JP5458528B2 - Optically active biphenyl phosphate derivative - Google Patents

Optically active biphenyl phosphate derivative Download PDF

Info

Publication number
JP5458528B2
JP5458528B2 JP2008210859A JP2008210859A JP5458528B2 JP 5458528 B2 JP5458528 B2 JP 5458528B2 JP 2008210859 A JP2008210859 A JP 2008210859A JP 2008210859 A JP2008210859 A JP 2008210859A JP 5458528 B2 JP5458528 B2 JP 5458528B2
Authority
JP
Japan
Prior art keywords
optically active
reaction
group
asymmetric
phosphate derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008210859A
Other languages
Japanese (ja)
Other versions
JP2010047490A (en
Inventor
和明 菅野
潤 竹原
正樹 高井
隆彦 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008210859A priority Critical patent/JP5458528B2/en
Publication of JP2010047490A publication Critical patent/JP2010047490A/en
Application granted granted Critical
Publication of JP5458528B2 publication Critical patent/JP5458528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Indole Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、新規光学活性ビフェニルリン酸誘導体及びその用途に関する。   The present invention relates to a novel optically active biphenyl phosphate derivative and use thereof.

有機触媒反応においては、近年、金属触媒を用いない反応が注目されている。特に不斉有機触媒反応において、これまで用いられていた金属触媒は、不安定であるため取り扱いに注意が必要で、さらに高価であるという難点がある。これに対し、有機触媒は安価で、水や酸素にも安定であること等から大きな利点を有する。さらに、金属触媒を用いた場合には製品への金属混入の問題があり、特に、医薬中間体製造などの分野においては大きな問題となっていた。この金属の混入の問題についても、有機触媒を用いることにより解決されるため、有機触媒はこれまでの金属触媒に代わる新しい触媒として非常に期待されている。   In recent years, organic catalyst reactions have attracted attention without using metal catalysts. In particular, in asymmetric organic catalytic reactions, metal catalysts that have been used so far are unstable and require attention to handling, and are also expensive. On the other hand, the organic catalyst has great advantages because it is inexpensive and stable to water and oxygen. Furthermore, when a metal catalyst is used, there is a problem of metal contamination in the product, and particularly in the field of pharmaceutical intermediate production and the like. Since the problem of metal contamination is also solved by using an organic catalyst, the organic catalyst is highly expected as a new catalyst that replaces the conventional metal catalyst.

このような有機触媒として、光学活性なリン酸触媒であるビナフチル型の光学活性リン酸化合物が、本発明者らにより開示されている(例えば、非特許文献1参照)。しかし、多様な不斉反応の触媒として用いるためには、反応に必要な修飾等の容易さにおいて、より優れた触媒の開発が求められていた。
即ち、ビナフチル型の光学活性リン酸化合物には、本発明の光学活性ビフェニルリン酸誘導体のようなベンジル位がないため、反応性が低く、修飾の多様性において不利である。また、ビナフチル型の光学活性リン酸化合物は、分子量が大きいために必ずしも工業的に適したものとはいえず、より分子量の小さい化合物からなる触媒の開発も求められていた。
As such an organic catalyst, the present inventors have disclosed a binaphthyl type optically active phosphoric acid compound, which is an optically active phosphoric acid catalyst (see, for example, Non-Patent Document 1). However, in order to use it as a catalyst for various asymmetric reactions, there has been a demand for the development of a catalyst that is superior in the ease of modification required for the reaction.
That is, since the binaphthyl type optically active phosphate compound does not have the benzyl position as in the optically active biphenyl phosphate derivative of the present invention, it has low reactivity and is disadvantageous in the variety of modifications. In addition, binaphthyl-type optically active phosphate compounds are not necessarily industrially suitable due to their large molecular weights, and the development of catalysts composed of compounds with lower molecular weights has also been demanded.

ビナフチル型以外の光学活性リン酸化化合物が開示された例としては、光学活性なビフェノールを得る目的で、ラセミのビフェニルリン酸へシンコナアルカロイドを作用させて光学分割する際の中間体としてビフェニルリン酸化合物が記載されている(ここで用いているビフェニルリン酸は5,5’位がメチル基で置換されている。)のみであり(例えば、非特許文献2、特許文献1参照)、不斉反応の触媒としてこれを用いた例はない。   Examples of disclosed optically active phosphorylated compounds other than binaphthyl type include biphenyl phosphate as an intermediate for optical resolution by acting cinchona alkaloid on racemic biphenyl phosphate for the purpose of obtaining optically active biphenol The compounds are only described (the biphenyl phosphate used here is substituted with a methyl group at the 5 and 5 ′ positions) (see, for example, Non-Patent Document 2 and Patent Document 1), and asymmetric There is no example of using this as a catalyst for the reaction.

また、ビフェニル骨格ならびにビナフチル骨格を持たない光学活性リン酸誘導体の例として、光学活性な酒石酸(TADDOL)から誘導した光学活性リン酸化合物(非特許文献3)やビフェナンスロール(VAPOL)から誘導した光学活性リン酸化合物(非特許文献4)が知られているが、ビナフチル骨格を持つ光学活性リン酸誘導体に比べ、不斉反応に利用した例が非常に少ない。酒石酸から誘導した光学活性リン酸化合物は、グリニヤ反応により化合物の修飾を行うが、グリニヤ反応に適さない基質は使うことができない。また、ビフェナンスロール(VAPOL)から誘導した光学活性リン酸化合物は、構造上、修飾できる場所がない。   Examples of optically active phosphate derivatives having no biphenyl skeleton and binaphthyl skeleton are derived from optically active phosphate compounds derived from optically active tartaric acid (TAADDOL) (non-patent document 3) and biphenanthrol (VAPOL). An optically active phosphoric acid compound (Non-patent Document 4) is known, but there are very few examples used for asymmetric reaction as compared with an optically active phosphoric acid derivative having a binaphthyl skeleton. An optically active phosphate compound derived from tartaric acid is modified by a Grignard reaction, but a substrate that is not suitable for the Grignard reaction cannot be used. Moreover, the optically active phosphate compound derived from biphenanthrol (VAPOL) has no place where it can be modified due to its structure.

また、光学活性リン化合物を遷移金属との錯体として、不斉反応触媒として用いた例はある(例えば、特許文献2参照)が、金属を含まない光学活性リン化合物のみでは反応を進行させることはできていない。
WO2002−040491号公報 特開2003−176293号公報 T.Akiyama;J.Itoh;K.Yokota;K.Fuchibe;Angew.Chem.Int.Ed.,43,1566(2004) JohnB.Alexander;DanielS.La;DustinR.Cefalo;AmirH.Hoveyda;RichardR.Schrock;J.Am.Chem.Soc.,120,4041(1998) T.Akiyama等、Adv.Synth.Catal.,347,1523(2005) GeraldB.Rowland等、J.Am.Chem.Soc.,127,15696(2005)
In addition, there is an example in which an optically active phosphorus compound is used as a complex with a transition metal and as an asymmetric reaction catalyst (see, for example, Patent Document 2), but the reaction can proceed only with an optically active phosphorus compound that does not contain a metal. Not done.
WO2002-040491 JP 2003-176293 A T. T. et al. Akiyama; Itoh; Yokota; Fuchibe; Angew. Chem. Int. Ed. , 43, 1566 (2004) John B. Alexander; Daniel S .; La; DustinR. Cefalo; AmirH. Hoveyda; RichardR. Schrock; Am. Chem. Soc. , 120, 4041 (1998) T. T. et al. Akiyama et al., Adv. Synth. Catal. , 347, 1523 (2005) GeraldB. Rowland et al. Am. Chem. Soc. , 127, 15696 (2005)

本発明は、不斉求核反応において、高い反応性と高い光学純度で目的物を得ることができ、公知の有機触媒よりも低分子量でしかも反応に必要な修飾等が容易でコストのかからない工業的に有利な触媒を提供することを課題とする。   The present invention is an asymmetric nucleophilic reaction that can obtain a target product with high reactivity and high optical purity, has a lower molecular weight than a known organic catalyst, is easily modified and required for the reaction, and is inexpensive. It is an object to provide a particularly advantageous catalyst.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の構造を有する光学活性ビフェニルリン酸誘導体が、低分子量でしかも反応に必要な修飾等が容易であり、また、この光学活性ビフェニルリン酸誘導体を用いることにより、高い反応性と高い光学純度にて不斉マンニッヒ反応、不斉フリーデルクラフト反応等の不斉求核反応により目的物を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an optically active biphenyl phosphate derivative having a specific structure has a low molecular weight and can be easily modified for a reaction. By using an optically active biphenyl phosphate derivative, it was found that the target product can be obtained by asymmetric nucleophilic reaction such as asymmetric Mannich reaction and asymmetric Friedel-Craft reaction with high reactivity and high optical purity. The invention has been completed.

すなわち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1]一般式(i)又は(ii)で示される光学活性ビフェニルリン酸誘導体。 [1] An optically active biphenyl phosphate derivative represented by the general formula (i) or (ii).

Figure 0005458528
Figure 0005458528

(式中、R、Rは、それぞれ独立して、炭素数1〜20の置換基を有していてもよい炭化水素基又は置換シリル基を表す。) (Wherein, R 1, R 2 are each independently represent a substituent which may have a hydrocarbon group or a substituted silyl group having 1 to 20 carbon atoms.)

[2]下記式(3)又は(4)で表される光学活性6,6’−ジメチル−1,1’−ビフェニル−2,2’−ジオールを出発原料として用い、その3,3’位に置換基R 及びR を導入し、オキシ塩化リンと反応させることを特徴とする、上記[1]に記載の光学活性ビフェニルリン酸誘導体の製造方法。

Figure 0005458528
[2] Using optically active 6,6′-dimethyl-1,1′-biphenyl-2,2′-diol represented by the following formula (3) or (4) as a starting material, its 3,3 ′ position The method for producing an optically active biphenyl phosphate derivative according to the above [1] , wherein the substituents R 1 and R 2 are introduced into and reacted with phosphorus oxychloride .
Figure 0005458528

[3]上記[1]に記載の光学活性ビフェニルリン酸誘導体を含む不斉求核反応触媒。 [3] An asymmetric nucleophilic reaction catalyst comprising the optically active biphenyl phosphate derivative according to [1].

[4]上記[3]に記載の不斉求核反応触媒の存在下で行うことを特徴とする不斉求核反応。 [4] An asymmetric nucleophilic reaction, which is performed in the presence of the asymmetric nucleophilic reaction catalyst according to [3].

本発明の新規光学活性ビフェニルリン酸誘導体は、分子量が小さく、修飾もし易いこと等から工業的に有利に用いることができる。しかして、この光学活性ビフェニルリン酸誘導体は、各種不斉求核反応において高い反応性を示し、且つ高い光学純度の反応生成物を与えることができる。
本発明の光学活性ビフェニルリン酸誘導体の存在下で行われる不斉求核反応により製造される目的物は、医薬、農薬等の中間体や原料等として有用な化合物である。
The novel optically active biphenyl phosphate derivative of the present invention can be advantageously used industrially because of its low molecular weight and easy modification. Thus, this optically active biphenyl phosphate derivative exhibits high reactivity in various asymmetric nucleophilic reactions and can give a reaction product with high optical purity.
The target product produced by the asymmetric nucleophilic reaction carried out in the presence of the optically active biphenyl phosphate derivative of the present invention is a compound useful as an intermediate or raw material for pharmaceuticals, agricultural chemicals and the like.

以下に、本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施の形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容には特定されない。   Embodiments of the present invention will be described in detail below. However, the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention does not exceed the gist thereof. These contents are not specified.

なお、本明細書において、各種官能基の「炭素数」とは、当該官能基が置換基を有する場合、その置換基を含めた合計の炭素数をさす。   In the present specification, the “carbon number” of various functional groups refers to the total number of carbon atoms including the substituent when the functional group has a substituent.

[光学活性ビフェニルリン酸誘導体]
本発明の光学活性ビフェニルリン酸誘導体は、下記一般式(1)又は(2)で表され、式中R、Rは、炭素数1〜20の置換基を有していてもよい炭化水素基、又は置換シリル基であって、RとRは互いに同一であっても異なるものであってもよい。
[Optically active biphenyl phosphate derivative]
The optically active biphenyl phosphate derivative of the present invention is represented by the following general formula (1) or (2), and R 1 and R 2 in the formula may have a carbon number 1 to 20 substituent. It is a hydrogen group or a substituted silyl group, and R 1 and R 2 may be the same or different from each other.

Figure 0005458528
Figure 0005458528

、Rで示される炭素数1〜20の置換基を有していてもよい炭化水素基としては、例えばアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられ、その中でもアリール基が好ましく用いられる。また、アリール基としては、フェニル基、ナフチル基、アントリル基、フェナンスリル基、ビフェニル基、ターフェニル基等が挙げられる。 Examples of the hydrocarbon group optionally having a substituent having 1 to 20 carbon atoms represented by R 1 and R 2 include an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, and the like. Of these, an aryl group is preferably used. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, and a terphenyl group.

また、これらの炭化水素基が有していてもよい置換基としては、炭化水素基、アルコキシ基、アリールオキシ基、複素環基、水酸基、アミノ基、置換アミノ基、アルキルチオ基、アリールチオ基、アシル基、アルコキシカルボニル基、アルキルチオカルボニル基、アリールオキシカルボニル基、カルバモイル基、置換イミノ基、シアノ基、ニトロ基、シリル基又はハロゲン原子等が挙げられ、特にニトロ基やトリフルオロメチル基等の電気吸引性の基であることが好ましい。これらの置換基の置換位置は、本発明の光学活性ビフェニルリン酸誘導体が不斉求核反応の触媒活性を有する限りいずれでも良いが、例えばR、Rの炭化水素基がフェニル基でその置換基が電子吸引性の基である場合には、フェニル基の2位及び/又は4位であることが好ましい。 Further, these hydrocarbon groups may have a hydrocarbon group, an alkoxy group, an aryloxy group, a heterocyclic group, a hydroxyl group, an amino group, a substituted amino group, an alkylthio group, an arylthio group, an acyl group. Group, alkoxycarbonyl group, alkylthiocarbonyl group, aryloxycarbonyl group, carbamoyl group, substituted imino group, cyano group, nitro group, silyl group or halogen atom, etc., especially nitro or trifluoromethyl group It is preferable that it is a sex group. The substitution position of these substituents may be any as long as the optically active biphenyl phosphate derivative of the present invention has a catalytic activity for asymmetric nucleophilic reaction. For example, the hydrocarbon groups of R 1 and R 2 are phenyl groups, When the substituent is an electron-withdrawing group, the 2-position and / or 4-position of the phenyl group is preferable.

置換シリル基としては、例えば、トリアルキルシリル基(アルキル基の炭素数は好ましくは1〜10)、トリアリールシリル基、トリアラルキルシリル基(アラルキル基の炭素数は好ましくは2〜10)、ジアルキルアリールシリル基(アルキル基の炭素数は好ましくは1〜10)、ジアリールアルキルシリル基(アルキル基の炭素数は好ましくは1〜10)等が挙げられる。具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルイソプロピルシリル基、ジエチルイソプロピルシリル基、t−ブチルジメチルシリル基、ジ−t−ブチルメチルシリル基、トリベンジルシリル基、トリフェニルシリル基、トリキシリルシリル基、t−ブチルジフェニルシリル基、ジフェニルメチルシリル基等が挙げられ、その中でも特にトリフェニルシリル基が好ましい。   Examples of the substituted silyl group include a trialkylsilyl group (the alkyl group preferably has 1 to 10 carbon atoms), a triarylsilyl group, a triaralkylsilyl group (the aralkyl group preferably has 2 to 10 carbon atoms), dialkyl Examples thereof include an arylsilyl group (the alkyl group preferably has 1 to 10 carbon atoms) and a diarylalkylsilyl group (the alkyl group preferably has 1 to 10 carbon atoms). Specific examples include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, dimethylisopropylsilyl group, diethylisopropylsilyl group, t-butyldimethylsilyl group, di-t-butylmethylsilyl group, tribenzylsilyl group, triphenyl. Examples thereof include a silyl group, a trixylsilyl group, a t-butyldiphenylsilyl group, and a diphenylmethylsilyl group. Among them, a triphenylsilyl group is particularly preferable.

上記で示したRとRについては、不斉求核反応の触媒として用いた場合に、収率や光学純度に影響を及ぼすことが多々あるので、光学活性ビフェニルリン酸誘導体の使用目的に応じて、以下の例を参考に適宜選択することができる。 Since R 1 and R 2 shown above often affect the yield and optical purity when used as a catalyst for asymmetric nucleophilic reaction, they can be used for the purpose of using optically active biphenyl phosphate derivatives. Accordingly, it can be appropriately selected with reference to the following example.

例えば、下記一般式(a)又は(b)で表される、ビフェニル骨格類似の光学活性ビナフチルリン酸化合物を用いた場合、アルジミンとシリルケテンアセタールを反応基質とした不斉マンニッヒ反応において、R=R=Hでは収率57%,光学純度0%ee、R=R=Ph(フェニル基)では収率100%,光学純度27%ee、R=R=4−NOPhでは収率96%,光学純度87%eeである(T.Akiyama等、Angew.Chem.Int.Ed.,43,1566(2004))。 For example, when an optically active binaphthyl phosphate compound similar to the biphenyl skeleton represented by the following general formula (a) or (b) is used, in the asymmetric Mannich reaction using aldimine and silyl ketene acetal as reaction substrates, R a = R b = H yield 57%, optical purity 0% ee, R a = R b = Ph (phenyl group) 100% yield, optical purity 27% ee, R a = R b = 4-NO 2 The yield of Ph is 96% and the optical purity is 87% ee (T. Akiyama et al., Angew. Chem. Int. Ed., 43, 1566 (2004)).

Figure 0005458528
Figure 0005458528

また、同様に上記光学活性ビナフチルリン酸化合物を用いた場合、アルジミンとジアルキルホスファイトを反応基質とした不斉ヒドロホスホニル化反応において、R=R=4−NOPhでは収率90%,光学純度23%ee、R=R=3,5−(CFPhでは収率99%,光学純度43%eeとなる(T.Akiyama等、Org.Lett.,7,13,2583(2005))。 Similarly, when the optically active binaphthyl phosphate compound is used, in the asymmetric hydrophosphonylation reaction using aldimine and dialkyl phosphite as reaction substrates, a yield of 90% is obtained for R a = R b = 4-NO 2 Ph. An optical purity of 23% ee and R a = R b = 3,5- (CF 3 ) 2 Ph gives a yield of 99% and an optical purity of 43% ee (T. Akiyama et al., Org. Lett., 7, 13, 2583 (2005)).

本発明の光学活性ビフェニルリン酸誘導体における置換基R,Rも、このような光学活性ビナフチルリン酸化合物の置換基R,Rと同様の傾向を示すため、このような情報をもとに、目的とする不斉求核反応に好適な触媒構成とすることができる。 Since the substituents R 1 and R 2 in the optically active biphenyl phosphate derivative of the present invention show the same tendency as the substituents R a and R b of such an optically active binaphthyl phosphate compound, such information is also included. In addition, a catalyst configuration suitable for the target asymmetric nucleophilic reaction can be obtained.

本発明の光学活性ビフェニルリン酸誘導体は、ビフェニル骨格を基本骨格とするものであり、従来の光学活性ビナフチルリン酸化合物等に比べて分子量が小さく、工業的に有利である。また、本発明の光学活性ビフェニルリン酸誘導体では、上記一般式(1),(2)中のRおよびRにおいて様々な修飾が可能である。さらに、本発明の光学活性ビフェニルリン酸化合物は、ビフェニルの6,6’位にメチル基を有しており、反応性に富んだベンジル位であるため、容易に6,6’位からの修飾が可能である。一方で、従来の光学活性ビナフチルリン酸化合物には、このようなベンジル位がないため、反応に必要な修飾等が容易ではない。従って、修飾の多様性においても、本発明の光学活性ビフェニルリン酸化合物は工業的に有利であるといえる。 The optically active biphenyl phosphate derivative of the present invention has a biphenyl skeleton as a basic skeleton, and has a molecular weight smaller than that of a conventional optically active binaphthyl phosphate compound or the like, and is industrially advantageous. Moreover, in the optically active biphenyl phosphate derivative of the present invention, various modifications can be made in R 1 and R 2 in the general formulas (1) and (2). Furthermore, since the optically active biphenyl phosphate compound of the present invention has a methyl group at the 6,6′-position of biphenyl and is a highly reactive benzyl position, it can be easily modified from the 6,6′-position. Is possible. On the other hand, since the conventional optically active binaphthyl phosphate compound does not have such a benzyl position, modification required for the reaction is not easy. Therefore, it can be said that the optically active biphenyl phosphate compound of the present invention is industrially advantageous also in the variety of modifications.

[光学活性ビフェニルリン酸誘導体の製造方法]
本発明の光学活性ビフェニルリン酸誘導体の製造方法については、特に制限はないが、公知の光学活性ビナフチルリン酸誘導体の製造方法に基づいて行うことができる。具体的には、例えば、Angew.Chem.Int.Ed.,43,1566(2004)やJ.Am.Chem.Soc.,128,84(2006)に記載の方法を適用することができる。
[Method for producing optically active biphenyl phosphate derivative]
Although there is no restriction | limiting in particular about the manufacturing method of the optically active biphenyl phosphate derivative of this invention, It can carry out based on the manufacturing method of a well-known optically active binaphthyl phosphate derivative. Specifically, for example, Angew. Chem. Int. Ed. 43, 1566 (2004), and Am. Chem. Soc. , 128, 84 (2006) can be applied.

また、R位およびR位の修飾、即ち置換基R,Rの導入方法については、公知の通常用いられる方法で行うことができ、例えば、Br化、及びアミノ化には、Org.Process Res.Dev.(2007)、11(3)、628−632に記載の方法等が用いることができる。また、Br化、及び環化反応としては、J.Org.Chem.(2003)、68(23)、8918−8、あるいはJ.Chem.Soc.,Perkin Trans.1(1988)、(6)、1305−11記載の方法を用いることができる。 In addition, the modification of the R 1 position and the R 2 position, that is, the introduction method of the substituents R 1 and R 2 can be carried out by a known and commonly used method. . Process Res. Dev. (2007), 11 (3), 628-632, etc. can be used. In addition, as Br formation and cyclization reaction, J. et al. Org. Chem. (2003), 68 (23), 8918-8, or J.A. Chem. Soc. Perkin Trans. 1 (1988), (6), 1305-11 can be used.

具体的な製造方法の一例を、以下に説明する。   An example of a specific manufacturing method will be described below.

<3,3’−ジアリール置換光学活性ビフェニルリン酸誘導体の製造>
特開2004−189696号公報に記載されている、下記一般式(3)又は(4)で表される光学活性6,6’−ジメチル−1,1’−ビフェニル−2,2’−ジオールを出発原料として、6,6’−ジメチル−1,1’−ビフェニル−2,2’−ビス(メトキシメチル)エーテルを調製し、次いで強塩基下で3,3’位にホウ素基を導入する。
<Production of 3,3′-diaryl-substituted optically active biphenyl phosphate derivative>
An optically active 6,6′-dimethyl-1,1′-biphenyl-2,2′-diol represented by the following general formula (3) or (4) described in JP-A No. 2004-189696 is used. As a starting material, 6,6′-dimethyl-1,1′-biphenyl-2,2′-bis (methoxymethyl) ether is prepared, and then a boron group is introduced at the 3,3 ′ position under a strong base.

Figure 0005458528
Figure 0005458528

反応生成物をハロゲン置換アリール化合物とパラジウム触媒の存在下にカップリング反応をさせることで、3,3’位にアリール基を導入する。この後、メトキシメチル基を脱保護し、オキシ塩化リンと反応させた後に加水分解することで3,3’−ジアリール置換光学活性ビフェニルリン酸誘導体を製造することができる。   The reaction product is subjected to a coupling reaction in the presence of a halogen-substituted aryl compound and a palladium catalyst to introduce an aryl group at the 3,3 ′ position. Thereafter, the methoxymethyl group is deprotected, reacted with phosphorus oxychloride, and then hydrolyzed, whereby a 3,3′-diaryl-substituted optically active biphenyl phosphate derivative can be produced.

<3,3’−ジシリル光学活性ビフェニルリン酸誘導体の製造>
特開2004−189696号公報に記載されている上記一般式(3)又は(4)で表される光学活性6,6’−ジメチル−1,1’−ビフェニル−2,2’−ジオールを出発原料として、6,6’−ジメチル−1,1’−ビフェニル−2,2’−ビス(メトキシメチル)エーテルを調製し、強塩基下で、ハロゲン置換シリル化合物と反応させることで3,3’位に置換シリル基を導入する。その後、メトキシメチル基を脱保護し、オキシ塩化リンと反応させた後に加水分解することで3,3’−ジシリル置換光学活性ビフェニルリン酸誘導体を製造することができる。
<Production of 3,3′-disilyl optically active biphenyl phosphate derivative>
Starting from the optically active 6,6′-dimethyl-1,1′-biphenyl-2,2′-diol represented by the general formula (3) or (4) described in JP-A-2004-189696 As a raw material, 6,3′-dimethyl-1,1′-biphenyl-2,2′-bis (methoxymethyl) ether was prepared and reacted with a halogen-substituted silyl compound under a strong base to produce 3,3 ′. A substituted silyl group is introduced at the position. Thereafter, a 3,3′-disilyl-substituted optically active biphenyl phosphate derivative can be produced by deprotecting the methoxymethyl group, reacting with phosphorus oxychloride and then hydrolyzing.

[不斉求核反応]
本発明の光学活性ビフェニルリン酸誘導体は、不斉求核反応の有機触媒として好適に用いることができる。
本発明の光学活性ビフェニルリン酸誘導体を適用することができる不斉求核反応としては、例えば、不斉マンニッヒ反応、不斉フリーデルクラフト反応、不斉マイケル付加反応等が挙げられる。
[Asymmetric nucleophilic reaction]
The optically active biphenyl phosphate derivative of the present invention can be suitably used as an organic catalyst for asymmetric nucleophilic reaction.
Examples of the asymmetric nucleophilic reaction to which the optically active biphenyl phosphate derivative of the present invention can be applied include an asymmetric Mannich reaction, an asymmetric Friedel-Craft reaction, an asymmetric Michael addition reaction, and the like.

この不斉求核反応において、本発明の光学活性ビフェニルリン酸誘導体は、1種を単独で用いても2種以上を混合して用いても良い。また、本発明の光学活性ビフェニルリン酸誘導体のみで用いてもよいが、例えば反応を活性化する目的で各種の添加剤と併用してもよい。   In this asymmetric nucleophilic reaction, the optically active biphenyl phosphate derivative of the present invention may be used alone or in combination of two or more. The optically active biphenyl phosphate derivative of the present invention may be used alone, but may be used in combination with various additives for the purpose of activating the reaction, for example.

本発明の光学活性ビフェニルリン酸誘導体と併用し得る添加剤の例としては、モレキュラシーブスTM、無水硫酸マグネシウム、無水硫酸ナトリウムなどの脱水剤などが挙げられるが、これらに限定されるものではない。これらは、1種を単独で用いても2種以上を混合して用いても良い。 Examples of additives that can be used in combination with the optically active biphenyl phosphate derivative of the present invention include, but are not limited to, dehydrating agents such as Molecular Sieves TM , anhydrous magnesium sulfate, and anhydrous sodium sulfate. These may be used alone or in combination of two or more.

本発明の光学活性ビフェニルリン酸誘導体を不斉求核反応に用いる場合、一般的に、その使用量は、原料(求電子剤)に対して0.1〜50モル%であることが好ましく、特に0.5〜20モル%であることが好ましい。また、上記の脱水剤を併用する場合、脱水剤は、原料(求電子剤)に対して1〜200重量%、特に5〜100重量%程度用いることが好ましい。   When the optically active biphenyl phosphate derivative of the present invention is used in an asymmetric nucleophilic reaction, generally, the amount used is preferably 0.1 to 50 mol% with respect to the raw material (electrophile), In particular, the content is preferably 0.5 to 20 mol%. Moreover, when using said dehydrating agent together, it is preferable to use a dehydrating agent 1 to 200 weight% with respect to a raw material (electrophile), especially about 5 to 100 weight%.

本発明に係る不斉求核反応に用いることができる原料、溶媒、反応条件等について、下記に例を挙げるが、本発明はこれらに限定されるものではない。   Examples of raw materials, solvents, reaction conditions, and the like that can be used for the asymmetric nucleophilic reaction according to the present invention are given below, but the present invention is not limited to these.

<不斉マンニッヒ反応>
不斉マンニッヒ反応の求核剤としては、例えばケテンシリルアセタール化合物やケトン類等が用いられる。また、求電子剤としてイミン化合物等が用いられ、該イミン化合物は、アルデヒド化合物とアミン化合物を原料として用いて、反応系内で発生させることもできる。
<Asymmetric Mannich reaction>
Examples of the nucleophile for the asymmetric Mannich reaction include ketene silyl acetal compounds and ketones. In addition, an imine compound or the like is used as an electrophile, and the imine compound can be generated in a reaction system using an aldehyde compound and an amine compound as raw materials.

不斉マンニッヒ反応に用いる溶媒としては、反応に関与しないものであれば特に制限はないが、例えば塩化メチレン、クロロホルム、及びジクロロエタン等のハロゲン溶媒や、テトラヒドロフラン、ジエチルエーテル等のエーテル溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、メタノール、エタノール、2−プロパノール等のアルコール溶媒、あるいは水などが用いられる。また、これらの溶媒は、単独でもしくは共溶媒として用いることができる。   The solvent used in the asymmetric Mannich reaction is not particularly limited as long as it does not participate in the reaction. For example, halogen solvents such as methylene chloride, chloroform and dichloroethane, ether solvents such as tetrahydrofuran and diethyl ether, benzene and toluene. An aromatic hydrocarbon such as xylene, an aliphatic hydrocarbon such as hexane and heptane, an alcohol solvent such as methanol, ethanol and 2-propanol, or water is used. These solvents can be used alone or as a co-solvent.

反応温度は、反応基質によって変化するが、−78〜80℃の範囲であることが好ましい。但し、高い光学純度を達成するためには、一般的に低温の方がよく、−78〜40℃の範囲であることが特に好ましい。   Although reaction temperature changes with reaction substrates, it is preferable that it is the range of -78-80 degreeC. However, in order to achieve high optical purity, generally a lower temperature is better, and a range of −78 to 40 ° C. is particularly preferable.

<不斉フリーデルクラフト反応>
不斉フリーデルクラフト反応の求核剤としては、インドール化合物、ピロール化合物、フラン化合物、アニリン化合物等が用いられ、求電子剤としては、ニトロアルケン化合物、α,β−不飽和カルボニル化合物(ケトン類、アルデヒド類、エステル類)、あるいはイミン化合物等が挙げられる。
<Asymmetric Friedel Craft Reaction>
Indole compounds, pyrrole compounds, furan compounds, aniline compounds, etc. are used as nucleophiles for asymmetric Friedel-Craft reaction, and nitroalkene compounds, α, β-unsaturated carbonyl compounds (ketones) are used as electrophiles. Aldehydes, esters), or imine compounds.

不斉フリーデルクラフト反応に用いる溶媒としては、反応に関与しないものであれば特に制限はないが、例えば塩化メチレン、クロロホルム、ジクロロエタンなどのハロゲン溶媒や、テトラヒドロフラン、ジエチルエーテルなどのエーテル溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、ヘキサン、ヘプタンなどの脂肪族炭化水素、メタノール、エタノール、2−プロパノールなどのアルコール溶媒、あるいは水などが用いられる。これらの溶媒は、単独でもしくは共溶媒として用いることができる。   The solvent used in the asymmetric Friedel-Craft reaction is not particularly limited as long as it does not participate in the reaction. For example, halogen solvents such as methylene chloride, chloroform and dichloroethane, ether solvents such as tetrahydrofuran and diethyl ether, benzene, Aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, alcohol solvents such as methanol, ethanol and 2-propanol, or water are used. These solvents can be used alone or as a co-solvent.

反応温度は、反応基質によって変化するが、−78〜80℃の範囲であることが好ましい。但し、高い光学純度を達成するためには、一般的に低温の方がよく、−78〜室温(例えば25℃程度)の範囲であることが特に好ましい。   Although reaction temperature changes with reaction substrates, it is preferable that it is the range of -78-80 degreeC. However, in order to achieve high optical purity, it is generally preferable that the temperature is low, and it is particularly preferably in the range of −78 to room temperature (for example, about 25 ° C.).

<不斉マイケル付加反応>
不斉マイケル付加反応の求核剤としてマロン酸ジエステル、ジケトン類、β−ケトエステル類、ニトロアルカン類、シアノアルカン類、イミノ酢酸エステル類、アルコール類、フェノール類、チオール類などの硫黄化合物、アジ化物、あるいはヒドロキシジアリールホスフィン類などが用いられる。また、求電子剤としては、α,β−不飽和カルボニル化合物(ケトン類、アルデヒド類、エステル類)やニトロアルケン化合物などが挙げられる。
<Asymmetric Michael addition reaction>
Malonic acid diesters, diketones, β-ketoesters, nitroalkanes, cyanoalkanes, iminoacetic esters, alcohols, phenols, thiols, and other sulfur compounds and azides as nucleophiles for asymmetric Michael addition reactions Alternatively, hydroxydiarylphosphines and the like are used. Examples of electrophiles include α, β-unsaturated carbonyl compounds (ketones, aldehydes, esters), nitroalkene compounds, and the like.

不斉マイケル付加反応に用いられる溶媒としては、反応に関与しないものであれば特に制限はないが、例えば、塩化メチレン、クロロホルム、ジクロロエタンなどのハロゲン溶媒やテトラヒドロフラン、ジエチルエーテルなどのエーテル溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、ヘキサン、ヘプタンなどの脂肪族炭化水素、あるいは水などが用いられる。これらの溶媒は、単独でもしくは共溶媒として用いることができる。   The solvent used in the asymmetric Michael addition reaction is not particularly limited as long as it does not participate in the reaction. For example, halogen solvents such as methylene chloride, chloroform and dichloroethane, ether solvents such as tetrahydrofuran and diethyl ether, benzene, Aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, or water are used. These solvents can be used alone or as a co-solvent.

反応温度は、反応基質によって変化するが、−78〜80℃の範囲であることが好ましい。但し、高い光学純度を達成するためには、一般的に低温の方がよく、−78〜室温(例えば25℃程度)の範囲であることが特に好ましい。   Although reaction temperature changes with reaction substrates, it is preferable that it is the range of -78-80 degreeC. However, in order to achieve high optical purity, it is generally preferable that the temperature is low, and it is particularly preferably in the range of −78 to room temperature (for example, about 25 ° C.).

これらの不斉求核反応で得られる反応生成物は、医薬、農薬などの各種の有用化合物の中間体や原料として用いることができる。   The reaction products obtained by these asymmetric nucleophilic reactions can be used as intermediates and raw materials for various useful compounds such as pharmaceuticals and agricultural chemicals.

以下、実施例により本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例によって限定されるものではない。なお、以下においては、光学活性化合物の(S)体のみを示すが、(R)体についても同様であり、(R)体の反応も同様に進行する。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by a following example, unless the summary is exceeded. In the following, only the (S) form of the optically active compound is shown, but the same applies to the (R) form, and the reaction of the (R) form proceeds in the same manner.

[実施例1:R=R=p−ニトロフェニル基の光学活性ビフェニルリン酸誘導体の製造] [Example 1: Production of optically active biphenyl phosphate derivative of R 1 = R 2 = p-nitrophenyl group]

<メトキシメチル化>

Figure 0005458528
<Methoxymethylation>
Figure 0005458528

ガラス製三口フラスコにNaH 0.35g(14.6mmol,2.3eq.)及びジメチルホルムアミド18mlを入れ、これを氷冷した後、ジメチルホルムアミド12mlに溶解させたジオール(i)1.521g(6.31mmol)を、窒素雰囲気下にて投入した。次にメトキシメチルクロライド(MeOCHCl)1.1ml(14.6mmol,2.3eq.)を、氷冷下で滴下した。これを室温に戻し、さらに3時間攪拌した。反応後、反応液を氷冷し、1N HCl水溶液を加えた。これを酢酸エチルで3回抽出し、1N HCl水溶液で2回、飽和塩化ナトリウム水溶液で1回洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を留去して、メトキシメチル保護体(ii)(MOM=MeOCH−)を定量的(1.90g,6.31mmol)に得た。 A glass three-necked flask was charged with 0.35 g (14.6 mmol, 2.3 eq.) Of NaH and 18 ml of dimethylformamide, and after ice cooling, 1.521 g (6. 6) of diol (i) dissolved in 12 ml of dimethylformamide. 31 mmol) was charged under a nitrogen atmosphere. Next, 1.1 ml (14.6 mmol, 2.3 eq.) Of methoxymethyl chloride (MeOCH 2 Cl) was added dropwise under ice cooling. This was returned to room temperature and further stirred for 3 hours. After the reaction, the reaction solution was ice-cooled and 1N HCl aqueous solution was added. This was extracted three times with ethyl acetate, washed twice with 1N aqueous HCl and once with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate, evaporated to remove methoxymethyl protected (ii) (MOM = MeOCH 2 -) was obtained in quantitative (1.90g, 6.31mmol).

<ホウ素化>

Figure 0005458528
<Boronation>
Figure 0005458528

ガラス製三口フラスコにメトキシメチル保護体(ii)1.90g(6.31mmol)、テトラメチルエチレンジアミン3.8ml(25.02mmol,4eq.)及びテトラヒドロフラン40mlを入れ、これを−78℃に冷却した後、n−BuLiヘキサン溶液16.1ml(4eq.)を、窒素雰囲気下にて投入した。これを0℃まで加温し、3時間攪拌した。次にこれを−78℃に冷却した後、ピナコールにより保護したホウ酸エステル7.167g(6eq.)を、窒素雰囲気下にて投入した。これを室温まで加温し、終夜攪拌した。反応後、反応液をゲル濾過し、酢酸エチルで洗浄し、溶媒を留去して、カラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、ホウ素化体(iii)1.820g(3.28mmol,収率52%)で得た。   A glass three-necked flask was charged with 1.90 g (6.31 mmol) of the protected methoxymethyl (ii), 3.8 ml of tetramethylethylenediamine (25.02 mmol, 4 eq.) And 40 ml of tetrahydrofuran, and cooled to -78 ° C. , N-BuLi hexane solution 16.1 ml (4 eq.) Was charged in a nitrogen atmosphere. This was warmed to 0 ° C. and stirred for 3 hours. Next, after cooling this to -78 ° C., 7.167 g (6 eq.) Of boric acid ester protected with pinacol was added under a nitrogen atmosphere. This was warmed to room temperature and stirred overnight. After the reaction, the reaction solution was subjected to gel filtration, washed with ethyl acetate, the solvent was distilled off, and the residue was purified by column chromatography (hexane / ethyl acetate) to obtain 1.820 g (3.28 mmol, 3.28 mmol, (Yield 52%).

<カップリング反応(p−ニトロフェニル基の導入)>

Figure 0005458528
<Coupling reaction (introduction of p-nitrophenyl group)>
Figure 0005458528

ガラス製三口フラスコにホウ素化体(iii)1.002g(1.81mmol)、p−ニトロブロモベンゼン0.803g(3.97mmol,2.2eq.)、テトラキストリフェニルホスフィンパラジウム0.105g(0.09mmol,0.05eq.)、水酸化バリウム・8水和物1.713g(5.43mmol,3.0eq.)及びジオキサン21mlと水7mlを入れ、加熱還流下で40時間攪拌した。反応後、セライト濾過を行い、溶媒を留去し、得られたp−ニトロフェニル置換体(iv)を精製することなく次工程に用いた。   In a glass three-necked flask, 1.002 g (1.81 mmol) of boride (iii), 0.803 g (3.97 mmol, 2.2 eq.) Of p-nitrobromobenzene, 0.105 g (0. 09 mmol, 0.05 eq.), 1.713 g (5.43 mmol, 3.0 eq.) Of barium hydroxide octahydrate, 21 ml of dioxane and 7 ml of water were added, and the mixture was stirred for 40 hours while heating under reflux. After the reaction, Celite filtration was performed, the solvent was distilled off, and the obtained p-nitrophenyl-substituted product (iv) was used in the next step without purification.

<脱保護>

Figure 0005458528
<Deprotection>
Figure 0005458528

ガラス製三口フラスコにカップリング反応の粗生成物であるp−ニトロフェニル置換体(iv)1.200g(2.20mmol)、濃塩酸8ml及びジオキサン23mlを入れ、50℃で21時間攪拌した。反応後、水100mlを加え、ジクロロメタンで3回抽出し、溶媒を留去して、カラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、脱保護体(v)0.609g(1.33mmol,カップリング反応と脱保護の2工程合算で収率73%)を得た。   A glass three-necked flask was charged with 1.200 g (2.20 mmol) of p-nitrophenyl-substituted product (iv), a crude product of the coupling reaction, 8 ml of concentrated hydrochloric acid and 23 ml of dioxane, and stirred at 50 ° C. for 21 hours. After the reaction, 100 ml of water was added, extracted with dichloromethane three times, the solvent was distilled off, the residue was purified by column chromatography (hexane / ethyl acetate), and deprotected form (v) 0.609 g (1.33 mmol, cup) The total yield of the ring reaction and deprotection was 73%).

<リン酸化>

Figure 0005458528
<Phosphorylation>
Figure 0005458528

ガラス製三口フラスコに脱保護体(v)384.1mg(0.841mmol)及びピリジン8mlを入れ、これにオキシ塩化リン157μl(1.684mmol,2eq.)を窒素雰囲気下、室温にて投入した。次に、これを加温し、加熱還流下で2時間攪拌した。反応後、反応液を室温まで冷却し、水2mlを加え、再びこれを加温し、加熱還流下で30分攪拌した。溶媒を留去して、残渣に6N HCl水溶液を加え、塩化メチレンで3回抽出し、無水硫酸ナトリウムで乾燥させた。これをテトラヒドロフラン/6N HCl水溶液、次いで塩化メチレン/ヘキサンによる再結晶で精製し、6,6’−ジメチル−3,3’−ビス(p−ニトロフェニル)置換ビフェニルリン酸(vi)415.3mg(0.802mmol,収率95%)を得た。このものの分析結果は以下の通りである。   A deprotection body (v) 384.1 mg (0.841 mmol) and pyridine 8 ml were placed in a glass three-necked flask, and 157 μl (1.684 mmol, 2 eq.) Of phosphorus oxychloride was added thereto at room temperature in a nitrogen atmosphere. Next, this was heated and stirred for 2 hours under heating to reflux. After the reaction, the reaction solution was cooled to room temperature, 2 ml of water was added, this was heated again, and stirred for 30 minutes under heating and refluxing. The solvent was distilled off, 6N HCl aqueous solution was added to the residue, extracted three times with methylene chloride, and dried over anhydrous sodium sulfate. This was purified by recrystallization from tetrahydrofuran / 6N HCl aqueous solution and then methylene chloride / hexane to give 415.3 mg of 6,6′-dimethyl-3,3′-bis (p-nitrophenyl) -substituted biphenyl phosphate (vi) ( 0.802 mmol, yield 95%). The analysis result of this is as follows.

H−NMR(CDCl):δ=8.06−8.04(m,4H),7.55−7.53(m,4H),7.39−7.37(m,4H),2.58(s,1H),2.35(s,6H) 1 H-NMR (CDCl 3 ): δ = 8.06-8.04 (m, 4H), 7.55-7.53 (m, 4H), 7.39-7.37 (m, 4H), 2.58 (s, 1H), 2.35 (s, 6H)

[実施例2:R=R=2,4−ジトリフルオロメチルフェニル基の光学活性ビフェニルリン酸誘導体の製造]
<カップリング反応(2,4−ジトリフルオロメチルフェニル基の導入)>

Figure 0005458528
[Example 2: Production of optically active biphenyl phosphate derivative of R 1 = R 2 = 2,4-ditrifluoromethylphenyl group]
<Coupling reaction (introduction of 2,4-ditrifluoromethylphenyl group)>
Figure 0005458528

ホウ素化体(iii)に、p−ニトロブロモベンゼンの代りに2,4−ジトリフルオロメチルブロモベンゼン1.190g(4.06mmol,2.2eq.)をカップリング反応させた以外は実施例1におけるカップリング反応と同様の操作を行って、2,4−ジトリフルオロメチルフェニル置換体(vii)を得た。   The same procedure as in Example 1 was conducted except that 1.190 g (4.06 mmol, 2.2 eq.) Of 2,4-ditrifluoromethylbromobenzene was coupled to the boride (iii) instead of p-nitrobromobenzene. The same operation as in the coupling reaction was performed to obtain 2,4-ditrifluoromethylphenyl-substituted product (vii).

<脱保護>

Figure 0005458528
<Deprotection>
Figure 0005458528

実施例1における脱保護と同様の操作で行って、2,4−ジトリフルオロメチルフェニル置換体(vii)から脱保護体(viii)0.7714g(1.208mmol,カップリング反応と脱保護の2工程合算で収率65%)を得た。   By performing the same operation as the deprotection in Example 1, 0.7714 g (1.208 mmol, coupling reaction and deprotection 2) from the 2,4-ditrifluoromethylphenyl-substituted product (vii) to the deprotected product (viii) The total yield of the process was 65%).

<リン酸化> <Phosphorylation>

Figure 0005458528
Figure 0005458528

脱保護体(viii)に対して、実施例1のリン酸化と同様の操作を行って、6,6’−ジメチル−3,3’−ビス(2,4−トリフルオロメチルフェニル)置換ビフェニルリン酸(ix)682.5mg(0.9743mmol,収率81%)を得た。このものの分析結果は以下の通りである。   The deprotected product (viii) was subjected to the same operation as in Example 1, and subjected to 6,6′-dimethyl-3,3′-bis (2,4-trifluoromethylphenyl) -substituted biphenyl phosphorus. 682.5 mg (0.9743 mmol, yield 81%) of acid (ix) was obtained. The analysis result of this is as follows.

H−NMR(CDCl):δ=8.17(s,1H),7.86(s,2H),7.63−7.48(m,4H),7.33−7.16(m,4H),2.35-2.26(m,6H) 1 H-NMR (CDCl 3 ): δ = 8.17 (s, 1H), 7.86 (s, 2H), 7.63-7.48 (m, 4H), 7.33-7.16 ( m, 4H), 2.35-2.26 (m, 6H)

[実施例3:R=R=トリフェニルシリル基の光学活性ビフェニルリン酸誘導体の製造]
<トリフェニルシリル化>

Figure 0005458528
[Example 3: Production of optically active biphenyl phosphate derivative of R 1 = R 2 = triphenylsilyl group]
<Triphenylsilylation>
Figure 0005458528

ガラス製三口フラスコに、実施例1のメトキシメチル化で得られたメトキシメチル保護体(ii)0.994g(3.29mmol)及びジエチルエーテル47mlを入れ、室温でn−BuLiヘキサン溶液5.2ml(4eq.)を、窒素雰囲気下にて投入した。これを1.5時間攪拌した。次にトリフェニルシリルクロライド2.952g(10.04mmol,3eq.)をテトラヒドロフラン40mlに溶かし、0℃で窒素雰囲気下にて投入した。これを室温まで加温し、45時間攪拌した。反応後、0℃で飽和塩化アンモニウム水溶液を投入し、これを酢酸エチルで3回抽出し、飽和塩化ナトリウム水溶液で1回洗浄した。次いで、無水硫酸ナトリウムで乾燥させ、溶媒を留去して、得られたトリフェニルシリル置換体(x)精製することなく次工程に用いた。   A glass three-necked flask was charged with 0.994 g (3.29 mmol) of the methoxymethyl protected product (ii) obtained by methoxymethylation in Example 1 and 47 ml of diethyl ether, and 5.2 ml of n-BuLi hexane solution at room temperature ( 4 eq.) Was charged under a nitrogen atmosphere. This was stirred for 1.5 hours. Next, 2.952 g (10.04 mmol, 3 eq.) Of triphenylsilyl chloride was dissolved in 40 ml of tetrahydrofuran and charged at 0 ° C. in a nitrogen atmosphere. This was warmed to room temperature and stirred for 45 hours. After the reaction, a saturated aqueous ammonium chloride solution was added at 0 ° C., this was extracted three times with ethyl acetate, and washed once with a saturated aqueous sodium chloride solution. Subsequently, it was dried over anhydrous sodium sulfate, the solvent was distilled off, and the resulting triphenylsilyl-substituted product (x) was used in the next step without purification.

<脱保護>

Figure 0005458528
<Deprotection>
Figure 0005458528

実施例1における脱保護と同様の操作を行って、トリフェニルシリル置換体(x)から脱保護体(xi)0.574g(0.79mmol,トリフェニルシリル化と脱保護の2工程合算で収率24%)を得た。   The same operation as the deprotection in Example 1 was carried out to obtain 0.574 g (0.79 mmol, triphenylsilylation and deprotection) from the triphenylsilyl substitution product (x) and the deprotection product (xi). 24%).

<リン酸化>

Figure 0005458528
<Phosphorylation>
Figure 0005458528

脱保護体(xi)に対して実施例1のリン酸化と同様の操作を行って、6,6’−ジメチル−3,3’−ビス(トリフェニルシリル)置換ビフェニルリン酸(xii)0.533g(0.73mmol,収率43%)を得た。このものの分析結果は以下の通りである。   The deprotected product (xi) was subjected to the same operation as in Example 1, and subjected to 6,6′-dimethyl-3,3′-bis (triphenylsilyl) -substituted biphenyl phosphate (xii) 0. 533 g (0.73 mmol, 43% yield) was obtained. The analysis result of this is as follows.

H−NMR(CDCl):δ=7.56−7.54(m,12H),7.37−7.26(m,20H),7.12−7.10(m,2H),2.19(s,6H),2.35(s,6H) 1 H-NMR (CDCl 3 ): δ = 7.56-7.54 (m, 12H), 7.37-7.26 (m, 20H), 7.12-7.10 (m, 2H), 2.19 (s, 6H), 2.35 (s, 6H)

[実施例4:不斉マンニッヒ反応]

Figure 0005458528
[Example 4: Asymmetric Mannich reaction]
Figure 0005458528

乾燥した二口ナス型フラスコに、窒素雰囲気下、−78℃で光学活性ビフェニルリン酸誘導体(vi)(10.2mg,0.020mmol)、イミン(A)(38.0mg,0.193mmol)、及びトルエン(1ml)を投入して20分間撹拌した。続いて、ケテンシリルアセタール(B)(TMS:トリメチルシリル基)(70μl,0.291mmol)を−78℃で滴下し、29時間撹拌した。その後、飽和炭酸水素ナトリウム水溶液にて反応を停止し、これを酢酸エチルで3回抽出し、飽和塩化ナトリウム水溶液で1回洗浄した。次いで無水硫酸ナトリウムで乾燥させ溶媒を留去した後、薄層クロマトグラフィーにより精製し、マンニッヒ付加体(C)(54.0mg,0.181mmol,収率93.6%,光学純度87.3%ee)を得た。光学純度は液体高速クロマトグラフィーにより求めた。このものの分析結果は以下の通りである。   In a dried two-necked eggplant-shaped flask, an optically active biphenyl phosphate derivative (vi) (10.2 mg, 0.020 mmol), imine (A) (38.0 mg, 0.193 mmol) at −78 ° C. in a nitrogen atmosphere, And toluene (1 ml) was added and stirred for 20 minutes. Subsequently, ketene silyl acetal (B) (TMS: trimethylsilyl group) (70 μl, 0.291 mmol) was added dropwise at −78 ° C., followed by stirring for 29 hours. Thereafter, the reaction was stopped with a saturated aqueous sodium hydrogen carbonate solution, which was extracted three times with ethyl acetate, and washed once with a saturated aqueous sodium chloride solution. Next, after drying over anhydrous sodium sulfate and distilling off the solvent, the residue was purified by thin layer chromatography, and Mannich adduct (C) (54.0 mg, 0.181 mmol, yield 93.6%, optical purity 87.3%). ee) was obtained. The optical purity was determined by liquid high performance chromatography. The analysis result of this is as follows.

H−NMR(CDCl):δ=7.29−7.19(m,5H),6.69−6.49(m,3H),6.39−6.37(m,1H),5.80(brs,1H),4.93(brs,1H),4.57(s,1H),3.68(s,3H),1.24(s,3H),1.21(s,3H) 1 H-NMR (CDCl 3 ): δ = 7.29-7.19 (m, 5H), 6.69-6.49 (m, 3H), 6.39-6.37 (m, 1H), 5.80 (brs, 1H), 4.93 (brs, 1H), 4.57 (s, 1H), 3.68 (s, 3H), 1.24 (s, 3H), 1.21 (s , 3H)

[実施例5:不斉フリーデルクラフト反応]

Figure 0005458528
[Example 5: Asymmetric Friedel-Craft reaction]
Figure 0005458528

二口ナス型フラスコにモレキュラシーブス3ATM(19.9mg)を入れ、減圧下、ヒートガンにより10分間加熱した後、容器内を窒素置換した。そこに光学活性ビフェニルリン酸誘導体(xii)(16.2mg,0.020mmol)、ニトロスチレン(E)(147.5mg,0.989mmol)、ベンゼン(0.5ml)、1,2-ジクロロエタン(0.5ml)を−35℃で投入した。10分間撹拌後、インドール(D)を投入し、47時間反応させた。これをカラムクロマトグラフィーにて精製し、インドール付加体(F)(収率100%,光学純度84%ee)を得た。光学純度は高速液体クロマトグラフィーにて求めた。このものの分析結果は以下の通りである。 Molecular sieves 3A TM (19.9 mg) was placed in a two-necked eggplant-shaped flask, heated for 10 minutes with a heat gun under reduced pressure, and the atmosphere in the container was replaced with nitrogen. Optically active biphenyl phosphate derivative (xii) (16.2 mg, 0.020 mmol), nitrostyrene (E) (147.5 mg, 0.989 mmol), benzene (0.5 ml), 1,2-dichloroethane (0 0.5 ml) at −35 ° C. After stirring for 10 minutes, indole (D) was added and reacted for 47 hours. This was purified by column chromatography to obtain an indole adduct (F) (yield 100%, optical purity 84% ee). The optical purity was determined by high performance liquid chromatography. The analysis result of this is as follows.

H−NMR(CDCl):δ=8.08(brs,1H),7.45−7.43(m,1H),7.38−7.17(m,7H),7.09−7.05(m,1H),7.02−7.00(m,1H),5.19(dd,J=7.6,8.4Hz,1H),5.06(dd,J=7.6,12.5Hz,1H),4.93(dd,J=8.4,12.5Hz,1H) 1 H-NMR (CDCl 3 ): δ = 8.08 (brs, 1H), 7.45-7.43 (m, 1H), 7.38-7.17 (m, 7H), 7.09- 7.05 (m, 1H), 7.02-7.00 (m, 1H), 5.19 (dd, J = 7.6, 8.4 Hz, 1H), 5.06 (dd, J = 7 .6, 12.5 Hz, 1H), 4.93 (dd, J = 8.4, 12.5 Hz, 1H)

[実施例6:不斉マイケル付加反応]

Figure 0005458528
[Example 6: Asymmetric Michael addition reaction]
Figure 0005458528

乾燥した試験管に窒素雰囲気下、室温で光学活性ビフェニルリン酸誘導体(ix)(14.1mg,0.020mmol)、β-ケトエステル(H)(38.2mg,0.201mmol)、トルエン(1ml)を投入し、40℃に昇温した。続いて、メチルビニルケトン(G)(49μl,0.601mmol)を滴下し、20時間撹拌した。これをカラムクロマトグラフィーにて精製し、マイケル付加体(I)(47.0mg,0.181mmol,収率90%,光学純度72%ee)を得た。光学純度は高速液体クロマトグラフィーにより求めた。このものの分析結果は以下の通りである。   Optically active biphenyl phosphate derivative (ix) (14.1 mg, 0.020 mmol), β-ketoester (H) (38.2 mg, 0.201 mmol), toluene (1 ml) at room temperature under a nitrogen atmosphere in a dried test tube The temperature was raised to 40 ° C. Subsequently, methyl vinyl ketone (G) (49 μl, 0.601 mmol) was added dropwise and stirred for 20 hours. This was purified by column chromatography to obtain Michael adduct (I) (47.0 mg, 0.181 mmol, yield 90%, optical purity 72% ee). The optical purity was determined by high performance liquid chromatography. The analysis result of this is as follows.

H−NMR(CDCl):δ=7.79−7.77(m,1H),7.61−7.62(m,1H),7.49−7.47(m,1H),7.44−7.40(m,1H),3.70(s,3H),3.67(d,J=17.4Hz,1H),3.04(d,J=17.4Hz,1H),2.68−2.59(m,1H),2.56−2.48(m,1H),2.30−2.14(m,1H),2.13(s,3H) 1 H-NMR (CDCl 3 ): δ = 7.79-7.77 (m, 1H), 7.61-7.62 (m, 1H), 7.49-7.47 (m, 1H), 7.44-7.40 (m, 1H), 3.70 (s, 3H), 3.67 (d, J = 17.4 Hz, 1H), 3.04 (d, J = 17.4 Hz, 1H) ), 2.68-2.59 (m, 1H), 2.56-2.48 (m, 1H), 2.30-2.14 (m, 1H), 2.13 (s, 3H)

[比較例1:不斉フリーデルクラフト反応(Angew.Chem.Int.Ed.,44,6576(2005)より)]
光学活性ビフェニルリン酸誘導体(xii)の代わりに光学活性チオウレア化合物(xiv)を用いて、実施例5と同基質での不斉フリーデルクラフト反応を行った結果、収率78%、光学純度85%eeであった。
[Comparative Example 1: Asymmetric Friedel-Craft Reaction (from Angelw. Chem. Int. Ed., 44, 6756 (2005))]
Using an optically active thiourea compound (xiv) in place of the optically active biphenyl phosphate derivative (xii), an asymmetric Friedel-Craft reaction was performed on the same substrate as in Example 5. As a result, the yield was 78% and the optical purity was 85. % Ee.

Figure 0005458528
Figure 0005458528

[比較例2:不斉マンニッヒ反応]
光学活性ビフェニルリン酸誘導体(vi)の代わりに光学活性ビナフチルリン酸化合物(xv)を用いて、実施例4と同基質での不斉マンニッヒ反応を行った結果、収率93%、光学純度89%eeであった。
[Comparative Example 2: Asymmetric Mannich Reaction]
As a result of conducting an asymmetric Mannich reaction with the same substrate as in Example 4 using the optically active binaphthyl phosphate compound (xv) instead of the optically active biphenyl phosphate derivative (vi), the yield was 93% and the optical purity was 89. % Ee.

Figure 0005458528
Figure 0005458528

[比較例3:不斉フリーデルクラフト反応]
光学活性ビフェニルリン酸誘導体(xii)の代わりに光学活性ビナフチルリン酸化合物(xvi)を用いて、実施例5と同基質での不斉フリーデルクラフト反応を行った結果、収率98%、光学純度92%eeであった。
[Comparative Example 3: Asymmetric Friedel-Craft Reaction]
As a result of conducting an asymmetric Friedel-Craft reaction with the same substrate as in Example 5 using the optically active binaphthyl phosphate compound (xvi) instead of the optically active biphenyl phosphate derivative (xii), the yield was 98%. The purity was 92% ee.

Figure 0005458528
Figure 0005458528

[比較例4:不斉マイケル付加反応]
光学活性ビフェニルリン酸誘導体(ix)の代わりに光学活性ビナフチルリン酸化合物(xvii)を用いて、実施例6と同基質での不斉マイケル付加反応を行った結果、収率96%、光学純度71%eeであった。
[Comparative Example 4: Asymmetric Michael Addition Reaction]
As a result of performing an asymmetric Michael addition reaction with the same substrate as in Example 6 using the optically active binaphthyl phosphate compound (xvii) instead of the optically active biphenyl phosphate derivative (ix), the yield was 96% and the optical purity was It was 71% ee.

Figure 0005458528
Figure 0005458528

以上の結果から、本発明の光学活性ビフェニルリン酸誘導体を用いて、高い反応効率で光学純度の高い不斉求核反応生成物を得ることができることが分かる。   From the above results, it can be seen that an asymmetric nucleophilic reaction product with high reaction efficiency and high optical purity can be obtained using the optically active biphenyl phosphate derivative of the present invention.

Claims (4)

一般式(1)又は(2)で示される光学活性ビフェニルリン酸誘導体。
Figure 0005458528
(式中、R、Rは、それぞれ独立して、炭素数1〜20の置換基を有していてもよい炭化水素基又は置換シリル基を表す。)
An optically active biphenyl phosphate derivative represented by the general formula (1) or (2).
Figure 0005458528
(Wherein, R 1, R 2 are each independently represent a substituent which may have a hydrocarbon group or a substituted silyl group having 1 to 20 carbon atoms.)
下記式(3)又は(4)で表される光学活性6,6’−ジメチル−1,1’−ビフェニル−2,2’−ジオールを出発原料として用い、その3,3’位に置換基R 及びR を導入し、オキシ塩化リンと反応させることを特徴とする、請求項1に記載の光学活性ビフェニルリン酸誘導体の製造方法。
Figure 0005458528
An optically active 6,6′-dimethyl-1,1′-biphenyl-2,2′-diol represented by the following formula (3) or (4) is used as a starting material, and the substituent is located at the 3,3 ′ position. The method for producing an optically active biphenyl phosphate derivative according to claim 1, wherein R 1 and R 2 are introduced and reacted with phosphorus oxychloride .
Figure 0005458528
請求項1に記載の光学活性ビフェニルリン酸誘導体を含む不斉求核反応触媒。   An asymmetric nucleophilic reaction catalyst comprising the optically active biphenyl phosphate derivative according to claim 1. 請求項3に記載の不斉求核反応触媒の存在下で行うことを特徴とする不斉求核反応。   An asymmetric nucleophilic reaction, which is carried out in the presence of the asymmetric nucleophilic reaction catalyst according to claim 3.
JP2008210859A 2008-08-19 2008-08-19 Optically active biphenyl phosphate derivative Expired - Fee Related JP5458528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008210859A JP5458528B2 (en) 2008-08-19 2008-08-19 Optically active biphenyl phosphate derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008210859A JP5458528B2 (en) 2008-08-19 2008-08-19 Optically active biphenyl phosphate derivative

Publications (2)

Publication Number Publication Date
JP2010047490A JP2010047490A (en) 2010-03-04
JP5458528B2 true JP5458528B2 (en) 2014-04-02

Family

ID=42064903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008210859A Expired - Fee Related JP5458528B2 (en) 2008-08-19 2008-08-19 Optically active biphenyl phosphate derivative

Country Status (1)

Country Link
JP (1) JP5458528B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962889B2 (en) 2010-10-20 2015-02-24 Sumitomo Chemical Company, Limited Process for producing optically active β-amino aldehyde compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415543B2 (en) * 2002-12-13 2010-02-17 三菱化学株式会社 Process for producing optically active 6,6'-dimethyl-1,1'-biphenyl-2,2'-diol derivative
WO2005070875A1 (en) * 2004-01-26 2005-08-04 Takasago International Corporation Process for production of amines

Also Published As

Publication number Publication date
JP2010047490A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
WO2021143712A1 (en) Method for preparing l-glufosinate-ammonium intermediate
JP2007533727A (en) Method for producing valsartan and its precursor
Li et al. An efficient enantioselective synthesis of florfenicol via a vanadium-catalyzed asymmetric epoxidation
US6743926B2 (en) Process for the preparation of indole derivatives and intermediates of the process
Han et al. A catalyst-controlled switchable reaction of β-keto acids to silyl glyoxylates
JP5458528B2 (en) Optically active biphenyl phosphate derivative
KR100881617B1 (en) Atorvastatin intermediates and method for producing the same
KR100598079B1 (en) Novel boronate esters
WO2021045879A1 (en) Synthesis of deuterated aldehydes
KR20130090360A (en) Method for preparing compounds through a novel michael-addition reaction using water or various acids as additives
WO2023098759A1 (en) DERIVATIVE OF CHIRAL α-AMINOPHOSPHONIC ACID AND PREPARATION METHOD THEREFOR
JP5283867B2 (en) Method for producing optically active β-hydroxycarboxylic acid derivative
CN111410604B (en) Asymmetric hydrogenation of olefinic acid compounds
JPWO2005095317A1 (en) Method for producing halogenated unsaturated carbonyl compound
JP5033933B2 (en) Process for producing N-substituted-2-amino-4- (hydroxymethylphosphinyl) -2-butenoic acid
JP2010229097A (en) New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst
KR101087498B1 (en) Binaphthol aldehyde derivatives and method for preparing the same
CN115353514B (en) Fluoro-pyridopyrimidinone compounds and synthesis method thereof
CN109320554B (en) Novel method for synthesizing practical acetaminoacrylate compound
JP5329462B2 (en) Optically active dicarboxylic acid derivative
US20050054877A1 (en) Enantiomerically selective cyclopropanation
Tonk et al. Efficient One-Pot Synthesis of 3-Substituted Phthalides via Additive Arylation of Organozinc Intermediate
CN116444503A (en) Method for synthesizing chroman derivatives by rhodium-catalyzed C-H activation/cyclization reaction of pyridine triazole and iodoylide
KR101210428B1 (en) Novel enol phosphate derivatives and their preparation method from alkynes catalyzed by gold
KR100914849B1 (en) The method for preparation of 2-sulfonyloxy-1-(4-hydroxyphenyl)ethanol derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees