JP5460121B2 - Method of using mixed coal and method of using mixture containing coal - Google Patents
Method of using mixed coal and method of using mixture containing coal Download PDFInfo
- Publication number
- JP5460121B2 JP5460121B2 JP2009118362A JP2009118362A JP5460121B2 JP 5460121 B2 JP5460121 B2 JP 5460121B2 JP 2009118362 A JP2009118362 A JP 2009118362A JP 2009118362 A JP2009118362 A JP 2009118362A JP 5460121 B2 JP5460121 B2 JP 5460121B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- oxygen absorption
- absorption rate
- oxygen
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003245 coal Substances 0.000 title claims description 175
- 239000000203 mixture Substances 0.000 title claims description 27
- 238000000034 method Methods 0.000 title claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 101
- 239000001301 oxygen Substances 0.000 claims description 101
- 229910052760 oxygen Inorganic materials 0.000 claims description 101
- 238000010521 absorption reaction Methods 0.000 claims description 84
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 30
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 28
- 238000005259 measurement Methods 0.000 claims description 22
- 230000002269 spontaneous effect Effects 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 14
- 239000001569 carbon dioxide Substances 0.000 claims description 14
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 230000003647 oxidation Effects 0.000 claims description 11
- 239000010883 coal ash Substances 0.000 claims description 8
- 239000000571 coke Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 239000010849 combustible waste Substances 0.000 claims description 7
- 150000001247 metal acetylides Chemical class 0.000 claims 2
- 239000004568 cement Substances 0.000 description 10
- 238000007726 management method Methods 0.000 description 8
- 239000003476 subbituminous coal Substances 0.000 description 8
- 230000002265 prevention Effects 0.000 description 7
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 6
- 239000003830 anthracite Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 239000003077 lignite Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002817 coal dust Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Solid Fuels And Fuel-Associated Substances (AREA)
Description
本発明は、燃料用石炭の貯炭方法に関し、特にセメント工場での石炭貯炭場における自然発火を防止する方法に関する。 The present invention relates to a method for storing coal for fuel, and more particularly to a method for preventing spontaneous ignition in a coal storage facility in a cement factory.
従来、セメント工場で燃料として使用される石炭は、瀝青炭、無煙炭のような高品位炭が主流であった。ところが、これらの高品位炭は可採埋蔵量に限りがあるため、その価格は年々上昇している。従来の高品位炭に替えて埋蔵量の豊富な亜瀝青炭および褐炭などを利用することができれば、資源の保全上意義が大きい。しかしながら、亜瀝青炭および褐炭などは炭化度が低く、揮発分が高いため、貯炭中に自然発火を起こしやすいという問題がある。 Conventionally, high-grade coal such as bituminous coal and anthracite coal has been the mainstream used as fuel in cement factories. However, the prices of these high-grade coals are increasing year by year due to limited reserves. If sub-bituminous coal and lignite with abundant reserves can be used instead of conventional high-grade coal, it will have a significant significance in terms of resource conservation. However, sub-bituminous coal and lignite have a low degree of carbonization and a high volatile content, so that there is a problem that spontaneous combustion is likely to occur during coal storage.
セメント工場での貯炭の形態には、屋外ヤード貯炭、屋内ヤード貯炭およびホール貯炭などがある。石炭の自然発火は、石炭の低温酸化に伴なう発熱に起因する。自然発火防止の原則は、石炭の酸化発熱速度よりも熱放散速度が上回るように管理することである。したがって、防止策は酸素との接触を抑制(酸化防止)すること、熱の放散効率を高める(蓄熱防止)ことの2点である。屋外ヤード貯炭の場合の酸化防止側面からの自然発火防止策には、貯炭の転圧により外気の侵入を防止する、シートや粘土などでパイルの外表面を被覆することで外気の侵入を防止する、自然発火防止剤を散布するおよび季節ごとの風向、風速を考慮してパイルの斜面の方向および傾斜を設計する、などがある。蓄熱防止側面からの自然発火防止策には、定期的にパイルの切り返しを行うことで放熱を促す、散水により水の気化熱で放熱を促す、パイル高さを低く設計する、などがある。但し、散水による冷却は微粉炭の流出によりパイルの気孔率が高まり、逆に外気が侵入しやすくなるという問題があった。 Coal storage at cement plants includes outdoor yard storage, indoor yard storage and hall storage. The spontaneous ignition of coal is caused by the heat generated by low temperature oxidation of coal. The principle of spontaneous combustion prevention is to manage the heat dissipation rate to exceed the oxidation heat generation rate of coal. Therefore, there are two prevention measures: suppressing contact with oxygen (preventing oxidation) and increasing heat dissipation efficiency (preventing heat storage). In order to prevent spontaneous ignition from the side of oxidation prevention in the case of outdoor yard coal storage, the ingress of outside air is prevented by rolling the coal storage, and the outside surface of the pile is prevented by covering the outer surface of the pile with sheets or clay. In addition, spraying a pyrophoric agent and designing the direction and slope of the pile slope in consideration of the wind direction and wind speed of each season. Measures to prevent spontaneous ignition from the aspect of preventing heat storage include promoting heat dissipation by periodically turning the pile, promoting heat dissipation by the heat of vaporization of water by watering, and designing a low pile height. However, cooling by sprinkling has a problem that the porosity of the pile increases due to the outflow of pulverized coal, and the outside air easily enters.
屋内ヤード貯炭の場合の発火防止策は、基本的には屋外ヤード貯炭の場合と共通であるが、降雨の影響を受けないため貯炭の水分管理に課題がある。また、長期にわたる炭塵の堆積が起こらないように管理する必要があった。 The fire prevention measures in the case of indoor yard coal storage are basically the same as in the case of outdoor yard coal storage, but there is a problem in water management of the coal storage because it is not affected by rainfall. In addition, it was necessary to manage so that accumulation of coal dust over a long period of time did not occur.
ホール貯炭の場合、重機の走行ができないこと、常時クレーン作業が行なわれていることなどから、貯炭表面の転圧操作が困難であり、酸化防止側面からの有効な発火防止策はない。蓄熱防止側面からの防止策には、1.1回の受入数量を少なくする、2.貯炭の層厚さを薄くする、3.できる限り短期間で使い切る、4.貯炭の温度検出、COガスのモニタリング頻度を増加させることにより早期の危険予知を励行する、などで対処していた。 In the case of hole coal storage, it is not possible to run heavy equipment, and the like that have been made at all times crane work, it is difficult to rolling pressure operation of coal storage surface, there is no valid fire prevention measures from the anti-oxidation side. For prevention measures from the heat storage prevention side, reduce the quantity received 1.1 times. 2. Reduce the thickness of the coal storage. Use up as quickly as possible. The company responded by encouraging early risk prediction by detecting the temperature of coal storage and increasing the frequency of CO gas monitoring.
石炭ミルからバーナーまでの区間には、炭塵の集塵を目的として電気集塵機、バグフィルターおよび一時保管タンクなどが設置されている。貯炭場から石炭ミルへ供給された石炭は、乾燥、粉砕され空気(または機械)輸送により集塵機、端末ビンを経てキルンの主バーナーで燃焼される。石炭ミル以降での石炭の性状は、微粉となっている点、より高温にさらされている点で貯炭場の石炭とは異なり、滞留時間は短いものの、貯炭場にある石炭よりもはるかに自然発火しやすい環境下にある。 In the section from the coal mill to the burner, an electrostatic precipitator, a bag filter and a temporary storage tank are installed for the purpose of collecting coal dust. Coal supplied to the coal mill from the coal yard is dried, pulverized, and burned by the main burner of the kiln through the dust collector and the terminal bottle by air (or machine) transport. The coal properties after the coal mill are finer and exposed to higher temperatures, unlike coal at the coal yard, although the residence time is short but much more natural than coal at the coal yard. The environment is prone to ignition.
セメント工場で使用される燃料用石炭は、発熱量、価格、ハンドリング性(主に含水率)、組成(主に揮発分)などを指標にして、総合的にその使用の可否判断がなされる。上記のうち、例えば、特許文献1のように、特に自然発火性の判断指標とされるのは揮発分であるが、その目安となる数値は長年の経験に基づいて決定されている。ところが、この目安値のみで使用の可否判断を行うと、使用できる石炭の種類が著しく限られてしまっていた。 Fuel coal used in cement factories is comprehensively judged on whether or not it can be used based on the calorific value, price, handling properties (mainly water content), composition (mainly volatile content), and the like. Among these, for example, as disclosed in Patent Document 1, it is the volatilized component that is particularly used as a judgment index for spontaneous ignition, but a numerical value serving as a guide has been determined based on years of experience. However, if it is determined whether or not it can be used only with this guideline value, the types of coal that can be used are extremely limited.
そこで、新たな燃料石炭を安全に管理するための揮発分に代わる管理指標を提供し、より簡単に、複数の種別の混合された石炭のセメント工場等での場所を選ばない貯炭、配管滞留、サイクロンバッグ滞留等をより安全に行える管理方法を実現することを課題とした。 Therefore, we provide a management index that replaces volatile matter for safely managing new fuel coal, and more easily store coal in multiple types of mixed coal in cement factories, etc. The task was to realize a management method that would allow the cyclone bags to stay more safely.
石炭の酸素吸収速度と自然発火性について、鋭意検討した結果、本願発明に至った。即ち2種以上の石炭を混合して貯炭する方法であって、その混合割合が、各々の石炭の酸素吸収速度に基づいて決定される方法を、提供する。 As a result of intensive studies on the oxygen absorption rate and pyrophoric properties of coal, the present invention has been achieved. That is, the present invention provides a method of storing two or more types of coal by mixing, wherein the mixing ratio is determined based on the oxygen absorption rate of each coal.
また、オイルコークス、活性炭、可燃性廃棄物の炭化物、石炭灰、無機粉体から選ばれる少なくとも1種以上と、石炭を混合して貯炭する方法であって、その混合割合を混合物の酸素吸収速度に基づいて決定する方法を、提供する。 Also, a method of storing coal by mixing coal with at least one selected from oil coke, activated carbon, combustible waste carbide, coal ash, and inorganic powder, the mixing ratio being the oxygen absorption rate of the mixture A method of determining based on the above is provided.
複数の石炭を含む混炭の所定の酸素吸収速度が、安全の確認された石炭の酸素吸収速度以下となるように、混炭の配合を決定し、自然発火を防止する混炭の使用方法、を提供する。 Provided is a method of using a mixed coal that determines the blending of the mixed coal and prevents spontaneous ignition so that the predetermined oxygen absorption rate of the mixed coal containing a plurality of coals is equal to or lower than the oxygen absorption rate of the coal whose safety has been confirmed. .
更に、石炭並びに、オイルコークス、活性炭、可燃性廃棄物の炭化物、石炭灰、又は無機粉体から選ばれる少なくとも1種以上を含む混合物の所定の酸素吸収速度が、安全の確認された石炭の酸素吸収速度以下となるように、混炭の配合を決定し、自然発火を防止する混炭の使用方法、を提供する。 Furthermore, the predetermined oxygen absorption rate of coal and a mixture containing at least one selected from oil coke, activated carbon, flammable waste carbide, coal ash, or inorganic powder has a safe oxygen content. Provided is a method of using a coal blend that determines the blending of the coal blend so as to be equal to or less than the absorption rate and prevents spontaneous ignition.
複数の種別を含む石炭について、次測定手順で酸素吸収速度を計算し、管理酸素濃度=安全の確認された石炭の酸素吸収速度/複数の種別を含む石炭の酸素吸収速度×21(%)以下に保つことを特徴とする複数の種別を含む石炭の管理方法、を提供する。 For coal containing multiple types, calculate the oxygen absorption rate by the following measurement procedure, and manage oxygen concentration = oxygen absorption rate of coal with confirmed safety / oxygen absorption rate of coal including multiple types x 21 (%) or less A coal management method including a plurality of types is provided.
測定手順
1. 混合石炭試料を水酸化ナトリウムを仕込んだ酸素封入の密閉容器内に収納すると石炭の酸化により二酸化炭素が発生する。
2. 発生した二酸化炭素は水酸化ナトリウムに吸収され炭酸化固定される。
3. 容器内では圧力低下が起こる。
4. 容器内の気圧を圧力センサで感知し、記録計で記録する。
5. 圧力低下量を酸素吸収量に換算する。
6. 酸素吸収量の経時変化(一次微分)から酸素吸収速度を計算する。
Measurement procedure When the mixed coal sample is stored in an oxygen-sealed closed vessel charged with sodium hydroxide, carbon dioxide is generated by the oxidation of the coal.
2. The generated carbon dioxide is absorbed by sodium hydroxide and fixed by carbonation.
3. A pressure drop occurs in the container.
4). The pressure inside the container is detected by a pressure sensor and recorded by a recorder.
5. The pressure drop is converted into oxygen absorption.
6). The oxygen absorption rate is calculated from the change in oxygen absorption with time (first derivative).
内圧低下量から酸素吸収量への換算を行うには、理想気体の状態方程式で近似計算が可能である。 In order to convert the amount of decrease in internal pressure into the amount of absorbed oxygen, an approximate calculation can be performed using the ideal gas equation of state.
亜瀝青炭や褐炭など、酸素吸収速度の大きい石炭の場合、吸収速度の時間変化が大きく測定精度が低下するので、試料重量、粒度範囲、測定温度の測定条件と測定精度の関係について考慮した。その検討の結果、本法による酸素吸収速度測定の測定条件は、例えば、内容積325mlの試料容器に対して石炭重量30g、粒度範囲100μm〜1mm、測定温度20℃と決定すると、本法による測定誤差は3%となることが分かった。 In the case of coal with a large oxygen absorption rate, such as subbituminous coal and lignite, the time variation of the absorption rate is large and the measurement accuracy is lowered. Therefore, the relationship between the measurement conditions of sample weight, particle size range, measurement temperature and measurement accuracy was considered. As a result of the examination, if the measurement conditions of the oxygen absorption rate measurement by this method are determined to be, for example, a coal weight of 30 g, a particle size range of 100 μm to 1 mm, and a measurement temperature of 20 ° C. with respect to a sample container with an internal volume of 325 ml, measurement by this method The error was found to be 3%.
さらに、酸素濃度の影響を考慮することが好ましい。雰囲気中の酸素濃度と石炭の酸素吸収速度との関係を把握したところ、雰囲気中の酸素濃度と石炭の酸素吸収速度には、正の相関が成立することが確認された。一方、石炭の低温酸化による発熱速度は酸素吸収速度に比例するため、石炭の自然発火は酸素吸収速度をコントロールすることで可能といえる。 Furthermore, it is preferable to consider the influence of the oxygen concentration. Ascertaining the relationship between the oxygen concentration in the atmosphere and the oxygen absorption rate of coal, it was confirmed that a positive correlation was established between the oxygen concentration in the atmosphere and the oxygen absorption rate of coal. On the other hand, since the heat generation rate due to low-temperature oxidation of coal is proportional to the oxygen absorption rate, it can be said that spontaneous ignition of coal is possible by controlling the oxygen absorption rate.
混炭による酸素吸収速度のコントロールは、貯炭状態にも石炭ミル以降の状態にも共通して適用することができる技術である。酸素吸収速度の低い無煙炭と高い亜瀝青炭、およびこれらの配合比率を変えて混合した混炭の酸素吸収速度の測定した結果、混合炭の酸素吸収速度は、混合前の各石炭の単独の酸素吸収速度に混合比率の重みをつけた加算値となることが判明した。 Control of oxygen absorption rate by blended coal is a technique that can be applied in common to both the coal storage state and the state after the coal mill. As a result of measuring the oxygen absorption rate of anthracite coal with low oxygen absorption rate and high sub-bituminous coal, and the mixed coal mixed at different blending ratios, the oxygen absorption rate of the mixed coal is the single oxygen absorption rate of each coal before mixing It became clear that it became the addition value which added the weight of the mixture ratio to.
さらに、市販の自然発火性試験装置を用いて混合炭の自然発火性評価試験の測定を行ったところ、混合炭の自然発火時間は、混合前の各石炭の単独の自然発火時間に混合比率の重みをつけた加算値となることが判明した。この結果、安全の確認された石炭を基準に混合炭の酸素吸収速度を次式で求められる管理酸素濃度以下とすることで、自然発火の防止が可能であることが確認された。 Furthermore, when the pyrophoric evaluation test of the coal mixture was measured using a commercially available pyrophoric test device, the autoignition time of the coal mixture was determined by the ratio of the mixture ratio to the individual autoignition time of each coal before mixing. It turned out to be a weighted addition value. As a result, it was confirmed that the spontaneous combustion could be prevented by setting the oxygen absorption rate of the mixed coal below the control oxygen concentration obtained by the following equation based on the confirmed safe coal.
複数の種別の石炭について、次測定手順で各種別の石炭の酸素吸収速度を計算し、管理酸素濃度=〔安全の確認された石炭の酸素吸収速度/Σ(各石炭の酸素吸収速度×該石炭の質量比)〕×21(%)、21%は、空気中の酸素の平均体積%である。 For multiple types of coal, calculate the oxygen absorption rate of each type of coal using the following measurement procedure, and manage oxygen concentration = [safety-confirmed coal oxygen absorption rate / Σ (oxygen absorption rate of each coal x the coal Mass ratio)] × 21 (%) and 21% are the average volume% of oxygen in the air.
石炭の酸素吸収速度は、雰囲気中の酸素濃度に比例するため、石炭ミル以降、キルンバーナーまでの区間の雰囲気の酸素濃度を管理することで、石炭ミル以降での自然発火を防止することができる。但し、石炭ミル以降では、石炭が微粉となっているために石炭自身がより酸化されやすい状態にある。また、石炭ミルには石炭乾燥のために熱風が導入されているため石炭の酸素吸収速度がより高い状態となっている。石炭ミル以降での石炭の性状は、微粉となっている点、より高温にさらされている点で貯炭場の石炭とは異なっており、滞留時間は短いものの、貯炭場にある石炭よりもはるかに自然発火しやすい環境下にある。 Since the oxygen absorption rate of coal is proportional to the oxygen concentration in the atmosphere, spontaneous ignition after the coal mill can be prevented by managing the oxygen concentration in the section from the coal mill to the kiln burner. . However, after the coal mill, since the coal is fine, the coal itself is more easily oxidized. Moreover, since hot air is introduced into the coal mill for drying the coal, the oxygen absorption rate of the coal is higher. The properties of coal after the coal mill differ from coal in the coal yard in that it is finely powdered and exposed to higher temperatures, and although the residence time is short, it is much longer than coal in the coal yard. In an environment that is prone to spontaneous ignition.
たとえば、無煙炭および亜瀝青炭の混炭の酸素吸収速度は単独の場合の酸素吸収速度の中間の値となった。自然発火性試験の結果においても、混炭の温度上昇曲線は単独の場合の中間に位置した。 For example, the oxygen absorption rate of the anthracite and sub-bituminous coal blends was an intermediate value of the oxygen absorption rate when used alone. Even in the results of the pyrogenicity test, the temperature rise curve of the coal blend was located in the middle of the single case.
炭化度の異なる3種以上の石炭を含む混炭の場合であっても、酸素吸収速度の加成則は成立する。安全の確認された石炭の酸素吸収速度を基準に、複数の石炭を含む混炭の酸素吸収速度から、混炭の配合を決定すれば、自然発火を起こすことなくセメント工場で使用することができる。 Even in the case of a mixed coal containing three or more types of coal having different carbonization degrees, the addition rule of the oxygen absorption rate is established. If the blending of the coal mixture is determined from the oxygen absorption rate of the coal mixture containing a plurality of coals based on the oxygen absorption rate of the coal whose safety has been confirmed, it can be used in a cement factory without causing spontaneous ignition.
また、石炭と、オイルコークス、活性炭、可燃性廃棄物の炭化物、石炭灰、無機粉体から選ばれる少なくとも1種以上を含む混合物の場合であっても、酸素吸収速度の加成則は成立することが判明した。この混合物の場合も、酸素吸収速度が、所定値以下となるように、配合を決定すれば、自然発火を起こすことなくセメント工場で使用することができる。 In addition, even in the case of a mixture containing at least one selected from coal and oil coke, activated carbon, combustible waste carbide, coal ash, and inorganic powder, the additive law of the oxygen absorption rate is established. It has been found. In the case of this mixture as well, if the blending is determined so that the oxygen absorption rate is a predetermined value or less, it can be used in a cement factory without causing spontaneous ignition.
新たな燃料石炭の選定指標および安全に管理するための揮発分に代わる管理指標を提供し、従来、自然発火が懸念されて使用することができなかった亜瀝青炭および褐炭などの石炭を、自然発火を起こすことなく貯炭したり、粉砕したり、配管滞留、サイクロンバッグ滞留等が行える。 Providing new fuel coal selection indicators and management indicators to replace volatiles for safe management, and igniting coal such as sub-bituminous coal and lignite that could not be used due to concerns about spontaneous ignition Coal storage, pulverization, pipe retention, cyclone bag retention, etc.
以下に本発明の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
現実の石炭の低温酸化のメカニズムは複雑であるが、実用上以下の式のように単純化しても差し支えない。すなわち、密閉容器内で石炭と酸素を含有する気体とを接触させると、石炭の酸化反応により、二酸化炭素、一酸化炭素および熱が生成する。石炭の低温酸化により生成するガスの大半が二酸化炭素であることより、石炭の酸素吸収速度は、容器内圧力を計測できるセンサ付の二酸化炭素吸収密閉容器で精度よく測定することができる。1モルの酸素の吸収により、同じく1モルの二酸化炭素が生成するので、この二酸化炭素を炭酸化固定すれば、酸素の吸収量を求めることができる。 Although the mechanism of low-temperature oxidation of actual coal is complicated, it can be simplified as shown in the following equation in practice. That is, when coal and oxygen-containing gas are brought into contact in an airtight container, carbon dioxide, carbon monoxide, and heat are generated by the oxidation reaction of coal. Since most of the gas generated by low-temperature oxidation of coal is carbon dioxide, the oxygen absorption rate of coal can be accurately measured with a carbon dioxide-absorbing sealed container with a sensor that can measure the pressure in the container. Similarly, 1 mol of carbon dioxide is produced by the absorption of 1 mol of oxygen. Therefore, if this carbon dioxide is carbonized and fixed, the amount of oxygen absorbed can be determined.
石炭+O2→CO2+0.1CO+熱 Coal + O 2 → CO 2 + 0.1 CO + heat
この測定を実施するにあたり、例えば、市販のBOD簡易測定器がこの機能を備えている。その測定原理を図1に示した。BOD簡易測定器は、ガラス製容器20、内部圧力センサ付ヘッド30(密栓)を含み、石炭試料を入れたガラス製容器内圧力を前記センサで感知、計測することができる。その計測値を連続的に記録できる記録計を備えることが好ましい。
In carrying out this measurement, for example, a commercially available BOD simple measuring instrument has this function. The measurement principle is shown in FIG. The BOD simple measuring instrument includes a
測定手順の概容は以下のとおりとした。
1. 石炭試料を水酸化ナトリウムを仕込んだ酸素封入の密閉容器内に収納すると、石炭の酸化により二酸化炭素が発生する。
2. 発生した二酸化炭素は水酸化ナトリウムに吸収され炭酸化固定される。
3. 容器内では圧力低下が起こる。
4. 容器内の気圧の時間変化を圧力センサで感知し、記録計で記録する。
5. 圧力低下量を酸素吸収量に換算する。
6. 酸素吸収量の経時変化(一次微分)から酸素吸収速度を計算する。
The outline of the measurement procedure was as follows.
1. When a coal sample is stored in an oxygen-sealed sealed container charged with sodium hydroxide, carbon dioxide is generated by the oxidation of the coal.
2. The generated carbon dioxide is absorbed by sodium hydroxide and fixed by carbonation.
3. A pressure drop occurs in the container.
4). The pressure change in the container is detected with a pressure sensor and recorded by a recorder.
5. The pressure drop is converted into oxygen absorption.
6). The oxygen absorption rate is calculated from the change in oxygen absorption with time (first derivative).
具体的には、平均直径1mm以下の石炭試料30gを内容積325mlのガラス製容器20に入れ、二酸化炭素吸収剤である水酸化ナトリウム粒子を専用ホルダーに収納し、ガラス容器20にセットし、ヘッド30で密栓し直ちに測定を開始した。容器の内圧が経時的に記録されるため、この内圧の変化量を酸素吸収量に換算し、その経時変化から、酸素吸収速度を求めた。
Specifically, 30 g of a coal sample having an average diameter of 1 mm or less is placed in a
内圧変化量から酸素吸収量への換算は以下の式によった。 Conversion from the amount of change in internal pressure to the amount of absorbed oxygen was based on the following equation.
各記号は、次内容である。
A:酸素吸収量 [m mol-O2/g-coal]
P:内圧減少量 [hPa]
V:容器内容積 [cm3]
Wd:石炭の乾燥重量 [g]
d:石炭の真密度 [g/cm3]
W:石炭の重量 [g]
Each symbol has the following contents.
A: Oxygen absorption [m mol-O 2 / g-coal]
P: Internal pressure decrease [hPa]
V: Container volume [cm 3 ]
W d : dry weight of coal [g]
d: True density of coal [g / cm 3 ]
W: Weight of coal [g]
異なる酸素吸収速度を有する2種類の石炭を混合するとき、その混炭の酸素吸収速度には加成則が成り立った。従って、石炭の種類による相違、混合による相互の影響はほとんど考慮する必要がないと考えられる。したがって、酸素吸収速度の低い石炭と高い石炭、例えば無煙炭と亜瀝青炭とを混合することによって、混炭の酸素吸収速度を定量的にコントロールすることができることが判明した。 When two types of coal having different oxygen absorption rates were mixed, an additive law was established for the oxygen absorption rate of the mixed coal. Therefore, it is considered that there is almost no need to consider the difference between coal types and the mutual effects of mixing. Accordingly, it has been found that the oxygen absorption rate of the coal blend can be quantitatively controlled by mixing coal with a low oxygen absorption rate and a high coal, such as anthracite and subbituminous coal.
また、混炭による酸素吸収速度のコントロールは、貯炭状態にも石炭ミル以降の状態にも共通して適用することができる技術である。 Moreover, control of the oxygen absorption rate by mixed coal is a technique that can be applied in common to both the coal storage state and the state after the coal mill.
図2には、酸素吸収速度の低い無煙炭とこれが高い亜瀝青炭、およびこれら2種の石炭を各50重量%ずつ混合した混炭の酸素吸収速度の測定結果を示す。また、図3は自然発火性評価試験の結果を示す。 FIG. 2 shows the oxygen low absorption rate anthracite and this high subbituminous, and the measurement result of the oxygen absorption rate of the CCS, the imported coal is blended with a mixture of these two coal by each 5 0 wt%. FIG. 3 shows the results of the spontaneous ignition evaluation test.
図2のプロットの傾きより、無煙炭および亜瀝青炭の酸素吸収速度は、それぞれ0.000045および0.000200[m mol-O2/g-coal/hr.]と算出された。また、両者の混炭の酸素吸収速度は0.000135[m mol-O2/g-coal/hr.]と算出され、単独の場合の酸素吸収速度のほぼ中間の値となった。この結果より、異なる酸素吸収速度を有する2種類の石炭を混合するときには加成則が成り立つことが確認された。 From the slope of the plot in FIG. 2, the oxygen absorption rates of anthracite and subbituminous coal were calculated as 0.000045 and 0.000200 [m mol-O 2 / g-coal / hr.], Respectively. In addition, the oxygen absorption rate of both coal blends was calculated to be 0.000135 [m mol-O 2 / g-coal / hr.], Which was a value approximately in the middle of the oxygen absorption rate in the case of using alone. From this result, it was confirmed that the additive rule holds when two types of coal having different oxygen absorption rates are mixed.
図3の自然発火性試験の結果においても、混炭の温度上昇曲線は単独の場合の中間に位置した。以上の結果より、混炭により石炭の自然発火性は定量的にコントロールすることが可能であると結論できる。 Also in the result of the pyrogenicity test in FIG. 3, the temperature rise curve of the coal blend was located in the middle of the case where it alone. From the above results, it can be concluded that the pyrophoric properties of coal can be quantitatively controlled by blending coal.
炭化度の異なる3種以上の石炭を含む混炭の場合であっても、酸素吸収速度の加成則は成立するが、複数の石炭を含む混炭の場合、その混炭の酸素吸収速度が、好ましく0.00021[m mol-O2/g-coal/hr.]以下、より好ましくは0.00018[m mol-O2/g-coal/hr.]以下となるように、混炭の配合を決定すれば、自然発火を起こすことなくセメント工場で使用することができる。このとき、各種別の石炭の酸素吸収速度を計算し、管理酸素濃度=〔安全の確認された石炭の酸素吸収速度/Σ(各石炭の酸素吸収速度*該石炭の質量比)〕*21(%)で示される管理酸素濃度以下での使用とする。 Even in the case of a mixed coal containing three or more kinds of coals having different carbonization degrees, the addition rule of the oxygen absorption rate is established, but in the case of a mixed coal containing a plurality of coals, the oxygen absorption rate of the mixed coal is preferably 0.00021. If the blended coal mixture is determined so that it is [m mol-O 2 / g-coal / hr.] or less, more preferably 0.00018 [m mol-O 2 / g-coal / hr.] or less, Can be used in cement factories without causing At this time, the oxygen absorption rate of each type of coal is calculated, and the managed oxygen concentration = [the oxygen absorption rate of the coal whose safety is confirmed / Σ (the oxygen absorption rate of each coal * the mass ratio of the coal)] * 21 ( %) And below the controlled oxygen concentration.
また、石炭と、オイルコークス、活性炭、可燃性廃棄物の炭化物、石炭灰、無機粉体から選ばれる少なくとも1種以上を含む混合物の場合であっても、その混合物の酸素吸収速度が、好ましくは0.00021[m mol-O2/g-coal/hr.]以下、より好ましくは0.00018[m mol-O2/g-coal/hr.]以下となるように、配合を決定すれば、自然発火を起こすことなくセメント工場で使用することができる。このとき、管理酸素濃度=〔安全の確認された石炭の酸素吸収速度/その混合物の酸素吸収速度〕*21(%)以下の酸素濃度以下で管理することで、自然発火を防止できた。 Moreover, even in the case of a mixture containing at least one selected from coal and oil coke, activated carbon, carbide of combustible waste, coal ash, and inorganic powder, the oxygen absorption rate of the mixture is preferably If the blending is determined so that it becomes 0.00021 [m mol-O 2 / g-coal / hr.] Or less, more preferably 0.00018 [m mol-O 2 / g-coal / hr.] Or less, spontaneous ignition will occur. Can be used in cement factories without waking up. At this time, by controlling the controlled oxygen concentration = [the oxygen absorption rate of coal whose safety was confirmed / the oxygen absorption rate of the mixture thereof] * 21 (%) or less, spontaneous ignition could be prevented.
本発明を実施すれば、揮発分が高くより自然発火を起こし易い石炭のセメント工場での使用の可能性が判定でき、これを選定する指標となり、併せて、セメント工場での貯炭、使用時の管理指標、管理方法が実現する。 By carrying out the present invention, it is possible to determine the possibility of use of a coal having a high volatile content that is more likely to spontaneously ignite in a cement factory, and this is an index for selecting the coal. Management indicators and management methods are realized.
10:二酸化炭素吸収剤収納ホルダー
20:ガラス製容器
30:内部圧力センサ内臓ヘッド(水酸化ナトリウム内包)
40:石炭混合試料
10: Carbon dioxide absorbent storage holder 20: Glass container 30: Internal pressure sensor built-in head (sodium hydroxide included)
40: Coal mixed sample
Claims (2)
測定手順
1. 石炭試料を、水酸化ナトリウムを仕込んだ酸素封入の密閉容器内に収納すると、石炭の酸化により二酸化炭素が発生する。
2. 発生した二酸化炭素は水酸化ナトリウムに吸収され炭酸化固定される。
3. 容器内では圧力低下が起こる。
4. 容器内の気圧の時間変化を圧力センサで感知し、記録計で記録する。
5. 下記式により、圧力低下量を酸素吸収量に換算する。
6. 酸素吸収量の経時変化(一次微分)から酸素吸収速度を計算する。
P:内圧減少量 [hPa]
V:容器内容積 [cm 3 ]
W d :石炭の乾燥重量 [g]
d:石炭の真密度 [g/cm 3 ]
W:石炭の重量 [g] Oxygen absorption rate different coal, oxygen absorption rate was calculated respectively by the following measurement procedure, the oxygen absorption rate of the CCS, the imported coal is blended, including a plurality of coal oxygen absorption rates are different, the oxygen of a single individual coal and the calculated Mixing ratio of each coal so that the oxygen absorption rate of the mixed coal becomes 0.00021 [m mol-O 2 / g-coal / hr.] Or less when the addition rate is obtained by adding the weight of the mixing rate to the absorption rate . How to use blended coal to prevent spontaneous ignition.
Measurement procedure
1. When a coal sample is stored in an oxygen-sealed sealed container charged with sodium hydroxide, carbon dioxide is generated due to oxidation of the coal.
2. The generated carbon dioxide is absorbed by sodium hydroxide and fixed by carbonation.
3. A pressure drop occurs in the container.
4). The pressure change in the container is detected with a pressure sensor and recorded by a recorder.
5). The pressure drop amount is converted into the oxygen absorption amount by the following formula.
6). The oxygen absorption rate is calculated from the change in oxygen absorption with time (first derivative).
P: Internal pressure decrease [hPa]
V: Container volume [cm 3 ]
W d : dry weight of coal [g]
d: True density of coal [g / cm 3 ]
W: Weight of coal [g]
測定手順
1. 試料を、水酸化ナトリウムを仕込んだ酸素封入の密閉容器内に収納すると、試料の酸化により二酸化炭素が発生する。
2. 発生した二酸化炭素は水酸化ナトリウムに吸収され炭酸化固定される。
3. 容器内では圧力低下が起こる。
4. 容器内の気圧の時間変化を圧力センサで感知し、記録計で記録する。
5. 下記式により、圧力低下量を酸素吸収量に換算する。
6. 酸素吸収量の経時変化(一次微分)から酸素吸収速度を計算する。
P:内圧減少量 [hPa]
V:容器内容積 [cm 3 ]
W d :試料の乾燥重量 [g]
d:試料の真密度 [g/cm 3 ]
W:試料の重量 [g] The oxygen absorption rate is calculated by the following measurement procedure for at least one selected from coal, oil coke, activated carbon, combustible waste carbide, coal ash, or inorganic powder, and the coal, oil coke, activated carbon , carbides combustible waste, coal ash, or oxygen absorption rate of the mixture comprising at least one selected from inorganic powders, coal as well as the calculated, oil coke, activated carbon, carbides combustible waste, When an addition value obtained by adding a weight of the mixing ratio to at least one or more kinds of oxygen absorption rates selected from coal ash or inorganic powder, the oxygen absorption rate of the mixture is 0.00021 [m mol-O 2 / g-coal / hr.] The mixing ratio of at least one selected from coal, oil coke, activated carbon, carbide of combustible waste, coal ash, or inorganic powder is determined so as to be How to use a mixture containing coal to prevent spontaneous ignition.
Measurement procedure
1. When the sample is stored in an oxygen-sealed sealed container charged with sodium hydroxide, carbon dioxide is generated due to oxidation of the sample.
2. The generated carbon dioxide is absorbed by sodium hydroxide and fixed by carbonation.
3. A pressure drop occurs in the container.
4). The pressure change in the container is detected with a pressure sensor and recorded by a recorder.
5). The pressure drop amount is converted into the oxygen absorption amount by the following formula.
6). The oxygen absorption rate is calculated from the change in oxygen absorption with time (first derivative).
P: Internal pressure decrease [hPa]
V: Container volume [cm 3 ]
W d : Dry weight of sample [g]
d: True density of sample [g / cm 3 ]
W: Weight of sample [g]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009118362A JP5460121B2 (en) | 2009-05-15 | 2009-05-15 | Method of using mixed coal and method of using mixture containing coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009118362A JP5460121B2 (en) | 2009-05-15 | 2009-05-15 | Method of using mixed coal and method of using mixture containing coal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010265394A JP2010265394A (en) | 2010-11-25 |
JP5460121B2 true JP5460121B2 (en) | 2014-04-02 |
Family
ID=43362656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009118362A Active JP5460121B2 (en) | 2009-05-15 | 2009-05-15 | Method of using mixed coal and method of using mixture containing coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5460121B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5456073B2 (en) | 2012-01-06 | 2014-03-26 | 三菱重工業株式会社 | Coal deactivation processing equipment |
JP5971652B2 (en) | 2012-10-09 | 2016-08-17 | 三菱重工業株式会社 | Coal deactivation processing equipment |
JP5536247B1 (en) | 2013-03-04 | 2014-07-02 | 三菱重工業株式会社 | Coal deactivation processing equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006077155A (en) * | 2004-09-10 | 2006-03-23 | Chubu Electric Power Co Inc | Method for preventing spontaneous ignition of coal, and coal mixed fuel prevented from spontaneous ignition |
-
2009
- 2009-05-15 JP JP2009118362A patent/JP5460121B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010265394A (en) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Critical particle size analysis of gas emission under high-temperature oxidation of weathered coal | |
Tissari et al. | Fine particle and gas emissions from the combustion of agricultural fuels fired in a 20 kW burner | |
Baris et al. | Low-temperature oxidation of some Turkish coals | |
Song et al. | Slagging characteristics of Zhundong coal during circulating fluidized bed gasification | |
JP5460121B2 (en) | Method of using mixed coal and method of using mixture containing coal | |
Sefidari et al. | The effect of co-firing coal and woody biomass upon the slagging/deposition tendency in iron-ore pelletizing grate-kiln plants | |
Prismantoko et al. | Effectiveness of different additives on slagging and fouling tendencies of blended coal | |
Qiu et al. | Experimental investigation of ash deposits characteristics of co-combustion of coal and rice hull using a digital image technique | |
CN109855892A (en) | Heat loss of imperfect solid combustion rapid detection method based on Carbon balance | |
Lin et al. | Inhibition and promotion: The effect of earth alkali metals and operating temperature on particle agglomeration/defluidization during incineration in fluidized bed | |
Zhang et al. | Effects of ash/K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite | |
Sweeten et al. | Combustion of cattle feedlot manure for energy production | |
Kraszkiewicz et al. | The chemical composition of ash from the plant biomass in terms of indicators to assess slagging and pollution of surface heating equipment | |
Kim et al. | Combustion possibility of low rank Russian peat as a blended fuel of pulverized coal fired power plant | |
Duchesne et al. | Fate of inorganic matter in entrained-flow slagging gasifiers: Pilot plant testing | |
Külaots et al. | Development of porosity during coal char combustion | |
Bu et al. | Iron based oxygen-carrier-aided oxy-fuel combustion of coal char: Reactivity and oxygen transfer mechanism | |
Wu et al. | Estimation of atmospheric iodine emission from coal combustion | |
Kühn et al. | Coal-derived low smoke fuel assessment through coal stove combustion testing | |
Bergström | Mercury behaviour in flue gases | |
Li et al. | Characterization of in-situ and cooling char from ten typical Chinese coals | |
Nunes et al. | Determination of the kinetic parameters of Oxy-fuel combustion of coal with a high ash content | |
JP5290036B2 (en) | Method for selecting or managing coal for fuel | |
Gupta | Coal research in Newcastle—past, present and future | |
Cai et al. | NO x and H 2 S formation in the reductive zone of air-staged combustion of pulverized blended coals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100813 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120410 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131022 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140114 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5460121 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |