JP5458072B2 - Low temperature liquefied gas pump - Google Patents

Low temperature liquefied gas pump Download PDF

Info

Publication number
JP5458072B2
JP5458072B2 JP2011194493A JP2011194493A JP5458072B2 JP 5458072 B2 JP5458072 B2 JP 5458072B2 JP 2011194493 A JP2011194493 A JP 2011194493A JP 2011194493 A JP2011194493 A JP 2011194493A JP 5458072 B2 JP5458072 B2 JP 5458072B2
Authority
JP
Japan
Prior art keywords
liquefied gas
shaft
low
temperature liquefied
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011194493A
Other languages
Japanese (ja)
Other versions
JP2013057250A (en
Inventor
寛一 平井
昌樹 弘川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2011194493A priority Critical patent/JP5458072B2/en
Publication of JP2013057250A publication Critical patent/JP2013057250A/en
Application granted granted Critical
Publication of JP5458072B2 publication Critical patent/JP5458072B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、低温液化ガスポンプに関し、詳しくは、液体窒素などの−100℃以下の低温液化ガスを送液するための低温液化ガスポンプに関する。   The present invention relates to a low-temperature liquefied gas pump, and more particularly, to a low-temperature liquefied gas pump for feeding a low-temperature liquefied gas of −100 ° C. or lower such as liquid nitrogen.

容器(タンク)内に貯留した各種液体を取り出して送液するためのポンプとして、容器外に配置した駆動部と、容器内(液体中)に配置したポンプ部と、駆動部とポンプ部とを連結する鉛直方向のシャフトと、前記シャフトを転がり軸受を介して支持するケーシングとを備え、前記シャフトを上下に分割し、上下の分割シャフト同士を磁気継手(マグネットカップリング)によって磁気結合させたポンプ装置が知られている(例えば、特許文献1参照。)。   As a pump for taking out and sending various liquids stored in a container (tank), a drive unit arranged outside the container, a pump unit arranged in the container (in liquid), a drive unit and a pump unit A pump comprising a vertical shaft to be connected and a casing for supporting the shaft via a rolling bearing, wherein the shaft is divided into upper and lower parts, and the upper and lower divided shafts are magnetically coupled by a magnetic coupling (magnet coupling). An apparatus is known (for example, refer to Patent Document 1).

特開2003−269375号公報JP 2003-269375 A

特許文献1に記載されたポンプ装置では、シャフトの軸受にボールベアリングなどの転がり軸受を用いているため、一定期間毎に軸受のメンテナンスが必要であり、一般的な使用状態ではほとんど問題となることはないが、長期連続運転が要求される高温超電導機器で使用するポンプとして使用することはできなかった。   In the pump device described in Patent Document 1, since a rolling bearing such as a ball bearing is used as the shaft bearing, maintenance of the bearing is necessary every certain period, which is almost a problem in a general use state. However, it could not be used as a pump for high-temperature superconducting equipment that requires long-term continuous operation.

また、シャフトを長くしたり、シャフトの分割数を多くしたりすることによってシャフトの断熱性能を高め、−100℃以下の低温液化ガスを送液するポンプとして使用することも可能であるが、ポンプ部のインペラを支持する軸受の隙間からケーシング内に浸入した低温液化ガスがケーシング内で気化すると、気化したガスの圧力によって前記軸受の隙間からインペラ側に低温液化ガスが逆流し、この逆流によって送液中の低温液化ガスに脈動が発生することがある。   In addition, it is possible to increase the heat insulation performance of the shaft by lengthening the shaft or increasing the number of divisions of the shaft, and it can be used as a pump for sending low temperature liquefied gas of -100 ° C or lower. When the low-temperature liquefied gas that has entered the casing through the gap between the bearings supporting the impellers in the casing is vaporized in the casing, the low-temperature liquefied gas flows back from the gap between the bearings to the impeller due to the pressure of the vaporized gas, and is sent by this reverse flow. Pulsation may occur in the low-temperature liquefied gas in the liquid.

そこで本発明は、長期連続運転が可能で、脈動の発生も防止することができ、安定した状態で低温液化ガスを送液することができる低温液化ガスポンプを提供することを目的としている。   Therefore, an object of the present invention is to provide a low-temperature liquefied gas pump that can be operated continuously for a long period of time, can prevent pulsation, and can send a low-temperature liquefied gas in a stable state.

上記目的を達成するため、本発明の低温液化ガスポンプは、低温液化ガス容器の外部に配置された駆動部と、低温液化ガス容器の内部に配置されたポンプ部と、該ポンプ部のインペラと前記駆動部の駆動軸とを接続するシャフトと、該シャフトを軸受を介して回転可能に収納したケーシングとを備えた低温液化ガスポンプにおいて、前記シャフトを、前記駆動部によって回転駆動される駆動側シャフトと、前記インペラに連結された従動側シャフトとに分割形成し、前記駆動側シャフトと前記従動側シャフトとを磁気継手によって非接触状態で磁気結合し、少なくとも前記従動側シャフトを、磁気軸受を介して非接触状態で前記ケーシングに回転可能に支持するとともに、前記ケーシングの下端部に、該ケーシング内と前記低温液化ガス容器内と連通させる連通孔を設けたことを特徴としている。 In order to achieve the above object, a low-temperature liquefied gas pump of the present invention includes a drive unit disposed outside a low-temperature liquefied gas container, a pump unit disposed inside a low-temperature liquefied gas container, an impeller of the pump unit, In a low-temperature liquefied gas pump comprising a shaft that connects a drive shaft of a drive unit and a casing that rotatably accommodates the shaft via a bearing, the drive shaft that is rotationally driven by the drive unit; A driven side shaft coupled to the impeller, and the drive side shaft and the driven side shaft are magnetically coupled in a non-contact state by a magnetic coupling, and at least the driven side shaft is connected via a magnetic bearing. thereby rotatably supported by the casing in a non-contact state, the lower end of the casing, said low-temperature liquefied gas container within the casing It is characterized in that a communication hole which communicates with.

さらに、本発明の低温液化ガスポンプは、前記連通孔の口径が1〜5mmの範囲内であること、前記磁気継手は、前記駆動側シャフトと前記従動側シャフトとの間に、駆動部側空間とポンプ部側空間とを仕切る仕切り部材を備えていることを特徴としている。   Further, in the low-temperature liquefied gas pump of the present invention, the diameter of the communication hole is in the range of 1 to 5 mm, and the magnetic coupling is provided between the drive-side shaft and the driven-side shaft, A partition member for partitioning the pump part side space is provided.

本発明の低温液化ガスポンプによれば、シャフトの軸受をメンテナンスが不要な磁気軸受としたので長期間にわたる連続運転が可能となる。また、ケーシングに連通孔を設けたので、ケーシング内に浸入した低温液化ガスが気化してもインペラ側に逆流することがなく、連通孔から排出されるため、送液中の低温液化ガスに脈動が発生することを防止できる。   According to the low-temperature liquefied gas pump of the present invention, since the shaft bearing is a magnetic bearing that does not require maintenance, continuous operation over a long period of time is possible. In addition, because the casing has a communication hole, even if the low-temperature liquefied gas that has entered the casing is vaporized, it does not flow back to the impeller side and is discharged from the communication hole. Can be prevented.

本発明の低温液化ガスポンプの第1形態例を示す断面図である。It is sectional drawing which shows the 1st form example of the low-temperature liquefied gas pump of this invention. 本発明の低温液化ガスポンプの第2形態例を示す断面図である。It is sectional drawing which shows the 2nd form example of the low-temperature liquefied gas pump of this invention.

図1に示す低温液化ガスポンプ10は、低温液化ガスLを貯留した低温液化ガス容器11の天板部材や蓋部材11aに装着されるものであって、低温液化ガス容器11の外部に配置される駆動部12と、低温液化ガス容器11の内部で低温液化ガス中に浸漬した状態で配置されるポンプ部13と、低温部に配置された前記ポンプ部13のインペラ14と、常温部に配置された前記駆動部12の駆動軸15とを接続するシャフト16と、該シャフト16をスラスト磁気軸受17及びラジアル磁気軸受18を介して回転可能に収納した円筒形のケーシング19とを備えている。   The low-temperature liquefied gas pump 10 shown in FIG. 1 is mounted on the top plate member or the lid member 11a of the low-temperature liquefied gas container 11 storing the low-temperature liquefied gas L, and is disposed outside the low-temperature liquefied gas container 11. The drive unit 12, the pump unit 13 disposed in the low temperature liquefied gas inside the low temperature liquefied gas container 11, the impeller 14 of the pump unit 13 disposed in the low temperature unit, and the normal temperature unit are disposed. A shaft 16 that connects the drive shaft 15 of the drive unit 12 and a cylindrical casing 19 that rotatably accommodates the shaft 16 via a thrust magnetic bearing 17 and a radial magnetic bearing 18 are provided.

前記シャフト16は、前記駆動軸15と一体化した駆動側の上部シャフト(モータ軸)16aと、下端に前記インペラ14が装着された従動側の下部シャフト(ポンプ軸)16bとに分割形成されており、上部シャフト16aと下部シャフト16bとは、磁気継手(マグネットカップリング)20によって非接触状態で磁気結合されている。   The shaft 16 is divided into a driving-side upper shaft (motor shaft) 16a integrated with the driving shaft 15 and a driven-side lower shaft (pump shaft) 16b having the impeller 14 attached to the lower end thereof. The upper shaft 16a and the lower shaft 16b are magnetically coupled by a magnetic coupling (magnet coupling) 20 in a non-contact state.

この磁気継手20は、下方が開口したカップ状の駆動側継手部材20aと、該駆動側継手部材20aの内径より小さな外径を有し、駆動側継手部材20aの内部に逆カップ形状の仕切り部材21を介して配置される円柱状の従動側継手部材20bとを同心円状に配置するとともに、駆動側継手部材20aの内周面及び従動側継手部材20bの外周面に、永久磁石22a、22bのN極とS極とをそれぞれ交互に配列したものであって、上部シャフト16aと一体に回転する前記駆動側継手部材20aの回転を永久磁石22a、22bの磁力で従動側継手部材20bに伝達することにより、上部シャフト16aと下部シャフト16bとを非接触状態に保って下部シャフト16bを回転させる。   The magnetic coupling 20 has a cup-shaped drive side joint member 20a having an open bottom, an outer diameter smaller than the inner diameter of the drive side joint member 20a, and an inverted cup-shaped partition member inside the drive side joint member 20a. The cylindrical driven side coupling member 20b disposed via 21 is arranged concentrically, and the permanent magnets 22a and 22b are disposed on the inner circumferential surface of the driving side coupling member 20a and the outer circumferential surface of the driven side coupling member 20b. N poles and S poles are alternately arranged, and the rotation of the driving side coupling member 20a that rotates integrally with the upper shaft 16a is transmitted to the driven side coupling member 20b by the magnetic force of the permanent magnets 22a and 22b. Thus, the lower shaft 16b is rotated while keeping the upper shaft 16a and the lower shaft 16b in a non-contact state.

下部シャフト16bの上部に設けられた前記スラスト磁気軸受17は、ケーシング19の内周に固着されてシャフト軸線方向に対向配置した上下一対の電磁石17a,17aと、下部シャフト16bの外周に設けられて上下の電磁石17a,17a間に配置されるスラスト板17bとを備えており、電磁石17a,17aに発生させた磁力により、磁性体からなるスラスト板17bを互いに引き寄せ、電磁石17a,17aの引き寄せ力が釣り合った位置にあるスラスト板17bを非接触状態で保持し、インペラ14を含む下部シャフト16bの軸線方向の動きを規制する。   The thrust magnetic bearing 17 provided on the upper portion of the lower shaft 16b is provided on the outer periphery of the lower shaft 16b and the pair of upper and lower electromagnets 17a and 17a fixed to the inner periphery of the casing 19 and arranged opposite to each other in the axial direction of the shaft. And a thrust plate 17b disposed between the upper and lower electromagnets 17a, 17a, and the magnetic force generated by the electromagnets 17a, 17a attracts the thrust plate 17b made of a magnetic material to each other so that the attracting force of the electromagnets 17a, 17a The thrust plate 17b in a balanced position is held in a non-contact state, and the movement in the axial direction of the lower shaft 16b including the impeller 14 is restricted.

また、下部シャフト16bの中間部と下端部とにそれぞれ設けられたラジアル磁気軸受18は、ケーシング19の内周に、下部シャフト16bを包囲するようにして複数の電磁石18aをリング状に設けたものであって、電磁石18aに発生させた磁力によって下部シャフト16bの半径方向の動きを非接触状態で規制する。   Further, the radial magnetic bearing 18 provided in each of the intermediate portion and the lower end portion of the lower shaft 16b is provided with a plurality of electromagnets 18a in a ring shape on the inner periphery of the casing 19 so as to surround the lower shaft 16b. The radial motion of the lower shaft 16b is regulated in a non-contact state by the magnetic force generated in the electromagnet 18a.

ケーシング19は、低温液化ガス容器11の内部に挿入される筒部19aと、該筒部19aの上端に設けられた上部フランジ19bとを有しており、蓋部材11aに設けた開口から筒部19aを低温液化ガス容器11の内部に挿入した状態で、蓋部材11aの外面に上部フランジ19bが固着される。また、上部フランジ19bの上面には、支持筒23を介して前記駆動部12となるモータが取り付けられている。また、筒部19aの下端には,シャフト挿通部材24を介して前記ポンプ部13のインペラ14を収納するポンプケーシング25が連設しており、ポンプケーシング25の下部に吸入口25aが、外周部に吐出口25bがそれぞれ設けられている。   The casing 19 has a cylindrical portion 19a inserted into the cryogenic liquefied gas container 11, and an upper flange 19b provided at the upper end of the cylindrical portion 19a. From the opening provided in the lid member 11a, the cylindrical portion In a state where 19a is inserted into the low temperature liquefied gas container 11, the upper flange 19b is fixed to the outer surface of the lid member 11a. In addition, a motor serving as the drive unit 12 is attached to the upper surface of the upper flange 19b via a support cylinder 23. A pump casing 25 that houses the impeller 14 of the pump portion 13 is connected to the lower end of the cylindrical portion 19a via a shaft insertion member 24, and a suction port 25a is provided at the lower portion of the pump casing 25 at the outer peripheral portion. Each is provided with a discharge port 25b.

さらに、筒部19aの下端部には、ケーシング19内と低温液化ガス容器11内と連通させる連通孔26が設けられている。この連通孔26の口径は、小さすぎると連通孔としての作用を十分に得られず、大きすぎると、インペラ14で昇圧した低温液化ガスが連通孔26から抜けることがあるため、1〜5mmの範囲に設定することが好ましい。   Furthermore, a communication hole 26 is provided at the lower end of the cylindrical portion 19a to allow communication between the inside of the casing 19 and the inside of the low-temperature liquefied gas container 11. If the diameter of the communication hole 26 is too small, the function as the communication hole cannot be obtained sufficiently. If the diameter is too large, the low-temperature liquefied gas boosted by the impeller 14 may escape from the communication hole 26, so It is preferable to set the range.

このように形成した低温液化ガスポンプ10は、下部シャフト16bを回転可能に支持する各軸受をそれぞれ非接触状態でシャフトを支持する磁気軸受17,18としているので、摩耗部品がなく、メンテナンスが不要であり、長期間の連続運転に対応することができる。さらに、軸受の部分で異物が発生することもなく、低温液化ガス内に異物が混入することを防止できる。   In the low-temperature liquefied gas pump 10 formed in this way, the bearings that rotatably support the lower shaft 16b are magnetic bearings 17 and 18 that support the shaft in a non-contact state, so there are no wear parts and no maintenance is required. Yes, it can handle long-term continuous operation. Further, foreign matters are not generated in the bearing portion, and foreign matters can be prevented from being mixed into the low-temperature liquefied gas.

また、上部シャフト16aと下部シャフト16bとを、磁気継手20によって非接触状態で磁気結合させているので、シャフトを通しての熱侵入を抑えることができる。これにより、シャフトを短くすることができるので、シャフトの固有振動数が高くなってシャフトを高速回転させることが可能となり、インペラ14を高速回転させて送液能率を向上させることができる。   Further, since the upper shaft 16a and the lower shaft 16b are magnetically coupled in a non-contact state by the magnetic coupling 20, heat penetration through the shaft can be suppressed. Thereby, since the shaft can be shortened, the natural frequency of the shaft can be increased and the shaft can be rotated at a high speed, and the impeller 14 can be rotated at a high speed to improve the liquid feeding efficiency.

さらに、下部シャフト16bの上端に設けられている従動側継手部材20bを仕切り部材21で覆い、駆動部12側の常温空間とポンプ部13側の低温空間とを、磁気継手20の部分で仕切り部材21により気密に仕切っているので、低温液化ガス容器11内に外気が流入したり、低温液化ガス容器11内で気化したガスが外部に流出することを防止できるとともに、駆動部12で発生した異物が低温液化ガス容器11内に入り込むことも確実に防止できる。これにより、低温液化ガスの品質維持も図ることができ、低温液化ガスの消費量を抑えることもできる。また、駆動部12を気密構造にする必要がなくなるので、駆動部12の駆動源として汎用のモータを使用することができる。   Further, the driven joint member 20b provided at the upper end of the lower shaft 16b is covered with a partition member 21, and the normal temperature space on the drive unit 12 side and the low temperature space on the pump unit 13 side are separated by the magnetic joint 20 portion. 21 is airtightly partitioned by the air inlet 21 so that outside air can be prevented from flowing into the low temperature liquefied gas container 11 and gas vaporized in the low temperature liquefied gas container 11 can be prevented from flowing to the outside. Can be reliably prevented from entering the low-temperature liquefied gas container 11. As a result, the quality of the low-temperature liquefied gas can be maintained, and the consumption of the low-temperature liquefied gas can be suppressed. Moreover, since it is not necessary to make the drive part 12 an airtight structure, a general-purpose motor can be used as a drive source of the drive part 12.

そして、ケーシング19の筒部19aに連通孔26を設けているので、ケーシング19の内部に浸入した低温液化ガスが気化してケーシング19内の圧力が上昇しても、ケーシング19内の低温液化ガスや気化ガスを連通孔26から排出することができ、シャフト挿通部材24と下部シャフト16bとの間からポンプケーシング25内に低温液化ガスや気化ガスが逆流することがなく、回転するインペラ14によって送液される低温液化ガスに脈動が発生することを防止できる。   Since the communication hole 26 is provided in the cylindrical portion 19a of the casing 19, even if the low-temperature liquefied gas that has entered the casing 19 is vaporized and the pressure in the casing 19 is increased, the low-temperature liquefied gas in the casing 19 is increased. Or the vaporized gas can be discharged from the communication hole 26, and the low-temperature liquefied gas or vaporized gas does not flow back into the pump casing 25 from between the shaft insertion member 24 and the lower shaft 16b, and is sent by the rotating impeller 14. Pulsation can be prevented from occurring in the liquefied low-temperature liquefied gas.

これにより、気化しやすい−100℃以下の液体窒素のような低温液化ガスを長期にわたって安定した状態で連続して送液することが可能となることから、長期連続運転が要求される高温超電導機器冷却用のサブクール液体窒素を循環させるためのポンプとして最適である。   This makes it possible to continuously feed a low-temperature liquefied gas such as liquid nitrogen of −100 ° C. or less that is easy to vaporize in a stable state over a long period of time, and thus a high-temperature superconducting device that requires long-term continuous operation It is optimal as a pump for circulating subcooled liquid nitrogen for cooling.

図2は本発明の低温液化ガスポンプの第2形態例を示している。なお、以下の説明において、前記第1形態例に示した低温液化ガスポンプの構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   FIG. 2 shows a second embodiment of the low temperature liquefied gas pump of the present invention. In the following description, the same components as those of the low-temperature liquefied gas pump shown in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本形態例に示す低温液化ガスポンプは、磁気継手30を、上部シャフト16aの下端に設けた駆動側円盤部材30aと、下部シャフト16bの上端に設けた従動側円盤部材30bとを、逆カップ形状の仕切り部材21の上面を介して対向配置するとともに、両円盤部材30a,30bの対向面に、永久磁石31a、31bのN極とS極とをそれぞれ交互に配列した構造としている。この磁気継手30も、前記同様に、上部シャフト16aと一体に回転する駆動側円盤部材30aの回転を、永久磁石31a、31bの磁力によって従動側円盤部材30bに伝達し、下部シャフト16bを回転させる。   In the low-temperature liquefied gas pump shown in this embodiment, the magnetic coupling 30 includes a drive-side disc member 30a provided at the lower end of the upper shaft 16a and a driven-side disc member 30b provided at the upper end of the lower shaft 16b in an inverted cup shape. The structure is such that the N poles and S poles of the permanent magnets 31a and 31b are alternately arranged on the opposing surfaces of both the disk members 30a and 30b, while being opposed to each other via the upper surface of the partition member 21. Similarly to the above, this magnetic coupling 30 also transmits the rotation of the driving disk member 30a that rotates integrally with the upper shaft 16a to the driven disk member 30b by the magnetic force of the permanent magnets 31a and 31b, and rotates the lower shaft 16b. .

また、このような構造を有する磁気継手30は、従動側円盤部材30bが永久磁石31a、31bの磁力によって上方の駆動側円盤部材30a側に引き寄せられるため、下部シャフト16bの上部に設けるスラスト磁気軸受32は、従動側円盤部材30bの下方に、従動側円盤部材30bを下方に引き寄せるための電磁石32aを配置し、この電磁石32aによる従動側円盤部材30bの引き寄せ力と、磁気継手30における永久磁石31a、31bの引き寄せ力とが釣り合った位置に従動側円盤部材30bを非接触状態で保持し、インペラ14を含む下部シャフト16bの軸線方向の動きを規制する。   Further, in the magnetic coupling 30 having such a structure, the driven-side disc member 30b is attracted to the upper drive-side disc member 30a side by the magnetic force of the permanent magnets 31a, 31b, so that the thrust magnetic bearing provided on the upper portion of the lower shaft 16b. 32, an electromagnet 32a for pulling the driven-side disk member 30b downward is arranged below the driven-side disk member 30b. The pulling force of the driven-side disk member 30b by the electromagnet 32a and the permanent magnet 31a in the magnetic coupling 30 are arranged. , 31b holds the driven disk member 30b in a non-contact state and regulates the movement of the lower shaft 16b including the impeller 14 in the axial direction.

したがって、スラスト磁気軸受32としての磁石を従動側円盤部材30bの下方の電磁石32aのみとすることができ、従動側円盤部材30bの上方の磁石を省略することができるので、ポンプ構造の簡略化を図ることができる。   Therefore, the magnet as the thrust magnetic bearing 32 can be only the electromagnet 32a below the driven disk member 30b, and the magnet above the driven disk member 30b can be omitted, thus simplifying the pump structure. Can be planned.

なお、各磁気軸受は、シャフトの長さに応じて3箇所以上に設けることもできる。さらに、シャフトを3つ以上に分割し、それぞれ複数の磁気軸受で支持するように形成することもできる。また、ケーシングに設ける連通孔の位置や個数は任意であるが、ケーシング内から低温液化ガスを排出することを考慮すると、少なくとも一つはケーシングの最下端部に設けることが好ましい。   In addition, each magnetic bearing can also be provided in three or more places according to the length of a shaft. Further, the shaft can be divided into three or more and each can be formed to be supported by a plurality of magnetic bearings. Moreover, although the position and the number of the communication holes provided in the casing are arbitrary, it is preferable to provide at least one at the lowermost end portion of the casing in consideration of discharging the low-temperature liquefied gas from the casing.

10…低温液化ガスポンプ、11…低温液化ガス容器、11a…蓋部材、12…駆動部、13…ポンプ部、14…インペラ、15…駆動軸、16…シャフト、16a…上部シャフト、16b…下部シャフト、17…スラスト磁気軸受、17a…電磁石、17b…スラスト板、18…ラジアル磁気軸受、18a…電磁石、19…ケーシング、19a…筒部、19b…上部フランジ、20…磁気継手、20a…駆動側継手部材、20b…従動側継手部材、21…仕切り部材、22a、22b…永久磁石、23…支持筒、24…シャフト挿通部材、25…ポンプケーシング、25a…吸入口、25b…吐出口、26…連通孔、30…磁気継手、30a…駆動側円盤部材、30b…従動側円盤部材、31a、31b…永久磁石、32…スラスト磁気軸受、32a…電磁石、L…低温液化ガス   DESCRIPTION OF SYMBOLS 10 ... Low temperature liquefied gas pump, 11 ... Low temperature liquefied gas container, 11a ... Lid member, 12 ... Drive part, 13 ... Pump part, 14 ... Impeller, 15 ... Drive shaft, 16 ... Shaft, 16a ... Upper shaft, 16b ... Lower shaft 17 ... Thrust magnetic bearing, 17a ... Electromagnet, 17b ... Thrust plate, 18 ... Radial magnetic bearing, 18a ... Electromagnet, 19 ... Casing, 19a ... Cylindrical part, 19b ... Upper flange, 20 ... Magnetic joint, 20a ... Drive side joint Member, 20b ... driven side coupling member, 21 ... partition member, 22a, 22b ... permanent magnet, 23 ... support cylinder, 24 ... shaft insertion member, 25 ... pump casing, 25a ... suction port, 25b ... discharge port, 26 ... communication Hole 30, magnetic coupling, 30 a, drive side disk member, 30 b, driven side disk member, 31 a, 31 b, permanent magnet, 32, thrust magnetic shaft , 32a ... electromagnet, L ... low-temperature liquefied gas

Claims (3)

低温液化ガス容器の外部に配置された駆動部と、低温液化ガス容器の内部に配置されたポンプ部と、該ポンプ部のインペラと前記駆動部の駆動軸とを接続するシャフトと、該シャフトを軸受を介して回転可能に収納したケーシングとを備えた低温液化ガスポンプにおいて、前記シャフトを、前記駆動部によって回転駆動される駆動側シャフトと、前記インペラに連結された従動側シャフトとに分割形成し、前記駆動側シャフトと前記従動側シャフトとを磁気継手によって非接触状態で磁気結合し、少なくとも前記従動側シャフトを、磁気軸受を介して非接触状態で前記ケーシングに回転可能に支持するとともに、前記ケーシングの下端部に、該ケーシング内と前記低温液化ガス容器内と連通させる連通孔を設けた低温液化ガスポンプ。 A drive unit disposed outside the cryogenic liquefied gas container, a pump unit disposed inside the cryogenic liquefied gas container, a shaft connecting the impeller of the pump unit and the drive shaft of the drive unit, and the shaft In a low-temperature liquefied gas pump including a casing that is rotatably accommodated via a bearing, the shaft is divided into a drive-side shaft that is rotationally driven by the drive unit and a driven-side shaft that is connected to the impeller. The drive side shaft and the driven side shaft are magnetically coupled in a non-contact state by a magnetic coupling, and at least the driven side shaft is rotatably supported by the casing in a non-contact state via a magnetic bearing, and The low-temperature liquefied gas pump which provided the communicating hole which connects the inside of this casing and the said low-temperature liquefied gas container in the lower end part of the casing. 前記連通孔の口径が1〜5mmの範囲内である請求項1記載の低温液化ガスポンプ。 The low-temperature liquefied gas pump according to claim 1, wherein the diameter of the communication hole is within a range of 1 to 5 mm. 前記磁気継手は、前記駆動側シャフトと前記従動側シャフトとの間に、駆動部側空間とポンプ部側空間とを仕切る仕切り部材を備えている請求項1又は2記載の低温液化ガスポンプ。 3. The low-temperature liquefied gas pump according to claim 1, wherein the magnetic coupling includes a partition member that partitions the drive unit side space and the pump unit side space between the drive side shaft and the driven side shaft.
JP2011194493A 2011-09-07 2011-09-07 Low temperature liquefied gas pump Expired - Fee Related JP5458072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194493A JP5458072B2 (en) 2011-09-07 2011-09-07 Low temperature liquefied gas pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194493A JP5458072B2 (en) 2011-09-07 2011-09-07 Low temperature liquefied gas pump

Publications (2)

Publication Number Publication Date
JP2013057250A JP2013057250A (en) 2013-03-28
JP5458072B2 true JP5458072B2 (en) 2014-04-02

Family

ID=48133330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194493A Expired - Fee Related JP5458072B2 (en) 2011-09-07 2011-09-07 Low temperature liquefied gas pump

Country Status (1)

Country Link
JP (1) JP5458072B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641562B1 (en) * 2014-11-03 2016-07-21 한국전기연구원 Cryogenic pump that includes a thermal shutdown for shaft
JP6898326B2 (en) * 2015-09-04 2021-07-07 テレストリアル エナジー インコーポレイティド Pneumatic motor assembly, flow induction system using this pneumatic motor assembly, and how to operate the pneumatic motor assembly
JP6858025B2 (en) * 2017-01-30 2021-04-14 Ntn株式会社 Cold fluid pump and cold fluid transfer device
JP2018162865A (en) * 2017-03-27 2018-10-18 Ntn株式会社 Pump for low temperature fluid and low temperature fluid transfer device
JP7059158B2 (en) * 2018-10-05 2022-04-25 大陽日酸株式会社 Operation control method for cryogenic gas pumps and cryogenic gas pumps
JP2021001575A (en) * 2019-06-21 2021-01-07 Ntn株式会社 Fluid circulation pump, fluid circulation pump group, and fluid transfer device
KR102261509B1 (en) * 2019-11-28 2021-06-07 주식회사 인지니어스 Hermetic Blower for high-temperature gas
JP7382864B2 (en) * 2020-03-17 2023-11-17 Ntn株式会社 Magnetic bearing device and low temperature liquefied gas pump
CN111927738A (en) * 2020-09-14 2020-11-13 山东凯格森能源科技有限公司 Compressor system adopting non-contact coupling
KR102381667B1 (en) * 2020-11-17 2022-03-31 박희주 Cryogenic reciprocating pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874773A (en) * 1994-09-08 1996-03-19 Ebara Corp Pump device for solid component including liquid
JP3363085B2 (en) * 1997-12-24 2003-01-07 株式会社荏原製作所 Canned motor pump
JP2003003983A (en) * 2001-06-22 2003-01-08 Seikow Chemical Engineering & Machinery Ltd Vertical magnet pump
JP3742777B2 (en) * 2002-03-04 2006-02-08 セイコー化工機株式会社 Magnetic levitation type magnet pump
JP2005127139A (en) * 2003-10-21 2005-05-19 Sanwa Hydrotech Corp Magnet pump

Also Published As

Publication number Publication date
JP2013057250A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5458072B2 (en) Low temperature liquefied gas pump
US8114008B2 (en) Blood pump and pump unit
CA1153414A (en) High speed magnetic coupling with ceramic magnets maintained under centrifugal compression
JP6577754B2 (en) Magnetic coupling mechanism and pump device provided with the same
CN101230859B (en) Rotary type compressor and refrigeration circulating device having the same
CN106536937A (en) Compressor motor with center stator
CN205876710U (en) Compressor
US7168848B2 (en) Axial-pumping impeller apparatus and method for magnetically-coupled mixer
WO2018018871A1 (en) Compressor pump and compressor
JP6747354B2 (en) Centrifugal compressor
US20140308141A1 (en) Sealed compressor and refrigerator including sealed compressor
US20070076522A1 (en) Mixing apparatus and method with ceramic impeller bearings
JP2009121467A (en) Vacuum pump
JP2018514687A (en) Machine with air compressor or liquid pump
CN104079108A (en) Motor used for compressor of turbo-refrigerator
ES2577933T3 (en) Hermetic compressor comprising an oil suction member
CN102954016A (en) Axial flow fan
JP4592314B2 (en) Fluid pump, electrical equipment and cooling device
ES2376382T3 (en) PROCEDURE AND DEVICE FOR THERMAL EXCHANGE BIFÉ? SICO WITH GEAR PUMP IN BEARINGS.
JP2018193858A (en) Electric supercharger
JP4581533B2 (en) Non-contact stirrer
KR102172829B1 (en) The pump for the cryogenic fluid circulation
US7500821B2 (en) Vacuum pump
JP2018511736A (en) Air compressor or liquid pump
CN201396289Y (en) Low watering-drainage magnetic pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140110

R150 Certificate of patent or registration of utility model

Ref document number: 5458072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees