JP5456186B2 - Wing body and rotating machine - Google Patents

Wing body and rotating machine Download PDF

Info

Publication number
JP5456186B2
JP5456186B2 JP2013013723A JP2013013723A JP5456186B2 JP 5456186 B2 JP5456186 B2 JP 5456186B2 JP 2013013723 A JP2013013723 A JP 2013013723A JP 2013013723 A JP2013013723 A JP 2013013723A JP 5456186 B2 JP5456186 B2 JP 5456186B2
Authority
JP
Japan
Prior art keywords
rear end
radius
curvature
end portion
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013013723A
Other languages
Japanese (ja)
Other versions
JP2013076413A (en
Inventor
康朗 坂元
栄作 伊藤
仁志 北川
進 若園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013013723A priority Critical patent/JP5456186B2/en
Publication of JP2013076413A publication Critical patent/JP2013076413A/en
Application granted granted Critical
Publication of JP5456186B2 publication Critical patent/JP5456186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

この発明は、ガスタービンのタービン部、圧縮機、ファン、蒸気タービン、風車などの回転機械に適用される翼体および回転機械に関するものであり、特にその後縁形状に係るものである。   The present invention relates to a blade body and a rotary machine applied to a rotary machine such as a turbine section of a gas turbine, a compressor, a fan, a steam turbine, and a windmill, and particularly relates to a rear edge shape thereof.

従来、ガスタービンのタービン部などの回転機械に適用される翼体にあっては、強度を高くするために比較的厚みを持たせて、その後縁を真円による円弧(略半円)形状またはキャンバーラインに対して略垂直にカットした直線形状にする場合がある。このように後縁として真円による円弧形状またはキャンバーラインに対して垂直にカットした直線形状を採用した場合、後縁の厚みが比較的大きくなるので、翼面上の流れが剥離して生じる翼後縁からのウェークが比較的大きくなるため、流れの損失もしくは流路抵抗が増大していた。
そこで、直線または曲率半径の大きい曲線の翼体の腹側縁線の端部と背側縁線の端部との接続点の角度を略垂直に形成した翼体が提案されている(例えば、特許文献1参照)。
Conventionally, in a blade body applied to a rotating machine such as a turbine portion of a gas turbine, a relatively thick thickness is given to increase the strength, and the trailing edge is formed into a circular arc (substantially semicircle) or There is a case where the shape is a straight line cut substantially perpendicular to the camber line. In this way, when a circular arc shape with a perfect circle or a linear shape cut perpendicular to the camber line is adopted as the trailing edge, the thickness of the trailing edge becomes relatively large, so that the flow generated on the blade surface is separated. Since the wake from the trailing edge is relatively large, the loss of flow or the channel resistance has increased.
Therefore, there has been proposed a wing body in which the angle of the connection point between the end of the ventral side edge line and the end of the back side edge line of the wing body of a straight line or a curve with a large curvature radius is formed substantially perpendicularly (for example, Patent Document 1).

特開2005−76533号公報JP 2005-76533 A

しかしながら、上述した従来の回転機械においては、全体の損失のうち翼体のウェークに起因する流れの損失および流路抵抗の占める割合が未だ高いため、このウェークに起因する損失を低減して更なる効率の向上を図ることが望まれている。   However, in the conventional rotating machine described above, since the ratio of the flow loss and the flow path resistance due to the wake of the blade body is still high in the total loss, the loss due to this wake is further reduced. It is desired to improve efficiency.

本発明は、上記事情に鑑みてなされたものであり、翼体の翼面上の流れの剥離によって生じる後縁からのウェークに起因する流れの損失および流路抵抗を低減可能な翼体および回転機械を提供するものである。   The present invention has been made in view of the above circumstances, and a wing body and a rotation that can reduce flow loss and flow resistance caused by wakes from the trailing edge caused by separation of the flow on the blade surface of the wing body Provide machines.

本発明は、上記課題を解決して係る目的を達成するために以下の構成を採用する。
本発明に係る翼体(例えば、実施形態における動翼1,21,31)は、背面(例えば、実施形態における背面2)と腹面(例えば、実施形態における腹面3)を有する本体部(例えば、実施形態における本体部4)と、前記背面と前記腹面とを連続的な曲面(例えば、実施形態における曲面5,25,35)で繋ぐ後縁部(例えば、実施形態における6,26,36)とを備え、該後縁部の曲面は、前記背面または前記腹面の何れか一方から流体の流れ方向の最も下流側に位置する後端部(例えば、実施形態における後端部7,27,37)に向かって漸次曲率半径が減少して前記後端部で曲率半径が最も小さくなり、その後、前記後端部から前記背面または前記腹面の何れか他方に向かって漸次曲率半径が増加して前記背面または前記腹面の何れか他方に至り、前記後端部は、前記本体部のキャンバーラインの延長線よりも背面側または腹面側に配置されることを特徴とする。
本発明に係る翼体によれば、本体部の背面または腹面に連続する後縁部の曲面が、曲率半径が徐々に減少して後端部に近づくほど薄型化されるため、強度を確保しつつ、従来の後縁部のように断面形状を単なる略半円形状にしたり、背側縁線の端部と腹側縁線の端部との接続点の角度を略垂直に形成する場合と比較して後端部近傍を肉薄に形成することができるため、翼面からの流れの剥離位置が後方へ移動して後縁部からのウェークが細くなり、流れの損失低減や効率向上を図ることができる。
The present invention adopts the following configuration in order to solve the above-described problems and achieve the object.
The wing body according to the present invention (for example, the moving blades 1, 21, 31 in the embodiment) has a main body (for example, the back surface (for example, the back surface 2 in the embodiment) and the abdominal surface (for example, the abdominal surface 3 in the embodiment). A rear edge portion (for example, 6, 26, 36 in the embodiment) that connects the main body portion 4) in the embodiment and the back surface and the abdominal surface with continuous curved surfaces (for example, the curved surfaces 5, 25, 35 in the embodiment). The curved surface of the rear edge portion is a rear end portion located at the most downstream side in the fluid flow direction from either the back surface or the abdominal surface (for example, the rear end portions 7, 27, 37 in the embodiment). ), The radius of curvature gradually decreases toward the rear end, and the radius of curvature becomes the smallest at the rear end. Thereafter, the radius of curvature gradually increases from the rear end toward the back surface or the abdominal surface. Back or belly Either reaches the other of said rear end, characterized in that it is arranged on the back side or ventral side than the extended line of the camber line of the main body portion.
According to the wing body according to the present invention, the curved surface of the rear edge portion continuous with the back surface or the abdominal surface of the main body portion is thinned as the radius of curvature gradually decreases and approaches the rear end portion. On the other hand, compared to the case where the cross-sectional shape is simply a semi-circular shape like the conventional rear edge, or the angle of the connection point between the end of the back side edge line and the end of the abdominal side edge line is substantially vertical. Since the vicinity of the rear end can be made thin, the separation position of the flow from the blade surface moves rearward and the wake from the rear edge becomes thinner, reducing flow loss and improving efficiency. Can do.

また、後端部が本体部のキャンバーラインの延長線よりも背面側または腹面側に配置される場合であっても、従来の翼体の後縁形状と比較して、翼面上の流れの剥離によるウェークを抑制することができる。   In addition, even when the rear end portion is arranged on the back side or the abdominal side of the extension line of the camber line of the main body portion, the flow on the wing surface is compared with the shape of the trailing edge of the conventional wing body. Wake due to peeling can be suppressed.

また本発明に係る翼体は、上記本発明の翼体において、回転体に等間隔で複数配置された翼体であって、前記後縁部の曲面は、前記後縁部が無い場合の翼間のスロート(例えば、実施形態におけるスロートS)を維持可能な曲率半径で形成されている。
本発明に係る翼体によれば、前記後縁部が、翼間のスロートに影響を与えないため、スロートの減少などにより流量が変化するのを防止することができる。
The wing body according to the present invention is the wing body of the present invention described above, wherein a plurality of wing bodies are arranged at equal intervals on the rotating body, and the curved surface of the trailing edge portion has no trailing edge portion. It is formed with the curvature radius which can maintain the throat (for example, throat S in embodiment) between.
According to the wing body according to the present invention, since the trailing edge does not affect the throat between the wings, it is possible to prevent the flow rate from changing due to a decrease in the throat.

さらに本発明に係る回転機械は、上記本発明の翼体を備えている。   Furthermore, the rotating machine according to the present invention includes the wing body according to the present invention.

この発明に係る翼体および回転機械によれば、翼面からの流れの剥離位置が後方へ移動して後縁部からのウェークを細くすることができるため、流れの損失および流路抵抗を低減することができる効果がある。   According to the wing body and the rotating machine according to the present invention, the flow separation position from the blade surface can move rearward, and the wake from the trailing edge can be reduced, thereby reducing flow loss and flow path resistance. There is an effect that can be done.

本発明の第1参考例におけるガスタービンを側方から見た部分断面図である。It is the fragmentary sectional view which looked at the gas turbine in the 1st reference example of the present invention from the side. 本発明の第1参考例における動翼のプロファイルを示す図である。It is a figure which shows the profile of the moving blade in the 1st reference example of this invention. 図2の後縁部周辺の部分拡大図である。FIG. 3 is a partially enlarged view of the vicinity of a rear edge portion of FIG. 2. 本発明の第1参考例の他の態様における図3に相当する部分拡大図である。It is the elements on larger scale equivalent to FIG. 3 in the other aspect of the 1st reference example of this invention. 本発明の第1参考例における動翼のスロートを示す図である。It is a figure which shows the throat of the moving blade in the 1st reference example of this invention. 本発明の第2参考例における図3に相当する部分拡大図である。It is the elements on larger scale equivalent to FIG. 3 in the 2nd reference example of this invention. 本発明の第2参考例の他の態様における図3に相当する部分拡大図である。It is the elements on larger scale equivalent to FIG. 3 in the other aspect of the 2nd reference example of this invention. 本発明の第3実施形態における図3に相当する部分拡大図である。It is the elements on larger scale equivalent to FIG. 3 in 3rd Embodiment of this invention. 本発明の第3実施形態の他の態様における図3に相当する部分拡大図である。It is the elements on larger scale equivalent to FIG. 3 in the other aspect of 3rd Embodiment of this invention.

次に、本発明の第1参考例における翼体および回転機械について図面を参照しながら説明する。この第1参考例においては、翼体としてガスタービンのタービン部のロータに等間隔で配置される動翼を一例に説明する(以下、第2実施例および第3実施例も同様)。   Next, the wing body and the rotating machine in the first reference example of the present invention will be described with reference to the drawings. In the first reference example, a moving blade disposed at equal intervals on a rotor of a turbine section of a gas turbine will be described as an example as a blade body (hereinafter, the same applies to the second and third embodiments).

図1に示すように、ガスタービン100は、圧縮空気を生成する圧縮機102と、圧縮機102から供給される圧縮空気に燃料を供給して燃焼ガスを生成する燃焼器103と、静翼104及び動翼1が交互に配設され、燃焼器103から供給される燃焼ガスにより動翼1が取り付けられたロータ106を回転させるタービン107とを備える。タービン107は、ロータ106の軸線Oと同軸上に配設された筒状のケーシング108の内部を燃焼ガス流路Fとしている。該燃焼ガス流路Fは、その外周側において、ケーシング108の内周側に設けられた筒状の外周側端壁110によってケーシング108と隔てられ、また、内周側において、ロータ106の外周側に設けられた筒状の内周側端壁111によってロータ106と隔てられており、断面ドーナツ状の軸線O方向に沿った流路となっている。そして、該燃焼ガス流路F内に、各段の静翼104及び動翼1がそれぞれ放射状に複数配設されている。   As shown in FIG. 1, the gas turbine 100 includes a compressor 102 that generates compressed air, a combustor 103 that supplies fuel to the compressed air supplied from the compressor 102 to generate combustion gas, and a stationary blade 104. And a turbine 107 for rotating the rotor 106 to which the rotor blade 1 is attached by the combustion gas supplied from the combustor 103. In the turbine 107, a combustion gas flow path F is formed inside a cylindrical casing 108 disposed coaxially with the axis O of the rotor 106. The combustion gas flow path F is separated from the casing 108 by a cylindrical outer peripheral side end wall 110 provided on the inner peripheral side of the casing 108 on the outer peripheral side, and on the outer peripheral side of the rotor 106 on the inner peripheral side. Is separated from the rotor 106 by a cylindrical inner peripheral side end wall 111 provided in the shape of the flow path along the axis O direction having a donut cross section. In the combustion gas flow path F, a plurality of the stationary blades 104 and the moving blades 1 at each stage are radially arranged.

図2は、この第1参考例の翼体である動翼1のプロファイルを示している。動翼1は、背面2と腹面3とを有する本体部4を備えている。背面2は曲率半径の比較的小さい曲面で形成され、腹面3は背面よりも曲率半径の大きい曲面で形成される。   FIG. 2 shows a profile of the moving blade 1 which is the blade body of the first reference example. The moving blade 1 includes a main body 4 having a back surface 2 and an abdominal surface 3. The back surface 2 is formed with a curved surface having a relatively small radius of curvature, and the abdominal surface 3 is formed with a curved surface having a larger radius of curvature than the back surface.

さらに動翼1は、流体の流れ方向の下流側(図3中、矢印で示す)で本体部4の背面2と腹面3とを連続的な曲面5で繋ぐ後縁部6を備えている。この後縁部6は、図3に示すように、背面2または腹面3の何れか一方から、流体の流れ方向の最も下流側となる後端部7に向かって曲率半径が漸次減少して後端部7で曲率半径が最も小さくなり、その後、後端部7から背面2または腹面3の何れか他方に向かって曲率半径が漸次増加して、背面2または腹面3の何れか他方に至る。この後縁部6と背面2および腹面3とは段差や角部が生じないよう滑らかに接続され、後端部7は、本体部4の翼型中心であるキャンバーライン9の延長線10上に配置される。   Further, the moving blade 1 includes a rear edge portion 6 that connects the back surface 2 and the abdominal surface 3 of the main body portion 4 with a continuous curved surface 5 on the downstream side in the fluid flow direction (indicated by an arrow in FIG. 3). As shown in FIG. 3, the rear edge 6 has a radius of curvature that gradually decreases from either the back surface 2 or the abdominal surface 3 toward the rear end portion 7 that is the most downstream in the fluid flow direction. The radius of curvature becomes the smallest at the end portion 7, and then the radius of curvature gradually increases from the rear end portion 7 toward the other side of the back surface 2 or the abdominal surface 3 to reach either the back surface 2 or the abdominal surface 3. The rear edge portion 6 and the back surface 2 and the abdominal surface 3 are smoothly connected so that no step or corner portion is generated, and the rear end portion 7 is on the extension line 10 of the camber line 9 which is the center of the airfoil of the main body portion 4. Be placed.

図3に破線で示す円弧8は、従来の翼体の後縁形状すなわち、真円の円弧(半円)である。本第1参考例の後縁部6は、後端部7に向かうほど曲面5の曲率半径が漸次減少するので、円弧8よりも下流側に細く伸びて形成され、さらに後縁部6の基部側は従来の翼体の後縁と同等の厚みに形成されるため、十分な強度を得つつウェークを細くすることができる。後端部7に向かうほど曲率半径が漸次減少する形状としては、例えば、図4に示すようにキャンバーライン9の延長線10上に長軸が重なる楕円12の孤を用いても良い。   An arc 8 indicated by a broken line in FIG. 3 is a trailing edge shape of a conventional wing body, that is, a perfect circular arc (semicircle). The rear edge portion 6 of the first reference example is formed so that the radius of curvature of the curved surface 5 gradually decreases toward the rear end portion 7. Since the side is formed with the same thickness as the trailing edge of the conventional wing body, the wake can be made thin while obtaining sufficient strength. As a shape in which the radius of curvature gradually decreases toward the rear end 7, for example, an arc of an ellipse 12 whose major axis overlaps the extension line 10 of the camber line 9 may be used as shown in FIG. 4.

後縁部6は、図5に示すように等間隔に配置された複数の動翼1の翼間の流路が最も狭くなる部分であるスロートSの断面積が、後縁部6を改良する前のスロートSの断面積を維持できる様に、翼1の背面2の形状に応じて曲率半径が漸次減少される。   As shown in FIG. 5, the rear edge 6 improves the rear edge 6 by the cross-sectional area of the throat S that is the portion where the flow path between the blades of the plurality of moving blades 1 arranged at equal intervals is the narrowest. In order to maintain the cross-sectional area of the previous throat S, the radius of curvature is gradually reduced according to the shape of the back surface 2 of the blade 1.

したがって、上述した第1参考例の動翼1および回転機械によれば、本体部4の背面2または腹面3に連続する後縁部6の曲面5が、後端部7に近づくほど曲率半径が徐々に減少して薄型化されるため、強度を確保しつつ、従来の翼体の後縁部のように断面形状を単なる略半円形状にしたり背面と腹面との接続点の角度を略垂直に形成する場合と比較して、翼面からの流れの剥離位置が後方へ移動して後縁部6からのウェークを細くすることができ流れの損失低減や効率向上を図ることができる。   Therefore, according to the moving blade 1 and the rotating machine of the first reference example described above, the radius of curvature increases as the curved surface 5 of the rear edge 6 continuous to the back surface 2 or the abdominal surface 3 of the main body 4 approaches the rear end 7. Since it is gradually reduced and thinned, the cross-sectional shape is simply a semi-circular shape like the rear edge of a conventional wing body, and the angle of the connection point between the back surface and the abdominal surface is approximately vertical while ensuring strength. Compared with the case of forming the wing, the separation position of the flow from the blade surface moves rearward, and the wake from the trailing edge 6 can be made thinner, so that the flow loss can be reduced and the efficiency can be improved.

また、後端部7が、本体部4のキャンバーライン9の延長線10上に配置されるため、腹面側および背面側の曲率半径変化が同等となり、翼形状を容易に滑らかに形成できる。
また、後縁部6が、翼間のスロートSに影響を与えないため、スロートの減少などにより流量が変化するのを防止することができる。
Further, since the rear end portion 7 is disposed on the extension line 10 of the camber line 9 of the main body portion 4, the change in the radius of curvature on the abdominal surface side and the back surface side becomes equal, and the wing shape can be formed easily and smoothly.
Further, since the trailing edge 6 does not affect the throat S between the blades, it is possible to prevent the flow rate from changing due to a decrease in the throat.

なお、上記第1参考例ではガスタービンの動翼を一例に説明したが、これに限られるものではなく、静翼であってもよい。また、ガスタービンの翼体に限られず、圧縮機、ファン、蒸気タービン、風車、航空機の翼体であってもよい。また、背面と腹面との曲率半径が異なる翼型に適用する場合について説明したが、翼型の背面と腹面との形状が対象な対象翼に適用してもよい。   In the first reference example, the moving blade of the gas turbine has been described as an example. However, the present invention is not limited to this, and a stationary blade may be used. Moreover, it is not restricted to the blade body of a gas turbine, A compressor, a fan, a steam turbine, a windmill, and the blade body of an aircraft may be sufficient. Moreover, although the case where it applied to the airfoil from which the curvature radius of a back surface and an abdominal surface differs was demonstrated, you may apply to the object wing | blade for which the shape of the back surface and abdominal surface of an airfoil is object.

次に、本発明の第2参考例における翼体である動翼21について図6、図7を参照しながら説明する。なお、第1参考例の動翼1と同一部分に同一符号を付して説明する。   Next, the moving blade 21 which is the blade body in the second reference example of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected and demonstrated to the same part as the moving blade 1 of a 1st reference example.

図6に示すように、この第2参考例の動翼21は、背面2および腹面3を有する本体部4と、流体の流れ方向の下流側において背面2および腹面3とを連続的な曲面25で繋ぐ後縁部26とを備えて構成される。後縁部26の曲面25は、流体の流れ方向の最も下流側となる後端部27がキャンバーライン9の延長線10上に配置される。
後縁部26の曲面25は、背面2または腹面3の何れか一方から、後端部27に向かって曲率半径が漸次減少して後端部27で曲率半径が最も小さくなり、その後、後端部27から背面2または腹面3の何れか他方に向かって曲率半径が漸次増加して、背面2または腹面3の何れか他方に至る。
As shown in FIG. 6, the moving blade 21 of the second reference example includes a main body portion 4 having a back surface 2 and an abdominal surface 3, and a continuous curved surface 25 that connects the back surface 2 and the abdominal surface 3 downstream in the fluid flow direction. And a rear edge portion 26 connected to each other. In the curved surface 25 of the trailing edge portion 26, the rear end portion 27 which is the most downstream side in the fluid flow direction is disposed on the extension line 10 of the camber line 9.
The curved surface 25 of the rear edge portion 26 has a radius of curvature that gradually decreases from either the back surface 2 or the abdominal surface 3 toward the rear end portion 27 and becomes the smallest at the rear end portion 27. The radius of curvature gradually increases from the portion 27 toward the other of the back surface 2 or the abdominal surface 3 and reaches either the back surface 2 or the abdominal surface 3.

ここで、図6に示す後縁部26の曲面25は、背面2から後端部27に至る背面側の曲面25aおよび腹面3から後端部27に至る腹面側の曲面25bで構成されている。これら曲面25aと曲面25bとは、互いに後端部27に近づくほど曲率半径が小さく形成されているがそれぞれ曲率半径の減少率が異なっている。
より具体的には、曲面25aは、背面2から後端部27に向かってのその曲率半径の減少率が比較的一定になるよう形成されているのに対して、曲面25bは、腹面3から後端部27に向かってのその曲率半径の減少率が、後端部27から離れた位置で低くなり、後端部27の近傍で高くなるように形成されている。そして、後端部27の近傍の曲率半径の後端部27に向かっての減少率は、曲面25bよりも曲面25aの方が低くなっている。
Here, the curved surface 25 of the rear edge portion 26 shown in FIG. 6 includes a back surface-side curved surface 25 a extending from the back surface 2 to the rear end portion 27 and a ventral surface-side curved surface 25 b extending from the abdominal surface 3 to the rear end portion 27. . The curved surface 25a and the curved surface 25b are formed such that the radius of curvature becomes smaller as they approach the rear end portion 27, but the rate of decrease of the radius of curvature is different.
More specifically, the curved surface 25a is formed so that the decreasing rate of the radius of curvature from the back surface 2 toward the rear end portion 27 is relatively constant, whereas the curved surface 25b is formed from the abdominal surface 3. The rate of decrease in the radius of curvature toward the rear end portion 27 is low at a position away from the rear end portion 27 and high near the rear end portion 27. The decreasing rate toward the rear end portion 27 of the radius of curvature near the rear end portion 27 is lower on the curved surface 25a than on the curved surface 25b.

上述した第2参考例の動翼21のように、後縁部26における後端部27に向かっての背面側の曲面25aの曲率半径の減少率と腹面側の曲面25bの曲率半径の減少率とがそれぞれ異なる場合であっても、従来の翼体の後縁部のように断面形状を単なる略半円形状にしたり、背側縁線の端部と腹側縁線の端部との接続点の角度を略垂直に形成する場合と比較して、連続的な曲面25によって後端部27近傍を肉薄に形成することができるため、翼面からの流れの剥離位置が後方へ移動して後縁部26からのウェークを細くすることができ、流れの損失低減や効率向上を図ることができる。   Like the moving blade 21 of the second reference example described above, the rate of decrease in the radius of curvature of the curved surface 25a on the back surface toward the rear end portion 27 in the trailing edge 26 and the rate of decrease in the radius of curvature of the curved surface 25b on the ventral surface. Even if they are different from each other, the cross-sectional shape is simply a semi-circular shape like the rear edge of a conventional wing body, or the connection point between the end of the dorsal edge line and the end of the ventral edge line Compared with the case where the angle is substantially vertical, the vicinity of the rear end portion 27 can be made thinner by the continuous curved surface 25, so that the separation position of the flow from the blade surface moves rearward. The wake from the edge portion 26 can be reduced, and flow loss can be reduced and efficiency can be improved.

なお、上記第2参考例では、後端部27の近傍における後端部27に向かっての背面側の曲面25aの曲率半径の減少率を腹面側の曲面25bの曲率半径の減少率よりも低く設定した場合について説明したが、スロートS維持の条件等に応じて、例えば図7に示すように、上述した曲面25aと曲面25bとの曲率半径の減少率を入れ替えて、後端部27近傍における後端部27に向かっての腹面3側の曲面25bの曲率半径の減少率を背面側の曲面25aの曲率半径の減少率よりも低く設定するようにしてもよい。   In the second reference example, the decreasing rate of the curvature radius of the curved surface 25a on the back surface toward the trailing end portion 27 in the vicinity of the trailing end portion 27 is lower than the decreasing rate of the curvature radius of the curved surface 25b on the ventral surface side. Although the case where it set was demonstrated, according to the conditions of throat S maintenance etc., as shown, for example in FIG. 7, the decreasing rate of the curvature radius of the curved surface 25a mentioned above and the curved surface 25b is replaced, and in the rear-end part 27 vicinity. You may make it set the decreasing rate of the curvature radius of the curved surface 25b by the side of the abdominal surface 3 toward the back end part 27 lower than the decreasing rate of the curvature radius of the curved surface 25a by the side of a back surface.

次に、本発明の第3実施形態の翼体である動翼31について図8、図9を参照しながら説明する。なお、この第3実施形態は第2参考例の後端部27をキャンバーライン9の延長線10よりも背面側または腹面側にオフセット配置したものである。上述した第1参考例および第2参考例と同一部分に同一符号を付して説明する。
図8に示すように、この第3実施形態の動翼31は、第2参考例の動翼21と同様に、背面2および腹面3を有する本体部4と、流体の流れ方向の下流側において背面2および腹面3とを連続的な曲面35で繋ぐ後縁部36とを備えて構成される。
Next, the moving blade 31 which is the blade body of 3rd Embodiment of this invention is demonstrated, referring FIG. 8, FIG. In the third embodiment, the rear end portion 27 of the second reference example is offset from the extended line 10 of the camber line 9 on the back side or the abdominal side. The same parts as those in the first reference example and the second reference example described above will be described with the same reference numerals.
As shown in FIG. 8, the moving blade 31 of the third embodiment is similar to the moving blade 21 of the second reference example, on the main body portion 4 having the back surface 2 and the abdominal surface 3, and on the downstream side in the fluid flow direction. A rear edge portion 36 that connects the back surface 2 and the abdominal surface 3 with a continuous curved surface 35 is provided.

後縁部36の曲面35の流体の流れ方向の最も下流側となる後端部37は、キャンバーライン9の延長線10よりも腹面3側に配置される。
後縁部36の曲面35は、背面2または腹面3の何れか一方から、後端部37に向かって曲率半径が漸次減少して後端部37で曲率半径が最も小さくなり、その後、後端部37から背面2または腹面3の何れか他方に向かって曲率半径が漸次増加して、背面2または腹面3の何れか他方に至る。
The rear end portion 37 which is the most downstream side in the fluid flow direction of the curved surface 35 of the rear edge portion 36 is disposed on the abdominal surface 3 side with respect to the extension line 10 of the camber line 9.
The curved surface 35 of the rear edge portion 36 has a radius of curvature that gradually decreases from either the back surface 2 or the abdominal surface 3 toward the rear end portion 37 and becomes the smallest at the rear end portion 37. The radius of curvature gradually increases from the portion 37 toward the other of the back surface 2 and the abdominal surface 3 and reaches either the back surface 2 or the abdominal surface 3.

後縁部36の曲面35は、上述した第2参考例と同様に、背面2から後端部37までの背面側の曲面35aの曲率半径の減少率と腹面3から後端部37までの腹面側の曲面35bとの曲率半径の減少率とが異なっている。より具体的には、曲面35aは、背面2から後端部37に向かってのその曲率半径の減少率が比較的一定になるよう形成されているのに対して、曲面35bは、腹面3から後端部37に向かっての曲率半径の減少率が、後端部37から離れた位置で低くなり、後端部37の近傍で高くなるように形成されている。そして、後端部37の近傍の曲率半径の後端部37に向かっての減少率は、曲面35bよりも曲面35aの方が低くなっている。   The curved surface 35 of the trailing edge 36 is similar to the above-described second reference example in that the rate of decrease in the radius of curvature of the curved surface 35 a on the back surface from the back surface 2 to the rear end portion 37 and the abdominal surface from the abdominal surface 3 to the rear end portion 37. The decreasing rate of the radius of curvature is different from that of the curved surface 35b on the side. More specifically, the curved surface 35a is formed such that the decreasing rate of the radius of curvature from the back surface 2 toward the rear end portion 37 is relatively constant, whereas the curved surface 35b is formed from the abdominal surface 3. The rate of decrease in the radius of curvature toward the rear end portion 37 is formed so as to decrease at a position away from the rear end portion 37 and to increase in the vicinity of the rear end portion 37. And the decreasing rate toward the rear end portion 37 of the radius of curvature near the rear end portion 37 is lower on the curved surface 35a than on the curved surface 35b.

この第3実施形態の動翼31においても第2参考例と同様に、従来の翼体の後縁部のように断面形状を単なる半円形状にしたり、背側縁線の端部と腹側縁線の端部との接続点の角度を略垂直に形成する場合と比較して、連続的な曲面35によって後端部27近傍を肉薄に形成することができるため、翼面からの流れの剥離位置が後方へ移動して後縁部36からのウェークが細くなり、流れの損失低減や効率向上を図ることができる。   Similarly to the second reference example, the rotor blade 31 of the third embodiment has a simple semicircular cross-sectional shape like the rear edge portion of the conventional blade body, or the end portion of the back side edge line and the ventral side edge. Compared with the case where the angle of the connection point with the end of the line is formed substantially vertically, the vicinity of the rear end 27 can be formed thin by the continuous curved surface 35, so that the flow is separated from the blade surface. The position moves rearward, and the wake from the rear edge portion 36 becomes thinner, so that flow loss can be reduced and efficiency can be improved.

なお、上記第3実施形態では、後端部37が延長線10よりも腹面3側にオフセットし、且つ、後端部37の近傍における後端部37に向かっての背面側の曲面35aの曲率半径の減少率を腹面側の曲面35bの曲率半径の減少率よりも低く設定した場合について説明したが、スロートS維持の条件等に応じて、例えば図9に示すように、後端部37を延長線10よりも背面2側にオフセットさせると共に、上述した後端部37に向かっての曲面35aの曲率半径の減少率と曲面35bの曲率半径の減少率とを入れ替えて、後端部37近傍における後端部37に向かっての腹面側の曲面35bの曲率半径の減少率を背面側の曲面35aの曲率半径の減少率よりも低く設定するようにしてもよい。   In the third embodiment, the rear end portion 37 is offset toward the abdominal surface 3 with respect to the extension line 10, and the curvature of the curved surface 35 a on the back surface toward the rear end portion 37 in the vicinity of the rear end portion 37. The case where the radius reduction rate is set to be lower than the curvature radius reduction rate of the curved surface 35b on the abdominal surface side has been described, but depending on the conditions for maintaining the throat S, for example, as shown in FIG. The offset of the radius of curvature of the curved surface 35a toward the rear end portion 37 and the decrease rate of the radius of curvature of the curved surface 35b are replaced with each other by offsetting the extension line 10 toward the back surface 2 side. The decreasing rate of the radius of curvature of the curved surface 35b on the abdominal surface toward the rear end portion 37 may be set lower than the decreasing rate of the radius of curvature of the curved surface 35a on the back surface side.

1,21,31 動翼
2 背面
3 腹面
4 本体部
5,25,35 曲面
6,26,36 後縁部
7,27,37 後端部
9 キャンバーライン
10 延長線
100 ガスタービン
S スロート
1,21,31 Rotor blade 2 Rear surface 3 Abdominal surface 4 Body portion 5, 25, 35 Curved surface 6, 26, 36 Rear edge portion 7, 27, 37 Rear end portion 9 Camber line 10 Extension line 100 Gas turbine S Throat

Claims (3)

背面と腹面を有する本体部と、
前記背面と前記腹面とを連続的な曲面で繋ぐ後縁部とを備え、
該後縁部の曲面は、前記背面または前記腹面の何れか一方から流体の流れ方向の最も下流側に位置する後端部に向かって漸次曲率半径が減少して前記後端部で曲率半径が最も小さくなり、その後、前記後端部から前記背面または前記腹面の何れか他方に向かって漸次曲率半径が増加して前記背面または前記腹面の何れか他方に至り、
前記後端部は、前記本体部のキャンバーラインの延長線よりも背面側または腹面側に配置されることを特徴とする翼体。
A main body having a back surface and an abdominal surface;
A rear edge portion connecting the back surface and the abdominal surface with a continuous curved surface,
The curved surface of the rear edge portion gradually decreases in radius of curvature from either the back surface or the abdominal surface toward the rear end portion located on the most downstream side in the fluid flow direction, and the curvature radius at the rear end portion. Becomes the smallest, and then gradually increases the radius of curvature from the rear end portion toward the other side of the back surface or the abdominal surface to reach either the back surface or the abdominal surface,
The wing body is characterized in that the rear end portion is disposed on the back surface side or the abdominal surface side of the extension line of the camber line of the main body portion.
回転体に等間隔で複数配置された翼体であって、
前記後縁部の曲面は、前記後縁部が無い場合の翼間のスロートを維持可能な曲率半径で形成されることを特徴とする請求項1に記載の翼体。
A plurality of wings arranged at equal intervals on the rotating body,
2. The wing body according to claim 1, wherein the curved surface of the trailing edge is formed with a radius of curvature capable of maintaining a throat between the wings when the trailing edge is not provided. 3.
請求項1又は2に記載の翼体を備える回転機械。   A rotary machine comprising the wing body according to claim 1.
JP2013013723A 2013-01-28 2013-01-28 Wing body and rotating machine Active JP5456186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013013723A JP5456186B2 (en) 2013-01-28 2013-01-28 Wing body and rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013013723A JP5456186B2 (en) 2013-01-28 2013-01-28 Wing body and rotating machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009162701A Division JP5351637B2 (en) 2009-07-09 2009-07-09 Wing body and rotating machine

Publications (2)

Publication Number Publication Date
JP2013076413A JP2013076413A (en) 2013-04-25
JP5456186B2 true JP5456186B2 (en) 2014-03-26

Family

ID=48480037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013013723A Active JP5456186B2 (en) 2013-01-28 2013-01-28 Wing body and rotating machine

Country Status (1)

Country Link
JP (1) JP5456186B2 (en)

Also Published As

Publication number Publication date
JP2013076413A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5351637B2 (en) Wing body and rotating machine
JP5946707B2 (en) Axial turbine blade
JP4537951B2 (en) Axial rotary fluid machine blades
US9091174B2 (en) Method of reducing asymmetric fluid flow effects in a passage
JP5777531B2 (en) Airfoil blades for axial turbomachinery
US10519850B2 (en) Turbine housing and method of producing turbine housing
JP2015183691A (en) gas turbine blade
WO2007108232A1 (en) Turbine cascade end wall
JP5969651B1 (en) Windmill wing
EP3231996B1 (en) A blade for an axial flow machine
US9869184B2 (en) Gas turbine blade
EP3221564B1 (en) Turbomachine including a vane and method of assembling such turbomachine
JP2012047085A (en) Turbine impeller
JP5595532B2 (en) Wing body and rotating machine
JP2009036112A (en) Blade for rotary machine
JP5456186B2 (en) Wing body and rotating machine
JP6381794B2 (en) Axial blower
US20130224034A1 (en) Blade body and rotary machine
JP6503698B2 (en) Axial machine wing
KR20170102097A (en) Fan of axial flow suppress for vortex and leakage flow
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
WO2012090269A1 (en) Blade body and rotary machine
JP5649608B2 (en) Axial blower
JP5705608B2 (en) Rotating machine blade design method
JP2019027751A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R151 Written notification of patent or utility model registration

Ref document number: 5456186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350