline-1-carbonitrile, N-methyl-β-carboline-3-carbonitrile, N-methyl-β-carboline-4-carbonitrile, 9-acridinecarbonitrile, 1,7-phenanthroline-2-carbonitrile, 1,7-phenanthroline-3-carbonitrile, 1,7-phenanthroline-4-carbonitrile, 1,10-phenanthroline-2-carbonitrile, 1,10-phenanthroline-3-carbonitrile 1,10-phenanthroline-4-carbonitrile, 4,7-phenanthroline-1-carbonitrile, 4,7-phenanthroline-2-carbonitrile, 4,7-phenanthroline-3-carbonitrile, 1-phenazinecarbonitrile, Examples include 2-phenazinecarbonitrile, 1-pyrrolidinecarbonitrile, and 1-piperidinecarbonitrile.
酸素原子を含む複素環基を有する化合物としては、2−フロニトリル、3−フロニトリル、2−ベンゾ[b]フランカルボニトリル、3−ベンゾ[b]フランカルボニトリル、イソベンゾ[b]フラン−1−カルボニトリル、イソベンゾ[b]フラン−3−カルボニトリル、ナフト[2,3−b]フラン−2−カルボニトリル、ナフト[2,3−b]フラン−3−カルボニトリルが挙げられる。 Examples of the compound having a heterocyclic group containing an oxygen atom include 2-furonitrile, 3-furonitrile, 2-benzo [b] furancarbonitrile, 3-benzo [b] furancarbonitrile, and isobenzo [b] furan-1-carbo. Examples include nitrile, isobenzo [b] furan-3-carbonitrile, naphtho [2,3-b] furan-2-carbonitrile, and naphtho [2,3-b] furan-3-carbonitrile.
硫黄原子を含む複素環基を有する化合物として、2−チオフェンカルボニトリル、3−チオフェンカルボニトリル、ベンゾ[b]チオフェン−2−カルボニトリル、ベンゾ[b]チオフェン−3−カルボニトリル、イソベンゾ[b]チオフェン−1−カルボニトリル、イソベンゾ[b]チオフェン−3−カルボニトリル、ナフト[2,3−b]チオフェン−2−カルボニトリル、ナフト[2,3−b]チオフェン−3−カルボニトリルが挙げられる。 As compounds having a heterocyclic group containing a sulfur atom, 2-thiophenecarbonitrile, 3-thiophenecarbonitrile, benzo [b] thiophene-2-carbonitrile, benzo [b] thiophene-3-carbonitrile, isobenzo [b] Examples include thiophene-1-carbonitrile, isobenzo [b] thiophene-3-carbonitrile, naphtho [2,3-b] thiophene-2-carbonitrile, and naphtho [2,3-b] thiophene-3-carbonitrile. .
2以上のヘテロ原子を含む複素環基を有する化合物として、2−オキサゾールカルボニトリル、4−オキサゾールカルボニトリル、5−オキサゾールカルボニトリル、3−イソオキサゾールカルボニトリル、4−イソオキサゾールカルボニトリル、5−イソオキサゾールカルボニトリル、2−チアゾールカルボニトリル、4−チアゾールカルボニトリル、5−チアゾールカルボニトリル、3−イソチアゾールカルボニトリル、4−イソチアゾールカルボニトリル、5−イソチアゾールカルボニトリル、1,2,3−オキサゾール−4−カルボニトリル、1,2,3−オキサゾール−5−カルボニトリル、1,3,4−オキサゾール−2−カルボニトリル、1,2,3−チアゾール−4−カルボニトリル、1,2,3−チアゾール−5−カルボニトリル、1,3,4−チアゾール−2−カルボニトリル、2−オキサゾリン−2−カルボニトリル、2−オキサゾリン−4−カルボニトリル、2−オキサゾリン−5−カルボニトリル、3−イソオキサゾリンカルボニトリル、4−イソオキサゾリンカルボニトリル、5−イソオキサゾリンカルボニトリル、2−チアゾリン−2−カルボニトリル、2−チアゾリン−4−カルボニトリル、2−チアゾリン−5−カルボニトリル、3−イソチアゾリンカルボニトリル、4−イソチアゾリンカルボニトリル、5−イソチアゾリンカルボニトリル、ベンゾチアゾール−2−カルボニトリル、4−モルホリンカルボニトリルが挙げられる。 Compounds having a heterocyclic group containing two or more heteroatoms include 2-oxazolecarbonitrile, 4-oxazolecarbonitrile, 5-oxazolecarbonitrile, 3-isoxazolecarbonitrile, 4-isoxazolecarbonitrile, 5-isoxazole. Oxazolecarbonitrile, 2-thiazolecarbonitrile, 4-thiazolecarbonitrile, 5-thiazolecarbonitrile, 3-isothiazolecarbonitrile, 4-isothiazolecarbonitrile, 5-isothiazolecarbonitrile, 1,2,3-oxazole -4-carbonitrile, 1,2,3-oxazole-5-carbonitrile, 1,3,4-oxazole-2-carbonitrile, 1,2,3-thiazole-4-carbonitrile, 1,2,3 -Thiazole-5-carbo Tolyl, 1,3,4-thiazole-2-carbonitrile, 2-oxazoline-2-carbonitrile, 2-oxazoline-4-carbonitrile, 2-oxazoline-5-carbonitrile, 3-isoxazolinecarbonitrile, 4 -Isoxazoline carbonitrile, 5-isoxazoline carbonitrile, 2-thiazoline-2-carbonitrile, 2-thiazoline-4-carbonitrile, 2-thiazoline-5-carbonitrile, 3-isothiazoline carbonitrile, 4-isothiazoline carbonitrile Nitriles, 5-isothiazolinecarbonitriles, benzothiazole-2-carbonitriles, 4-morpholinecarbonitriles.
2以上のシアノ基を有する化合物として、2,3−ピリジンジカルボニトリル、2,4−ピリジンジカルボニトリル、2,5−ピリジンジカルボニトリル、2,6−ピリジンジカルボニトリル、3,4−ピリジンジカルボニトリル、2,4−ピリミジンジカルボニトリル、2,5−ピリミジンジカルボニトリル、4,5−ピリミジンジカルボニトリル、4,6−ピリミジンジカルボニトリル、2,3−ピラジンジカルボニトリル、2,5−ピラジンジカルボニトリル、2,6−ピラジンジカルボニトリル、2,3−フランジカルボニトリル、2,4−フランジカルボニトリル、2,5−フランジカルボニトリル、2,3−チオフェンジカルボニトリル、2,4−チオフェンジカルボニトリル、2,5−チオフェンジカルボニトリル、N−メチル−2,3−ピロールジカルボニトリル、N−メチル−2,4−ピロールジカルボニトリル、N−メチル−2,5−ピロールジカルボニトリル、1,3,5−トリアジン−2,4−ジカルボニトリル、1,2,4−トリアジン−3,5−ジカルボニトリル、3,2,4−トリアジン−3,6−ジカルボニトリル、2,3,4−ピリジントリカルボニトリル、2,3,5−ピリジントリカルボニトリル、2,3,6−ピリジントリカルボニトリル、2,4,5−ピリジントリカルボニトリル、2,4,6−ピリジントリカルボニトリル、3,4,5−ピリジントリカルボニトリル、2,4,5−ピリミジントリカルボニトリル、2,4,6−ピリミジントリカルボニトリル、4,5,6−ピリミジントリカルボニトリル、ピラジントリカルボニトリル、2,3,4−フラントリカルボニトリル、2,3,5−フラントリカルボニトリル、2,3,4−チオフェントリカルボニトリル、2,3,5−チオフェントリカルボニトリル、N−メチル−2,3,4−ピロールトリカルボニトリル、N−メチル−2,3,5−ピロールトリカルボニトリル、1,3,5−トリアジン−2,4,6−トリカルボニトリル、1,2,4−トリアジン−3,5,6−トリカルボニトリルが挙げられる。 As compounds having two or more cyano groups, 2,3-pyridinedicarbonitrile, 2,4-pyridinedicarbonitrile, 2,5-pyridinedicarbonitrile, 2,6-pyridinedicarbonitrile, 3,4- Pyridinedicarbonitrile, 2,4-pyrimidinedicarbonitrile, 2,5-pyrimidinedicarbonitrile, 4,5-pyrimidinedicarbonitrile, 4,6-pyrimidinedicarbonitrile, 2,3-pyrazinedicarbonitrile, 2,5-pyrazinedicarbonitrile, 2,6-pyrazinedicarbonitrile, 2,3-furandicarbonitrile, 2,4-furandicarbonitrile, 2,5-furandicarbonitrile, 2,3-thiophenedicarbonitrile 2,4-thiophene dicarbonitrile, 2,5-thiophene dicarbonitrile, N-methyl -2,3-pyrrole dicarbonitrile, N-methyl-2,4-pyrrole dicarbonitrile, N-methyl-2,5-pyrrole dicarbonitrile, 1,3,5-triazine-2,4-dicarb Nitrile, 1,2,4-triazine-3,5-dicarbonitrile, 3,2,4-triazine-3,6-dicarbonitrile, 2,3,4-pyridinetricarbonitrile, 2,3,5 -Pyridine tricarbonitrile, 2,3,6-pyridinetricarbonitrile, 2,4,5-pyridinetricarbonitrile, 2,4,6-pyridinetricarbonitrile, 3,4,5-pyridinetricarbonitrile, 2,4,5-pyrimidine tricarbonitrile, 2,4,6-pyrimidine tricarbonitrile, 4,5,6-pyrimidine tricarbonitrile, pyrazine tricarbonitrile Ril, 2,3,4-furantricarbonitrile, 2,3,5-furantricarbonitrile, 2,3,4-thiophenetricarbonitrile, 2,3,5-thiophenetricarbonitrile, N-methyl- 2,3,4-pyrrole tricarbonitrile, N-methyl-2,3,5-pyrrole tricarbonitrile, 1,3,5-triazine-2,4,6-tricarbonitrile, 1,2,4- Examples include triazine-3,5,6-tricarbonitrile.
これらのなかでも、2−シアノピリジン(2−ピリジンカルボニトリル)、3−シアノピリジン(3−ピリジンカルボニトリル)、4−シアノピリジン(4−ピリジンカルボニトリル)が好適なものとして挙げられる。 Among these, 2-cyanopyridine (2-pyridinecarbonitrile), 3-cyanopyridine (3-pyridinecarbonitrile), and 4-cyanopyridine (4-pyridinecarbonitrile) are preferable.
上記のようにブタジエン系重合体を複素環式ニトリル化合物で変性する方法としては、重合体と複素環式ニトリル化合物を反応させればよく、たとえば、1,3−ブタジエン単量体を、必要に応じてその他の単量体を加えて触媒または開始剤ともに共役させて重合混合物を得て、これに複素環式ニトリル化合物を添加する方法が挙げられる。また、活性化された重合混合物に複素環式ニトリル化合物を添加してもよく、1,3−ブタジエン単量体を重合させて形成した反応性ポリマーと複素環式ニトリル化合物とを反応させてもよい。さらに、活性化された重合混合物に複素環式ニトリル化合物を添加し、これに官能化剤を添加してもよい。 As a method of modifying a butadiene-based polymer with a heterocyclic nitrile compound as described above, a polymer and a heterocyclic nitrile compound may be reacted. For example, a 1,3-butadiene monomer is required. Accordingly, a method may be mentioned in which another monomer is added and conjugated with a catalyst or an initiator to obtain a polymerization mixture, and a heterocyclic nitrile compound is added thereto. Further, a heterocyclic nitrile compound may be added to the activated polymerization mixture, or a reactive polymer formed by polymerizing a 1,3-butadiene monomer may be reacted with the heterocyclic nitrile compound. Good. Further, a heterocyclic nitrile compound may be added to the activated polymerization mixture, and a functionalizing agent may be added thereto.
このようにして得られた重合混合物を冷却し、通常の方法を用いて脱溶媒および乾燥を経ることにより、変性されたブタジエン系重合体を得る。たとえば、ポリマーセメントから回収したポリマーを溶媒に流し込み、次いで得られたポリマーをドラムドライヤー等の乾燥機を用いて乾燥する。このとき、ドラムドライヤーで乾燥したポリマーセメントから直接ポリマーを回収してもよい。得られた乾燥ポリマー中の揮発性物質は1重量%以下となる。 The polymerization mixture thus obtained is cooled and subjected to solvent removal and drying using a conventional method to obtain a modified butadiene-based polymer. For example, the polymer recovered from the polymer cement is poured into a solvent, and then the obtained polymer is dried using a dryer such as a drum dryer. At this time, the polymer may be directly recovered from the polymer cement dried with a drum dryer. The volatile substance in the obtained dry polymer is 1% by weight or less.
得られる変性されたブタジエン系重合体の構造は、たとえば触媒や開始剤の種類や添加量のように反応性ポリマーを調整するのに用いた条件や、複素環式ニトリル化合物の種類や配合量のように反応性ポリマーと複素環式ニトリル化合物とを反応させるのに用いた条件に左右される。 The structure of the resulting modified butadiene-based polymer depends on the conditions used to adjust the reactive polymer, such as the type and amount of the catalyst and initiator, and the type and amount of the heterocyclic nitrile compound. Thus, it depends on the conditions used to react the reactive polymer with the heterocyclic nitrile compound.
上記変性されたブタジエン系重合体は、下記式(X)または(Y)のような構造を有するものと推定される。 The modified butadiene-based polymer is presumed to have a structure represented by the following formula (X) or (Y).
そして、上記のような構造を有するブタジエン系重合体が水蒸気等にさらされると、加水分解して下記式(X’)または(Y’)のようなケトン系構造に変換されるものと考えられる。 Then, when the butadiene-based polymer having the above structure is exposed to water vapor or the like, it is considered that the butadiene-based polymer is hydrolyzed and converted into a ketone-based structure such as the following formula (X ′) or (Y ′). .
上記ブタジエン系重合体がこのような構造をとり得るため、カーボンブラック等の充填剤との相溶性をより向上させる要因となって、さらに優れた低発熱性を実現できるものと推定される。 Since the butadiene polymer can take such a structure, it is presumed that the compatibility with the filler such as carbon black is further improved, and further excellent low heat generation can be realized.
上記ブタジエン系重合体は、ゴム成分100質量%中、10質量%以上、好ましくは
20〜80質量%、より好ましくは30〜70質量%の量で含まれる。上記範囲内の量とすることにより、本発明の効果を充分に発揮することができる。なお、上記ブタジエン系重合体のように官能基を有するブタジエン系重合体以外のゴム成分としては、天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン−プロピレン−ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル−ブタジエンゴム(NBR)等が挙げられ、これらの中でも、天然ゴムまたはポリイソプレンゴムが特に好ましい。これらのゴム成分は、1種単独で用いてもよいし、2種以上をブレンドして用いてもよい。
The butadiene-based polymer is contained in an amount of 10% by mass or more, preferably 20 to 80% by mass, more preferably 30 to 70% by mass in 100% by mass of the rubber component. By setting the amount within the above range, the effects of the present invention can be sufficiently exerted. The rubber components other than the butadiene polymer having a functional group such as the butadiene polymer include natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene. Rubber (BR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitrile-butadiene rubber (NBR), etc. Among these, natural rubber or polyisoprene rubber is particularly preferable. preferable. These rubber components may be used alone or in a blend of two or more.
[カーボンブラック]
本発明のゴム組成物には、充填剤として、窒素吸着比表面積が20〜100m2/g、好ましくは40〜100m2/g、より好ましくは40〜80m2/gであるカーボンブラックを用いる。窒素吸着比表面積が上記範囲内にあるカーボンブラックは、粒子径が大きく、低発熱性の向上効果が非常に高い。このようなカーボンブラックは、上記ブタジエン系重合体が有する親和性により、良好に分散することができ、低発熱性の向上に充分寄与することができる。かかるカーボンブラックとして、具体的には、HAF以下のグレードのものが好ましく、例えば、HAF,FF,FEF,GPF,SRF,FTグレードのものが挙げられるが、耐破壊性向上の観点から、HAF,FEF,GPFグレードのものが特に好ましい。さらに、その他の充填剤として無機充填剤を用いてもよい。無機充填剤としては、例えば、シリカ、タルク、水酸化アルミニウム等が挙げられる。なお、これら充填剤は、一種単独で用いてもよいし、二種以上を混合して用いてもよい。
[Carbon black]
In the rubber composition of the present invention, carbon black having a nitrogen adsorption specific surface area of 20 to 100 m 2 / g, preferably 40 to 100 m 2 / g, more preferably 40 to 80 m 2 / g is used as a filler. Carbon black having a nitrogen adsorption specific surface area within the above range has a large particle size and a very high effect of improving low heat buildup. Such carbon black can be dispersed well due to the affinity of the butadiene-based polymer, and can sufficiently contribute to the improvement of the low heat generation. Specifically, the carbon black is preferably of the grade below HAF, and examples thereof include HAF, FF, FEF, GPF, SRF, and FT grades. From the viewpoint of improving fracture resistance, HAF, FEF and GPF grades are particularly preferred. Furthermore, you may use an inorganic filler as another filler. Examples of the inorganic filler include silica, talc, and aluminum hydroxide. In addition, these fillers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
上記カーボンブラックは、本発明のゴム組成物のゴム成分100質量部に対し、10質量部以上、好ましくは20質量部以上の量で含まれる。上限値については特に限定されないが、通常70質量部以下の量で配合される。 The carbon black is contained in an amount of 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the rubber component of the rubber composition of the present invention. Although it does not specifically limit about an upper limit, Usually, it mix | blends in the quantity of 70 mass parts or less.
[ゴム組成物]
本発明のゴム組成物には、上記ブタジエン系重合体を含むゴム成分、カーボンブラックの他、加硫剤、加硫促進剤、老化防止剤、スコーチ防止剤、軟化剤、酸化亜鉛、ステアリン酸、シランカップリング剤等のゴム業界で通常使用される配合剤を、本発明の目的を害しない範囲内で適宜選択し配合することができる。これら配合剤は、市販品を好適に使用することができる。なお、上記ゴム組成物は、ゴム成分に、必要に応じて適宜選択した各種配合剤を配合して、混練り、熱入れ、押出等することにより製造することができる。
[Rubber composition]
The rubber composition of the present invention includes a rubber component containing the butadiene-based polymer, carbon black, a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, an anti-scorch agent, a softening agent, zinc oxide, stearic acid, A compounding agent usually used in the rubber industry, such as a silane coupling agent, can be appropriately selected and blended within a range that does not impair the object of the present invention. As these compounding agents, commercially available products can be suitably used. In addition, the said rubber composition can be manufactured by mix | blending the various compounding agent suitably selected as needed with the rubber component, kneading | mixing, heating, extrusion, etc.
[タイヤ]
本発明のゴム組成物を用いたタイヤは、上述したゴム組成物を該タイヤのいずれかの部材に用いることができ、耐発熱性、耐亀裂成長性に優れる。上記タイヤは、上記ゴム組成物を何れかの部材に用いる限り特に制限はなく、該部材としては、トレッド、サイドウォール等が挙げられ、通常の方法で製造することができる。特に、本発明のゴム組成物をサイドウォール部材に用いると、上記効果を充分有効に発揮させることのできる高性能なタイヤを得ることが可能となる。
[tire]
The tire using the rubber composition of the present invention can use the above-described rubber composition for any member of the tire, and is excellent in heat resistance and crack growth resistance. The tire is not particularly limited as long as the rubber composition is used for any member. Examples of the member include a tread, a sidewall, and the like, and can be manufactured by a usual method. In particular, when the rubber composition of the present invention is used for a side wall member, it is possible to obtain a high-performance tire capable of exhibiting the above effects sufficiently effectively.
以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、ブタジエン系重合体の各物性は、以下の方法に従って測定した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
Each physical property of the butadiene polymer was measured according to the following method.
《ミクロ構造[シス-1,4結合含量(%),1,2-ビニル結合含量(%)]》
フーリエ変換赤外分光光度計(FT/IR−4100、日本分光社製)を使用し、赤外法(モレロ法)によって測定した。
<< Microstructure [cis-1,4 bond content (%), 1,2-vinyl bond content (%)] >>
A Fourier transform infrared spectrophotometer (FT / IR-4100, manufactured by JASCO Corporation) was used, and measurement was performed by an infrared method (Morello method).
《ブタジエン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)》
ゲルパーミエーションクロマトグラフィー(商品名「HLC−8120GPC」、東ソー社製)を使用し、検知器として示差屈折計を用いて、以下の条件で測定し、標準ポリスチレン換算値として算出した。
カラム;商品名「GMHHXL」(東ソー社製) 2本
カラム温度;40℃
移動相;テトラヒドロフラン
流速;1.0ml/min
サンプル濃度;10mg/20ml
<< Ratio (Mw / Mn) of weight average molecular weight (Mw) and number average molecular weight (Mn) of butadiene-based polymer >>
Using gel permeation chromatography (trade name “HLC-8120GPC”, manufactured by Tosoh Corporation), a differential refractometer was used as a detector, and measurement was performed under the following conditions to calculate a standard polystyrene equivalent value.
Column; Trade name “GMHHXL” (manufactured by Tosoh Corporation) 2 Column temperature: 40 ° C.
Mobile phase: Tetrahydrofuran Flow rate: 1.0 ml / min
Sample concentration: 10mg / 20ml
[重合体Aの製造]
窒素置換された5Lオートクレーブに、窒素雰囲気下、シクロヘキサン2.4kg、1,3−ブタジエン300gを仕込んだ。該オートクレーブに、触媒成分としてバーサチック酸ネオジム(0.09mmol)のシクロヘキサン溶液、メチルアルミノキサン(MAO、3.6mmol)のトルエン溶液、水素化ジイソブチルアルミニウム(DIBAH、5.5mmol)およびジエチルアルミニウムクロリド(0.18mmol)のトルエン溶液と、1,3−ブタジエン(4.5mmol)とを40℃で30分間反応熟成させて予備調製した触媒組成物を仕込み、60℃で60分間重合を行った。1,3−ブタジエンの反応転化率は、ほぼ100%であった。この重合体溶液200gを、2,4−ジ−tert−ブチル−p−クレゾール0.2gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥させて、変性前の重合体A(ブタジエン系重合体)を得た。得られた重合体Aのシス−1,4結合含量は96.3%であり、1,2−ビニル結合含量は0.63%、Mw/Mn=1.8、末端リビング率は60%であった。
[Production of Polymer A]
In a nitrogen atmosphere, a 5 L autoclave was charged with 2.4 kg of cyclohexane and 300 g of 1,3-butadiene under a nitrogen atmosphere. To the autoclave, as a catalyst component, a cyclohexane solution of neodymium versatate (0.09 mmol), a toluene solution of methylaluminoxane (MAO, 3.6 mmol), diisobutylaluminum hydride (DIBAH, 5.5 mmol) and diethylaluminum chloride (0. (18 mmol) in toluene and 1,3-butadiene (4.5 mmol) were aged at 40 ° C. for 30 minutes, and a pre-prepared catalyst composition was charged, followed by polymerization at 60 ° C. for 60 minutes. The reaction conversion of 1,3-butadiene was almost 100%. 200 g of this polymer solution was extracted into a methanol solution containing 0.2 g of 2,4-di-tert-butyl-p-cresol, and after the polymerization was stopped, the solvent was removed by steam stripping and dried with a roll at 110 ° C. Thus, a polymer A (butadiene-based polymer) before modification was obtained. The obtained polymer A had a cis-1,4 bond content of 96.3%, a 1,2-vinyl bond content of 0.63%, Mw / Mn = 1.8, and a terminal living ratio of 60%. there were.
[重合体Bの製造]
上記重合体Aの製造に従って同様に重合を行った後、さらに重合体溶液を温度60℃に保持し、4,4’−ジヒドロナフトキノン4.16mmolのトルエン溶液を添加して、15分間反応(一次変性反応)させた。その後、この重合体溶液200gを2,4−ジ−tert−ブチル−p−クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥させて、重合体B(変性ブタジエン系重合体)を得た。得られた重合体Bのシス−1,4結合含量は96.1%であり、1,2−ビニル結合含量は0.59%、Mw/Mn=2.3であった。
[Production of polymer B]
Polymerization was carried out in the same manner according to the production of the polymer A, and then the polymer solution was kept at a temperature of 60 ° C., and a toluene solution of 4.16 mmol of 4,4′-dihydronaphthoquinone was added and reacted for 15 minutes (primary (Denaturation reaction). Thereafter, 200 g of this polymer solution was extracted into a methanol solution containing 1.3 g of 2,4-di-tert-butyl-p-cresol, and after the polymerization was stopped, the solvent was removed by steam stripping, and a roll at 110 ° C. By drying, a polymer B (modified butadiene-based polymer) was obtained. The obtained polymer B had a cis-1,4 bond content of 96.1%, a 1,2-vinyl bond content of 0.59%, and Mw / Mn = 2.3.
[重合体Cの製造]
上記重合体Aの製造に従って同様に重合を行った後、さらに重合体溶液を温度60℃に保持し、2−シアノピリジン4.16mmolのトルエン溶液を添加して、15分間反応(一次変性反応)させた。その後、この重合体溶液200gを2,4−ジ−tert−ブチル−p−クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥させて、重合体C(変性ブタジエン系重合体)を得た。得られた重合体Cのシス−1,4結合含量は96.1%であり、1,2−ビニル結合含量は0.62%、Mw/Mn=2.2であった。
[Production of polymer C]
After polymerizing in the same manner according to the production of the polymer A, the polymer solution was further maintained at a temperature of 60 ° C., and a toluene solution of 2.16 mmol of 2-cyanopyridine was added and reacted for 15 minutes (primary modification reaction). I let you. Thereafter, 200 g of this polymer solution was extracted into a methanol solution containing 1.3 g of 2,4-di-tert-butyl-p-cresol, and after the polymerization was stopped, the solvent was removed by steam stripping, and a roll at 110 ° C. The polymer C (modified butadiene polymer) was obtained by drying. The obtained polymer C had a cis-1,4 bond content of 96.1%, a 1,2-vinyl bond content of 0.62%, and Mw / Mn = 2.2.
[重合体Dの製造]
約1L容積のゴム栓付きガラスびんを乾燥および窒素置換し、該ガラスびんに乾燥精製したブタジエンのシクロへキサン溶液および乾燥シクロヘキサンを各々投入し、1,3−ブタジエンのシクロヘキサン溶液(ブタジエン濃度:12.0質量%)を400g投入した状態とした。次いで、tert−ブチルリチウム(1.57M)0.30ml、2,2−ジ(2−テトラヒドロフリル)プロパン(0.2N)0.185mLを添加し、50℃の水浴中で1.5時間重合を行った。なお、この際における重合体の末端リビング率は100%であった。さらに、重合体溶液を温度50℃に保持し、2−シアノピリジン0.84mmolを添加して、15分間反応させた。その後、この重合体溶液200gを2,4−ジ−tert−ブチル−p−クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥させ、重合体D(変性ブタジエン系重合体)を得た。得られた重合体Dのシス−1,4結合含量は45.4%であり、1,2−ビニル結合含量は18.33%、Mw/Mn=1.3であった。
[Production of polymer D]
A glass bottle with a rubber stopper having a volume of about 1 L was dried and purged with nitrogen, and the purified and dried cyclohexane solution of butadiene and cyclohexane were added to the glass bottle, respectively, and a cyclohexane solution of 1,3-butadiene (butadiene concentration: 12) 0.0 mass%) was charged. Next, 0.30 ml of tert-butyllithium (1.57M) and 0.185 ml of 2,2-di (2-tetrahydrofuryl) propane (0.2N) were added and polymerized in a water bath at 50 ° C. for 1.5 hours. Went. The terminal living ratio of the polymer at this time was 100%. Furthermore, the polymer solution was kept at a temperature of 50 ° C., and 0.84 mmol of 2-cyanopyridine was added and reacted for 15 minutes. Thereafter, 200 g of this polymer solution was extracted into a methanol solution containing 1.3 g of 2,4-di-tert-butyl-p-cresol, and after the polymerization was stopped, the solvent was removed by steam stripping, and a roll at 110 ° C. The polymer D (modified butadiene-based polymer) was obtained by drying. The resulting polymer D had a cis-1,4 bond content of 45.4%, a 1,2-vinyl bond content of 18.33% and Mw / Mn = 1.3.
[重合体Eの製造]
100mL容積のゴム栓付きガラスびんを乾燥および窒素置換し、該ガラスびんに、順次、ブタジエンのシクロヘキサン溶液(15.2質量%)7.11g、ネオジムネオデカノエートのシクロヘキサン溶液(0.56M)0.59mL、メチルアルミノキサンMAO(東ソーアクゾ製PMAO)のトルエン溶液(アルミニウム濃度として3.23M)10.32mL、水素化ジイソブチルアルミ(関東化学製)のヘキサン溶液(0.90M)7.77mLを投入し、室温で4分間熟成した後、塩素化ジエチルアルミ(関東化学製)のヘキサン溶液(0.95M)2.36mLを加え、室温で時々攪拌しながら15分間熟成した。得られた触媒溶液中のネオジムの濃度は、0.011M(mol/L)であった。
[Production of polymer E]
A 100 mL volume glass bottle with a rubber stopper was dried and purged with nitrogen. To the glass bottle, 7.11 g of a cyclohexane solution of butadiene (15.2% by mass) and a cyclohexane solution of neodymium neodecanoate (0.56 M) were sequentially added. 0.59 mL, 10.32 mL of a toluene solution of methylaluminoxane MAO (PMAO manufactured by Tosoh Akzo) (aluminum concentration: 3.23 M) and 7.77 mL of a hexane solution (0.90 M) of diisobutylaluminum hydride (manufactured by Kanto Chemical) were added. After aging for 4 minutes at room temperature, 2.36 mL of a hexane solution (0.95 M) of chlorinated diethylaluminum (manufactured by Kanto Kagaku) was added, and aging was performed for 15 minutes with occasional stirring at room temperature. The concentration of neodymium in the obtained catalyst solution was 0.011 M (mol / L).
約1L容積のゴム栓付きガラスびんを乾燥および窒素置換し、該ガラスびんに乾燥精製したブタジエンのシクロへキサン溶液および乾燥シクロヘキサンを各々投入し、5質量%濃度のシクロヘキサン溶液が40g投入された状態とした。次いで、前記調整した触媒溶液を投入し、10℃の水浴中で4時間重合を行った。なお、この際における重合体の末端リビング率は90%であった。続いて、2−シアノピリジン4.16mmolのトルエン溶液を添加して徐々に加熱して各重合温度の水浴中で攪拌した。その後、50℃にて老化防止剤2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール、NS−5)のイソプロパノール5%溶液2mLを加えて反応を停止させ、さらに微量のNS−5を含むイソプロパノール中で再沈殿させた後、ドラムにて乾燥させてほぼ100%の収率で重合体E(変性ブタジエン系重合体)を得た。得られた重合体Eのシス−1,4結合含量は99.0%であり、1,2−ビニル結合含量は0.13%、Mw/Mn=2.0であった。 A glass bottle with a rubber stopper having a volume of about 1 L is dried and purged with nitrogen. A hexane cyclohexane solution and a dry cyclohexane solution are added to the glass bottle, and 40 g of a 5% strength by weight cyclohexane solution is charged. It was. Next, the prepared catalyst solution was added, and polymerization was carried out in a 10 ° C. water bath for 4 hours. At this time, the terminal living ratio of the polymer was 90%. Subsequently, a toluene solution of 4.16 mmol of 2-cyanopyridine was added and gradually heated and stirred in a water bath at each polymerization temperature. Thereafter, the reaction was stopped by adding 2 mL of a 5% solution of an anti-aging agent 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol, NS-5) in isopropanol at 50 ° C., and a trace amount of NS After reprecipitation in isopropanol containing -5, it was dried on a drum to obtain a polymer E (modified butadiene polymer) with a yield of almost 100%. The obtained polymer E had a cis-1,4 bond content of 99.0%, a 1,2-vinyl bond content of 0.13%, and Mw / Mn = 2.0.
[重合体Fの製造]
70℃の水浴中で重合を行い、さらに重合体溶液を70℃に保持した以外、上記重合体Dに従って、重合体F(変性ブタジエン系重合体)を得た。得られた重合体Fのシス−1,4結合含量は38.6%であり、1,2−ビニル結合含量は20.51%、Mw/Mn=1.8であった。
[Production of polymer F]
Polymerization was carried out in a 70 ° C. water bath, and a polymer F (modified butadiene-based polymer) was obtained according to the polymer D except that the polymer solution was kept at 70 ° C. The resulting polymer F had a cis-1,4 bond content of 38.6%, a 1,2-vinyl bond content of 20.51%, and Mw / Mn = 1.8.
[重合体Gの製造]
2−シアノピリジンの代わりに2−ピリジルアセトニトリルを用いた以外、上記重合体Cに従って、重合体G(変性ブタジエン系重合体)を得た。得られた重合体Gのシス−1,4結合含量は96.0%であり、1,2−ビニル結合含量は0.61%、Mw/Mn=2.1であった。
[Production of polymer G]
A polymer G (modified butadiene-based polymer) was obtained in accordance with the polymer C except that 2-pyridylacetonitrile was used instead of 2-cyanopyridine. The obtained polymer G had a cis-1,4 bond content of 96.0%, a 1,2-vinyl bond content of 0.61%, and Mw / Mn = 2.1.
[比較例1〜4、実施例1〜5]
表1に示す配合処方のゴム組成物を調製し、145℃で33分間加硫して得た加硫ゴムに対し、下記の方法に従って耐亀裂成長性および低発熱性(3%tanδ)を測定した。結果を表2〜4に示す。
[Comparative Examples 1-4, Examples 1-5]
A rubber composition having the compounding formulation shown in Table 1 was prepared, and crack growth resistance and low heat build-up (3% tan δ) were measured according to the following method for a vulcanized rubber obtained by vulcanizing at 145 ° C. for 33 minutes. did. The results are shown in Tables 2-4.
《耐亀裂成長性》
JIS3号試験片中心部に0.5mmの亀裂を入れ、室温で50〜100%の歪みで繰り返し疲労を与え、サンプルが切断するまでの回数を測定した。各歪みでの値を求め、その平均値を用いた。表2においては重合体Aを配合した比較例1を100として、同一の窒素吸着比表面積を有するカーボンブラックを配合した比較例および実施例を指数表示した。また、表3においては、表1における実施例1も含め、比較例3を100として指数表示した。さらに、表4では、表1における実施例1も含め、比較例4を100として指数表示した。指数値が大きい程、耐亀裂成長性が良好であることを示す。
《Crack growth resistance》
A 0.5 mm crack was made in the center part of the JIS No. 3 test piece, fatigue was repeatedly given at a strain of 50 to 100% at room temperature, and the number of times until the sample was cut was measured. The value at each strain was determined and the average value was used. In Table 2, Comparative Example 1 in which Polymer A was blended was taken as 100, and Comparative Examples and Examples in which carbon black having the same nitrogen adsorption specific surface area was blended were displayed as indices. Further, in Table 3, the index is displayed with Comparative Example 3 as 100 including Example 1 in Table 1. Furthermore, in Table 4, the index is displayed with Comparative Example 4 as 100 including Example 1 in Table 1. A larger index value indicates better crack growth resistance.
《低発熱性(3%tanδ)》
動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪3%、周波数15Hz、50℃の条件で測定した。表2においては、重合体Aを配合した比較例1を100として、同一の窒素吸着比表面積を有するカーボンブラックを配合した実施例および比較例を指数表示した。また、表3においては、表1における実施例1を含め、比較例3を100として指数表示した。さらに、表4では、表1における実施例1を含め、比較例4を100として指数表示した。指数値が小さい程、低発熱性(低ロス性)に優れることを示す。
<< Low exothermicity (3% tan δ) >>
A dynamic spectrometer (manufactured by Rheometrics, USA) was used, and measurement was performed under the conditions of tensile dynamic strain of 3%, frequency of 15 Hz, and 50 ° C. In Table 2, the comparative example 1 which mix | blended the polymer A was set to 100, and the Example and comparative example which mix | blended carbon black which has the same nitrogen adsorption specific surface area were displayed as an index | index. Further, in Table 3, the index was displayed with Comparative Example 3 as 100 including Example 1 in Table 1. Furthermore, in Table 4, the index is displayed with Comparative Example 4 as 100 including Example 1 in Table 1. It shows that it is excellent in low exothermic property (low loss property), so that an index value is small.
※1:重合体A〜G、使用した重合体の種類を表2〜4に示す。
※2:使用したカーボンブラックの窒素吸着比表面積を表2〜4に示す。
※3:N−(1,3−ジメチルブチル)−N'−p−フェニレンジアミン、大内新興化学(株)製、ノクラック6C
※4:2,2,4−トリメチル−1,2−ジヒドロキノリン重合体、大内新興化学(株)製、ノクラック224
※5:N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製、ノクセラーCZ−G
※6:ジベンゾチアジルジスルフィド、大内新興化学(株)製、ノクセラーDM−P
* 1: Polymers A to G and types of polymers used are shown in Tables 2 to 4.
* 2: Tables 2 to 4 show the nitrogen adsorption specific surface areas of the carbon blacks used.
* 3: N- (1,3-dimethylbutyl) -N′-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd., NOCRACK 6C
* 4: 2,2,4-trimethyl-1,2-dihydroquinoline polymer, NOUCL 224, manufactured by Ouchi Shinsei Chemical Co., Ltd.
* 5: N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinsei Chemical Co., Ltd., Noxeller CZ-G
* 6: Dibenzothiazyl disulfide, manufactured by Ouchi Shinsei Chemical Co., Ltd., Noxeller DM-P
[実施例6〜7]
表5に示す配合処方のゴム組成物を調製し、145℃で33分間加硫して得た加硫ゴムに対し、上記実施例および比較例と同様にして耐亀裂成長性および低発熱性(3%tanδ)を測定した。結果を表6に示す。ただし、実施例6を100として指数表示した。
[Examples 6 to 7]
A rubber composition having a formulation shown in Table 5 was prepared, and vulcanized rubber obtained by vulcanization at 145 ° C. for 33 minutes was subjected to crack growth resistance and low heat build-up in the same manner as in the above Examples and Comparative Examples ( 3% tan δ) was measured. The results are shown in Table 6. However, Example 6 was set as 100 and displayed as an index.
表中の※1〜※6は、表1と同義である。 * 1 to * 6 in the table are synonymous with Table 1.
表2の結果によれば、本発明で規定する変性剤で変性されてなるブタジエン系重合体を用いた実施例1〜2は、未変性のブタジエン系重合体を用いた比較例1に比して、耐亀裂成長性および低発熱性ともに優れた効果を奏することがわかる。また、これら実施例1〜2は、本発明で規定する変性剤以外の変性剤で変性されたブタジエン系重合体を用いた比較例2よりも、さらに高い耐亀裂成長性および低発熱性を示すこともわかる。 According to the results of Table 2, Examples 1 and 2 using a butadiene polymer modified with a modifier specified in the present invention are compared to Comparative Example 1 using an unmodified butadiene polymer. Thus, it can be seen that both the crack growth resistance and the low heat build-up have excellent effects. Moreover, these Examples 1-2 show a still higher crack growth resistance and low exothermicity than the comparative example 2 using the butadiene-type polymer modified with modifiers other than the modifier specified in the present invention. I understand that.
表3の結果によれば、シス含量が40%以上である実施例1、3〜4は、低伸長結晶性の比較例3に比して、より高い耐亀裂成長性および低発熱性を示すことがわかる。なかでも、シス含量が90%以上である実施例1および4は、シス含量が90%に満たない実施例3に比して、より好適な耐亀裂成長性および低発熱性を示すことがわかる。さらに上記シス含量が96%以上である実施例1よりも、98%以上である実施例4の方がより好ましい結果を示している。 According to the results of Table 3, Examples 1 and 3 to 4 having a cis content of 40% or more exhibit higher crack growth resistance and lower heat generation than Comparative Example 3 having low elongation crystallinity. I understand that. In particular, Examples 1 and 4 having a cis content of 90% or more show better crack growth resistance and low exothermicity than Example 3 having a cis content of less than 90%. . Further, Example 4 in which 98% or more is more preferable than Example 1 in which the cis content is 96% or more.
表4の結果によれば、カーボンブラックの窒素吸着比表面積が20〜100m2/gである実施例1および5は、上記値が100m2/gを超える比較例4よりも耐亀裂成長性および低発熱性ともに優れた効果を奏することがわかる。 According to the results of Table 4, Examples 1 and 5 is a nitrogen adsorption specific surface area of 20 to 100 m 2 / g of carbon black, crack growth resistance and than Comparative Example 4 in which the value exceeds 100 m 2 / g It can be seen that both low exothermic properties are excellent.
表6の結果によれば、ゴム成分100質量%中、ブタジエン系重合体(重合体C)を10質量%で含む実施例7は、ブタジエン系重合体が10質量%に満たない実施例6よりも、耐亀裂成長性および低発熱性ともにより好適な結果を示すことがわかる。一方、実施例7と同じ重合体Cを用い、かつカーボンブラックの窒素吸着比表面積が40〜80m2/gの範囲内である実施例1および実施例5の方が、カーボンブラックの窒素吸着比表面積が上記範囲外である実施例7よりも好適な結果を示すことも明らかである。 According to the results in Table 6, Example 7 containing 10% by mass of the butadiene polymer (Polymer C) in 100% by mass of the rubber component is more than Example 6 in which the butadiene polymer is less than 10% by mass. Also, it can be seen that both the crack growth resistance and the low exothermic property show better results. On the other hand, Example 1 and Example 5 using the same polymer C as Example 7 and having a nitrogen adsorption specific surface area of carbon black in the range of 40 to 80 m 2 / g are more suitable for nitrogen adsorption ratio of carbon black. It is also clear that the results are more favorable than Example 7 where the surface area is outside the above range.
Claims (10)
窒素吸着比表面積が20〜100m2/gであるカーボンブラックとを含むことを特徴とするゴム組成物;
θ−C≡N ・・・(I)
θ−R−C≡N ・・・(II)
(式(I)および(II)中、θは2−ピリジル、3−ピリジル、および4−ピリジルからなる群から選択される少なくとも1種を示し、Rは2価の炭化水素基を示す。)。 A rubber component containing a butadiene-based polymer having a cis-modified group having a cis content of 40% or more, which is modified with a modifier which is a heterocyclic nitrile compound represented by formula (I) or formula (II) ,
A rubber composition comprising a carbon black having a nitrogen adsorption specific surface area of 20 to 100 m 2 / g;
θ-C≡N (I)
θ-R-C≡N (II)
(In formulas (I) and (II), θ represents at least one selected from the group consisting of 2-pyridyl, 3-pyridyl, and 4-pyridyl, and R represents a divalent hydrocarbon group.) .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008262847A JP5461812B2 (en) | 2008-10-09 | 2008-10-09 | Rubber composition, method for producing the same, and tire using the same |
PCT/JP2009/067631 WO2010041737A1 (en) | 2008-10-09 | 2009-10-09 | Rubber compositions, manufacturing method therefor and tires using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008262847A JP5461812B2 (en) | 2008-10-09 | 2008-10-09 | Rubber composition, method for producing the same, and tire using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010090303A JP2010090303A (en) | 2010-04-22 |
JP5461812B2 true JP5461812B2 (en) | 2014-04-02 |
Family
ID=42100683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008262847A Expired - Fee Related JP5461812B2 (en) | 2008-10-09 | 2008-10-09 | Rubber composition, method for producing the same, and tire using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5461812B2 (en) |
WO (1) | WO2010041737A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5612270B2 (en) * | 2009-04-27 | 2014-10-22 | 株式会社ブリヂストン | Run flat tire |
FR2962737B1 (en) | 2010-07-13 | 2012-08-17 | Michelin Soc Tech | RUBBER COMPOSITION CONTAINING MODIFIED ELASTOMER, PROCESS FOR PREPARING THE SAME AND PNEUMATIC CONTAINING THE SAME |
WO2020110940A1 (en) * | 2018-11-30 | 2020-06-04 | 横浜ゴム株式会社 | Rubber composition for tire |
CN109762214B (en) * | 2018-12-25 | 2021-07-23 | 怡维怡橡胶研究院有限公司 | Hydrophobic steel wire rubber-coated cord and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0684455B2 (en) * | 1986-03-07 | 1994-10-26 | 日本ゼオン株式会社 | Rubber composition |
DE60316445T2 (en) * | 2002-08-30 | 2008-06-26 | Bridgestone Corp. | FUNCTIONALIZED POLYMER AND IMPROVED VULCANISTS THEREOF |
JP2005232364A (en) * | 2004-02-20 | 2005-09-02 | Bridgestone Corp | Modified conjugated diene polymer, and rubber composition and tire obtained using the same |
JP4402545B2 (en) * | 2004-08-25 | 2010-01-20 | 住友ゴム工業株式会社 | Rubber composition |
EP1873168B1 (en) * | 2005-04-15 | 2012-12-12 | Bridgestone Corporation | Modified conjugated diene copolymer, rubber compositions and tires |
JP2007191611A (en) * | 2006-01-20 | 2007-08-02 | Bridgestone Corp | Rubber composition mixed with modified polybutadiene rubber and tire |
JP5435921B2 (en) * | 2008-10-07 | 2014-03-05 | 株式会社ブリヂストン | Rubber composition |
-
2008
- 2008-10-09 JP JP2008262847A patent/JP5461812B2/en not_active Expired - Fee Related
-
2009
- 2009-10-09 WO PCT/JP2009/067631 patent/WO2010041737A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2010090303A (en) | 2010-04-22 |
WO2010041737A1 (en) | 2010-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6050857B2 (en) | Polymers functionalized with heterocyclic nitrile compounds | |
JP5435921B2 (en) | Rubber composition | |
JP2011099012A (en) | Rubber composition for tie rubber, and pneumatic tire using the same | |
JP4467258B2 (en) | Butadiene polymer, process for producing the same, and rubber composition and tire using the same | |
JP4367589B2 (en) | Process for producing conjugated diene polymer and rubber composition | |
JP5410062B2 (en) | Sidewall rubber composition for tire and tire using the same | |
JP4110344B2 (en) | Process for producing conjugated diene polymer | |
JP5461812B2 (en) | Rubber composition, method for producing the same, and tire using the same | |
JP5707049B2 (en) | Pneumatic tire | |
JP5310186B2 (en) | Process for producing modified conjugated diene polymer, modified conjugated diene polymer and rubber composition | |
JP4807712B2 (en) | Modified conjugated diene polymer, process for producing the same, and rubber composition | |
JP5574733B2 (en) | Rubber composition and pneumatic tire using the same | |
JP5436051B2 (en) | Rubber composition and tire using the same | |
JP2010275427A (en) | Rubber composition and pneumatic tire using the same | |
JP2010180358A (en) | Rubber composition and pneumatic tire using the same | |
JP5513338B2 (en) | Butadiene polymer, process for producing the same, rubber composition and tire | |
JP5612270B2 (en) | Run flat tire | |
JP2019099684A (en) | Rubber composition and pneumatic tire including the rubber composition | |
US11512148B2 (en) | Composition including multiple terminally functionalized polymers | |
JP2018177912A (en) | Method of producing modified diene polymer, modified diene polymer, rubber composition and tire | |
JP2005247951A (en) | Manufacturing method for conjugated diene polymer and conjugated diene polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130827 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5461812 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |