JP5454028B2 - Directional control valve device - Google Patents

Directional control valve device Download PDF

Info

Publication number
JP5454028B2
JP5454028B2 JP2009208442A JP2009208442A JP5454028B2 JP 5454028 B2 JP5454028 B2 JP 5454028B2 JP 2009208442 A JP2009208442 A JP 2009208442A JP 2009208442 A JP2009208442 A JP 2009208442A JP 5454028 B2 JP5454028 B2 JP 5454028B2
Authority
JP
Japan
Prior art keywords
poppet valve
valve
cam
spring
poppet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009208442A
Other languages
Japanese (ja)
Other versions
JP2011058556A (en
Inventor
久幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009208442A priority Critical patent/JP5454028B2/en
Publication of JP2011058556A publication Critical patent/JP2011058556A/en
Application granted granted Critical
Publication of JP5454028B2 publication Critical patent/JP5454028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanically-Actuated Valves (AREA)
  • Multiple-Way Valves (AREA)

Description

本発明は、油圧動作システムの制御に用いられる油圧回路の方向制御弁装置に関する。   The present invention relates to a directional control valve device for a hydraulic circuit used for controlling a hydraulic operation system.

様々な油圧動作機械の制御機構要素として、油圧回路間の導通関係を切り換える方向制御弁が多用されている。   As a control mechanism element of various hydraulically operated machines, a directional control valve that switches a conduction relationship between hydraulic circuits is frequently used.

この方向制御弁の形態として最も一般的なのは、所謂スプール弁である。このスプール弁は、円筒状の穴の内部に外径段差部を有するロッドを挿入し、そのロッドの軸方向位置をスライド変化させることによって、複数の油圧回路の導通穴とロッドの外径段差部との重なり状態を変化させて、油圧回路間の導通関係を切り換えるものである。   The most common form of this direction control valve is a so-called spool valve. In this spool valve, a rod having an outer diameter step portion is inserted into a cylindrical hole, and the axial position of the rod is slid to change, whereby a plurality of hydraulic circuit conduction holes and rod outer diameter step portions are provided. Is switched to switch the conduction relationship between the hydraulic circuits.

このスプール弁型の方向制御弁は、極めて僅かな操作力で制御可能な優れた特性から多用されている。しかし、スプール弁型の方向制御弁には、その構造原理上、円筒穴とロッドとの間に摺動運動を可能にする隙間が必要であるために、その隙間を経由した圧力油の導通漏れが避けられず、油圧回路間の完全遮断は不可能であるという弱点がある。そのため、スプール弁型の方向制御弁の用途は、多少の漏れ損が実害とならない、動力駆動油圧ポンプによる大流量循環型の油圧システムに限定される。例えば、アキュムレータ油圧等を油圧源とするシステムのように、油圧回路間の僅かな漏れも嫌う、完全遮断機能が求められる用途の場合には、各油圧回路間の導通状態を各々ポペット弁によって開閉する構造のポペット弁型の方向制御弁が用いられている。この種のポペット弁型の方向制御弁は、例えば特許文献1及び2にも開示されている。   This spool valve type directional control valve is frequently used because of its excellent characteristics that can be controlled with a very small operating force. However, since the spool valve type directional control valve requires a gap that allows sliding movement between the cylindrical hole and the rod due to its structural principle, the hydraulic oil leaks through the gap. However, there is a weak point that complete disconnection between hydraulic circuits is impossible. For this reason, the use of the directional control valve of the spool valve type is limited to a large flow rate circulation type hydraulic system using a power-driven hydraulic pump, in which some leakage loss is not a real harm. For example, in applications where a complete shutoff function is required, such as a system that uses accumulator hydraulic pressure as a hydraulic source, and a slight shutoff between hydraulic circuits is required, the continuity between each hydraulic circuit is opened and closed by a poppet valve. A poppet valve type directional control valve having a structure as described above is used. This type of poppet valve type directional control valve is also disclosed in Patent Documents 1 and 2, for example.

特開平10−325476号公報JP-A-10-325476 特開平10−332006号公報JP-A-10-332006

上記のポペット弁型の方向制御弁の場合、各油圧通路間の導通状態を、漏れのない完全遮断にできる点が優れているのであるが、その完全遮断機能を実現している原理が、ポペット弁と弁座とが密着することに依存している。そのため、構成部品の加工寸法のバラツキ等も考慮して確実にポペット弁と弁座との密着状態を保証するために、ポペット弁を弁座に圧接させる弁バネを設け、その弁バネの撓み反力によってポペット弁を弁座に確実に圧接させる構造が最も一般的である。ポペット弁に圧接力を与える他の方法として、油圧推力や電磁力を用いる例もある。   The above poppet valve type directional control valve is excellent in that the conduction state between the hydraulic passages can be completely shut off without leakage, but the principle that realizes the completely shut off function is the poppet. It depends on the close contact between the valve and the valve seat. For this reason, in order to ensure that the poppet valve and the valve seat are in close contact with each other in consideration of variations in the processing dimensions of the component parts, a valve spring that presses the poppet valve against the valve seat is provided and the deflection of the valve spring is reduced. A structure in which the poppet valve is securely pressed against the valve seat by force is the most common. As another method for applying a pressure contact force to the poppet valve, there is an example using hydraulic thrust or electromagnetic force.

何れにしても、このポペット弁型の方向制御弁の場合、ポペット弁に何らかの方法で圧接力を与える必要があり、その圧接力によって閉弁状態にあるポペット弁を開弁させるためには、その圧接力以上の開弁方向操作力をポペット弁に与えてやらねばならない。   In any case, in the case of this directional control valve of the poppet valve type, it is necessary to apply a pressure contact force to the poppet valve by some method, and in order to open the poppet valve in the closed state by the pressure contact force, The poppet valve must be given a valve opening direction operating force that is greater than the pressure contact force.

このため、ポペット弁型の方向制御弁は、漏れのない完全遮断機能を実現できる反面、ポペット弁の開閉制御に際して相応の制御操作力を要するという問題が避けられなかった。   For this reason, the poppet valve type directional control valve can realize a complete shut-off function without leakage, but has a problem that it requires a corresponding control operation force for opening / closing control of the poppet valve.

ちなみに、ポペット弁型の方向制御弁は、その構造原理として、閉弁時、油圧回路間の導通穴部をポペット弁の圧接によって閉塞させることによって油圧回路間の導通を遮断するものであるから、その遮断した油圧回路間に圧力差がある場合、その圧力差を遮断面積に乗じた差圧推力がポペット弁に作用するので、その差圧推力もポペット弁の開閉状況に大きな影響を与える問題を孕んでいる。この差圧推力の問題に対しては、ポペット弁に、閉弁時の遮断面積による差圧推力と同じ値で逆向きの差圧推力を同時発生させるピストン構造部を追加することで差圧推力を相殺して解消する方策も用いられ、その構造形態としては、様々なものがある。   Incidentally, the direction control valve of the poppet valve type, as its structural principle, shuts off the conduction between the hydraulic circuits by closing the conduction hole between the hydraulic circuits by the pressure contact of the poppet valve when the valve is closed. If there is a pressure difference between the shut off hydraulic circuits, the differential pressure thrust, which is the pressure difference multiplied by the shut off area, acts on the poppet valve. I'm jealous. To solve this differential pressure thrust problem, the differential pressure thrust is added to the poppet valve by adding a piston structure that simultaneously generates a differential pressure thrust in the opposite direction with the same value as the differential pressure thrust due to the shut-off area when the valve is closed. There is also used a method for canceling and canceling, and there are various structural forms.

しかし、このような方法によって差圧推力の影響を解消したとしても、閉弁時の確実な遮断機能を保証するための圧接力が不要になるわけではないので、この場合でもやはり、少なからぬ制御操作力を要するという問題は解消できなかった。   However, even if the influence of the differential pressure thrust is eliminated by such a method, the pressure contact force to guarantee a reliable shut-off function when the valve is closed is not unnecessary. The problem of requiring operating force could not be solved.

そこで、本発明の目的は、とりわけ油圧回路間の漏れ損を嫌う油圧動作システムに用いられるポペット弁型の方向制御弁の宿命であった、制御操作力が大きいという問題を解消し、極めて僅かな制御操作力で制御可能で、閉弁時の漏れ損もない、理想的な方向制御弁装置を提供することにある。   Therefore, an object of the present invention is to solve the problem that the control operation force is large, which is the fate of a poppet valve type directional control valve used in a hydraulic operation system that particularly dislikes leakage loss between hydraulic circuits, and is extremely slight. An object of the present invention is to provide an ideal directional control valve device that can be controlled by a control operation force and does not have a leakage loss when the valve is closed.

上記目的を達成するために、本発明は、三系統以上の油圧回路間の導通関係を、複数のポペット弁要素の開閉制御によって切り換えると共に、カム機構を用いて、前記複数のポペット弁要素に開閉運動を与える方向制御弁装置であって、前記複数のポペット弁要素の各々は、ハウジング部材内に設けられ、前記ハウジング部材内を軸方向に移動可能なポペット弁部材と、該ポペット弁部材に前記ポペット弁部材の軸方向に移動可能に装着され、制御入力部材となる前記カム機構による押し込みに応じて前記ポペット弁部材の軸方向に移動する従動部材と、前記ポペット弁部材と前記従動部材との間に介在され、前記ポペット弁部材と前記従動部材との相対変位に応じて撓み量が変化するバネ要素とを有し、前記カム機構は、前記複数のポペット弁要素の内二つのポペット弁要素を共に駆動するカム部材を有し、前記カム部材は、前記二つのポペット弁要素の内一方のポペット弁要素のバネ要素の撓み量が増加するときに、他方のポペット弁要素のバネ要素の撓み量が減少するように、前記二つのポペット弁要素を駆動するカム山を有し、前記バネ要素は、バネ定数がほぼ一定のリニア特性を有し、且つ、前記ポペット弁部材と前記従動部材との相対変位がゼロであるときに撓み量がほぼゼロである状態となり、前記ポペット弁部材と前記従動部材との相対変位が最大変位であるときに撓み量が最大撓みである状態となるように、前記ポペット弁部材と前記従動部材との間に介在されているものである。 In order to achieve the above object, the present invention switches the conduction relationship between three or more hydraulic circuits by opening / closing control of a plurality of poppet valve elements, and uses a cam mechanism to open and close the plurality of poppet valve elements. A direction control valve device for imparting motion, wherein each of the plurality of poppet valve elements is provided in a housing member, and is movable in the axial direction in the housing member. A driven member that is mounted so as to be movable in the axial direction of the poppet valve member, and that moves in the axial direction of the poppet valve member in response to pressing by the cam mechanism serving as a control input member, and the poppet valve member and the driven member A spring element that is interposed between the poppet valve member and the driven member and changes in deflection amount according to a relative displacement between the poppet valve member and the driven member. A cam member that drives both of the two poppet valve elements of the valve element, and the cam member moves when the amount of deflection of the spring element of one of the two poppet valve elements increases; like the amount of deflection of the spring element of the poppet valve element is reduced, have a cam nose for driving the two poppet valve element, said spring element, the spring constant has a substantially constant linear characteristic, When the relative displacement between the poppet valve member and the driven member is zero, the bending amount is almost zero, and when the relative displacement between the poppet valve member and the driven member is the maximum displacement, the bending amount is It is interposed between the poppet valve member and the driven member so as to be in a maximum deflection state .

本発明によれば、とりわけ油圧回路間の漏れ損を嫌う油圧動作システムに用いられるポペット弁型の方向制御弁の宿命であった、制御操作力が大きいという問題を解消し、極めて僅かな制御操作力で制御可能で、閉弁時の漏れ損もない、理想的な方向制御弁装置を提供することができるという優れた効果を奏する。   According to the present invention, the problem of large control operation force, which is the fate of a poppet valve type directional control valve used in a hydraulic operation system that particularly dislikes leakage loss between hydraulic circuits, is solved, and extremely few control operations are performed. It is possible to provide an ideal directional control valve device that can be controlled by force and has no leakage loss when the valve is closed.

図1は、本発明の一実施形態に係る方向制御弁装置の断面図である。FIG. 1 is a cross-sectional view of a directional control valve device according to an embodiment of the present invention. 図2は、図1の実施形態に係る方向制御弁装置の作動を示す図である。FIG. 2 is a diagram illustrating the operation of the directional control valve device according to the embodiment of FIG. 1. 図3は、図1の実施形態に係る方向制御弁装置の作動を示す図である。FIG. 3 is a diagram illustrating the operation of the directional control valve device according to the embodiment of FIG. 1. 図4は、図1の実施形態に係る方向制御弁装置の作動を示す図である。FIG. 4 is a diagram illustrating the operation of the directional control valve device according to the embodiment of FIG. 1. 図5は、従動部材の応動特性(閉弁→開弁)を示す図である。FIG. 5 is a diagram showing a response characteristic (valve closing → valve opening) of the driven member. 図6は、カム接触角の変化特性(閉弁→開弁)を示す図である。FIG. 6 is a diagram showing a change characteristic of the cam contact angle (valve closing → valve opening). 図7は、バネ反力及びカム移動負荷の変化特性(閉弁→開弁)を示す図である。FIG. 7 is a diagram showing a change characteristic (valve closing → valve opening) of the spring reaction force and the cam moving load. 図8は、従動部材の応動特性(開弁→閉弁)を示す図である。FIG. 8 is a diagram illustrating a response characteristic (valve opening → valve closing) of the driven member. 図9は、カム接触角の変化特性(開弁→閉弁)を示す図である。FIG. 9 is a diagram showing a change characteristic of the cam contact angle (valve opening → valve closing). 図10は、バネ反力及びカム移動負荷の変化特性(開弁→閉弁)を示す図である。FIG. 10 is a diagram showing a change characteristic (valve opening → valve closing) of the spring reaction force and the cam moving load. 図11は、同期相殺時カム移動負荷特性を示す図である。FIG. 11 is a diagram showing cam movement load characteristics at the time of synchronous cancellation. 図12は、従動部材変位特性を示す図である。FIG. 12 is a diagram showing driven member displacement characteristics. 図13は、開弁リフト量特性を示す図である。FIG. 13 is a diagram showing valve opening lift amount characteristics. 図14は、弁バネ撓み量特性を示す図である。FIG. 14 is a diagram showing a valve spring deflection characteristic. 図15は、カム接触角変化特性を示す図である。FIG. 15 is a diagram showing cam contact angle change characteristics. 図16は、カム移動方向分力特性を示す図である。FIG. 16 is a diagram illustrating a cam movement direction component force characteristic. 図17は、他の実施形態に係る方向制御弁装置の断面図である。FIG. 17 is a cross-sectional view of a directional control valve device according to another embodiment. 図18は、図17の実施形態に係る方向制御弁装置の作動を示す図である。FIG. 18 is a view showing the operation of the directional control valve device according to the embodiment of FIG. 図19は、図17の実施形態に係る方向制御弁装置の作動を示す図である。FIG. 19 is a diagram illustrating the operation of the directional control valve device according to the embodiment of FIG. 図20は、図17の実施形態に係る方向制御弁装置の作動を示す図である。FIG. 20 is a diagram illustrating the operation of the directional control valve device according to the embodiment of FIG. 図21は、図17の実施形態に係る方向制御弁装置の作動を示す図である。FIG. 21 is a view showing the operation of the directional control valve device according to the embodiment of FIG.

以下、本発明の好適な実施形態を添付図面に基づいて詳述する。   Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1に示すように、本実施形態に係る方向制御弁装置1は、三系統以上(図示例では三系統)の油圧回路間の導通関係を、複数(図示例では二つ)のポペット弁要素3の開閉制御によって切り換えると共に、確動型のカム機構4を用いて、複数のポペット弁要素3に開閉運動を与えるものである。   As shown in FIG. 1, the directional control valve device 1 according to the present embodiment has a plurality of (two in the illustrated example) poppet valve elements in a conduction relationship between three or more hydraulic circuits (three in the illustrated example). 3 is switched by the opening / closing control 3, and the opening / closing motion is given to the plurality of poppet valve elements 3 by using the positive cam mechanism 4.

本実施形態に係る方向制御弁装置1は、三系統の油圧回路A、B、Cが接続されるハウジング部材5を備えている。ハウジング部材5には、互いに平行に二つの中空孔6が形成され、各中空孔6は、後述するポペット弁部材7によって、ポペット弁部材7の軸方向両端部側の第一室8及び第二室9と、中間の第三室10とに分割されている。また、ハウジング部材5の側壁部には、外部から右方の第三室10に連通する第一ポート11と、外部から右方の第一室8に連通する第二ポート12と、外部から左方の第一室8に連通する第三ポート13とが形成されている。また、ハウジング部材5の中間壁部には、右方の第三室10と左方の第三室10とを連通する連通ポート14が形成されている。   A directional control valve device 1 according to this embodiment includes a housing member 5 to which three hydraulic circuits A, B, and C are connected. Two hollow holes 6 are formed in the housing member 5 in parallel with each other, and each hollow hole 6 is formed by a poppet valve member 7 which will be described later, with a first chamber 8 and a second chamber on both ends in the axial direction of the poppet valve member 7. It is divided into a chamber 9 and an intermediate third chamber 10. The side wall of the housing member 5 has a first port 11 communicating with the third chamber 10 on the right side from the outside, a second port 12 communicating with the first chamber 8 on the right side from the outside, and a left port from the outside. A third port 13 communicating with the first chamber 8 is formed. In addition, a communication port 14 that connects the right third chamber 10 and the left third chamber 10 is formed in the intermediate wall portion of the housing member 5.

本実施形態では、ハウジング部材5の第一ポート11に油圧回路Aが接続され、第二ポート12に油圧回路Bが接続され、第三ポート13に油圧回路Cが接続されている。   In the present embodiment, the hydraulic circuit A is connected to the first port 11 of the housing member 5, the hydraulic circuit B is connected to the second port 12, and the hydraulic circuit C is connected to the third port 13.

本実施形態では、ポペット弁要素3の各々は、ハウジング部材5内に設けられ、ハウジング部材5内を軸方向に移動可能なポペット弁部材7と、ポペット弁部材7にポペット弁部材7の軸方向に移動可能に装着され、制御入力部材となるカム機構4のカム部材24による押し込みに応じてポペット弁部材7の軸方向に移動する従動部材15と、ポペット弁部材7と従動部材15との間に介在され、ポペット弁部材7と従動部材15との相対変位に応じて撓み量が変化するバネ要素16とを有する。   In the present embodiment, each of the poppet valve elements 3 is provided in the housing member 5, and the poppet valve member 7 is movable in the axial direction in the housing member 5, and the poppet valve member 7 is in the axial direction of the poppet valve member 7. And a driven member 15 that moves in the axial direction of the poppet valve member 7 in response to pressing by the cam member 24 of the cam mechanism 4 serving as a control input member, and between the poppet valve member 7 and the driven member 15. And a spring element 16 whose deflection amount changes according to the relative displacement between the poppet valve member 7 and the driven member 15.

本実施形態では、二つのポペット弁要素3のポペット弁部材7は互いに平行(図1中の上下方向)に移動可能にハウジング部材5に配設されている。本実施形態のポペット弁部材7は、第一棒部17と、第一鍔部18と、第二鍔部19と、第二棒部20とから主に構成され、第一棒部17がハウジング部材5にスライド可能に支持され、第一鍔部18が第一室8と第三室10とを区画し、第二鍔部19がハウジング部材5にスライド可能に支持されて第二室9と第三室10とを区画し、第二棒部20がハウジング部材5にスライド可能に支持されている。また、ポペット弁部材7には、第一室8と第二室9とを連通する連通孔21が形成されている。   In this embodiment, the poppet valve members 7 of the two poppet valve elements 3 are disposed on the housing member 5 so as to be movable in parallel to each other (vertical direction in FIG. 1). The poppet valve member 7 of the present embodiment is mainly composed of a first rod portion 17, a first flange portion 18, a second flange portion 19, and a second rod portion 20, and the first rod portion 17 is a housing. The first flange portion 18 divides the first chamber 8 and the third chamber 10, and the second flange portion 19 is slidably supported by the housing member 5. The second chamber 20 is partitioned from the third chamber 10 and supported by the housing member 5 so as to be slidable. Further, the poppet valve member 7 is formed with a communication hole 21 for communicating the first chamber 8 and the second chamber 9.

本実施形態では、ポペット弁部材7の第二棒部20にバネ要素装着スペース(凹部)22が形成されており、このバネ要素装着スペース22に、従動部材15がポペット弁部材7の軸方向にスライド可能に装着されている。   In the present embodiment, a spring element mounting space (concave portion) 22 is formed in the second rod portion 20 of the poppet valve member 7, and the driven member 15 extends in the axial direction of the poppet valve member 7 in the spring element mounting space 22. It is slidably mounted.

本実施形態のバネ要素16は、コイルバネ等の弁バネからなる。本実施形態のバネ要素16は、ほぼ一定のバネ定数を有している。本実施形態では、バネ要素(弁バネ)16は、ポペット弁部材7のバネ要素装着スペース22と従動部材15の鍔部23との間に介在させて配置されている。また、本実施形態では、バネ要素16は、ポペット弁部材7と従動部材15との相対変位がゼロであるとき(図1の右方のバネ要素16の状態)に撓み量がほぼゼロである状態となり、ポペット弁部材7と従動部材15との相対変位が最大変位であるとき(図1の左方のバネ要素16の状態)に撓み量が最大である状態となるように設定されている。   The spring element 16 of the present embodiment is a valve spring such as a coil spring. The spring element 16 of this embodiment has a substantially constant spring constant. In the present embodiment, the spring element (valve spring) 16 is disposed between the spring element mounting space 22 of the poppet valve member 7 and the flange 23 of the driven member 15. In the present embodiment, the spring element 16 has substantially zero deflection when the relative displacement between the poppet valve member 7 and the driven member 15 is zero (the state of the right spring element 16 in FIG. 1). When the relative displacement between the poppet valve member 7 and the driven member 15 is the maximum displacement (the state of the left spring element 16 in FIG. 1), the amount of bending is set to the maximum. .

本実施形態のカム機構4は、弁バネ力に依存しない確動型のものである。本実施形態のカム機構4は、二つのポペット弁要素3を共に駆動するカム部材24を有する。即ち、本実施形態では、同様構成のポペット弁要素3二つを、一つのカム部材24によって共に駆動させる構造をとっている。本実施形態では、カム部材24は、ポペット弁部材7の軸方向に直交する方向(図1中の左右方向)に移動可能になっている。カム部材24は、二つのポペット弁要素3の内一方のポペット弁要素3のバネ要素16の撓み量が増加するときに、他方のポペット弁要素3のバネ要素16の撓み量が減少するように、二つのポペット弁要素3を駆動するカム山25、26を有する。   The cam mechanism 4 of this embodiment is a positive acting type that does not depend on the valve spring force. The cam mechanism 4 of the present embodiment includes a cam member 24 that drives the two poppet valve elements 3 together. That is, in this embodiment, a structure is adopted in which three poppet valve elements having the same configuration are driven together by one cam member 24. In the present embodiment, the cam member 24 is movable in a direction perpendicular to the axial direction of the poppet valve member 7 (the left-right direction in FIG. 1). The cam member 24 is configured such that when the amount of bending of the spring element 16 of one of the two poppet valve elements 3 increases, the amount of bending of the spring element 16 of the other poppet valve element 3 decreases. , With cam ridges 25, 26 for driving the two poppet valve elements 3.

本実施形態では、ポペット弁部材7の軸方向両端を挟む形で上下二つのカム山25、26が一体的に一つのカム部材24に形成されることで、確動型のカム機構4を構成している。また、カム部材24とポペット弁部材7との間、カム部材24と従動部材15との間には、ボール27、28が介設されている。   In the present embodiment, the positive cam mechanism 4 is configured by integrally forming the upper and lower cam ridges 25 and 26 on one cam member 24 so as to sandwich the both axial ends of the poppet valve member 7. doing. Balls 27 and 28 are interposed between the cam member 24 and the poppet valve member 7 and between the cam member 24 and the driven member 15.

本実施形態では、カム部材24の下側のカム山26のカムプロフィールを、弁全開位置(図1の右方のポペット弁部材7の位置)から閉弁着座位置(図2の右方のポペット弁部材7の位置)までのポペット弁部材7の変位量を上回る変位量を従動部材15に与えるカムプロフィールとしている。このようにすることで、ポペット弁部材7が弁全開位置から閉弁着座位置に至るまでポペット弁部材7と従動部材15との相対変位はゼロであり、閉弁着座位置を超えて移動しようとする従動部材15が、閉弁着座位置以上には移動できないポペット弁部材7と従動部材15との間に介在させたバネ要素16を撓ませ、その閉弁着座位置以降増加するバネ要素16の撓み反力を、ポペット弁部材7をハウジング部材5に設けられた弁座Sに圧接する閉弁圧接力として利用する構造にしている。   In the present embodiment, the cam profile of the cam crest 26 on the lower side of the cam member 24 is changed from the valve fully open position (position of the poppet valve member 7 on the right side in FIG. 1) to the valve closing seating position (right poppet in FIG. 2). The cam profile gives the driven member 15 a displacement amount that exceeds the displacement amount of the poppet valve member 7 up to the position of the valve member 7. By doing so, the relative displacement between the poppet valve member 7 and the driven member 15 is zero until the poppet valve member 7 reaches the valve closing seat position from the valve fully open position, and the poppet valve member 7 tries to move beyond the valve closing seat position. The driven member 15 deflects the spring element 16 interposed between the poppet valve member 7 and the driven member 15 that cannot move beyond the valve-closing seating position, and the spring element 16 bends after the valve-closing seating position increases. The reaction force is configured to utilize the poppet valve member 7 as a valve closing pressure contact force that presses the valve seat S provided on the housing member 5.

また、カム部材24の下側のカム山26のカムプロフィールを、ポペット弁部材7を開閉運動させる上で、そのポペット弁部材7の運動挙動を滑らかな動きにする加速度変化特性上好ましい、サインカーブ状の変化特性を従動部材15に与えるカムプロフィールとしておく。   Further, the cam profile of the cam crest 26 on the lower side of the cam member 24 is a sine curve that is preferable in terms of acceleration change characteristics that make the movement behavior of the poppet valve member 7 smooth when the poppet valve member 7 is opened and closed. The cam profile is given to the follower member 15 with the change characteristic of the shape.

このような設定にしてやると、ポペット弁部材7の着座以降、カム部材24の下側のカム山26によって従動部材15が押し込まれる領域での、バネ要素16の撓み変位量は、カム部材24の変位量に対してサインカーブ状に移動する従動部材15の変位に従った変化特性となるから、そのバネ要素16の撓み反力はサインカーブ状の変化特性を辿る。   With this setting, the deflection displacement amount of the spring element 16 in the region where the driven member 15 is pushed by the cam crest 26 on the lower side of the cam member 24 after the seating of the poppet valve member 7 is as follows. Since the change characteristic according to the displacement of the driven member 15 moving in a sine curve shape with respect to the displacement amount, the bending reaction force of the spring element 16 follows the sine curve change characteristic.

このバネ要素16の撓み反力は、ポペット弁部材7と従動部材15との双方に作用し、従動部材15とカム部材24とのカム接触角に応じたバネ要素16の撓み反力の角分力が、カム部材24の移動方向に作用することになるが、この従動部材15とカム部材24とのカム接触角は、サインカーブ状のカムプロフィールによって、ポペット弁部材7及び従動部材15の変位に伴って変化していく。   The bending reaction force of the spring element 16 acts on both the poppet valve member 7 and the driven member 15, and the angle of the bending reaction force of the spring element 16 according to the cam contact angle between the driven member 15 and the cam member 24. The force acts in the moving direction of the cam member 24. The cam contact angle between the driven member 15 and the cam member 24 is determined by the displacement of the poppet valve member 7 and the driven member 15 by the cam profile having a sine curve shape. It will change along with.

ここで、ポペット弁部材7と従動部材15との間に介在される弁バネ16のバネ定数をKsとし、ポペット弁部材7の閉弁着座位置を基準に、そこからの弁バネ最大撓み量をδmaxとし、この弁バネ最大撓み量を与える間のカム部材24の移動量をLtとして、弁バネ最大撓み位置を基点に、開弁方向にカム部材24を移動させていったときの変位Lに対する、カム部材24による弁バネ押し込み変位量δの変化特性を次式のように設定する。   Here, the spring constant of the valve spring 16 interposed between the poppet valve member 7 and the driven member 15 is set to Ks, and the maximum deflection amount of the valve spring from the valve closing seating position of the poppet valve member 7 is set as a reference. With respect to the displacement L when the cam member 24 is moved in the valve opening direction from the valve spring maximum deflection position as Lt, where δmax is the amount of movement of the cam member 24 while giving the maximum amount of valve spring deflection. The change characteristic of the displacement amount δ of the valve spring pushing by the cam member 24 is set as follows:

δ=δmax*cos(L*π/2/Lt)
カム部材24の変位Lに対する、カム部材24と従動部材15とのカム接触角θの変化特性は、変位δのL微分となるから、次式となる。
δ = δmax * cos (L * π / 2 / Lt)
The change characteristic of the cam contact angle θ between the cam member 24 and the driven member 15 with respect to the displacement L of the cam member 24 is an L derivative of the displacement δ, and is expressed by the following equation.

θ=tan-1(−δmax*sin(L*π/2/Lt)*π/2/Lt)
弁バネ撓み反力Fsがカム部材24の移動方向に作用する推力Fcは、次式となる。
θ = tan −1 (−δmax * sin (L * π / 2 / Lt) * π / 2 / Lt)
The thrust Fc that the valve spring deflection reaction force Fs acts in the moving direction of the cam member 24 is expressed by the following equation.

Fc=Fs*tan(θ)=−Fs*δmax*sin(L*π/2/Lt)*π/2/Lt
そして、弁バネ撓み力Fsは、次式で表せる。
Fc = Fs * tan (θ) = − Fs * δmax * sin (L * π / 2 / Lt) * π / 2 / Lt
The valve spring deflection force Fs can be expressed by the following equation.

Fs=δ*Ks=δmax*cos(L*π/2/Lt)*Ks
よって、カム部材24の移動推力Fcは、次式となる。
Fs = δ * Ks = δmax * cos (L * π / 2 / Lt) * Ks
Therefore, the moving thrust Fc of the cam member 24 is expressed by the following equation.

Fc=−Fs*δmax*sin(L*π/2/Lt)*π/2/Lt
=−δmax*cos(L*π/2/Lt)*Ks*δmax*sin(L*π/2/Lt)*π/2/Lt
=−δmax^2*sin(L*π/2/Lt)*cos(L*π/2/Lt)*π/2/Lt*Ks
例えば、弁バネ最大撓み量δmaxを2mmとし、カム部材24の変位量Ltを3mmとし、弁バネ16のバネ定数Ksを8kg/mmとした場合、最大16kgの閉弁圧接力が得られる。カム部材24の変位に対する従動部材15の応動特性(閉弁→開弁)は図5に示すようになり、カム部材24と従動部材15とのカム接触角の変化特性(閉弁→開弁)は図6に示すようになり、バネ反力とそれによるカム移動負荷の変化特性(閉弁→開弁)は図7に示すようになる。
Fc = −Fs * δmax * sin (L * π / 2 / Lt) * π / 2 / Lt
= −δmax * cos (L * π / 2 / Lt) * Ks * δmax * sin (L * π / 2 / Lt) * π / 2 / Lt
= −δmax ^ 2 * sin (L * π / 2 / Lt) * cos (L * π / 2 / Lt) * π / 2 / Lt * Ks
For example, when the valve spring maximum deflection amount δmax is 2 mm, the displacement amount Lt of the cam member 24 is 3 mm, and the spring constant Ks of the valve spring 16 is 8 kg / mm, a maximum valve closing pressure contact force of 16 kg is obtained. The response characteristic of the driven member 15 (valve closing → opening) with respect to the displacement of the cam member 24 is as shown in FIG. 5, and the change characteristic of the cam contact angle between the cam member 24 and the driven member 15 (valve closing → opening). FIG. 7 shows the spring reaction force and the change characteristic of the cam movement load (valve closing → valve opening) as shown in FIG.

また、カム部材24の変位に対する従動部材15の応動特性(開弁→閉弁)は図8に示すようになり、カム部材24と従動部材15とのカム接触角の変化特性(開弁→閉弁)は図9に示すようになり、バネ反力とそれによるカム移動負荷の変化特性(開弁→閉弁)は図10に示すようになる。   Further, the response characteristic of the driven member 15 with respect to the displacement of the cam member 24 (open valve → closed valve) is as shown in FIG. 8, and the change characteristic of the cam contact angle between the cam member 24 and the driven member 15 (open valve → closed valve). The valve is as shown in FIG. 9, and the spring reaction force and the change characteristic of the cam movement load (valve opening → valve closing) are as shown in FIG.

つまり、弁バネ最大撓み位置から弁バネ撓みゼロ位置までカム部材24を動かす場合には、カム部材24の移動を促進する方向の推力がカム部材24に作用し、逆の場合には、移動負荷抵抗推力としてカム部材24に作用することになる。両者の動作タイミングを一致させた二つのポペット弁要素3を共に駆動するように構成すると、二つのバネ要素16の撓み反力の角分力が互いに相殺関係となり、カム部材24の移動操作の負荷をほぼゼロにすることができる(図11参照)。   That is, when the cam member 24 is moved from the valve spring maximum deflection position to the valve spring deflection zero position, thrust in a direction that promotes the movement of the cam member 24 acts on the cam member 24. It acts on the cam member 24 as a resistance thrust. If the two poppet valve elements 3 having the same operation timing are driven together, the angular component forces of the bending reaction forces of the two spring elements 16 cancel each other, and the load of the moving operation of the cam member 24 is reduced. Can be made substantially zero (see FIG. 11).

次に、本実施形態に係る方向制御弁装置1の作動を図1〜図4により説明する。   Next, the operation of the directional control valve device 1 according to this embodiment will be described with reference to FIGS.

本実施形態では、図1に示すように、カム部材24が右端の基準位置にあるとき、二つのポペット弁要素3の内、左方のポペット弁要素3に対するカム山26のカムプロフィールは、閉弁領域で弁バネ最大撓み位置にあるので、左方のポペット弁要素3はバネ要素16の最大撓み反力による圧接力によって閉弁しており、右方のポペット弁要素3に対するカム山26のカムプロフィールは弁全開位置にあり、右方のポペット弁要素3は開弁している。   In this embodiment, as shown in FIG. 1, when the cam member 24 is in the rightmost reference position, the cam profile of the cam crest 26 with respect to the left poppet valve element 3 of the two poppet valve elements 3 is closed. Since the valve spring is at the maximum deflection position in the valve region, the left poppet valve element 3 is closed by the pressure contact force caused by the maximum deflection reaction force of the spring element 16, and the cam crest 26 of the right poppet valve element 3 The cam profile is in the fully open position and the right poppet valve element 3 is open.

従って、図1に示す状態では、油圧回路Aと油圧回路Bとが右方の第一室8、右方の第三室10を通じて導通状態で、油圧回路Cは遮断状態にある。   Therefore, in the state shown in FIG. 1, the hydraulic circuit A and the hydraulic circuit B are in a conductive state through the right first chamber 8 and the right third chamber 10, and the hydraulic circuit C is in a cut-off state.

図1に示す状態からカム部材24を左方に(矢印D方向に)移動していくと、図2に示すように、まず右方のポペット弁要素3のポペット弁部材7がカム部材24のカム山26で押し上げられて閉弁着座位置に達する。図2に示す状態では、まだ右方のポペット弁要素3のバネ要素16は撓んでいないので、図1に示す状態から図2に示す状態までのカム部材24の移動に影響を与える力は摩擦抵抗力のみである。   When the cam member 24 is moved to the left (in the direction of arrow D) from the state shown in FIG. 1, first, as shown in FIG. 2, the poppet valve member 7 of the right poppet valve element 3 is moved to the cam member 24. It is pushed up by the cam crest 26 and reaches the valve-closing seating position. In the state shown in FIG. 2, since the spring element 16 of the right poppet valve element 3 has not been bent, the force affecting the movement of the cam member 24 from the state shown in FIG. 1 to the state shown in FIG. Only resistance.

図2に示す状態から更にカム部材24を左方に移動していくと、図3に示すように、右方のポペット弁要素3のバネ要素16が撓み始めるので、カム部材24の移動方向の角分力が増加し始めるのであるが、それと同期して、左方のポペット弁要素3の従動部材15とカム部材24とのカム接触角が水平状態から傾いて、カム部材24の移動方向の負の角分力が増加し始めるので、これら二つのバネ要素16の撓み反力の角分力同士が相殺しあうこととなる。よって、カム部材24の移動に影響を与える力は摩擦抵抗力のみで図2に示す状態から図3に示す状態に至る。   When the cam member 24 is further moved leftward from the state shown in FIG. 2, the spring element 16 of the right poppet valve element 3 starts to bend as shown in FIG. The angular component force starts to increase, but in synchronism with this, the cam contact angle between the driven member 15 of the left poppet valve element 3 and the cam member 24 is inclined from the horizontal state, and the cam member 24 moves in the moving direction. Since the negative angular component force starts to increase, the angular component forces of the bending reaction forces of these two spring elements 16 cancel each other. Therefore, the force that affects the movement of the cam member 24 is only the frictional resistance force, and the state shown in FIG. 2 is changed to the state shown in FIG.

図3に示す状態は、両ポペット弁要素3共に閉弁着座位置にあるが、バネ要素16の撓み状態は、右方のポペット弁要素3が最大撓み状態で、左方のポペット弁要素3がゼロに到達した状態なので、図3に示す状態から更にカム部材24を左方に移動していく領域でも、カム接触角が水平状態となった右方のポペット弁要素3と、カム接触角が変化過程であるが撓み反力のない左方のポペット弁要素3の両方共に、バネ要素16の撓み反力の角分力が作用しないから、この領域でもやはり、摩擦抵抗力のみで図3に示す状態から図4に示す状態にまでカム部材24を移動させることができる。   In the state shown in FIG. 3, both the poppet valve elements 3 are in the closed valve seating position. However, the bent state of the spring element 16 is that the right poppet valve element 3 is in the maximum bent state and the left poppet valve element 3 is Since the state has reached zero, even in the region where the cam member 24 is further moved to the left from the state shown in FIG. 3, the right poppet valve element 3 in which the cam contact angle is horizontal and the cam contact angle are Since both of the left poppet valve elements 3 which are changing processes but have no bending reaction force, the angular component force of the bending reaction force of the spring element 16 does not act. The cam member 24 can be moved from the state shown to the state shown in FIG.

図4に示す状態は、図1に示す状態と逆の状態で、油圧回路Aと油圧回路Cとが左方の第一室8、連通ポート14、右方の第三室10を通じて導通状態で、油圧回路Bが遮断状態となっており、三系統の油圧回路の切換弁機能が達成される。   The state shown in FIG. 4 is the reverse of the state shown in FIG. 1, and the hydraulic circuit A and the hydraulic circuit C are in a conductive state through the left first chamber 8, the communication port 14, and the right third chamber 10. The hydraulic circuit B is cut off, and the switching valve function of the three hydraulic circuits is achieved.

以上の動作における、カム部材24の変位に対する、従動部材15の応動特性を図12に示し、ポペット弁部材7の開弁リフト量変化特性を図13に示し、弁バネ撓み量変化特性を図14に示し、カム部材24と従動部材15とのカム接触角変化特性を図15に示し、弁バネ撓み反力変化特性と、それによりカム部材24の移動方向力として作用する弁バネ撓み反力角分力の変化特性を図16に示す。   FIG. 12 shows the response characteristics of the driven member 15 with respect to the displacement of the cam member 24 in the above operation, FIG. 13 shows the valve opening lift amount change characteristics of the poppet valve member 7, and FIG. 14 shows the valve spring deflection amount change characteristics. FIG. 15 shows the cam contact angle change characteristic between the cam member 24 and the driven member 15, and the valve spring deflection reaction force change characteristic and thereby the valve spring deflection reaction force angle acting as the moving direction force of the cam member 24. The change characteristics of the component force are shown in FIG.

このように、本実施形態によれば、二つのポペット弁要素3のバネ要素16によりカム部材24に作用する撓み反力の角分力を互いに相殺関係として、カム部材24の移動操作の負荷を低減することができるので、極めて僅かな制御操作力で制御可能で、閉弁時の漏れ損もない、理想的な方向制御弁装置1を実現することが可能になる。   Thus, according to the present embodiment, the angular component of the bending reaction force acting on the cam member 24 by the spring elements 16 of the two poppet valve elements 3 is mutually offset, and the load of the movement operation of the cam member 24 is reduced. Since it can be reduced, it is possible to realize an ideal directional control valve device 1 that can be controlled with very little control operation force and does not have a leakage loss when the valve is closed.

次に、他の実施形態に係る方向制御弁装置2について説明する。   Next, a directional control valve device 2 according to another embodiment will be described.

図1と同一構成には、同一符号を付して説明を省略し、相違点のみを説明する。   The same components as those in FIG. 1 are denoted by the same reference numerals, description thereof will be omitted, and only differences will be described.

図17に示すように、この実施形態では、ポペット弁部材7の第一棒部17にもバネ要素装着スペース(凹部)29が形成されており、このバネ要素装着スペース29に、別の従動部材30がポペット弁部材7の軸方向にスライド可能に装着されている。また、ポペット弁部材7と従動部材30との間には、ポペット弁部材7と従動部材30との相対変位に応じて撓み量が変化する別のバネ要素31が介在されている。   As shown in FIG. 17, in this embodiment, a spring element mounting space (concave portion) 29 is also formed in the first rod portion 17 of the poppet valve member 7, and another driven member is provided in this spring element mounting space 29. 30 is slidably mounted in the axial direction of the poppet valve member 7. Further, between the poppet valve member 7 and the driven member 30, another spring element 31 whose amount of deflection changes according to the relative displacement between the poppet valve member 7 and the driven member 30 is interposed.

ここで、本発明の原理において、二つのポペット弁要素3のバネ要素16が発生する撓み反力の角分力が互いに相殺関係となる条件として、開弁状態から閉弁方向にカム部材24を移動させていったときの、閉弁着座位置からサインカーブ状に増加していく弁バネ撓み量増加特性が、その最大撓み位置到達以降、撓み量変化がなくなるカムプロフィール特性の場合、従動部材15とポペット弁部材7との間に設置されるバネ要素16のセットフォースがゼロであって、そのバネ要素16のバネ定数が一定のリニア特性であることが求められる。   Here, in the principle of the present invention, the cam member 24 is moved from the valve-opened state to the valve-closed direction as a condition that the angular component forces of the bending reaction forces generated by the spring elements 16 of the two poppet valve elements 3 cancel each other. When the valve spring deflection amount increasing characteristic that increases in a sine curve from the valve-closed seating position when it is moved is a cam profile characteristic in which the deflection amount does not change after reaching the maximum deflection position, the driven member 15 And the poppet valve member 7 are required to have zero set force and a constant linear characteristic of the spring constant of the spring element 16.

しかし、このような部位に装着しやすい弁バネ16の形態として、一般的なコイルバネを想定すると、コイルバネの製造特性として、撓みゼロの自由状態付近と、コイル線間密着となる最大撓み状態付近の荷重撓み特性は、座巻部の形状精度の影響等でバラツキ易く、安定した特性を保証し難い。そのため、通常、安定した荷重撓み特性を求める場合には、最大撓み量の20〜80%の範囲内でコイルバネを使用することが推奨されている。   However, assuming a general coil spring as a form of the valve spring 16 that is easy to be mounted on such a part, the coil spring manufacturing characteristics include a free state near zero deflection and a maximum deflection state near the coil wire. The load deflection characteristic is likely to vary due to the influence of the shape accuracy of the end winding part, and it is difficult to guarantee a stable characteristic. For this reason, it is usually recommended to use a coil spring within a range of 20 to 80% of the maximum amount of deflection when obtaining a stable load deflection characteristic.

つまり、このようなコイルバネの特性制約を踏まえて、最大撓み量の20%以上の初期撓みを与えて装着した場合、そのセットフォースがゼロにはなり得ず、二つのポペット弁要素3のバネ要素16が発生する撓み反力の角分力相殺関係が崩れてしまう。   In other words, in consideration of such characteristic restrictions of the coil spring, when it is attached with an initial deflection of 20% or more of the maximum deflection amount, its set force cannot be zero, and the spring elements of the two poppet valve elements 3 The angular force canceling relationship of the bending reaction force generated by 16 is broken.

この対策としては、従動部材15とポペット弁部材7との間に装着するバネ要素16、31を二個直列状態で、一方の部材に設けたバネ要素装着スペース22、29内に20%以上の初期撓みを与えて装着し、その直列状態の二個のバネ要素16、31の接触境界部に、もう一方の部材が挟まれる形にしてやる方法が有効である(図17参照)。   As a countermeasure, two spring elements 16 and 31 to be mounted between the driven member 15 and the poppet valve member 7 are connected in series, and the spring element mounting spaces 22 and 29 provided in one member have a 20% or more in the space. An effective method is to apply the initial deflection and attach the other member to the contact boundary between the two spring elements 16 and 31 in series (see FIG. 17).

このような構造にしてやると、二個のバネ要素16、31のセットフォースが、二個のバネ要素16、31間に挟まれた部材に対して互いに相殺方向に作用して釣り合う結果、実質セットフォースゼロの弁バネと等価の特性を得ることができる。   With such a structure, the set force of the two spring elements 16 and 31 acts on the member sandwiched between the two spring elements 16 and 31 in the canceling direction to balance each other. It is possible to obtain characteristics equivalent to a force zero valve spring.

ちなみに、この場合のバネ定数特性は、二個のバネ要素16、31のバネ定数値の和となって作用するから、必要なバネ定数値に対して、それを発揮する二個のバネ要素16、31個々のバネ定数値は半分の低い値で済み、製造寸法バラツキに対するバネ撓み反力変化の影響感度が低くなることから、この面でも特性安定化に優位となる。   Incidentally, since the spring constant characteristic in this case acts as the sum of the spring constant values of the two spring elements 16 and 31, the two spring elements 16 that exhibit the necessary spring constant value are used. 31 each spring constant value is half as low, and the sensitivity of the influence of the change in the spring deflection reaction force on the variation in manufacturing dimensions is low, so this aspect is also advantageous for characteristic stabilization.

この実施形態に係る方向制御弁装置2の作動を図17〜図21に示す。   The operation of the directional control valve device 2 according to this embodiment is shown in FIGS.

この実施形態においても、図17に示す状態から図21に示す状態までカム部材24を左方に移動していくことで、油圧回路Aと油圧回路Bとが導通状態で、且つ油圧回路Cが遮断状態にある図17に示す状態から、油圧回路Aと油圧回路Cとが導通状態で、且つ油圧回路Bが遮断状態となる図21に示す状態に切り換えることができる。   Also in this embodiment, by moving the cam member 24 to the left from the state shown in FIG. 17 to the state shown in FIG. 21, the hydraulic circuit A and the hydraulic circuit B are in a conductive state, and the hydraulic circuit C is The state shown in FIG. 17 in the shut-off state can be switched to the state shown in FIG. 21 in which the hydraulic circuit A and the hydraulic circuit C are in the conducting state and the hydraulic circuit B is in the shut-off state.

図17に示す実施形態によっても、図1に示す実施形態と同様の効果を得ることができる。つまり、二つのポペット弁要素3のバネ要素16によりカム部材24に作用する撓み反力の角分力が互いに相殺関係となり、カム部材24の移動操作の負荷を低減することができるので、極めて僅かな制御操作力で制御可能で、閉弁時の漏れ損もない、理想的な方向制御弁装置2を実現することが可能になる。   Also in the embodiment shown in FIG. 17, the same effect as that of the embodiment shown in FIG. 1 can be obtained. That is, the angular component forces of the bending reaction forces acting on the cam member 24 by the spring elements 16 of the two poppet valve elements 3 cancel each other, and the load of the moving operation of the cam member 24 can be reduced. It is possible to realize an ideal directional control valve device 2 that can be controlled with a simple control operation force and has no leakage loss when the valve is closed.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず他の様々な実施形態を採ることが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various other embodiments can be adopted.

例えば、バネ要素(弁バネ)16、31を、ポペット弁部材7と従動部材15
、30との間に直接挿入するのではなく、ポペット弁部材7と従動部材15、30との間にリンク機構等を介在させて、そのリンク機構等の一部にバネ要素16、31のバネ力を作用させるようにしても良い。閉弁圧接力生成素子として、バネ力を利用する弁バネに依らず、磁力を利用する磁石等を用いても良い。要は、セットフォースがゼロで、バネ定数が一定のリニア特性と等価の角分力特性が得られれば、様々な応用変形形態が適用可能であることは言うまでもない。
For example, the spring elements (valve springs) 16 and 31 are connected to the poppet valve member 7 and the driven member 15.
, 30 is inserted directly between the poppet valve member 7 and the driven members 15, 30, and a spring of the spring elements 16, 31 is partly attached to the link mechanism or the like. A force may be applied. As the valve-closing pressure contact force generating element, a magnet or the like using magnetic force may be used without depending on the valve spring using spring force. In short, it goes without saying that various applied variations can be applied if an angular component force characteristic equivalent to a linear characteristic with a set force of zero and a constant spring constant is obtained.

更に、上記実施形態では、二つのポペット弁要素3による三系統回路間を切り換える三回路切換弁ユニットの例で本発明の原理を説明したが、更に多くの多系統回路間を切り換える回路切換弁ユニットを構成する場合においても、その回路切換弁ユニットを構成する複数のポペット弁要素3の開閉タイミングの相互関係として、それら複数のポペット弁要素3の内二つのポペット弁要素3毎に、制御操作力の相殺関係が形成されるように構成すれば、全体としても上記の実施形態と同じ効果を得られることも勿論である。つまり、多系統の油圧回路間の導通関係を切り換える場合、四個以上の偶数個のポペット弁要素3の開閉制御によって切り換える方向制御弁装置として構成し、それら偶数個のポペット弁要素3各々の構成と、それらの動作タイミングの相互関係として、二つずつのポペット弁要素3間の動作関係に、上記実施形態の関係を適用することで、全体として操作力の低減を図ることができる。その場合、それら複数のポペット弁要素3に開閉運動を与えるカム機構4として、一つの中心軸回りの同心円上に各ポペット弁要素3を配置した弁ユニットブロックを挟む形で二枚のカムディスクを設置して、そのカムディスク同士を中心軸部材で一体的に連結することによって、カムディスクの回転運動によって各ポペット弁要素3の開閉を同期的に行わせることもできる。   Furthermore, in the above embodiment, the principle of the present invention has been described with an example of a three-circuit switching valve unit that switches between three-system circuits by two poppet valve elements 3, but a circuit-switching valve unit that switches between more multi-system circuits. In the case of configuring the circuit switching valve unit, the control operation force for each of the two poppet valve elements 3 out of the plurality of poppet valve elements 3 is determined as the mutual relationship of the opening and closing timings of the plurality of poppet valve elements 3 constituting the circuit switching valve unit. Of course, the same effect as in the above-described embodiment can be obtained as a whole if the canceling relationship is formed. That is, when switching the continuity relationship between multiple hydraulic circuits, it is configured as a directional control valve device that is switched by opening / closing control of four or more even-numbered poppet valve elements 3, and each of the even-numbered poppet valve elements 3 is configured. By applying the relationship of the above embodiment to the operation relationship between two poppet valve elements 3 as a mutual relationship between the operation timings, it is possible to reduce the operating force as a whole. In that case, as a cam mechanism 4 for giving an opening / closing motion to the plurality of poppet valve elements 3, two cam disks are sandwiched between valve unit blocks each having the poppet valve elements 3 arranged on a concentric circle around one central axis. By installing and integrally connecting the cam disks with a central shaft member, the poppet valve elements 3 can be opened and closed synchronously by the rotational movement of the cam disks.

1 方向制御弁装置
2 方向制御弁装置
3 ポペット弁要素
4 カム機構
5 ハウジング部材
7 ポペット弁部材
15 従動部材
16 バネ要素(弁バネ)
24 カム部材
26 カム山
30 従動部材
1 direction control valve device 2 direction control valve device 3 poppet valve element 4 cam mechanism 5 housing member 7 poppet valve member 15 driven member 16 spring element (valve spring)
24 cam member 26 cam crest 30 driven member

Claims (1)

三系統以上の油圧回路間の導通関係を、複数のポペット弁要素の開閉制御によって切り換えると共に、カム機構を用いて、前記複数のポペット弁要素に開閉運動を与える方向制御弁装置であって、
前記複数のポペット弁要素の各々は、ハウジング部材内に設けられ、前記ハウジング部材内を軸方向に移動可能なポペット弁部材と、該ポペット弁部材に前記ポペット弁部材の軸方向に移動可能に装着され、制御入力部材となる前記カム機構による押し込みに応じて前記ポペット弁部材の軸方向に移動する従動部材と、前記ポペット弁部材と前記従動部材との間に介在され、前記ポペット弁部材と前記従動部材との相対変位に応じて撓み量が変化するバネ要素とを有し、
前記カム機構は、前記複数のポペット弁要素の内二つのポペット弁要素を共に駆動するカム部材を有し、
前記カム部材は、前記二つのポペット弁要素の内一方のポペット弁要素のバネ要素の撓み量が増加するときに、他方のポペット弁要素のバネ要素の撓み量が減少するように、前記二つのポペット弁要素を駆動するカム山を有し、
前記バネ要素は、バネ定数がほぼ一定のリニア特性を有し、且つ、前記ポペット弁部材と前記従動部材との相対変位がゼロであるときに撓み量がほぼゼロである状態となり、前記ポペット弁部材と前記従動部材との相対変位が最大変位であるときに撓み量が最大撓みである状態となるように、前記ポペット弁部材と前記従動部材との間に介在されていることを特徴とする方向制御弁装置。
A directional control valve device that switches a conduction relationship between three or more hydraulic circuits by opening / closing control of a plurality of poppet valve elements and uses a cam mechanism to give an opening / closing motion to the plurality of poppet valve elements,
Each of the plurality of poppet valve elements is provided in a housing member, and is mounted on the poppet valve member so as to be movable in the axial direction of the poppet valve member. And a driven member that moves in the axial direction of the poppet valve member in response to pushing by the cam mechanism serving as a control input member, and is interposed between the poppet valve member and the driven member, the poppet valve member and the A spring element whose amount of deflection changes according to relative displacement with the driven member,
The cam mechanism has a cam member that drives two of the plurality of poppet valve elements together,
The cam member is configured so that when the amount of bending of the spring element of one of the two poppet valve elements increases, the amount of bending of the spring element of the other poppet valve element decreases. have a cam mountain to drive the poppet valve element,
The spring element has a linear characteristic with a substantially constant spring constant, and when the relative displacement between the poppet valve member and the driven member is zero, the amount of bending is substantially zero, and the poppet valve When the relative displacement between the member and the driven member is the maximum displacement, the poppet valve member and the driven member are interposed between the poppet valve member and the driven member so that the amount of deflection is the maximum deflection. Directional control valve device.
JP2009208442A 2009-09-09 2009-09-09 Directional control valve device Expired - Fee Related JP5454028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208442A JP5454028B2 (en) 2009-09-09 2009-09-09 Directional control valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208442A JP5454028B2 (en) 2009-09-09 2009-09-09 Directional control valve device

Publications (2)

Publication Number Publication Date
JP2011058556A JP2011058556A (en) 2011-03-24
JP5454028B2 true JP5454028B2 (en) 2014-03-26

Family

ID=43946436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208442A Expired - Fee Related JP5454028B2 (en) 2009-09-09 2009-09-09 Directional control valve device

Country Status (1)

Country Link
JP (1) JP5454028B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5986941B2 (en) * 2013-02-28 2016-09-06 Kyb株式会社 Leveling valve
CN116412289A (en) 2021-12-29 2023-07-11 大洋技研工业株式会社 Fluid on-off valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233487Y2 (en) * 1973-12-29 1977-07-30
JPS5590863U (en) * 1978-12-18 1980-06-23
JPS58193162U (en) * 1982-06-18 1983-12-22 伊藤工機株式会社 automatic switching valve

Also Published As

Publication number Publication date
JP2011058556A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5615286B2 (en) Solenoid valve
US11215292B2 (en) Magnetic valve
KR20150123729A (en) Valve
CN107883014B (en) Fluid valve
US10288187B2 (en) Device for regulating the flow of a fluid
US20110114204A1 (en) Control valve
CN107567535B (en) Actuator for axial movement of an object
JP5454028B2 (en) Directional control valve device
JP5184372B2 (en) Gas exchange valve actuator
US20130219873A1 (en) New mechanism for fluid power transmission and control
CN109372812B (en) Damping pilot valve sleeve control type switch valve
JP6335693B2 (en) Solenoid valve
JP4501789B2 (en) 3-way solenoid valve
JP2005114157A (en) Valve device, especially combined proportional-distributing-cum-direction control valve device
JP2017115962A (en) Electromagnetic spool valve
EP2206940A1 (en) Valve actuator
EP2689142B1 (en) Valve
US9709180B2 (en) Directional poppet valve
KR100782154B1 (en) Valve having a piezoelectric element
CN108843638B (en) Embedded double-valve-core guide control mechanism and fluid control valve
JP2011256893A (en) Solenoid valve
US9880565B1 (en) Two-stage valve
EP3078890B1 (en) Two-stage valve
JP7292478B2 (en) floor hinge
CN104776076A (en) Electrohydraulic control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees