JP5455762B2 - Rotating electric machine and manufacturing method thereof - Google Patents

Rotating electric machine and manufacturing method thereof Download PDF

Info

Publication number
JP5455762B2
JP5455762B2 JP2010098197A JP2010098197A JP5455762B2 JP 5455762 B2 JP5455762 B2 JP 5455762B2 JP 2010098197 A JP2010098197 A JP 2010098197A JP 2010098197 A JP2010098197 A JP 2010098197A JP 5455762 B2 JP5455762 B2 JP 5455762B2
Authority
JP
Japan
Prior art keywords
electrical machine
rotating electrical
stator core
stator
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010098197A
Other languages
Japanese (ja)
Other versions
JP2010279243A (en
Inventor
良浩 谷
信一 山口
晃裕 大穀
千代 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010098197A priority Critical patent/JP5455762B2/en
Publication of JP2010279243A publication Critical patent/JP2010279243A/en
Application granted granted Critical
Publication of JP5455762B2 publication Critical patent/JP5455762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、電磁鋼板が積層されて構成され、円周方向に間隔をおいて形成された複数のティース部及び各ティース部を繋ぐ主磁束の経路となる円環状のヨーク部を有する固定子と、この固定子の外周面に嵌着した外枠とを備えた回転電機、及びその製造方法に関する。   The present invention comprises a stator having a plurality of teeth portions formed by laminating electromagnetic steel sheets and spaced apart in the circumferential direction, and an annular yoke portion serving as a main magnetic flux path connecting the teeth portions. The present invention relates to a rotating electrical machine including an outer frame fitted to the outer peripheral surface of the stator, and a manufacturing method thereof.

回転電機である電動機においては、発生したトルクの伝達性を高めるため、さらには本願の一実施の形態例として挙げた複数に分割された固定子鉄心ブロックを円環状に配置して固定子を成形するものにおいては、その成形性(真円度)を高めるために、固定子の外周面に鉄やアルミニウム製の外枠が嵌着される。
この嵌着手段として、固定子の外径と外枠の内径との差を利用した方法、例えば焼嵌めや圧入といった方法が採用されている。
この場合、ヨーク部の周方向には大きな圧縮応力が作用し、ヨーク部の磁気特性(鉄損、磁化特性)が劣化、それに伴い電動機性能(ロストルク、効率)が悪化する。
この対策として、固定子にヨーク部での圧縮応力を分散させる空隙や切り欠きを設ける例(例えば、特許文献1参照)、あるいは圧縮応力条件下で磁気特性劣化が少ない鋼材を用いる例(例えば、特許文献2参照)等が提案されている。
In an electric motor, which is a rotating electric machine, in order to improve the transmission of the generated torque, the stator core block divided into a plurality of parts as an embodiment of the present application is arranged in an annular shape to form a stator. In order to improve the formability (roundness), an outer frame made of iron or aluminum is fitted on the outer peripheral surface of the stator.
As this fitting means, a method using the difference between the outer diameter of the stator and the inner diameter of the outer frame, for example, a method such as shrink fitting or press fitting is employed.
In this case, a large compressive stress acts in the circumferential direction of the yoke portion, and the magnetic properties (iron loss and magnetization properties) of the yoke portion are deteriorated, and accordingly, the motor performance (loss torque, efficiency) is deteriorated.
As a countermeasure, an example in which a gap or a notch for dispersing the compressive stress in the yoke portion is provided in the stator (for example, refer to Patent Document 1), or an example in which a steel material with little deterioration in magnetic properties under the compressive stress condition is used (for example, Patent Document 2) has been proposed.

上記特許文献1の図1に示された、円周方向に複数のティース部を有する固定子においては、そのティース部根元部と外枠とが接する固定子外周部との間に固定子外周部近傍の応力を緩和するための空隙部が設けられ、ティース部根元部が位置する固定子外周部を外枠に接触固定することで、固定子に加わる圧縮応力を低減し磁気特性の劣化を抑制している。   In the stator having a plurality of teeth portions in the circumferential direction shown in FIG. 1 of Patent Document 1, the stator outer peripheral portion is disposed between the teeth base portion and the stator outer peripheral portion in contact with the outer frame. A gap is provided to relieve stress in the vicinity, and the outer periphery of the stator where the teeth base is located is fixed in contact with the outer frame to reduce the compressive stress applied to the stator and suppress the deterioration of magnetic properties doing.

また、上記特許文献2のものでは、焼嵌め固定された鉄心などの鋼板面内方向に圧縮応力が作用する用途において最適な電磁鋼板を選定する方法を提供するものである。
このものでは、上記用途の鉄心に、面内異方性指標Sを定義し、その値が0.06以下と、面内での磁気特性が等方性に近い無方向性電磁鋼板を使用することを特徴とする電動機鉄心用電磁鋼板の選定方法が示されている。
ここで、面内異方性指数Sは、鋼板の圧延方向から0°、45°、90°方向に周波数50Hz、磁化力5000A/mで励磁、測定した磁束密度B50、B5045、B5090と、それらの最大値Bmaxと最小値Bminを用いて、下式から求めている。
S=4×(Bmax-Bmin)/(B50+2B5045+B5090)
Moreover, the thing of the said patent document 2 provides the method of selecting an optimal electromagnetic steel plate in the use which a compressive stress acts on steel plate surface directions, such as a core fixed by shrink fitting.
In this case, an in-plane anisotropy index S is defined for the iron core for the above-mentioned use, and its value is 0.06 or less, and a non-oriented electrical steel sheet having in-plane magnetic properties close to isotropic is used. A method for selecting a magnetic steel sheet for an electric motor core, which is characterized by this, is shown.
Here, the in-plane anisotropy index S is the magnetic flux density B50 0 , B50 45 , B50 90 excited and measured at a frequency of 50 Hz and a magnetizing force of 5000 A / m in the 0 °, 45 °, and 90 ° directions from the rolling direction of the steel sheet. Using the maximum value Bmax and the minimum value Bmin, the following formula is used.
S = 4 × (Bmax−Bmin) / (B50 0 + 2B50 45 + B50 90 )

特開2005-354870号公報(第8頁、図1)Japanese Patent Laying-Open No. 2005-354870 (page 8, FIG. 1) 特開2005-312155号公報(第2頁第49行〜第3頁第17行)JP-A-2005-312155 (2nd page, 49th line to 3rd page, 17th line)

しかしながら、上記特許文献1のものでは、固定子に加わる応力を低減しかつ外枠との嵌合性も高めることができる反面、ティース部根元部でのコア幅が削減されるため電動機の負荷状態により磁束密度が上昇し鉄損が増加する、固定子の外枠への保持がティース部根元部のみとなる場合には、外枠からの応力によるティース部変形によりスロット部の間隔がティース部個々にばらつき易く、これに伴いティース部のロータ対向面の真円度が低下することで永久磁石電動機等ではコギングトルクが増加する、等の問題点があった。   However, although the thing of the said patent document 1 can reduce the stress added to a stator and can also improve fitting property with an outer frame, since the core width | variety in a teeth part base part is reduced, it is a load state of an electric motor. The magnetic flux density increases and iron loss increases, and when the stator is held only on the base of the teeth part, the teeth of the tooth part are separated by the deformation of the tooth part due to the stress from the outer frame. As a result, the roundness of the rotor-facing surface of the tooth portion is reduced, and the cogging torque is increased in the permanent magnet motor or the like.

また、上記特許文献2のものでは、一般的にヒステリシス損の小さなハイグレード無方向性電磁鋼板ほど圧延方向を磁化容易方向に面内での異方性が大きくなる。
従って、上記特許文献2のものでの選別に従えば、通常のハイグレード材の使用ができないなど機器設計の自由度が狭められ、機器性能の低下や製品価格の上昇といった問題点があった。
Moreover, in the thing of the said patent document 2, generally the anisotropy in a plane becomes large in a rolling direction in an easy magnetization direction, so that a high grade non-oriented electrical steel plate with a small hysteresis loss is small.
Therefore, according to the selection in the above-mentioned Patent Document 2, the degree of freedom in device design is narrowed such that the normal high-grade material cannot be used, and there is a problem that the device performance is lowered and the product price is raised.

この発明は、上記のような問題点を解決することを課題とするものであって、固定子鉄心の材料として特定の無方向性電磁鋼板に限定されず、固定子鉄心構造として固定子鉄心中や外枠との接触部に空隙を設けること無く、外枠装着に伴う固定子鉄心の周方向に発生する圧縮応力の影響による鉄損の増加を抑制できる回転電機及びその製造方法を提供するものである。   An object of the present invention is to solve the above-described problems, and is not limited to a specific non-oriented electrical steel sheet as a material of the stator core, but as a stator core structure in the stator core. A rotating electrical machine that can suppress an increase in iron loss due to the effect of compressive stress generated in the circumferential direction of the stator core when the outer frame is mounted without providing a gap in the contact portion with the outer frame and a manufacturing method thereof It is.

この発明に係る回転電機は、電磁鋼板からなる固定子鉄心片を積層して構成され円周方向に間隔をおいて形成された複数のティース部及び各ティース部を繋ぐ主磁束の経路となる円環状のヨーク部を有する固定子鉄心を含む固定子と、この固定子の外周面に嵌着した外枠とを備えた回転電機であって、
前記ヨーク部は、弾性限界を超え降伏点未満の外部応力に伴う塑性歪みが付与されている。
A rotating electrical machine according to the present invention includes a plurality of teeth portions formed by laminating stator core pieces made of electromagnetic steel plates and formed at intervals in the circumferential direction, and a circle serving as a main magnetic flux path connecting the teeth portions. A rotating electrical machine comprising a stator including a stator core having an annular yoke portion, and an outer frame fitted to the outer peripheral surface of the stator,
The yoke portion is provided with plastic strain accompanying external stress exceeding the elastic limit and less than the yield point.

この発明に係る回転電機の製造方法は、ヨーク部に付与される塑性歪みは、プレス成形工程により固定子鉄心片が成形される前、固定子鉄心片のプレス成形工程または固定子鉄心片が成形された後で冷間加工により付与される。   In the method of manufacturing a rotating electrical machine according to the present invention, the plastic strain applied to the yoke portion is determined by pressing the stator core piece before the stator core piece is formed by the press forming process, or forming the stator core piece. And then applied by cold working.

この発明に係る回転電機によれば、ヨーク部は、弾性限界を超え降伏点未満の外部応力に伴う塑性歪みが付与されているので、外枠装着に伴う固定子周方向に発生する圧縮応力の影響による鉄損の増加が抑制される。   According to the rotating electric machine according to the present invention, the yoke portion is subjected to the plastic strain accompanying the external stress exceeding the elastic limit and less than the yield point, so that the compressive stress generated in the circumferential direction of the stator accompanying the outer frame mounting can be reduced. Increase in iron loss due to the effect is suppressed.

また、この発明に係る回転電機の製造方法によれば、ヨーク部に付与される塑性歪みは、プレス成形工程により固定子鉄心片が成形される前、固定子鉄心片のプレス成形工程または固定子鉄心片が成形された後で冷間加工により付与されるので、ヨーク部に塑性歪みを簡単に付与することができる。   Further, according to the method for manufacturing a rotating electrical machine according to the present invention, the plastic strain applied to the yoke portion is the step of pressing the stator core piece before the stator core piece is formed by the press forming process, or the stator. Since it is given by cold working after the iron core piece is molded, plastic strain can be easily given to the yoke part.

この発明の実施の形態1による電動機の固定子及びその外周面に嵌着された外枠を示す断面図である。It is sectional drawing which shows the stator of the electric motor by Embodiment 1 of this invention, and the outer frame fitted by the outer peripheral surface. 電磁鋼板試験材での応力と歪みとの関係を示す図である。It is a figure which shows the relationship between the stress and distortion in an electromagnetic steel plate test material. 電磁鋼板試験材での塑性変形量と鉄損との関係を示す図である。It is a figure which shows the relationship between the amount of plastic deformation in a magnetic steel sheet test material, and an iron loss. 電磁鋼板試験材での弾性応力下における塑性変形量とヒステリシス損との関係を示す図である。It is a figure which shows the relationship between the amount of plastic deformation and the hysteresis loss under the elastic stress in an electromagnetic steel plate test material. 電磁鋼板試験材での弾性応力下における塑性変形量と渦電流損との関係を示す図である。It is a figure which shows the relationship between the amount of plastic deformation and eddy current loss under the elastic stress in an electromagnetic steel plate test material. 本願発明の実験結果を示す図である。It is a figure which shows the experimental result of this invention. 図1の固定子鉄心における製造工程の一工程を示す側断面図である。It is a sectional side view which shows one process of the manufacturing process in the stator core of FIG. 図7の平面図である。FIG. 8 is a plan view of FIG. 7. 図1のティース片を成形する際に用いられるプレス金型のパンチの正面図である。It is a front view of the punch of the press die used when shape | molding the teeth piece of FIG. 図1の固定子鉄心と異なるプレス加工工程を示す平面図である。It is a top view which shows the press work process different from the stator core of FIG. 図10の次工程であってヨーク部に塑性歪みを付与する工程を示す平面図である。It is a top view which shows the process of providing the plastic strain to a yoke part which is the next process of FIG. 図11のX-Y線に沿って切断したときの矢視断面図である。It is arrow sectional drawing when cut | disconnecting along the XY line of FIG. 図1の固定子鉄心と異なる固定子鉄心(ティース部とヨーク部とが一体である)でのヨーク部に塑性歪みを付与する工程を示す平面図である。It is a top view which shows the process of giving a plastic strain to the yoke part in the stator core (a teeth part and a yoke part are integral) different from the stator core of FIG. 図13のX-Y線に沿って切断したときの矢視断面図である。It is arrow sectional drawing when cut | disconnecting along the XY line of FIG. 図14のX1-Y1線に沿って切断したときの矢視断面図である。It is arrow sectional drawing when cut | disconnecting along the X1-Y1 line | wire of FIG. この発明の実施の形態2による電動機の固定子及びその外周面に嵌着された外枠を示す断面図である。It is sectional drawing which shows the stator of the electric motor by Embodiment 2 of this invention, and the outer frame fitted by the outer peripheral surface. 図16の固定子鉄心ブロックが展開された状態を示す図である。It is a figure which shows the state by which the stator core block of FIG. 16 was expand | deployed. 図17の隣接した固定子鉄心ブロック同士の連結状態を示す図である。It is a figure which shows the connection state of the adjacent stator core blocks of FIG. 図16の固定子鉄心における製造工程の一工程を示す側断面図である。FIG. 17 is a side cross-sectional view showing a step of the manufacturing process for the stator core in FIG. 16. 図19の平面図である。FIG. 20 is a plan view of FIG. 19. 図16のティース片を成形する際に用いられるプレス金型のストリッパーの正面図である。It is a front view of the stripper of the press die used when shape | molding the teeth piece of FIG. 図19に示した固定子鉄心の製造工程と異なる製造工程の一工程を示す側断面図である。FIG. 20 is a side cross-sectional view showing one process of the manufacturing process different from the manufacturing process of the stator core shown in FIG. 19. 図22のX-Y線に沿って切断したときの矢視断面図である。It is arrow sectional drawing when cut | disconnecting along the XY line of FIG.

以下、この発明の各実施の形態について、図に基づいて説明するが、各図において同一または相当部材、部位については同一符号を付して説明する。
実施の形態1.
図1はこの発明の実施の形態1の電動機の固定子1及び外枠6を示す断面図である。
この固定子1は、固定子鉄心と、この固定子鉄心にボビン5を介して導線が巻回して巻装された巻線4とを備えている。
固定子鉄心は、無方向性電磁鋼板をプレス成形したヨーク片を積層した円環状のヨーク部3と、同じく無方向性電磁鋼板をプレス成形したティース片を積層した複数のティース部2とから構成され、磁束の主通過経路となるヨーク部3の内周面に、各ティース部2の根元部が嵌着されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or equivalent members and parts will be described with the same reference numerals.
Embodiment 1 FIG.
1 is a cross-sectional view showing a stator 1 and an outer frame 6 of an electric motor according to Embodiment 1 of the present invention.
The stator 1 includes a stator iron core and a winding 4 wound around the stator iron core with a conducting wire wound through a bobbin 5.
The stator core is composed of an annular yoke portion 3 in which yoke pieces formed by press-forming non-oriented electrical steel sheets are laminated, and a plurality of tooth portions 2 in which teeth pieces obtained by press-forming non-directional electromagnetic steel plates are laminated. The root portion of each tooth portion 2 is fitted to the inner peripheral surface of the yoke portion 3 that becomes the main passage path of magnetic flux.

この固定子1の外周面には、鉄またはアルミニウム製の円筒形状の外枠6が嵌着されている。
固定子1に外枠6を嵌着する手段としては、固定子1の外径と外枠6の内径との差を利用し、外枠6を加熱する焼嵌め方式、固定子1を冷却する冷やし嵌め方式がある。また、外枠6に固定子1を圧入する圧入方式もある。
ヨーク部3には、弾性限界を超え降伏点未満の外部応力に伴う塑性歪みが付与されている。
このように、ヨーク部3のみに低塑性歪みを付与しているので、塑性歪みを付与していないヨーク部と比較し、ヒステリシス損は同等でしかも渦電流損は小さく、圧縮応力がヨーク部3内にて不均一に分布しても渦電流損は均一に分布する。
このため、ヒステリシス損と渦電流損の総和である鉄損は圧縮応力が作用しているにも拘わらず無歪みヨーク部と比較して減少させることができ、しかも応力集中部での渦電流損局部加熱も抑制できる。とりわけ、高速回転で運転される場合には鉄損の低減効果がより大きくなり、電動機の効率が向上する。
さらに、固定子1の内部あるいは外周部に外枠6からの圧縮応力を軽減する空隙等を形成する必要がないため、外枠6と固定子1との間での保持力向上、ヨーク部3の磁路断面が削減されないので、電動機の負荷状態による磁束密度の上昇とそれに伴う鉄損増加の抑制、固定子のティース部2の先端部での真円度確保が容易となる等の効果が得られる。
A cylindrical outer frame 6 made of iron or aluminum is fitted on the outer peripheral surface of the stator 1.
As a means for fitting the outer frame 6 to the stator 1, a difference between the outer diameter of the stator 1 and the inner diameter of the outer frame 6 is used to cool the stator 1. There is a cold fitting method. There is also a press-fitting method in which the stator 1 is press-fitted into the outer frame 6.
The yoke part 3 is provided with plastic strain accompanying external stress exceeding the elastic limit and less than the yield point.
Thus, since low plastic strain is applied only to the yoke portion 3, the hysteresis loss is equal and the eddy current loss is small and the compressive stress is less than that of the yoke portion not applied with plastic strain. Even if it is unevenly distributed, the eddy current loss is uniformly distributed.
For this reason, the iron loss, which is the sum of hysteresis loss and eddy current loss, can be reduced compared to the unstrained yoke part, despite the fact that compressive stress is acting, and the eddy current loss at the stress concentrated part. Local heating can also be suppressed. In particular, when operating at high speed rotation, the effect of reducing iron loss is greater, and the efficiency of the motor is improved.
Further, since it is not necessary to form a gap or the like for reducing the compressive stress from the outer frame 6 in the inside or the outer periphery of the stator 1, the holding force is improved between the outer frame 6 and the stator 1, and the yoke portion 3. Since the magnetic path cross section of the motor is not reduced, there are effects such as an increase in the magnetic flux density due to the load state of the motor and the suppression of the increase in iron loss and the roundness at the tip of the teeth portion 2 of the stator. can get.

以下、ヨーク部3に、弾性限界を超え降伏点未満の外部応力に伴う塑性歪みが付与されたことによる、上記ヨーク部3の特性について、詳述する。
まず、固定子1の素材である無方向性電磁鋼板を対象に、塑性歪みの付与と鉄損影響の関係、さらには弾性応力が鋼板面内での磁路と平行に付加されている状態での鉄損影響との関係について検討した結果を説明する。
無方向性電磁鋼板への塑性歪みの付与は、平板を圧延方向と平行に所定の伸長率が得られるまで引張る方法により、歪み量が異なる複数の素板を作製した。測定に供した電磁鋼板はJISグレード35A230材で、JIS5号片による応力・歪み曲線を図2に示す。作製した素板の塑性歪み均一歪み部より幅30mm、長さ200mmの短冊状試料を長手が圧延方向となるようにワイヤー放電加工にて切り出し磁気測定に供した。
磁気測定は、応力付加機構付きシングルヨーク型単板磁気試験器により、磁気測定方向と平行に±150MPa範囲の弾性応力を試験片断面に付加しながら、磁束正弦波条件、励磁磁束密度1.5T、励磁周波数50Hz、70Hz、100Hzでの鉄損測定を行うと共に、それらの結果をもとに周波数分離を行い50Hz換算でのヒステリシス損、渦電流損を求めた。
Hereinafter, the characteristics of the yoke part 3 will be described in detail because the yoke part 3 is subjected to plastic strain accompanying external stress exceeding the elastic limit and less than the yield point.
First, for the non-oriented electrical steel sheet that is the material of the stator 1, the relationship between the application of plastic strain and the effect of iron loss, and further the state where the elastic stress is applied parallel to the magnetic path in the steel sheet surface The results of studying the relationship with the iron loss effect will be explained.
For imparting plastic strain to the non-oriented electrical steel sheet, a plurality of base plates having different strain amounts were produced by a method of pulling a flat plate in parallel with the rolling direction until a predetermined elongation rate was obtained. The electrical steel sheet used for the measurement is JIS grade 35A230 material, and the stress / strain curve according to JIS No. 5 is shown in FIG. A strip-shaped sample having a width of 30 mm and a length of 200 mm was cut out by wire electric discharge machining from the plastic strain uniform strain portion of the produced base plate and subjected to magnetic measurement.
Magnetic measurement is performed with a single yoke type single-plate magnetic tester with a stress application mechanism, applying elastic stress in the range of ± 150 MPa in parallel to the magnetic measurement direction to the cross section of the test piece, with magnetic flux sine wave conditions, excitation magnetic flux density 1.5T. In addition to measuring iron loss at excitation frequencies of 50 Hz, 70 Hz, and 100 Hz, frequency separation was performed based on these results, and hysteresis loss and eddy current loss in terms of 50 Hz were obtained.

まず、塑性歪みの付与と鉄損影響の関係を図3に示す。
図3は無歪み試料のヒステリシス損と渦電流損の値を1とした時の各鉄損成分の変化率を示している。ヒステリシス損は塑性歪みの付与に伴い増加するのに対し、渦電流損の変化は僅かに減少傾向を見せているが、ヒステリシス損の変化に比べれば変化無しとみなせる。塑性歪みに対するヒステリシス損の急激な変化は、1%未満の低塑性歪み領域で起き、その歪み上限は、応力・歪み曲線での降伏点(≒0.2%耐力)の応力にて生ずる塑性歪みであることは両者のデータ比較より容易に推察可能である。
First, the relationship between the application of plastic strain and the effect of iron loss is shown in FIG.
FIG. 3 shows the rate of change of each iron loss component when the value of hysteresis loss and eddy current loss of an unstrained sample is 1. The hysteresis loss increases as plastic strain is applied, while the change in eddy current loss shows a slight decrease, but it can be regarded as unchanged compared to the change in hysteresis loss. The sudden change of hysteresis loss with respect to plastic strain occurs in the low plastic strain region of less than 1%, and the upper limit of the strain is plastic strain generated by the stress at the yield point (≈0.2% proof stress) in the stress-strain curve. It can be easily inferred from the comparison of both data.

次に、上記試料片に弾性応力を印加した場合の鉄損影響を図に示す。図4はヒステリシス損、図5は渦電流損の比較結果である。横軸弾性応力の±の記号は負が圧縮応力、正が引張り応力を示す。
まず、ヒステリシス損であるが、応力無付加の状態では、先にも述べたように歪み0%の無歪み試料が最もヒステリシス損が小さく、塑性歪みが増えるにつれヒステリシス損は増加する。圧縮応力が作用した場合も、無歪み試料、歪み付与試料とも圧縮応力の増加に伴いヒステリシス損は増加するが、とりわけ0〜-50MPa範囲でのヒステリシス増加量は無歪み試料で大きい。
一方、塑性歪みを与えた試料での増加量は無歪み試料より小さく、しかも歪み量に依存せずほぼ一定した変化である。このため、-50MPaを超える圧縮応力が作用すると、無歪み試料と0.1%歪みの値はほぼ同等となる。
一方、塑性歪みの付与により圧縮応力下での渦電流損変化量も大きく変化する。塑性歪みが付与された試料では圧縮応力に対する渦電流損の増加量は小さく、とりわけ0〜-50MPa範囲では無歪み試料のような大きな渦電流損増加の傾向が見られない。
Next, the influence of iron loss when elastic stress is applied to the sample piece is shown in the figure. FIG. 4 shows a comparison result of hysteresis loss, and FIG. 5 shows a comparison result of eddy current loss. In the symbol of ± of the horizontal axis elastic stress, negative indicates compressive stress and positive indicates tensile stress.
First, regarding the hysteresis loss, in the state where no stress is applied, as described above, an unstrained sample having a strain of 0% has the smallest hysteresis loss, and the hysteresis loss increases as the plastic strain increases. When compressive stress is applied, the hysteresis loss increases with increasing compressive stress in both the unstrained sample and the strained sample, but the hysteresis increase in the range of 0 to −50 MPa is particularly large in the unstrained sample.
On the other hand, the increase amount in the sample subjected to plastic strain is smaller than that in the unstrained sample, and is a substantially constant change regardless of the strain amount. For this reason, when a compressive stress exceeding −50 MPa is applied, the non-strained sample and the value of 0.1% strain are substantially equivalent.
On the other hand, the amount of change in eddy current loss under compressive stress greatly changes due to the application of plastic strain. In the sample to which plastic strain is applied, the increase in eddy current loss with respect to compressive stress is small, and in particular, in the range of 0 to −50 MPa, there is no tendency for a large increase in eddy current loss as in the unstrained sample.

このように、本願発明者は、塑性歪みの付与は圧縮応力による渦電流損の劣化を抑制する効果があることを見出した。
このことから、塑性歪みの付与量により圧縮応力下でのヒステリシス損と渦電流損のバランスを制御すれば、固定子1を外枠6に嵌着した際のヨーク部3に生ずる圧縮応力による鉄損増加を低減可能であると思い至った。
図4のヒステリシス損と図5の渦電流損は50Hz換算しているが、一次線型近似による損失分離のため各損失成分値は損失係数の大小と読み替えることができる。
ヒステリシス損係数に大きな差異が無く、渦電流損係数が小さければ、励磁周波数が高くなるほど、即ち電動機においては高速回転での運転になるほど固定子鉄心で発生する鉄損を低く抑えることができる。
従って、付与可能な塑性歪みはどんなに多くとも図2に示した降伏点未満の外部応力に伴う塑性歪みを上限とする範囲に限定する必要がある。
Thus, the inventor of the present application has found that the application of plastic strain has the effect of suppressing deterioration of eddy current loss due to compressive stress.
Therefore, if the balance between hysteresis loss and eddy current loss under compressive stress is controlled by the amount of plastic strain applied, iron due to compressive stress generated in the yoke portion 3 when the stator 1 is fitted to the outer frame 6 will be described. I thought I could reduce the loss increase.
The hysteresis loss in FIG. 4 and the eddy current loss in FIG. 5 are converted to 50 Hz, but each loss component value can be read as the magnitude of the loss coefficient because of loss separation by primary linear approximation.
If there is no great difference in the hysteresis loss coefficient and the eddy current loss coefficient is small, the iron loss that occurs in the stator core can be kept low as the excitation frequency increases, that is, the motor operates at high speed.
Therefore, it is necessary to limit the plastic strain that can be imparted to the upper limit of the plastic strain accompanying external stress below the yield point shown in FIG.

塑性歪みを0.1%付与した試料はこの発明の対象であり、その効果を図6に示す。
図6では、圧縮応力-50MPaにおける1.5T励磁での50Hz並びに100Hzの鉄損を比較した。塑性歪み0.1%試料では渦電流損の増加が抑制されたことにより、周波数が高いほど塑性歪み0%試料に比べ鉄損差が大きく低鉄損となっており、この発明の妥当性は明らかである。
A sample imparted with 0.1% plastic strain is the subject of the present invention, and its effect is shown in FIG.
In FIG. 6, the iron loss at 50 Hz and 100 Hz with 1.5T excitation at a compressive stress of −50 MPa was compared. Since the increase in eddy current loss was suppressed in the plastic strain 0.1% sample, the higher the frequency, the larger the iron loss difference compared to the plastic strain 0% sample, and the lower iron loss. it is obvious.

次に、上記固定子1を製造する手順について説明する。
図7及び図8は、円環状のヨーク片3aを電磁鋼板で構成された基材であるフープ材7から作製するプレス成形工程を示す図である。
このプレス成型工程の前工程では、フープ材7の上下一対の圧延ローラ8を用い、フープ材7の長手方向に伸長と板厚方向に圧縮させる伸長・圧縮工程がある。この伸長・圧縮工程では、フープ材7に所定の塑性歪みを予め付与する。
その後、プレル成形工程で塑性歪みを付与された塑性歪み付与部位9からプレス成形によりヨーク片3aを打ち抜き、電磁鋼板の基材であるフープ材7から分離する。
次に、ヨーク片3aを積層し、一体化して円環状のヨーク部3を製造する。
Next, a procedure for manufacturing the stator 1 will be described.
7 and 8 are views showing a press forming process for producing the annular yoke piece 3a from the hoop material 7 which is a base material made of an electromagnetic steel plate.
In the pre-process of this press molding process, there is an extension / compression process in which a pair of upper and lower rolling rollers 8 of the hoop material 7 is used and the hoop material 7 is elongated in the longitudinal direction and compressed in the plate thickness direction. In this expansion / compression process, a predetermined plastic strain is applied to the hoop material 7 in advance.
Then, the yoke piece 3a is punched out by press molding from the plastic strain imparting portion 9 to which plastic strain is imparted in the pre-molding step, and separated from the hoop material 7 which is the base material of the electromagnetic steel sheet.
Next, the yoke pieces 3a are stacked and integrated to manufacture the annular yoke portion 3.

上記手順にて塑性歪みを付与した円環状ヨーク部3が製造されるが、付与した歪み量の検査はX線回折等の方法により容易に行うことができる。
例えば、波長λのX線が多結晶体に照射され、これと傾きθ、間隔dの原子面によって散乱された時、ブラッグの条件を満たした場合に反射角θで反射が起こる。この時、回折線は入射方向に対し2θの角度で得られ、回折面となる原子面がΔdだけ変形したとすれば、それに伴う回折角の変動は以下の様に与えられる。
The annular yoke portion 3 to which plastic strain is imparted is manufactured by the above procedure, but the strain amount imparted can be easily inspected by a method such as X-ray diffraction.
For example, when an X-ray having a wavelength λ is irradiated on a polycrystalline body and scattered by an atomic plane having an inclination θ and a distance d, reflection occurs at a reflection angle θ when the Bragg condition is satisfied. At this time, the diffraction line is obtained at an angle of 2θ with respect to the incident direction, and if the atomic plane serving as the diffraction plane is deformed by Δd, the fluctuation of the diffraction angle associated therewith is given as follows.

2Δθ=2tAnθ・Δd/d   2Δθ = 2tAnθ · Δd / d

試料内の歪みΔd/dの測定は、検査対象となるヨーク部のプレス加工端から適度に離れたプレス加工歪みの影響が少ない試料面にX線を照射し、X線源に近い方向に反射される回折線の位置を調べる背面反射法を用いればよい。また、測定値の校正は、格子定数、ブラッグ角が既知である比較用試料を検査対象表面の近くに置き同時測定すればよい。   The measurement of the strain Δd / d in the sample is performed by irradiating the sample surface that is moderately separated from the press working end of the yoke part to be inspected and having little influence of the press working strain and reflecting in the direction close to the X-ray source. What is necessary is just to use the back reflection method which investigates the position of the diffraction line to be performed. The calibration of the measured value may be performed by placing a comparative sample having a known lattice constant and Bragg angle close to the surface to be inspected and simultaneously measuring it.

一方、ティース部2の作製はヨーク部3の作製工程とは別の工程で行われる。
このティース部2の製造では、上記伸長・圧縮工程を経ることなく、即ち所定の塑性歪みが付与されていない電磁鋼板から構成されたフープ材からプレス成形によりティース片を打ち抜き、フープ材から分離する。
この後、ティース片を積層し、一体化してティース部2を製造する。
なお、ヨーク片3aとティース片とから固定子鉄心片を構成している。
次に、各ティース部2に導線を巻回し巻線4を巻装し、最後に巻線4が巻装された各ティース部2の根元部をヨーク部3の内周部に嵌着する。
On the other hand, the teeth portion 2 is manufactured in a process different from the manufacturing process of the yoke portion 3.
In the manufacture of the tooth portion 2, the teeth pieces are punched out by press molding from a hoop material made of an electromagnetic steel sheet not subjected to the above-described stretching / compression process, that is, given a predetermined plastic strain, and separated from the hoop material. .
Thereafter, the teeth pieces are laminated and integrated to manufacture the tooth portion 2.
The yoke piece 3a and the teeth piece constitute a stator core piece.
Next, a conductive wire is wound around each tooth portion 2 to wind the winding 4, and finally the root portion of each tooth portion 2 around which the winding 4 is wound is fitted to the inner peripheral portion of the yoke portion 3.

図9はティース片の全体をワンショットプレス成形で打ち抜くパンチ10を示す正面図であり、パンチ10の電磁鋼板接触面の内周部に溝部11が形成されている。この溝部11は、ティース片の周端面の内側の周面に沿って延びた部位に対応している。
従って、プレス加工の際にパンチ10とダイ(図示せず)とから受ける衝撃がティース片の内部にまで伝搬せず、打ち抜きによる磁気特性の劣化を打ち抜き端面近傍のみに限定することができ、ティース片が積層されたティース部2の内部における鉄損増加を抑制することができる。
FIG. 9 is a front view showing a punch 10 for punching the entire teeth piece by one-shot press forming. A groove 11 is formed on the inner peripheral portion of the electromagnetic steel plate contact surface of the punch 10. This groove part 11 respond | corresponds to the site | part extended along the internal peripheral surface of the peripheral end surface of a teeth piece.
Therefore, the impact received from the punch 10 and the die (not shown) during the press working does not propagate to the inside of the tooth piece, and the deterioration of the magnetic characteristics due to the punching can be limited only to the vicinity of the punching end face. It is possible to suppress an increase in iron loss inside the tooth portion 2 where the pieces are laminated.

一方、ティース片の全体を一括プレス抜き落としせずに、プレス打抜きを行う場合においては、被加工物となる未成形鋼板の上下に位置するストリッパーとダイ (いずれも図示せず)の内、ストリッパーの電磁鋼板接触面側に図9と同じ配置の溝部を設けることで、一体打ち抜きと同様、打ち抜き時にパンチ10とダイから受けるティース部2の内部への衝撃の伝搬を抑制することができる。   On the other hand, in the case of performing punching without removing all of the teeth in a batch, the stripper and die (not shown) located above and below the green steel sheet to be processed By providing the groove portion with the same arrangement as in FIG. 9 on the electromagnetic steel plate contact surface side, it is possible to suppress the propagation of impact to the inside of the teeth portion 2 received from the punch 10 and the die during punching, as in the case of integral punching.

図10〜図12は、図1の固定子鉄心と異なる別の製造方法でのプレス加工工程を示す平面図、図11は図10の次工程であってヨーク部3に塑性歪みを付与する工程を示す平面図、図12は図11のX-Y線に沿って切断したときの矢視断面図である。
図7、図8に示したものは、ヨーク片3aのプレス加工前に電磁鋼板の基材であるフープ材7に前もって塑性歪みを付与し、またヨーク片3aとティース片との作製は別のプレス加工工程で行っていたが、この例では、プレス加工後にヨーク部3に塑性歪みを付与した点、及び一連のプレス加工工程で同一のフープ材7から、固定子鉄心片を構成する、ヨーク片3a及びティース片が作製される点で異なる。
10 to 12 are plan views showing a press working step in another manufacturing method different from the stator core shown in FIG. 1, and FIG. 11 is a step subsequent to FIG. 10 and a step of applying plastic strain to the yoke portion 3. FIG. 12 is a cross-sectional view taken along the line X-Y in FIG. 11.
7 and FIG. 8, the plastic deformation is applied to the hoop material 7 which is the base material of the electromagnetic steel plate before the yoke piece 3a is pressed, and the production of the yoke piece 3a and the tooth piece is different. In this example, the yoke part 3 comprises a stator core piece from the point that plastic strain is applied to the yoke part 3 after the press process and the same hoop material 7 in the series of press process steps. It differs in that the piece 3a and the teeth piece are produced.

ヨーク部3に塑性歪みを鋼板面内に付与するには冷間加工の一手法である引き伸ばし加工により行うことができる。
先ず、ヨーク部3の内周部に径外側方向に加圧するためには、図11に示すようにコレット状の引き伸ばし治具29をティース部2の個数(図11では12個)だけ均等に配置する。
次に、この引き伸ばし治具29の上下より上部加圧棒30A、下部加圧棒30Bをそれぞれ下降、上昇させる。この結果、ガイドレール31に沿って各引き伸ばし治具29は、ヨーク部3の径方向に均等に移動してヨーク部3の内壁面に密着し、その後ヨーク部3を径外側方向に引き伸ばす。この引き伸ばしに伴いヨーク部3には張力が発生する。
この張力の方向は、電動機稼働時にヨーク部3内を流れる磁束方向と同じ周方向であり、ヨーク部3の周方向に所定の塑性歪みを確実に与えることができる。
最後に、上部加圧棒30A、下部加圧棒30Bをそれぞれ上昇、下降して上部加圧棒30A、下部加圧棒30Bを解放すると、引き伸ばし治具29は、ガイドバネ32の弾性力により径内側方向に押し戻されヨーク部3と離間する。
In order to give plastic deformation to the yoke part 3 in the steel plate surface, it can be performed by a drawing process which is a technique of cold working.
First, in order to pressurize the inner peripheral portion of the yoke portion 3 in the radially outward direction, as shown in FIG. 11, the collet-like stretching jigs 29 are equally arranged by the number of teeth portions 2 (12 pieces in FIG. 11). To do.
Next, the upper pressure bar 30A and the lower pressure bar 30B are lowered and raised from above and below the stretching jig 29, respectively. As a result, the stretching jigs 29 move along the guide rails 31 in the radial direction of the yoke part 3 and are brought into close contact with the inner wall surface of the yoke part 3, and then the yoke part 3 is stretched in the radially outward direction. Along with this stretching, a tension is generated in the yoke portion 3.
The direction of this tension is the same circumferential direction as the direction of magnetic flux flowing in the yoke portion 3 when the electric motor is in operation, and a predetermined plastic strain can be reliably applied to the circumferential direction of the yoke portion 3.
Finally, when the upper pressure bar 30A and the lower pressure bar 30B are raised and lowered, respectively, and the upper pressure bar 30A and the lower pressure bar 30B are released, the stretching jig 29 is moved inward by the elastic force of the guide spring 32. It is pushed back in the direction and separated from the yoke part 3.

例えば、ヨーク部3は、外径を107mm、幅を8mm、ヨーク片3aの積み高さによるヨーク部3の高さを80mmとすると、ヨーク部3の周方向に400MPaの応力を発生させるにはヨーク部3の側面に最大160トンの力を加える必要があるが、この程度のプレス能力を有する機器は容易に入手可能である。
この例では、引き伸ばし治具29の個数をティース部2の個数と同じでかつ周方向に均等配置としたが、ヨーク部3の側面を均等に引き延ばすことができれば、ヨーク部3の内周に配置する引き伸ばし治具29の個数と周方向配置状態はこの限りではない。
なお、塑性歪みは最大でも0.2%未満であり、引き伸ばしに伴う固定子鉄心の伸びも同程度となる。このため、ヨーク部3を径方向に引き延ばすと回転子と固定子1との間のギャップも拡大することになるが、予めティース部2の径方向長さをその伸び分だけ長くすることで設計値通りのギャップに設定することができる。
For example, if the yoke 3 has an outer diameter of 107 mm, a width of 8 mm, and the height of the yoke 3 due to the stacked height of the yoke pieces 3 a is 80 mm, a stress of 400 MPa is generated in the circumferential direction of the yoke 3. Although it is necessary to apply a maximum force of 160 tons to the side surface of the yoke portion 3, a device having such a pressing capability is readily available.
In this example, the number of the stretching jigs 29 is the same as the number of the tooth portions 2 and is arranged uniformly in the circumferential direction. However, if the side surface of the yoke portion 3 can be evenly extended, it is arranged on the inner circumference of the yoke portion 3. The number of stretching jigs 29 to be stretched and the circumferential arrangement state are not limited to this.
In addition, the plastic strain is less than 0.2% at the maximum, and the elongation of the stator core accompanying the stretching is the same. For this reason, when the yoke part 3 is extended in the radial direction, the gap between the rotor and the stator 1 is also enlarged. However, the length of the tooth part 2 in the radial direction is increased in advance by the extension. The gap can be set to the value.

上述した固定子鉄心は、ティース部2とヨーク部3とが別体であったが、図13〜図15は、ヨーク部51とティース部52とが一体の固定子鉄心50について塑性歪み付与する例を示している。
この固定子鉄心50を構成する固定子鉄心片は、電磁鋼板で構成されたフープ材7からプレス加工工程で作製される。
固定子鉄心50に塑性歪みを付与するには冷間加工の一手法である引き伸ばし加工により行うことができる。
先ず、下部コレット治具34Bと一体となった引き伸ばし治具29を固定子鉄心50の各スロット部に挿入し、ヨーク部51の内周壁面に当接する。引き伸ばし治具29の上部には上部コレット治具34Aを嵌着させ、引き伸ばし治具29の下部には下部コレット治具34Bを嵌着させる。上部コレット治具34Aは、一個の円環状硬質ゴム板36上に一定の間隔で、接着されて連結されており、径方向、周方向に移動可能である。
次に、上部加圧棒30A、下部加圧棒30Bをそれぞれ下降、上昇させると、各加圧棒30A,30Bの移動に連動して上部コレット治具34A、下部コレット治具34Bがヨーク部51の径外側方向に移動する。それに伴い引き伸ばし治具29も径外側方向に移動し、固定子鉄心50のヨーク部51を径外側方向に引き伸ばす。
この引き伸ばしに伴いヨーク部51には張力が発生する。
この張力の方向は、電動機稼働時にヨーク部51内を流れる磁束方向と同じ周方向であり、ヨーク部51の周方向に所定の塑性歪みを確実に与えることができる。
最後に、上部加圧棒30A、下部加圧棒30Bをそれぞれ上昇、下降して上部加圧棒30A、下部加圧棒30Bを解放すると、引き伸ばし治具29は、ガイドバネ32の弾性力により径内側方向に押し戻され固定子鉄心50のヨーク部51と離間する。
また、ヨーク部51を径方向に引き延ばすと回転子と固定子との間のギャップも拡大することになるが、ティース部52の径方向長さを予めその伸び分だけ長くすることで設計値通りのギャップに設定することができる。
In the stator core described above, the tooth portion 2 and the yoke portion 3 are separate bodies. However, in FIGS. 13 to 15, plastic strain is applied to the stator core 50 in which the yoke portion 51 and the tooth portion 52 are integrated. An example is shown.
A stator core piece constituting the stator core 50 is produced from a hoop material 7 made of an electromagnetic steel plate by a pressing process.
Giving plastic strain to the stator core 50 can be performed by stretching, which is one method of cold working.
First, the extending jig 29 integrated with the lower collet jig 34B is inserted into each slot portion of the stator core 50 and brought into contact with the inner peripheral wall surface of the yoke portion 51. An upper collet jig 34A is fitted to the upper part of the stretching jig 29, and a lower collet jig 34B is fitted to the lower part of the stretching jig 29. The upper collet jig 34A is bonded and connected to one annular hard rubber plate 36 at a constant interval, and is movable in the radial direction and the circumferential direction.
Next, when the upper pressure bar 30A and the lower pressure bar 30B are lowered and raised, respectively, the upper collet jig 34A and the lower collet jig 34B are moved to the yoke portion 51 in conjunction with the movement of the pressure bars 30A, 30B. Move in the direction of the outer diameter. Accordingly, the stretching jig 29 also moves in the radially outward direction, and the yoke portion 51 of the stator core 50 is stretched in the radially outward direction.
Along with this stretching, a tension is generated in the yoke portion 51.
The direction of the tension is the same circumferential direction as the direction of the magnetic flux flowing in the yoke portion 51 when the electric motor is in operation, and a predetermined plastic strain can be reliably applied to the circumferential direction of the yoke portion 51.
Finally, when the upper pressure bar 30A and the lower pressure bar 30B are raised and lowered, respectively, and the upper pressure bar 30A and the lower pressure bar 30B are released, the stretching jig 29 is moved inward by the elastic force of the guide spring 32. It is pushed back in the direction and separated from the yoke portion 51 of the stator core 50.
Further, when the yoke portion 51 is extended in the radial direction, the gap between the rotor and the stator is also enlarged. However, by increasing the length in the radial direction of the tooth portion 52 in advance by the extension, the design value is obtained. Can be set to the gap.

なお、図10〜図12のものは、ヨーク片3aを積層し、締結されたヨーク部3に塑性歪みを付与し、図13〜図15のものでは、固定子鉄心片を積層し、締結された固定子鉄心50に塑性歪みを付与する構成を示したが、締結前のヨーク片3a、固定子鉄心片単位で、あるいは複数枚のヨーク片3a、固定子鉄心片を積層したブロック毎に締結固定した鉄心ブロック単位で塑性歪みを与えるようにしてもよい。   10 to 12, the yoke piece 3a is laminated and plastic strain is applied to the fastened yoke portion 3, and in FIGS. 13 to 15, the stator core piece is laminated and fastened. Although the configuration in which plastic strain is applied to the stator core 50 is shown, the yoke piece 3a before fastening, the stator core piece unit, or a plurality of yoke pieces 3a and stator core pieces are fastened for each block. Plastic strain may be applied in units of fixed iron core blocks.

引き伸ばし加工の枚数が少なく、ヨーク片3a、固定子鉄心片、鉄心ブロックの径方向の引き伸ばし力に対し垂直方向に変形する懸念がある場合は、プレス加工でのストリッパーのような被加工物押さえを用意し、ヨーク片3a、固定子鉄心片、鉄心ブロックの平坦度を確保して加工を行えばよい。
このような方法によれば、固定子鉄心の積層締結状態の如何に関わらずヨーク部3,51の周方向に対し所定の塑性歪みを与えることができ、むしろ引き伸ばし加工時の加圧枚数が少なければ、加圧に必要な力が少なくてよく、加工が容易となることは言うまでもない。
If the number of stretching processes is small and there is a concern that the yoke piece 3a, the stator core piece, and the core block will be deformed in a direction perpendicular to the radial stretching force, a work piece presser such as a stripper in press working may be used. It is only necessary to prepare and secure the flatness of the yoke piece 3a, the stator iron core piece, and the iron core block.
According to such a method, a predetermined plastic strain can be applied to the circumferential direction of the yoke portions 3 and 51 regardless of the laminated fastening state of the stator core, and rather the number of pressurized sheets at the time of stretching is small. Needless to say, the force required for pressurization may be small, and the processing becomes easy.

実施の形態2.
図16はこの発明の実施の形態2の電動機の固定子1及び外枠6を示す断面図である。
固定子1の固定子鉄心は、固定子鉄心ブロック1Aを円環状に配置、拘束した状態で隣接した固定子鉄心ブロック1A同士をスポット溶接等で溶着一体化して構成されている。
固定子鉄心ブロック1Aは、ティース部2Aとヨーク部3Aとが一体化されている。
概略T字形状の固定子鉄心ブロック1Aは、固定子鉄心ブロック片1aを複数枚厚み方向に積層して構成されている。この固定子鉄心ブロック片1aは、上記伸長・圧縮工程で所定の塑性歪みが所定の部位(ヨーク部3Aを構成する部位)に予め付与された無方向性電磁鋼板からプレス成形により概略T字形に形成されている。
他の構成は、実施の形態1と同じである。
Embodiment 2. FIG.
FIG. 16 is a cross-sectional view showing stator 1 and outer frame 6 of the electric motor according to Embodiment 2 of the present invention.
The stator core of the stator 1 is configured by welding and integrating adjacent stator core blocks 1A by spot welding or the like in a state where the stator core blocks 1A are arranged in an annular shape and constrained.
In the stator core block 1A, a tooth portion 2A and a yoke portion 3A are integrated.
The substantially T-shaped stator core block 1A is configured by stacking a plurality of stator core block pieces 1a in the thickness direction. This stator core block piece 1a is formed into a generally T-shape by press forming from a non-oriented electrical steel sheet in which a predetermined plastic strain is previously applied to a predetermined portion (a portion constituting the yoke portion 3A) in the extension / compression process. Is formed.
Other configurations are the same as those of the first embodiment.

なお、上記固定子鉄心ブロック1Aは、ヨーク部3の分割面3cで完全に分割されているが、図17及び図18に示すように、各固定子鉄心ブロック片1aの隣接した連結部3d-1において回転の自由度を残しつつ整列連結させた状態で生産ラインに供給できれば生産性の点で非常に有利であることは言うまでもない。
図17の例では、固定子鉄心ブロック片1aの周方向の両端部の連結部3d-1は、薄肉連結されており、塑性変形で回転の自由度を与えている。
図18の例では、連結部3d-1で凹部3d-2、凸部3d-3が形成されており、各固定子鉄心ブロック片1aが連結部3d-1において各層ごとに交互に重合し、かつ凹部3d-2と凸部3d-3とが嵌合している。
Although the stator core block 1A is completely divided by the dividing surface 3c of the yoke portion 3, as shown in FIGS. 17 and 18, adjacent connecting portions 3d− of the stator core block pieces 1a. It goes without saying that it is very advantageous in terms of productivity if it can be supplied to the production line in a state where it is aligned and connected while leaving the degree of freedom of rotation in 1.
In the example of FIG. 17, the connecting portions 3d-1 at both ends in the circumferential direction of the stator core block piece 1a are thinly connected, and give a degree of freedom of rotation by plastic deformation.
In the example of FIG. 18, the concave portion 3d-2 and the convex portion 3d-3 are formed in the connecting portion 3d-1, and each stator core block piece 1a is alternately polymerized for each layer in the connecting portion 3d-1. And the recessed part 3d-2 and the convex part 3d-3 are fitting.

この実施の形態の固定子1でも、実施の形態1と同じように外枠6の嵌着に伴い発生する圧縮応力に対するヨーク部3での鉄損改善としては同じ効果が得られる。
また、直線的に整列配列した状態で、複数の固定子鉄心ブロック片1aを製造するようにすれば、固定子鉄心ブロック1Aのヨーク部3Aに対して所定の低塑性歪みを付与することが容易である。
また、固定子鉄心ブロック1A同士が突き当てて、あるいは交互重ねて接合された部位では、磁束歪みに伴う高調波鉄損の発生に対する抑制効果も得られる。
Even in the stator 1 of this embodiment, the same effect can be obtained as the iron loss improvement in the yoke portion 3 with respect to the compressive stress generated when the outer frame 6 is fitted as in the first embodiment.
If a plurality of stator core block pieces 1a are manufactured in a linearly aligned state, a predetermined low plastic strain can be easily applied to the yoke portion 3A of the stator core block 1A. It is.
Moreover, the effect which suppresses generation | occurrence | production of the harmonic iron loss accompanying magnetic flux distortion is also acquired in the site | part where 1 A of stator core blocks contact | abutted or it joined alternately.

次に、図16に示した固定子鉄心ブロック1Aの製造手順について説明する。
図19及び図20は固定子鉄心ブロック1Aを製造する一工程であり、フープ材7からプレス成形により固定子鉄心ブロック片1aを形成するプレス成形工程を示す図である。
このプレス成型工程の前工程では、フープ材7の上下一対の圧延ローラ8を用い、フープ材7の長手方向に伸長と板厚方向に圧縮させる伸長・圧縮工程がある。この伸長・圧縮工程では、フープ材7のうちティース片2Aaを避け、ヨーク片3Aaに相当する塑性歪み付与部位9に所定の塑性歪みを予め付与する。
この例では、二列の固定子鉄心ブロック片1aを製造する場合を示しており、フープ材7の幅方向対称位置に圧延ローラ8を二機並べ均等に塑性歪みを与えることで、フープ材7の長手方向での軸線が塑性歪み付与に伴い偏心することを防いでいる。
なお、圧延ローラ8がフープ材7の軸線偏心が起きないように配置すればよく、フープ材7の幅方向における塑性歪みを付与する塑性歪み付与部位9の数は2箇所に限定されるものではない。
さらに、ティース片aのプレス成形は、ヨーク片3Aaの成形と同一工程で行われるため、ティース片aの外周部を数段階に分けて打ち落とす工程をとることが多い。
この成形では、図21に示す、被加工物となる電磁鋼板の上部に位置するストリッパー12の電磁鋼板接触面内周部に、ティース片aの周端面の内側であって周面に沿って延びた溝部11を設けることで、打ち抜き時にパンチとダイから受けるティース片a内部への衝撃伝搬を溝部11で吸収抑制することができる。
なお、図21では溝部11は一筆書き状に形成されているが、個々の打ち抜きが行われる部位にのみ対応する溝部をストリッパー12に設けたとしても、得られる効果に変わりはない。
そして、上記のように製作された複数の固定子鉄心ブロック片1aを厚み方向に積層し、一体化して固定子鉄心ブロック1Aを製造する。
Next, a manufacturing procedure of the stator core block 1A shown in FIG. 16 will be described.
FIGS. 19 and 20 are views showing a press forming process for forming the stator core block piece 1a from the hoop material 7 by press molding, which is one process for manufacturing the stator core block 1A.
In the pre-process of this press molding process, there is an extension / compression process in which a pair of upper and lower rolling rollers 8 of the hoop material 7 is used and the hoop material 7 is elongated in the longitudinal direction and compressed in the plate thickness direction. In this extension / compression process, the teeth piece 2Aa of the hoop material 7 is avoided, and a predetermined plastic strain is applied in advance to the plastic strain applying portion 9 corresponding to the yoke piece 3Aa.
In this example, a case where two rows of stator core block pieces 1a are manufactured is shown. Two rolling rollers 8 are arranged at symmetrical positions in the width direction of the hoop material 7, and the hoop material 7 is uniformly plastically strained. This prevents the axial line in the longitudinal direction from being eccentric with the plastic strain.
The rolling roller 8 may be arranged so that the axial line eccentricity of the hoop material 7 does not occur, and the number of the plastic strain applying portions 9 for applying the plastic strain in the width direction of the hoop material 7 is not limited to two. Absent.
Furthermore, the press forming of the teeth piece a is performed in the same process as the forming of the yoke piece 3Aa, and therefore, the outer peripheral portion of the teeth piece a is often divided into several steps and taken down.
In this shaping | molding, it extends inside the peripheral end surface of the teeth piece a, and along a surrounding surface to the electromagnetic steel plate contact surface inner peripheral part of the stripper 12 located in the upper part of the electromagnetic steel plate used as a workpiece shown in FIG. By providing the groove 11, impact propagation to the inside of the teeth piece a received from the punch and die during punching can be suppressed by the groove 11.
In FIG. 21, the groove 11 is formed in a single stroke, but even if a groove corresponding to only a portion where individual punching is performed is provided in the stripper 12, the obtained effect is not changed.
Then, a plurality of stator core block pieces 1a manufactured as described above are stacked in the thickness direction and integrated to manufacture a stator core block 1A.

また、上記実施の形態では、プレス成形前に冷間圧延により所定の塑性歪みを電磁鋼板に付与したが、固定子1のヨーク部3がヨーク部分割面3cで分割された固定子鉄心ブロック1Aで構成された場合には、図22及び図23に示すように、先の図11、図12で説明したと同じ引き伸ばしをヨーク部3の周方向に直接行う、即ち電磁鋼板に塑性歪みを付与する部位を面内方向の引張り応力を加え形成するような冷間加工の一手法である引張加工を用いた機構をプレス金型内に組み込むことができる。   Moreover, in the said embodiment, although predetermined plastic strain was provided to the electromagnetic steel sheet by cold rolling before press forming, the stator core block 1A in which the yoke portion 3 of the stator 1 is divided by the yoke portion dividing surface 3c. 22 and 23, as shown in FIGS. 22 and 23, the same stretching as described in FIGS. 11 and 12 is performed directly in the circumferential direction of the yoke part 3, that is, plastic strain is applied to the electromagnetic steel sheet. It is possible to incorporate a mechanism using a tensile process, which is a technique of cold working to form a portion to be applied by applying a tensile stress in the in-plane direction, into the press die.

図22では、フープ7にヨーク部を含む塑性歪みを付与する部位13を分離するための外周スリット14〜18と、上記塑性歪みを付与する部位13の両端の穴19〜20とをプレス成形し、穴19〜20に上部金型21に組み込んだ左引張り用治具22と右引張り用治具23を挿入する。
左右の引張り用治具22〜23はバネ24〜25を介して各左右に移動する。
上部金型21を下降させると、左右の引張り用治具22〜23は、下部金型26に設けられた2箇所の引張り用治具移動ガイド穴27〜28に突き当たり左右へと移動する。
上記引張り用治具22〜23の移動に伴い、塑性歪みを付与する部位13には面内方向の引張り応力が加えられ、所定の塑性歪みを容易に与えることができる。
塑性歪みを付与した後、固定子鉄心ブロック片1aの外周部をプレス成形にて切り離し、その後固定子鉄心ブロック片1aを厚み方向に積層することで、固定子鉄心ブロック1Aが完成する。
In FIG. 22, the outer peripheral slits 14 to 18 for separating the portion 13 that gives the plastic strain including the yoke portion to the hoop 7 and the holes 19 to 20 at both ends of the portion 13 that gives the plastic strain are press-molded. The left pulling jig 22 and the right pulling jig 23 incorporated in the upper mold 21 are inserted into the holes 19 to 20.
The left and right pulling jigs 22-23 move to the left and right via springs 24-25.
When the upper mold 21 is lowered, the left and right pulling jigs 22 to 23 abut against two pulling jig moving guide holes 27 to 28 provided in the lower mold 26 and move left and right.
With the movement of the pulling jigs 22 to 23, an in-plane tensile stress is applied to the portion 13 to which plastic strain is applied, and predetermined plastic strain can be easily applied.
After imparting plastic strain, the outer periphery of the stator core block piece 1a is cut off by press molding, and then the stator core block piece 1a is laminated in the thickness direction to complete the stator core block 1A.

なお、固定子鉄心ブロック片1aのティース片aの外周部のプレス成型では、実施の形態1,2で説明した、溝部11を有するパンチ10あるいはストリッパー12を用いることで、ティース部内周部へのパンチとダイによる打ち抜き時の衝撃を低減し、ティース部内周部の磁気特性劣化を抑制できる。   In the press molding of the outer peripheral portion of the teeth piece a of the stator core block piece 1a, the punch 10 having the groove portion 11 or the stripper 12 described in the first and second embodiments is used, so that the inner peripheral portion of the teeth portion is formed. The impact at the time of punch and die punching can be reduced, and deterioration of the magnetic properties of the inner peripheral portion of the teeth can be suppressed.

なお、上記各実施の形態では、回転電機として電動機について説明したが、この発明は、回転電機である発電機にも適用することができる。   In each of the above embodiments, the electric motor has been described as the rotating electrical machine. However, the present invention can also be applied to a generator that is a rotating electrical machine.

1 固定子、1A 固定子鉄心ブロック、1a 固定子鉄心ブロック片、2,2A,52 ティース部、2Aa ティース片、3,3A,51 ヨーク部、3a,3Aa ヨーク片、6 外枠、7 フープ材、29 引き延ばし治具、30A 上部加圧棒、30B 下部加圧棒、31 ガイドレール、32 ガイドバネ、34A 上部コレット治具、34B 下部コレット治具、50 固定子鉄心。   1 Stator, 1A Stator Core Block, 1a Stator Core Block, 2, 2A, 52 Teeth, 2Aa Teeth, 3, 3A, 51 Yoke, 3a, 3Aa Yoke, 6 Outer Frame, 7 Hoop Material , 29 Stretching jig, 30A upper pressure bar, 30B lower pressure bar, 31 guide rail, 32 guide spring, 34A upper collet jig, 34B lower collet jig, 50 stator core.

Claims (8)

電磁鋼板からなる固定子鉄心片を積層して構成され円周方向に間隔をおいて形成された複数のティース部及び各ティース部を繋ぐ主磁束の経路となる円環状のヨーク部を有する固定子鉄心を含む固定子と、
この固定子の外周面に嵌着した外枠とを備えた回転電機であって、
前記ヨーク部は、弾性限界を超え降伏点未満の外部応力に伴う塑性歪みが付与されていることを特徴とする回転電機。
A stator having a plurality of teeth portions formed by laminating stator core pieces made of electromagnetic steel sheets and spaced apart in the circumferential direction, and an annular yoke portion serving as a main magnetic flux path connecting the teeth portions. A stator including an iron core;
A rotating electrical machine including an outer frame fitted to the outer peripheral surface of the stator,
The rotating electrical machine according to claim 1, wherein the yoke part is provided with plastic strain accompanying external stress exceeding an elastic limit and less than a yield point.
前記ヨーク部と前記ティース部とはそれぞれ分割されて構成され、ヨーク部の内周面にティース部が嵌着されていることを特徴とする請求項1に記載の回転電機。   2. The rotating electrical machine according to claim 1, wherein the yoke portion and the tooth portion are divided and configured, and the tooth portion is fitted to an inner peripheral surface of the yoke portion. 前記固定子鉄心は、隣接した前記ティース部間で前記ヨーク部を分割して構成された複数個のT字形の固定子鉄心ブロックを互いに連結して構成されていることを特徴とする請求項1に記載の回転電機。   2. The stator core according to claim 1, wherein a plurality of T-shaped stator core blocks configured by dividing the yoke portion between adjacent tooth portions are connected to each other. The rotating electrical machine described in 1. 前記回転電機は、電動機である請求項1〜3の何れか1項に記載の回転電機。   The rotating electrical machine according to claim 1, wherein the rotating electrical machine is an electric motor. 請求項1〜4の何れか1項に記載の回転電機の製造方法であって、
前記塑性歪みは、プレス成形工程により前記固定子鉄心片が成形される前に冷間加工により付与されることを特徴とする回転電機の製造方法。
A method of manufacturing a rotating electrical machine according to any one of claims 1 to 4,
The method of manufacturing a rotating electrical machine, wherein the plastic strain is applied by cold working before the stator core piece is formed by a press forming process.
請求項1〜4の何れか1項に記載の回転電機の製造方法であって、
前記塑性歪みは、プレス成形工程により前記固定子鉄心片が成形される工程で冷間加工により付与されることを特徴とする回転電機の製造方法。
A method of manufacturing a rotating electrical machine according to any one of claims 1 to 4,
The method of manufacturing a rotating electrical machine, wherein the plastic strain is applied by cold working in a step of forming the stator core piece by a press forming step.
請求項1〜4の何れか1項に記載の回転電機の製造方法であって、
前記塑性歪みは、プレス成形工程により前記固定子鉄心片が成形された後で冷間加工により付与されることを特徴とする回転電機の製造方法。
A method of manufacturing a rotating electrical machine according to any one of claims 1 to 4,
The method of manufacturing a rotating electrical machine, wherein the plastic strain is applied by cold working after the stator core piece is formed by a press forming process.
請求項5〜7の何れか1項に記載の回転電機の製造方法であって、
前記プレス成形工程では、被加工物である未成形鋼板に接触し前記ティース部の周面の内側であって周面に沿って延びた部位に対応した位置に溝部が形成されたパンチまたはストリッパを備えたプレス金型を用いて、前記ティース部はプレス抜き落としにより成形されることを特徴とする回転電機の製造方法。
A method for manufacturing a rotating electrical machine according to any one of claims 5 to 7,
In the press forming step, a punch or stripper having a groove formed at a position corresponding to a portion that is in contact with an unformed steel plate as a workpiece and extends along the peripheral surface inside the peripheral surface of the teeth portion is provided. The method of manufacturing a rotating electrical machine, wherein the tooth portion is formed by press-off using a press die provided.
JP2010098197A 2009-04-27 2010-04-21 Rotating electric machine and manufacturing method thereof Active JP5455762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098197A JP5455762B2 (en) 2009-04-27 2010-04-21 Rotating electric machine and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009108207 2009-04-27
JP2009108207 2009-04-27
JP2010098197A JP5455762B2 (en) 2009-04-27 2010-04-21 Rotating electric machine and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010279243A JP2010279243A (en) 2010-12-09
JP5455762B2 true JP5455762B2 (en) 2014-03-26

Family

ID=43425663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098197A Active JP5455762B2 (en) 2009-04-27 2010-04-21 Rotating electric machine and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5455762B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152011A (en) * 2011-01-19 2012-08-09 Fuji Electric Co Ltd Stator of rotary electric machine
CN103457421A (en) * 2013-10-09 2013-12-18 南车株洲电机有限公司 Method for eliminating stress of silicon steel sheet laminated motor base by means of efficient and high energy

Also Published As

Publication number Publication date
JP2010279243A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5958565B2 (en) Punching method, punching apparatus, and method for manufacturing laminated iron core
KR101951823B1 (en) Punch processing method for laminated iron core and method for manufacturing laminated iron core
JP6917853B2 (en) Radial gap type rotary electric machine, its manufacturing equipment and its manufacturing method
KR20130118926A (en) Manufacturing method for helical core for rotating electrical machine and manufacturing device for helical core for rotating electrical machine
JP2011223844A (en) Laminating iron core and manufacturing method thereof
KR20120020125A (en) Stator core and method for manufacturing same
JP5455762B2 (en) Rotating electric machine and manufacturing method thereof
TWI645958B (en) Blanking processing method of electromagnetic steel plate and manufacturing method of laminated core
JP2017208986A (en) Method for manufacturing laminated iron core for rotary electric machine
Vandenbossche et al. Impact of mechanical stresses on the magnetic performance of non-oriented electrical steels and its relation to electric machine efficiency
JP2016131479A (en) Stator iron core, stator, and rotary electric machine, and manufacturing method for circular steel plate
JP4989877B2 (en) Manufacturing method of rotor laminated core
JP2021016254A (en) Laminated iron core manufacturing method and laminated iron core manufacturing device for rotary electric machine and rotary electric machine
JP2021019385A (en) Rotating machine core and manufacturing method thereof
JP5940308B2 (en) Manufacturing method of motor core
JP4982463B2 (en) Bending member manufacturing method, rotating electrical machine, manufacturing method and manufacturing apparatus thereof
JP2015188934A (en) Punching method and punching mold for thin steel sheet
JP2003079113A (en) Resin-sealed stator for electric motor, manufacturing method therefor and die for resin sealing
JP5740835B2 (en) Stator core of electric motor
JP2019176560A (en) Stator core and motor
JP5098205B2 (en) Method for improving fatigue strength and magnetic properties of punched part of electrical steel sheet
KR100588186B1 (en) The laminate method motor core of a thin leaf
US20220392678A1 (en) Oriented magnetic core lamination and method of manufacture
JP2021121159A (en) Laminated core of electric machine, electric machine, manufacturing method of laminated core of electric machine and manufacturing method of electric machine
JP2021114868A (en) Manufacturing method of lamination iron core of electric machine and manufacturing method of the electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5455762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250