JP5460650B2 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP5460650B2
JP5460650B2 JP2011145159A JP2011145159A JP5460650B2 JP 5460650 B2 JP5460650 B2 JP 5460650B2 JP 2011145159 A JP2011145159 A JP 2011145159A JP 2011145159 A JP2011145159 A JP 2011145159A JP 5460650 B2 JP5460650 B2 JP 5460650B2
Authority
JP
Japan
Prior art keywords
gas
interconnector
flow path
fuel cell
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011145159A
Other languages
Japanese (ja)
Other versions
JP2013012423A (en
Inventor
弘之 佐竹
博見 床井
賢史 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011145159A priority Critical patent/JP5460650B2/en
Publication of JP2013012423A publication Critical patent/JP2013012423A/en
Application granted granted Critical
Publication of JP5460650B2 publication Critical patent/JP5460650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は固体電解質を有する燃料電池に係り、特に固体酸化物形燃料電池に関する。   The present invention relates to a fuel cell having a solid electrolyte, and more particularly to a solid oxide fuel cell.

燃料電池は、電解質を挟んでアノード(燃料極)及びカソード(空気極)を備え、アノード側には燃料ガスを、カソード側には酸化剤ガスを供給し、電解質を介して燃料と酸化剤を電気化学的に反応させることにより発電する発電装置である。燃料電池の種類の一つである固体酸化物形燃料電池(SOFC)は、発電効率が高く、600〜1000℃の高温で運転されるため、電池内で燃料の改質反応ができるという特徴がある。このため、燃料の多様化が図れ、かつ、電池システム構造がシンプルにでき、他の燃料電池に比べコスト低減のポテンシャルを持つ。また、高温な排熱を利用し、熱・電気併用システムやガスタービンなどの他のシステムとのハイブリッドシステムを形成し易い特徴を持つ。   A fuel cell includes an anode (fuel electrode) and a cathode (air electrode) with an electrolyte sandwiched between them. Fuel gas is supplied to the anode side, oxidant gas is supplied to the cathode side, and fuel and oxidant are supplied via the electrolyte. It is a power generator that generates electricity by electrochemical reaction. A solid oxide fuel cell (SOFC), which is one of the types of fuel cells, has high power generation efficiency and is operated at a high temperature of 600 to 1000 ° C., so that a fuel reforming reaction can be performed in the cell. is there. For this reason, diversification of fuel can be achieved, the battery system structure can be simplified, and there is a potential for cost reduction compared to other fuel cells. Moreover, it has a feature that it can easily form a hybrid system with other systems such as a combined heat / electric system and a gas turbine by utilizing high-temperature exhaust heat.

燃料電池は固体電解質の形状により、円筒形と平板形に大別されるが、円筒形は平板形に比べて熱応力に強く、高温で運転する固体酸化物形燃料電池にとっては大きな利点である。   Fuel cells are roughly divided into cylindrical and flat plate shapes depending on the shape of the solid electrolyte, but the cylindrical shape is more resistant to thermal stress than the flat plate type, which is a great advantage for solid oxide fuel cells operating at high temperatures. .

固体酸化物形燃料電池を熱・電気併用システムやガスタービンとのハイブリッドシステムに適用し商用化するためには、高い発電効率が要求され、高い発電効率を実現するためには、燃料ガスを均一に電極に供給し、90%程度の高い燃料利用率を実現する必要が有る。   High power generation efficiency is required to apply and commercialize solid oxide fuel cells in a combined heat / electric system and gas turbine hybrid system. To achieve high power generation efficiency, uniform fuel gas is required. It is necessary to realize a high fuel utilization rate of about 90%.

燃料電池で反応ガスの利用率を高めるための手法として、ガス流路に構造を持たせ燃料ガスを均一に電極に供給する技術が提案されている。例えば、ガス流路に分配溝を設け、平坦な溝の層流を乱流に変え、ガスの物質移動係数の上昇を流路後方にもたらすことにより高い燃料利用率を実現する技術(特許文献1参照)がある。   As a technique for increasing the utilization rate of a reaction gas in a fuel cell, a technique for supplying a fuel gas uniformly to an electrode by providing a structure in a gas flow path has been proposed. For example, a technique for realizing a high fuel utilization rate by providing a distribution groove in a gas flow path, changing a laminar flow of a flat groove into a turbulent flow, and causing an increase in a mass transfer coefficient of the gas to the rear of the flow path (Patent Document 1) See).

特表2004−509438号公報JP-T-2004-509438

燃料電池は起電力が1.0V程度と小さいため、複数個の燃料電池セルを直列に接続し使用する場合が多く、熱応力に対する強度やガスのシール性を考慮すると、円筒形の燃料電池セルを用いる事例が多いが、平板形の燃料電池セルは単にセルを積層すれば良いのに対し、円筒形燃料電池セルはセルとセルを接続するインターコネクタと呼ばれる接続部分を介して積層する必要が有る。図16に示すように、隣接する燃料電池セルをインターコネクタで接続する場合、インターコネクタは、燃料電池セルの固体電解質外面の外側電極と隣接する燃料電池セルの内側電極とを接続するため、インターコネクタが接続する領域では固体電解質外面の外側電極が張れず、この領域では発電が行われない。この結果、燃料ガスや酸化剤ガスが消費されず濃度勾配が生じ、電極に均一にガスが行き渡らない結果を生ずる。その結果、ガスの消費斑による濃度過電圧が生じ、ガス利用率および発電効率の低下を招く。   Since the fuel cell has a small electromotive force of about 1.0 V, a plurality of fuel cells are connected in series in many cases. Considering the strength against thermal stress and the gas sealing property, a cylindrical fuel cell In many cases, flat fuel cells need only be stacked, whereas cylindrical fuel cells need to be stacked via connection parts called interconnectors that connect the cells. Yes. As shown in FIG. 16, when adjacent fuel cells are connected by an interconnector, the interconnector connects the outer electrode on the outer surface of the solid electrolyte of the fuel cell and the inner electrode of the adjacent fuel cell. In the region where the connector is connected, the outer electrode on the outer surface of the solid electrolyte is not stretched, and no power is generated in this region. As a result, the fuel gas and the oxidant gas are not consumed, and a concentration gradient is generated, resulting in a result that the gas does not uniformly reach the electrodes. As a result, concentration overvoltage due to gas consumption spots occurs, leading to a decrease in gas utilization rate and power generation efficiency.

従来技術では、このインターコネクタ接続領域に起因するガス濃度勾配に関しては考慮されていない。   In the prior art, the gas concentration gradient caused by the interconnector connection region is not taken into consideration.

本発明の目的は、円筒形の燃料電池セルのように固体電解質で形成された閉空間の内部に内側電極が形成されたセル構造の固体酸化物形燃料電池において、燃料利用率を改善し、発電効率を高めることにある。   An object of the present invention is to improve a fuel utilization rate in a solid oxide fuel cell having a cell structure in which an inner electrode is formed inside a closed space formed of a solid electrolyte like a cylindrical fuel cell, The purpose is to increase power generation efficiency.

本発明の固体酸化物形燃料電池は、固体電解質で形成された閉空間の内部に設けられた内側電極と、前記固体電解質の外面に設けられた外側電極と、前記内側電極の内側に設けられたガス流路と、前記内側電極と電気的に接続されたインターコネクタを有するセルを備え、前記内側電極を挟んで前記インターコネクタと対向する位置に流量制御部を有し、前記流量制御部が前記ガス流路よりもガス透過率が小さいことを特徴とする。   The solid oxide fuel cell of the present invention is provided with an inner electrode provided in a closed space formed of a solid electrolyte, an outer electrode provided on an outer surface of the solid electrolyte, and an inner side of the inner electrode. A gas flow path and a cell having an interconnector electrically connected to the inner electrode, and having a flow control unit at a position facing the interconnector across the inner electrode, the flow control unit being The gas permeability is smaller than that of the gas flow path.

本発明により、固体酸化物形燃料電池の燃料利用率が改善され、発電効率を高めることができる。   According to the present invention, the fuel utilization rate of the solid oxide fuel cell can be improved and the power generation efficiency can be increased.

本発明に関する実施の形態を示した固体酸化物形燃料電池を説明する断面模式図。The cross-sectional schematic diagram explaining the solid oxide fuel cell which showed embodiment regarding this invention. 扁平円筒形燃料電池セルとインターコネクタを説明する図。The figure explaining a flat cylindrical fuel cell and an interconnector. 本発明を扁平円筒形燃料電池セルに適用した形状モデルを説明する図。The figure explaining the shape model which applied this invention to the flat cylindrical fuel cell. シミュレーション解析結果から本発明の効果を説明する図。The figure explaining the effect of this invention from a simulation analysis result. シミュレーション解析結果から本発明の効果を説明する図。The figure explaining the effect of this invention from a simulation analysis result. 扁平円筒形燃料電池セルとインターコネクタを説明する図。The figure explaining a flat cylindrical fuel cell and an interconnector. 本発明をインターコネクタの配置に適用した場合を説明する図。The figure explaining the case where this invention is applied to arrangement | positioning of an interconnector. 本発明をインターコネクタの配置に適用した場合を説明する図。The figure explaining the case where this invention is applied to arrangement | positioning of an interconnector. シミュレーション解析結果から燃料の濃度分布を説明する図。The figure explaining fuel concentration distribution from a simulation analysis result. 本発明の流量制御部材の形状を説明する図。The figure explaining the shape of the flow control member of the present invention. 流量制御部材の配置位置と気孔率の関係を説明する図。The figure explaining the relationship between the arrangement position of a flow control member and porosity. 扁平円筒形燃料電池セルにおけるインターコネクタの配置を説明する図。The figure explaining arrangement | positioning of the interconnector in a flat cylindrical fuel cell. 扁平円筒形燃料電池セルにおけるインターコネクタの配置を説明する図。The figure explaining arrangement | positioning of the interconnector in a flat cylindrical fuel cell. 流量制御部材の配置位置と、内側電極面積に占めるインターコネクタと内側電極の接続面積割合の関係を説明する図。The figure explaining the relationship between the arrangement position of a flow control member and the connection area ratio of the interconnector and inner electrode which occupies for the inner electrode area. 流量制御部材の配置位置と、内側電極面積に占めるインターコネクタと内側電極の接続面積割合の関係を説明する図。The figure explaining the relationship between the arrangement position of a flow control member and the connection area ratio of the interconnector and inner electrode which occupies for the inner electrode area. インターコネクタの接続により燃料電池セル積層を説明する断面模式図。The cross-sectional schematic diagram explaining a fuel cell cell lamination | stacking by the connection of an interconnector.

以下に、本発明の実施例を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明に関する第1の実施形態を示した固体酸化物形燃料電池の断面模式図である。   FIG. 1 is a schematic cross-sectional view of a solid oxide fuel cell showing a first embodiment relating to the present invention.

本発明は、セル形状が平板形状ではなく、円筒形状,扁平円筒形状,楕円形状,直方体形状あるいは立方体形状等のように、閉空間を形成している形状のセルを対象とする。すなわち、筒状の固体電解質の筒の内側と外側に電極が形成された構造のセルを対象とする。アノード及びカソードは、固体電解質によって形成された閉空間の内部或いは外部のどちらに設けても良いが、以下の実施例では、内部にアノードを設け、外部にカソードを設けた場合について説明する。   The present invention is directed to a cell having a shape forming a closed space, such as a cylindrical shape, a flat cylindrical shape, an elliptical shape, a rectangular parallelepiped shape, or a cubic shape, instead of a flat plate shape. That is, a cell having a structure in which electrodes are formed on the inside and outside of a cylindrical solid electrolyte cylinder is an object. The anode and the cathode may be provided either inside or outside the closed space formed by the solid electrolyte, but in the following embodiment, a case where the anode is provided inside and the cathode is provided outside will be described.

図1において、燃料電池セル100は、固体電解質104の外面にカソード電極105を有し、固体電解質で囲まれた閉空間の内部にアノード電極103を有している。アノード電極103の電流を外部に取り出すために電気的に接続されたインターコネクタ101が設けられている。アノード電極103の内部にはガス流路102が設けられている。アノード電極103のガス流路側にはガス流路よりガス透過率の小さい多孔質部材106が設置されている。多孔質部材106の設置箇所はアノード電極103を挟んでインターコネクタ101と対向する位置になるようにする。燃料ガスはガス流路102を流れ、酸化剤ガスはカソード電極105に沿って燃料電池セル100の外周側を流れる。ここで、インターコネクタ101と接続された領域のアノード電極103では、発電作用に必要な固体電解質およびカソード電極が存在しないため、発電反応は起こらない。したがって、インターコネクタ101近傍のアノード電極103に供給される燃料が消費されないことから、アノード電極103の面内で燃料ガスの消費斑が生じる。この消費斑が発電効率低下の原因となる。本発明では、アノード電極103を挟んでインターコネクタ101と対向する位置にガス流路よりガス透過率の小さい多孔質部材106を設置したことを特徴とする。この多孔質部材106により、インターコネクタ101と接続された領域のアノード電極103近傍への燃料ガス供給が削減され、その分、燃料が消費されるアノード電極103の他の領域への流量が増え、アノード電極103面内における燃料ガスの消費斑が低減される。これにより、消費斑による濃度過電圧が低減され、ガス利用率および発電効率を高めることができる。   In FIG. 1, a fuel cell 100 has a cathode electrode 105 on the outer surface of a solid electrolyte 104, and an anode electrode 103 inside a closed space surrounded by the solid electrolyte. An interconnector 101 that is electrically connected to take out the current of the anode electrode 103 to the outside is provided. A gas flow path 102 is provided inside the anode electrode 103. On the gas channel side of the anode electrode 103, a porous member 106 having a gas permeability smaller than that of the gas channel is provided. The installation location of the porous member 106 is set so as to face the interconnector 101 with the anode electrode 103 interposed therebetween. The fuel gas flows through the gas flow path 102, and the oxidant gas flows along the cathode electrode 105 on the outer peripheral side of the fuel cell 100. Here, in the anode electrode 103 in the region connected to the interconnector 101, the power generation reaction does not occur because the solid electrolyte and the cathode electrode necessary for the power generation action do not exist. Therefore, the fuel supplied to the anode electrode 103 in the vicinity of the interconnector 101 is not consumed, so that fuel gas consumption spots occur in the surface of the anode electrode 103. This consumption spot causes a decrease in power generation efficiency. The present invention is characterized in that a porous member 106 having a gas permeability smaller than that of the gas flow path is provided at a position facing the interconnector 101 with the anode electrode 103 interposed therebetween. The porous member 106 reduces the supply of fuel gas to the vicinity of the anode electrode 103 in the region connected to the interconnector 101, and accordingly, the flow rate to the other region of the anode electrode 103 where the fuel is consumed increases. Fuel gas consumption spots in the surface of the anode electrode 103 are reduced. Thereby, the concentration overvoltage due to consumption spots is reduced, and the gas utilization rate and power generation efficiency can be increased.

固体電解質104は、円筒形セルの袋管になっており、材質としては例えばイットリウム安定化ジルコニア(YSZ)を用いることができる。他の構成部材は、例えばアノード電極103にはニッケルとYSZからなる多孔質のサーメット、カソード電極105にはランタンマンガネイト、インターコネクタ101にはランタンクロマイドを用いることが望ましい。   The solid electrolyte 104 is a cylindrical cell bag tube, and, for example, yttrium-stabilized zirconia (YSZ) can be used as the material. As other constituent members, it is desirable to use, for example, a porous cermet made of nickel and YSZ for the anode electrode 103, lanthanum manganate for the cathode electrode 105, and lanthanum chromide for the interconnector 101.

ガス流路102は中空かもしくはガス拡散性の向上を改善するために多孔質材を用いても良く、多孔質材料としてはニッケルを含む多孔体が好ましい。これは、アノード電極材料にニッケルとYSZからなる多孔質のサーメットが用いられることが多く、ガス流路102がアノード電極103と接触しているので、ガス流路102の多孔質材にニッケルを含む材料を使用することで、両者の接合が容易になるからである。また、ニッケルは、電気抵抗が小さく、改質触媒としても働くので、この点からもガス流路102の材料として好ましい。多孔質部材106は、燃料が消費されないインターコネクタ101と接続された領域のアノード電極103近傍のガス流路領域に配置され、ガスが消費される他の領域に燃料ガスが行き渡るようにガス流量を制御するものである。多孔質部材106はアノード電極103と接合されるため、ニッケルを含む多孔体が好ましい。ガス流路102に多孔質材を用いた場合、ガス流路102を構成する多孔質材の気孔率は90%以上が望ましく、多孔質部材106の気孔率は50%未満が望ましい。この様に気孔率に相対的な格差を設けることでガスの流れ易さを変えて、インターコネクタ101と接続された領域のアノード電極103近傍のガス流路領域におけるガスの流れを抑制する。これにより、燃料が消費される領域にガスが多く供給されるので、消費斑による濃度過電圧が低減され、ガス利用率および発電効率を高めることができる。また、多孔質部材106は、気孔を持たないニッケルを含む構造部材でも良い。なお、ここで言う多孔質の気孔率は、連通孔で構成される気孔の体積比率を指すものであり、ガスが流れない閉塞した気孔は含めないものとする。   The gas flow path 102 may be hollow or a porous material may be used to improve the improvement of gas diffusivity, and the porous material is preferably a porous body containing nickel. This is because a porous cermet made of nickel and YSZ is often used for the anode electrode material, and the gas flow path 102 is in contact with the anode electrode 103, so that the porous material of the gas flow path 102 contains nickel. This is because the use of materials makes it easy to join the two. Nickel has a low electric resistance and also functions as a reforming catalyst, so that it is preferable as a material for the gas flow path 102 from this point. The porous member 106 is disposed in the gas flow path region in the vicinity of the anode electrode 103 in the region connected to the interconnector 101 where fuel is not consumed, and the gas flow rate is set so that the fuel gas is distributed to other regions where the gas is consumed. It is something to control. Since the porous member 106 is joined to the anode electrode 103, a porous body containing nickel is preferable. When a porous material is used for the gas flow path 102, the porosity of the porous material constituting the gas flow path 102 is desirably 90% or more, and the porosity of the porous member 106 is desirably less than 50%. Thus, by providing a relative disparity in the porosity, the ease of gas flow is changed, and the gas flow in the gas flow path region near the anode electrode 103 in the region connected to the interconnector 101 is suppressed. As a result, a large amount of gas is supplied to the region where the fuel is consumed, so that concentration overvoltage due to consumption spots is reduced, and the gas utilization rate and power generation efficiency can be increased. Further, the porous member 106 may be a structural member containing nickel having no pores. In addition, the porous porosity said here refers to the volume ratio of the pore comprised by a communicating hole, and does not include the obstruct | occluded pore which a gas does not flow.

次に、数値シミュレーションを用いた解析により、本発明の効果について説明する。シミュレーション解析による本発明の効果についての検証は、扁平円筒形状の燃料電池セルを用いて実施した。図2および図3に扁平円筒形燃料電池セルの概念図を示す。図2において、扁平円筒形燃料電池セル200は、内側電極をアノード電極、外側電極をカソード電極とし、内側電極で閉じられた空間を燃料ガスが通る構成とした。扁平円筒形燃料電池セル200は、アノード電極の電流を取り出すための電気的接続要素部であるインターコネクタ220が6個設置され、アノード電極との電流パスを短くし、電気抵抗が小さくなるように工夫されている。A−A線における扁平円筒形燃料電池セル200の断面図を図3に示す。図3において、扁平円筒形燃料電池セル200は、固体電解質305の外面にカソード電極306を有し、固体電解質305で囲まれた閉空間の内部にアノード電極304を有している。アノード電極304の電流を外部に取り出すために、インターコネクタ321,322,323がアノード電極304と電気的に接続されている。アノード電極304の内部はガス流路302である。ガス流路302には、インターコネクタ321,322,323と接続された領域のアノード電極304の近傍を覆うように多孔質部材311,312,313が設置されている。燃料ガスはガス流路302を流れ、酸化剤ガスはカソード電極306の外周面に沿って流れる。   Next, the effect of the present invention will be described by analysis using numerical simulation. Verification of the effect of the present invention by simulation analysis was performed using a flat cylindrical fuel cell. 2 and 3 are conceptual diagrams of flat cylindrical fuel cells. In FIG. 2, the flat cylindrical fuel cell 200 is configured such that the inner electrode is an anode electrode, the outer electrode is a cathode electrode, and the fuel gas passes through a space closed by the inner electrode. The flat cylindrical fuel cell 200 is provided with six interconnectors 220 which are electrical connection elements for taking out the current of the anode electrode, so that the current path with the anode electrode is shortened and the electrical resistance is reduced. It has been devised. A cross-sectional view of the flat cylindrical fuel cell 200 taken along the line AA is shown in FIG. In FIG. 3, the flat cylindrical fuel cell 200 has a cathode electrode 306 on the outer surface of the solid electrolyte 305, and an anode electrode 304 inside a closed space surrounded by the solid electrolyte 305. Interconnectors 321, 322, and 323 are electrically connected to the anode electrode 304 in order to extract the current of the anode electrode 304 to the outside. Inside the anode electrode 304 is a gas flow path 302. Porous members 311, 312, and 313 are installed in the gas flow path 302 so as to cover the vicinity of the anode electrode 304 in a region connected to the interconnectors 321, 322, and 323. The fuel gas flows through the gas flow path 302, and the oxidant gas flows along the outer peripheral surface of the cathode electrode 306.

シミュレーションで用いた扁平円筒形燃料電池セルの形状モデルについて説明する。基本構成は図3に示した構造と同じである。アノード電極の開口部の寸法が幅36mm,高さ2mm,長さ200mmの扁平円筒形とし、厚さを10μmとした。アノード電極の内部には内側電極と同じ形状のガス流路が形成されている。ガスは図2に示した入口411から流れ、出口412から排出される。固体電解質およびカソード電極を、アノード電極の外側に形成し、軸方向の長さをそれぞれ170mm、固体電解質の厚さを5μm、カソード電極の厚さを10μmとした。固体電解質およびカソード電極には、インターコネクタ設置のため、幅4mm,長さ60mmの窓が6つ設けられており、インターコネクタはこの窓を通じてアノード電極と接続されている。インターコネクタは6つ設置され、それぞれの寸法は、幅3mm,長さ58mm,厚さ15μmとした。図3に示したように、シミュレーションで用いる扁平円筒形燃料電池セルの形状モデルに、インターコネクタと接続された領域のアノード電極の近傍を覆うように、幅3mm,長さ58mm,厚さ500μmの多孔質部材を6つ設置した。   The shape model of the flat cylindrical fuel cell used in the simulation will be described. The basic configuration is the same as the structure shown in FIG. The anode electrode had a flat cylindrical shape with a width of 36 mm, a height of 2 mm, and a length of 200 mm, and a thickness of 10 μm. A gas flow path having the same shape as the inner electrode is formed inside the anode electrode. The gas flows from the inlet 411 shown in FIG. The solid electrolyte and the cathode electrode were formed outside the anode electrode, the axial length was 170 mm, the thickness of the solid electrolyte was 5 μm, and the thickness of the cathode electrode was 10 μm. The solid electrolyte and the cathode electrode are provided with six windows each having a width of 4 mm and a length of 60 mm for installation of the interconnector. The interconnector is connected to the anode electrode through the window. Six interconnectors were installed, and the dimensions were 3 mm in width, 58 mm in length, and 15 μm in thickness. As shown in FIG. 3, the shape model of the flat cylindrical fuel cell used in the simulation has a width of 3 mm, a length of 58 mm, and a thickness of 500 μm so as to cover the vicinity of the anode electrode in the region connected to the interconnector. Six porous members were installed.

次に各要素の材質および物性値について説明する。本シミュレーションでは、ガス流路には、密度8900Kg/m3,比熱460.6J/KgK,熱伝導率91.74W/mK,気孔率0.95,厚さ2mmのNiフォーム多孔質材を用いることを想定し、アノード電極には、密度7430Kg/m3,比熱456J/KgK,熱伝導率11W/mK,気孔率0.3のNi+SCSZ材を、固体電解質にはSCSZ材を、カソード電極には、密度4500Kg/m3,比熱566J/KgK,熱伝導率2.2W/mK,気孔率0.3の(La,Sr)MnO3材を用いることを想定した。また、インターコネクタは、密度6300Kg/m3,比熱500J/KgK,熱伝導率2W/mKの(La,Ca)CrO3材を、多孔質部材にはガス流路と同じ材質で、厚さ0.5mmの気孔率0.3のNiフォーム多孔質材を用いることを想定した。この形状モデルをCASE_Bとし、比較のために、多孔質部材の気孔率をガス流路に用いた多孔質部材と同じ0.95に設定した形状モデルをCASE_Aとして作成し、多孔質部材による性能向上を検証した。シミュレーションには、ANSYS社の汎用熱流体解析シミュレータFluentを用い、SOFCサブモジュールを組み込んで電気化学反応をシミュレーションし、ガス流路における燃料ガス濃度分布を解析した。 Next, the material and physical property values of each element will be described. In this simulation, a Ni foam porous material having a density of 8900 Kg / m 3 , a specific heat of 460.6 J / KgK, a thermal conductivity of 91.74 W / mK, a porosity of 0.95, and a thickness of 2 mm is used in the simulation. , The anode electrode has a density of 7430 Kg / m 3 , a specific heat of 456 J / KgK, a thermal conductivity of 11 W / mK, a porosity of 0.3 + Ni + SCSZ material, the solid electrolyte has an SCSZ material, and the cathode electrode has a It was assumed that a (La, Sr) MnO 3 material having a density of 4500 Kg / m 3 , a specific heat of 566 J / KgK, a thermal conductivity of 2.2 W / mK, and a porosity of 0.3 was used. The interconnector is made of (La, Ca) CrO 3 material having a density of 6300 Kg / m 3 , specific heat of 500 J / KgK, and thermal conductivity of 2 W / mK, and the porous member is made of the same material as the gas flow path and has a thickness of 0 It was assumed that a Ni foam porous material having a porosity of 0.3 mm of 0.3 mm was used. This shape model is CASE_B, and for comparison, a shape model in which the porosity of the porous member is set to 0.95, which is the same as the porous member used in the gas flow path, is created as CASE_A. Verified. In the simulation, a general-purpose thermal fluid analysis simulator Fluent of ANSYS was used, an SOFC submodule was incorporated to simulate an electrochemical reaction, and a fuel gas concentration distribution in the gas flow path was analyzed.

シミュレーションによる解析では、アノード電極内部のガス流路を流す燃料ガスには純水素を用い、カソード電極の外周側に沿って流す酸化剤ガスには空気を用いた。燃料電池の運転条件は、燃料利用率を90%、酸素利用率を20%になるように、ガス流量を設定し、燃料ガスおよび空気の入口ガス温度を800℃とした。燃料電池セルを断熱材で覆うことを想定し、燃料電池セルからの熱流速をゼロW/cm2とした。 In the analysis by simulation, pure hydrogen was used as the fuel gas flowing through the gas flow path inside the anode electrode, and air was used as the oxidant gas flowing along the outer peripheral side of the cathode electrode. The operating conditions of the fuel cell were such that the gas flow rate was set so that the fuel utilization rate was 90% and the oxygen utilization rate was 20%, and the fuel gas and air inlet gas temperatures were 800 ° C. Assuming that the fuel cell is covered with a heat insulating material, the heat flow rate from the fuel cell is set to zero W / cm 2 .

シミュレーションの解析結果を説明する。電流密度0.4A/cm2におけるガス流の燃料ガス中の水素の濃度分布(モル分率)により評価した。その結果、CASE_Aに対して、CASE_Bの方が、インターコネクタと接続された領域のアノード電極近傍における水素濃度が高く、その領域が大きくなることが分かった。図2のA−A断面での水素H2の濃度分布(モル分率)の傾向を図4に示す。図4において、CASE_Aでは、多孔質部材、すなわち、インターコネクタと接続されたアノード電極304近傍のガス流路302の領域の水素濃度が高く、その領域が広範囲に及んでいる。したがって、この領域では燃料が消費されておらず、消費斑による性能低下を引き起こす懸念がある。一方、多孔質部材に気孔率0.3を用いたCASE_Bでは、多孔質部材、すなわち、インターコネクタと接続するアノード電極近傍のガス流路領域において、水素濃度が高い部分が存在するが、その領域はCASE_Aに比べて、大幅に小さくなっており、他のガス流路領域との濃度差が解消されていることが分かる。この解析結果を具体的な数値で示したものを図5に示す。 The simulation analysis results will be described. Evaluation was made based on the hydrogen concentration distribution (molar fraction) in the fuel gas of the gas flow at a current density of 0.4 A / cm 2 . As a result, it was found that CASE_B has a higher hydrogen concentration in the vicinity of the anode electrode in the region connected to the interconnector than CASE_A, and the region becomes larger. FIG. 4 shows the tendency of the concentration distribution (molar fraction) of hydrogen H 2 in the AA cross section of FIG. In FIG. 4, in CASE_A, the hydrogen concentration in the region of the gas flow path 302 in the vicinity of the porous member, that is, the anode electrode 304 connected to the interconnector is high, and the region extends over a wide range. Therefore, fuel is not consumed in this region, and there is a concern of causing a performance deterioration due to consumption spots. On the other hand, in CASE_B using a porosity of 0.3 for the porous member, there is a portion where the hydrogen concentration is high in the gas flow channel region near the anode electrode connected to the porous member, that is, the interconnector. Is significantly smaller than CASE_A, and it can be seen that the concentration difference from other gas flow path regions is eliminated. FIG. 5 shows the result of the analysis with specific numerical values.

図5において、多孔質部材にガス流路と同じ気孔率0.95を用いたCASE_Aの解析結果では、ガス流路における水素濃度を示すモル分率は10.04であり、多孔質部材、即ちインターコネクタと接続するアノード電極近傍のガス流路領域における水素のモル分率は11.36と高く、多孔質部材周辺では燃料が消費されず、燃料が濃くなり消費斑があることが分かる。   In FIG. 5, in the analysis result of CASE_A using the same porosity of 0.95 as the gas channel for the porous member, the molar fraction indicating the hydrogen concentration in the gas channel is 10.04. The molar fraction of hydrogen in the gas flow path region in the vicinity of the anode electrode connected to the interconnector is as high as 11.36, and it can be seen that the fuel is not consumed around the porous member, the fuel is concentrated and there are consumption spots.

一方、多孔質部材に気孔率0.3を用いたCASE_Bの解析結果では、ガス流路にけるおける水素燃料の濃度を示すモル分率は10.21と、CASE_Aの場合に比べ1.7%上昇し、多孔質部材、即ちインターコネクタと接続するアノード電極近傍のガス流路領域における水素のモル分率は10.64とガス流路に近い値になり、多孔質部材周辺部における、燃料の消費斑が解消されていることが分かる。   On the other hand, in the analysis result of CASE_B using a porosity of 0.3 for the porous member, the molar fraction indicating the concentration of hydrogen fuel in the gas flow path is 10.21, 1.7% compared to the case of CASE_A. The molar fraction of hydrogen in the gas flow path region in the vicinity of the anode electrode connected to the porous member, ie, the interconnector, is 10.64, a value close to that of the gas flow path, It can be seen that consumption spots have been eliminated.

このように、固体電解質で形成された閉空間の内部に設けられた内側電極と、固体電解質の外面に設けられた外側電極と、内側電極の内側に設けられたガス流路と、内側電極と電気的に接続されたインターコネクタを有するセルを備えた固体酸化物形燃料電池において、内側電極を挟んでインターコネクタと対向する位置にガス流路よりもガス透過率の小さい流量制御部を設けたことで、インターコネクタ部と接続する内側電極部近傍のガスの流れが抑制され、燃料ガスまたは酸化剤ガスが消費される領域へ供給されるガス流量が増えるため消費斑による濃度過電圧が低減され、ガス利用率および、発電効率を高めることができる。   Thus, the inner electrode provided inside the closed space formed of the solid electrolyte, the outer electrode provided on the outer surface of the solid electrolyte, the gas flow path provided on the inner side of the inner electrode, the inner electrode, In a solid oxide fuel cell including a cell having an electrically connected interconnector, a flow rate control unit having a gas permeability smaller than that of the gas flow path is provided at a position facing the interconnector with the inner electrode interposed therebetween. Thus, the flow of gas near the inner electrode part connected to the interconnector part is suppressed, and the gas flow rate supplied to the area where the fuel gas or oxidant gas is consumed increases, so the concentration overvoltage due to consumption spots is reduced, Gas utilization and power generation efficiency can be increased.

次に、上述のシミュレーション解析により、固体電解質305における電流密度の分布について評価した。電流密度はガス流路の入口1601付近が最も大きく、ガス流の出口に向かって徐々に小さくなっており、入口から出口に向かって発電量が減少する結果となった。即ち、入口1601付近では燃料ガスや酸化剤ガスが多く消費され、出口に向かって徐々に少なくなっていることを示している。そこで、次に、ガス流路の上流と下流における燃料消費斑を解決する手段を示した燃料電池の概念図を図6に示す。図6において、インターコネクタと接続された内側電極部近傍のガス流路領域に配置した流量制御部材810,820に対して、ガス流路入口801側の流量制御部材810の気孔率を高めにし、ガス流路入口801から離れた側の流量制御部材820の気孔率を低めに設定する。   Next, the distribution of current density in the solid electrolyte 305 was evaluated by the simulation analysis described above. The current density was highest near the inlet 1601 of the gas flow path, and gradually decreased toward the outlet of the gas flow. As a result, the amount of power generation decreased from the inlet toward the outlet. That is, it is shown that a large amount of fuel gas and oxidant gas is consumed near the inlet 1601 and gradually decreases toward the outlet. Then, the conceptual diagram of the fuel cell which showed the means to solve the fuel consumption spot upstream and downstream of a gas flow path next is shown in FIG. In FIG. 6, the porosity of the flow control member 810 on the gas flow path inlet 801 side is increased with respect to the flow control members 810 and 820 arranged in the gas flow path region near the inner electrode portion connected to the interconnector. The porosity of the flow control member 820 on the side away from the gas flow path inlet 801 is set to be low.

例えば、入口からの距離と流量制御部材の気孔率の関係を図11に示すように設定し、上流側の流量制御部材810ではガスが流れ、この領域では発電が行われないため、燃料または酸化剤ガスが消費されず、ガスが流れた分、下流の領域に回すことができる。また下流に行くに従い発電されない領域にガスが流れにくくなり、下流部の発電領域に燃料または酸化剤ガスが多く流れるので燃料または酸化剤ガスの消費が増加される。この様に、上流から下流にかけて燃料または酸化剤ガスの消費量が均一になるように図11に示す流量制御部材の気孔率を設定することで、下流に進むに従い燃料または酸化剤ガスの消費が減少する課題が改善され、ガス利用率および発電効率を向上することができる。   For example, the relationship between the distance from the inlet and the porosity of the flow control member is set as shown in FIG. 11, and gas flows in the upstream flow control member 810, and no power is generated in this region. The agent gas is not consumed, and the gas can flow to the downstream area as much as it flows. Further, as it goes downstream, it becomes difficult for gas to flow to a region where power generation is not performed, and a large amount of fuel or oxidant gas flows in the power generation region in the downstream portion, so that consumption of fuel or oxidant gas is increased. In this way, by setting the porosity of the flow control member shown in FIG. 11 so that the consumption of fuel or oxidant gas is uniform from upstream to downstream, the consumption of fuel or oxidant gas is reduced as it goes downstream. The problem of decreasing can be improved, and the gas utilization rate and power generation efficiency can be improved.

図7の燃料電池900は、隣り合う燃料電池セルを電気的に接続するインターコネクタを、複数のインターコネクタ部材910,920,930で構成し、ガス流路の流れ方向901に対し、千鳥状に配置したことで、インターコネクタ部と接続する内側電極部近傍において、ガスが消費されない領域が分散され、消費斑による濃度過電圧を低減することができる。この結果、ガス利用率および発電効率を高めることが可能となる。また、図8に示す燃料電池1000は、隣り合う燃料電池セルを電気的に接続するインターコネクタを、円を含む楕円形、または多角形のインターコネクタ部材1010で構成し、ガス流路の流れ方向1001に対し、千鳥状または不規則に配置したことで、インターコネクタ部と接続する内側電極部近傍において、ガスが消費されない領域を分散し、消費斑による濃度過電圧を低減することにより、ガス利用率および発電効率を高めるものである。   In the fuel cell 900 of FIG. 7, an interconnector that electrically connects adjacent fuel cells is composed of a plurality of interconnector members 910, 920, and 930, which are staggered with respect to the flow direction 901 of the gas flow path. By arranging, the region where the gas is not consumed is dispersed in the vicinity of the inner electrode portion connected to the interconnector portion, and the concentration overvoltage due to the consumption spot can be reduced. As a result, the gas utilization rate and power generation efficiency can be increased. Further, in the fuel cell 1000 shown in FIG. 8, an interconnector that electrically connects adjacent fuel cells is formed of an elliptical or polygonal interconnector member 1010 including a circle, and the flow direction of the gas flow path 1001 is arranged in a staggered manner or irregularly, so that the area where the gas is not consumed is dispersed in the vicinity of the inner electrode portion connected to the interconnector portion, and the concentration overvoltage due to consumption spots is reduced, thereby reducing the gas utilization rate. It also increases power generation efficiency.

図12の燃料電池1400は、隣り合う燃料電池セルを電気的に接続するインターコネクタを複数のブロックに分割して配置した実施例である。複数のインターコネクタ部材を1510,1520,1530の3つのブロックで構成し、各ブロック内でガス流路の流れ方向1401に対し、ガス流速が最も早い流路中央部に集まるようにインターコネクタ部材を配置した。この構成により、インターコネクタ部と接続する内側電極部近傍において、ガスが消費されない領域が均一に分散され、消費斑による濃度過電圧を低減することができる。この結果、ガス利用率および発電効率を高めることが可能となる。また図13に示す燃料電池1500は、隣り合う燃料電池セルを電気的に接続するインターコネクタ1510を、複数の楕円形で構成しランダムに分散させて配置したものである。インターコネクタの形状は円を含む楕円形、または長方形,正方形,三角形,菱形等の多角形であってもよい。また、図12および図13で示されるようにインターコネクタ部材は、流れ方向1401および1501に対し、上流から下流に向かうに従い、流路に占めるインターコネクタの割合が減少するように配置している。この結果、インターコネクタと内側電極が接する面積が徐々に小さくなるので、発電できる領域が下流に行くに従い多くなり、ガス流路上流で燃料または酸化剤ガスが徐々に多く消費されるようになる。この結果、ガス流路上流で、燃料または酸化剤ガスが多く消費され、下流では少なくなる問題を改善し、燃料または酸化剤ガス消費の均一化が可能となる。   A fuel cell 1400 in FIG. 12 is an example in which an interconnector that electrically connects adjacent fuel cells is divided into a plurality of blocks. A plurality of interconnector members are constituted by three blocks 1510, 1520, and 1530, and the interconnector members are gathered at the center of the flow path with the fastest gas flow rate in the flow direction 1401 of the gas flow path in each block. Arranged. With this configuration, in the vicinity of the inner electrode portion connected to the interconnector portion, the region where the gas is not consumed is uniformly dispersed, and the concentration overvoltage due to consumption spots can be reduced. As a result, the gas utilization rate and power generation efficiency can be increased. In addition, a fuel cell 1500 shown in FIG. 13 is configured such that interconnectors 1510 that electrically connect adjacent fuel cells are formed in a plurality of elliptical shapes and are randomly dispersed. The shape of the interconnector may be an ellipse including a circle, or a polygon such as a rectangle, a square, a triangle, or a rhombus. Further, as shown in FIGS. 12 and 13, the interconnector members are arranged so that the proportion of the interconnector in the flow path decreases with respect to the flow directions 1401 and 1501 from the upstream to the downstream. As a result, since the area where the interconnector and the inner electrode are in contact with each other is gradually reduced, the region where power can be generated increases as it goes downstream, and fuel or oxidant gas is gradually consumed upstream of the gas flow path. As a result, it is possible to improve the problem that a large amount of fuel or oxidant gas is consumed upstream of the gas flow path and less downstream, and the fuel or oxidant gas consumption can be made uniform.

図14および図15は、内側電極の面積に占めるインターコネクタと内側電極とが接続する面積の割合の変化を、流路の入口から出口に向かって示したものである。図14は、図12に示した燃料電池1400についての内側電極面積に占めるインターコネクタと内側電極の接続面積割合を示したものである。図14において、入口に近いインターコネクタ配置ブロック1410の内側電極面積に占めるインターコネクタと内側電極の接続面積割合1701が0.5であり、中央のインターコネクタ配置ブロック1420の内側電極面積に占めるインターコネクタと内側電極の接続面積割合1702が0.3、出口に近いインターコネクタ配置ブロック1430の内側電極面積に占めるインターコネクタと内側電極の接続面積割合1703が0.1となっている。このように下流に行くに従い、内側電極面積に占めるインターコネクタと内側電極の接続面積割合を小さくすることで、発電可能な領域を上流では少なく、下流では多く割り当てることができる。この結果、上流での過度な消費や下流で消費が少なくなる課題を解消することができ、燃料または酸化剤ガスの消費を上流と下流で均一化できる。また、インターコネクタ配置ブロックごとに内側電極面積に占めるインターコネクタと内側電極の接続面積割合を設定することで、上流から下流にいたるまでのガス消費の均一化設定が容易となる。   14 and 15 show changes in the ratio of the area where the interconnector and the inner electrode occupy in the area of the inner electrode from the inlet to the outlet of the flow path. FIG. 14 shows the connection area ratio between the interconnector and the inner electrode in the inner electrode area of the fuel cell 1400 shown in FIG. In FIG. 14, the interconnector occupies the inner electrode area of the interconnector arrangement block 1410 close to the entrance, and the interconnector ratio occupying the inner electrode area of the interconnector arrangement block 1420 at the center is 0.5. The inner electrode connection area ratio 1702 is 0.3, and the interconnector and inner electrode connection area ratio 1703 occupying the inner electrode area of the interconnector arrangement block 1430 close to the outlet is 0.1. In this way, by decreasing the connection area ratio between the interconnector and the inner electrode that occupies the inner electrode area as it goes downstream, the power generating region can be allocated less in the upstream and more in the downstream. As a result, the problem of excessive consumption upstream and less consumption downstream can be solved, and fuel or oxidant gas consumption can be made uniform upstream and downstream. In addition, by setting the connection area ratio between the interconnector and the inner electrode in the inner electrode area for each interconnector arrangement block, it becomes easy to make the gas consumption uniform from upstream to downstream.

図15は、図13に示した燃料電池1500についての内側電極面積に占めるインターコネクタと内側電極の接続面積割合を示したものである。図15において、入口から出口に向かって連続的に内側電極面積に占めるインターコネクタと内側電極の接続面積割合が減少し、下流に行くに従い、内側電極面積に占めるインターコネクタと内側電極の接続面積割合を小さくなるように設定されている。このようにすることで、発電可能な領域を上流では少なく、下流では多く割り当てることができるので、上流での過度な消費や下流で消費が少なくなる課題を解消することができ、燃料または酸化剤ガスの消費を上流と下流で均一化が可能となる。   FIG. 15 shows a connection area ratio between the interconnector and the inner electrode in the inner electrode area of the fuel cell 1500 shown in FIG. In FIG. 15, the connection area ratio between the interconnector and the inner electrode that continuously occupies the inner electrode area from the inlet to the outlet decreases, and the connection area ratio between the interconnector and the inner electrode that occupies the inner electrode area as it goes downstream. Is set to be smaller. In this way, since the region where power can be generated is small in the upstream and many can be allocated in the downstream, the problem of excessive consumption in the upstream and less consumption in the downstream can be solved, and the fuel or oxidant Gas consumption can be made uniform upstream and downstream.

図9は、図4で示したCASE_Aの水素燃料の濃度分布(モル分率)で水素濃度が高い領域1103についての拡大図901を示したものである。拡大図901において、特に水素濃度が高い領域の形状を見てみると1102の様に半楕円形の形をしている。燃料の消費斑を解消するためにインターコネクタ部と接続する内側電極部近傍にガス透過率の小さい流量制御部材を配置するが、流量制御部材の容積が大きくなるとガス流路全体のガスの流れが悪くなり圧力損失が増加する。したがって、できるだけ流量制御部材の容積を少なくするために、流量制御部材は、燃料未消費領域に合わせた形状にすることが好ましい。   FIG. 9 shows an enlarged view 901 of a region 1103 having a high hydrogen concentration in the hydrogen fuel concentration distribution (molar fraction) of CASE_A shown in FIG. In the enlarged view 901, when the shape of the region where the hydrogen concentration is particularly high is seen, it has a semi-elliptical shape like 1102. In order to eliminate fuel consumption spots, a flow rate control member with a low gas permeability is arranged in the vicinity of the inner electrode part connected to the interconnector part, but when the volume of the flow rate control member increases, the gas flow in the entire gas flow path It worsens and pressure loss increases. Therefore, in order to reduce the volume of the flow rate control member as much as possible, it is preferable that the flow rate control member be shaped to match the non-fuel consumption region.

そこで、インターコネクタ部1202と接続する内側電極部近傍に配置するガス透過率の小さい流量制御部材1203の形状を、図10に示すように断面が半楕円形をした1210のような形状や、断面が三角形である1220のような形状であることが望ましい。一方、図8で説明したように、隣り合う燃料電池セルを電気的に接続するインターコネクタの形状が円を含む楕円形、または多角形で構成されている場合、インターコネクタ部1202と接続する内側電極部近傍に配置するガス透過率の小さい流量制御部材1203の形状は、断面が半楕円形をした1230のような半球状の形状や、断面が三角形である1240のような三角錐のような形状であることが望ましい。また、本流量制御部材1203の下流で渦が発生し不具合が生じないように1211に示すように、本流量制御部材を流線形にし、流量制御部の前後で渦ができないようにするのが好ましい。   Therefore, the shape of the flow rate control member 1203 having a small gas permeability disposed near the inner electrode portion connected to the interconnector portion 1202 is similar to a shape such as 1210 having a semi-elliptical cross section as shown in FIG. It is desirable to have a shape such as 1220 where is a triangle. On the other hand, as described with reference to FIG. 8, when the shape of the interconnector that electrically connects adjacent fuel cells is an ellipse including a circle or a polygon, the inner side connected to the interconnector portion 1202 The shape of the flow rate control member 1203 having a small gas permeability arranged near the electrode portion is a semispherical shape such as 1230 having a semi-elliptical cross section, or a triangular pyramid such as 1240 having a triangular cross section. The shape is desirable. Further, it is preferable that the flow control member is streamlined so that vortices are not generated before and after the flow control unit so that a vortex is generated downstream of the flow control member 1203 and no malfunction occurs. .

以上の実施例では、内部にアノードを設け、外部にカソードを設けた場合を説明したが、内部にカソードを設け、外部にアノードを設けた場合でも同様の効果を有する。   In the above embodiment, the case where the anode is provided inside and the cathode is provided outside has been described, but the same effect can be obtained even when the cathode is provided inside and the anode is provided outside.

Claims (5)

固体電解質で形成された閉空間の内部に設けられた内側電極と、前記固体電解質の外面に設けられた外側電極と、前記内側電極の内側に設けられたガス流路と、前記内側電極と電気的に接続されたインターコネクタを有するセルを備えた固体酸化物形燃料電池において、
前記内側電極を挟んで前記インターコネクタと対向する位置に流量制御部を有し、
前記流量制御部は前記ガス流路よりもガス透過率が小さく、
前記ガス流路及び流量制御部が多孔質材で構成され、前記ガス流路を構成する多孔質材の気孔率よりも流量制御部を構成する多孔質材の気孔率の方が小さいことを特徴とする固体酸化物形燃料電池。
An inner electrode provided in a closed space formed of a solid electrolyte; an outer electrode provided on an outer surface of the solid electrolyte; a gas flow path provided on the inner side of the inner electrode; In a solid oxide fuel cell comprising cells having interconnected interconnectors,
Having a flow rate controller at a position facing the interconnector across the inner electrode;
The flow control unit is minor gas permeability than the gas flow path,
The gas flow path and the flow rate control unit is constructed of a porous material, a is small Ikoto towards the porosity of the porous material constituting the flow control unit than the porosity of the porous material constituting the gas passage A solid oxide fuel cell.
請求項1において、前記流量制御部は、気孔率が50%未満の多孔質部材で構成され、断面が円を含む半楕円形または長方形,正方形,三角形,菱形等の多角形を有する形状、もしくは半球状または三角錐を持つ形状であることを特徴とする固体酸化物形燃料電池。   The flow control unit according to claim 1, wherein the flow rate control unit is formed of a porous member having a porosity of less than 50%, and a cross-sectional shape having a semi-elliptical shape including a circle or a polygon such as a rectangle, a square, a triangle, a rhombus, or A solid oxide fuel cell having a hemispherical shape or a triangular pyramid shape. 請求項1において、前記流量制御部の気孔率が、ガス流路の入口から出口に向かって、徐々に小さくなることを特徴とする固体酸化物形燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein the porosity of the flow rate control unit gradually decreases from the inlet to the outlet of the gas flow path. 請求項において、前記ガス流路を構成する多孔質材の気孔率が90%以上であり、前記流量制御部を構成する多孔質材の気孔率が50%未満であることを特徴とする固体酸化物形燃料電池。 2. The solid according to claim 1 , wherein the porosity of the porous material constituting the gas flow path is 90% or more, and the porosity of the porous material constituting the flow rate control unit is less than 50%. Oxide fuel cell. 固体電解質で形成された閉空間の内部に設けられた内側電極と、前記固体電解質の外面に設けられた外側電極と、前記内側電極の内側に設けられたガス流路と、前記内側電極と電気的に接続されたインターコネクタを有するセルを備えた固体酸化物形燃料電池において、
前記内側電極を挟んで前記インターコネクタと対向する位置に流量制御部を有し、
前記流量制御部は前記ガス流路よりもガス透過率が小さく、
前記インターコネクタが複数個に分割して配置され、前記インターコネクタ及び前記流量制御部が前記ガス流路に沿って千鳥状またはランダムに配置されていることを特徴とする固体酸化物形燃料電池。
An inner electrode provided in a closed space formed of a solid electrolyte; an outer electrode provided on an outer surface of the solid electrolyte; a gas flow path provided on the inner side of the inner electrode; In a solid oxide fuel cell comprising cells having interconnected interconnectors,
Having a flow rate controller at a position facing the interconnector across the inner electrode;
The flow rate control unit has a gas permeability smaller than that of the gas flow path,
The interconnector is divided into a plurality of parts, and the interconnector and the flow rate control unit are staggered or randomly arranged along the gas flow path.
JP2011145159A 2011-06-30 2011-06-30 Solid oxide fuel cell Expired - Fee Related JP5460650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145159A JP5460650B2 (en) 2011-06-30 2011-06-30 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145159A JP5460650B2 (en) 2011-06-30 2011-06-30 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP2013012423A JP2013012423A (en) 2013-01-17
JP5460650B2 true JP5460650B2 (en) 2014-04-02

Family

ID=47686131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145159A Expired - Fee Related JP5460650B2 (en) 2011-06-30 2011-06-30 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5460650B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478262B1 (en) * 2002-08-19 2005-03-22 이원재 Drawer-type case for keeping parts
JP6239707B1 (en) * 2016-08-29 2017-11-29 日本碍子株式会社 Fuel cell stack and fuel cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334147B2 (en) * 1991-10-24 2002-10-15 東陶機器株式会社 Method for manufacturing solid oxide fuel cell
JPH0677161U (en) * 1993-04-07 1994-10-28 三菱重工業株式会社 Porous tube supporting device using solid electrolyte
JPH07114932A (en) * 1993-10-18 1995-05-02 Mitsubishi Heavy Ind Ltd Cylindrical solid electrolyte fuel cell
JPH07230815A (en) * 1994-02-18 1995-08-29 Tokyo Electric Power Co Inc:The Flat plate type solid electrolyte electrochemical cell
JPH11191420A (en) * 1997-12-26 1999-07-13 Osaka Gas Co Ltd Cell of solid electrolyte fuel cell, and the solid electrolyte fuel cell
JPH11297341A (en) * 1998-04-03 1999-10-29 Murata Mfg Co Ltd Solid electrolyte type fuel cell
JP2002231271A (en) * 2001-02-01 2002-08-16 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
US6824907B2 (en) * 2002-01-16 2004-11-30 Alberta Reasearch Council, Inc. Tubular solid oxide fuel cell stack
US7374838B2 (en) * 2003-06-10 2008-05-20 Ballard Power Systems Inc. Electrochemical fuel cell with fluid distribution layer having non-uniform permeability
JP2007305319A (en) * 2006-05-09 2007-11-22 Toto Ltd Solid oxide fuel cell
JP2008117737A (en) * 2006-11-08 2008-05-22 Nippon Telegr & Teleph Corp <Ntt> Planar solid oxide fuel cell
JP5173524B2 (en) * 2007-03-28 2013-04-03 三菱重工業株式会社 Solid oxide fuel cell and water electrolysis cell
JP5515241B2 (en) * 2008-06-26 2014-06-11 大日本印刷株式会社 FUEL CELL ELECTRODE, METHOD FOR PRODUCING FUEL CELL ELECTRODE, ELECTRODE-ELECTROLYTE MEMBRANE LAMINATE, FUEL CELL CELL, AND FUEL CELL
JP2010067498A (en) * 2008-09-11 2010-03-25 Toto Ltd Solid oxide type fuel cell body and fuel cell employing the same
JP5304131B2 (en) * 2008-09-19 2013-10-02 日産自動車株式会社 Fuel cell and fuel cell separator

Also Published As

Publication number Publication date
JP2013012423A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5500254B2 (en) Fuel cell
JP2012094488A (en) Fuel cell structure
JP5883028B2 (en) Method for manufacturing cell stack device
JP6504249B2 (en) Cell module for solid oxide fuel cell and solid oxide fuel cell using the same
JP5460650B2 (en) Solid oxide fuel cell
JP2007066546A (en) Cylindrical fuel cell
KR20120012262A (en) flat-tubular solid oxide cell stack
JP5176294B2 (en) Fuel cell
JP2017076565A (en) Fuel cell stack
JP5872951B2 (en) Fuel cell
JP2006269409A (en) Solid oxide fuel cell, sofc
JP5242146B2 (en) Fuel cell and distribution manifold used therefor
JP7087616B2 (en) Fuel cell stack
JP6898188B2 (en) Fuel cell stack
JP2005216642A (en) Solid electrolyte fuel cell
KR101185380B1 (en) Junction flat-tube support for solid oxide fuel cell and stack structure using the same
JP6269311B2 (en) Fuel cell
KR20130073370A (en) Design of new support type for the optimization of solid oxide fuel cell stack and new structure of solid oxide fuel cell stack designed by the same
JP2019096443A (en) Fuel cell stack
JP6983017B2 (en) Fuel cell stack
JP6733771B2 (en) Fuel cell stack
JP2009301849A (en) Fuel cell stack
JP5305131B2 (en) Fuel cell and fuel cell
JP2010034005A (en) Fuel cell
JP6512749B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

LAPS Cancellation because of no payment of annual fees