JP5453656B2 - Thermal lens forming element and manufacturing method thereof - Google Patents
Thermal lens forming element and manufacturing method thereof Download PDFInfo
- Publication number
- JP5453656B2 JP5453656B2 JP2011012364A JP2011012364A JP5453656B2 JP 5453656 B2 JP5453656 B2 JP 5453656B2 JP 2011012364 A JP2011012364 A JP 2011012364A JP 2011012364 A JP2011012364 A JP 2011012364A JP 5453656 B2 JP5453656 B2 JP 5453656B2
- Authority
- JP
- Japan
- Prior art keywords
- control light
- light
- thermal lens
- signal light
- hollow tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
本発明は、光通信、光情報処理などの光エレクトロニクスおよびフォトニクスの分野において有用な、光路切替装置および光路切替方法に用いられる熱レンズ形成素子およびその製造方法に関するものである。 The present invention relates to an optical path switching device and a thermal lens forming element used in an optical path switching method and a manufacturing method thereof, which are useful in the fields of optical electronics and photonics such as optical communication and optical information processing.
本発明者らは、全く新しい原理に基づく光路切替方法および装置として、熱レンズ形成素子中の制御光吸収領域に、制御光吸収領域が吸収する波長帯域の制御光、および、制御光吸収領域が吸収しない波長帯域の信号光を各々の光軸が一致するよう収束させて照射し、制御光が照射されていない場合は信号光が鏡の穴を通して直進するようにし、一方、制御光が照射される場合は、信号光の進行方向に対して傾けて設けた穴付ミラーを用いて反射することによって光路を変更させる方法およびそのための装置を発明した(特許文献1参照)。この発明以前の背景技術については、特許文献1に詳しく記載されている。 As an optical path switching method and apparatus based on a completely new principle, the inventors of the present invention have a control light absorption region in a thermal lens forming element, a control light in a wavelength band absorbed by the control light absorption region, and a control light absorption region. The signal light in the wavelength band that is not absorbed is converged and irradiated so that the optical axes coincide with each other. When the control light is not irradiated, the signal light travels straight through the hole in the mirror, while the control light is irradiated. In this case, the inventors have invented a method and an apparatus for changing the optical path by reflecting using a mirror with a hole provided to be inclined with respect to the traveling direction of the signal light (see Patent Document 1). The background art prior to the present invention is described in detail in Patent Document 1.
本発明者らは、また、熱レンズ形成素子および穴付ミラーを複数組み合わせて用いる光制御式光路切替型光信号伝送装置および光信号光路切替方法を発明した(特許文献2参照)。なお、特許文献1および特許文献2に記載の光路切替方式おいて制御光を照射した場合、熱レンズ効果によって信号光のビーム断面形状はリング状になる。そこでこの方式を以下「リングビーム方式」と呼ぶ。 The inventors have also invented an optical control type optical path switching type optical signal transmission device and an optical signal optical path switching method using a combination of a plurality of thermal lens forming elements and mirrors with holes (see Patent Document 2). When the control light is irradiated in the optical path switching methods described in Patent Document 1 and Patent Document 2, the beam cross-sectional shape of the signal light becomes a ring shape due to the thermal lens effect. Therefore, this method is hereinafter referred to as “ring beam method”.
本発明者らは、以下に説明する発明も、出願している。熱レンズ形成光素子中の制御光吸収領域に、制御光吸収領域が吸収する波長帯域の制御光、および、制御光吸収領域が吸収しない波長帯域の信号光とを入射させ、その際、前記制御光および前記信号光が、前記制御光吸収領域にて収束するように照射されかつ前記制御光および前記信号光の各々の収束点の位置が相異なるように照射され、これにより、前記制御光と前記信号光は、光の進行方向で前記制御光吸収領域の入射面またはその近辺において収束したのち拡散される。これにより、前記制御光吸収領域内における前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因し可逆的に熱レンズが形成され、形成された熱レンズによって、屈折率が変化し、前記信号光の進行方向を変えることを特徴とする光変更方法および光路切替装置を開示した(特許文献3〜5参照)。特許文献3〜5において、熱レンズ形成光素子の制御光吸収領域としては、色素を溶剤に溶解したものをガラス容器に封じたものが開示されており、溶剤としては、少なくとも使用する色素を溶解するものであって、熱レンズ形成時の温度上昇に際し、熱分解することなく、かつ、沸騰する温度(沸点)が100℃以上、好ましくは200℃以上、更に好ましくは300℃以上のものを好適に用いることができると記載されている。しかしながら、特許文献3〜5には、溶剤の屈折率および粘度の温度特性に関する記述はない。なお、特許文献3〜5に記載の光路切替方式においては制御光を照射しても信号光のビーム断面形状はほぼ円形に保たれる。そこでこの方式を以下「丸ビーム方式」と呼ぶ。 The inventors have also filed the invention described below. The control light in the wavelength band that is absorbed by the control light absorption region and the signal light in the wavelength band that is not absorbed by the control light absorption region are incident on the control light absorption region in the thermal lens forming optical element. The light and the signal light are irradiated so as to converge in the control light absorption region, and the control light and the signal light are irradiated such that the positions of the convergence points of the control light and the signal light are different from each other. The signal light is diffused after converging at or near the incident surface of the control light absorption region in the light traveling direction. Thereby, a thermal lens is formed reversibly due to the temperature rise occurring in the control light absorption region and the peripheral region thereof, and the refractive index is changed by the formed thermal lens, An optical change method and an optical path switching device characterized by changing the traveling direction of the signal light have been disclosed (see Patent Documents 3 to 5). In Patent Documents 3 to 5, the control light absorption region of the thermal lens forming optical element is disclosed in which a pigment is dissolved in a solvent and sealed in a glass container, and as the solvent, at least the pigment to be used is dissolved. Suitable when the temperature rises at the time of forming the thermal lens without being thermally decomposed and having a boiling temperature (boiling point) of 100 ° C. or higher, preferably 200 ° C. or higher, more preferably 300 ° C. or higher. It is described that it can be used. However, Patent Documents 3 to 5 do not describe the temperature characteristics of the refractive index and viscosity of the solvent. In the optical path switching methods described in Patent Documents 3 to 5, the beam cross-sectional shape of the signal light is kept substantially circular even when the control light is irradiated. Therefore, this method is hereinafter referred to as “round beam method”.
本発明者の一部他は、液状の光応答性組成物を充填した光学セルに、前記光応答性組成物が感応する波長の制御光を照射し、制御光とは異なる波長帯域にある信号光の透過率および/または屈折率を可逆的に変化させることにより、前記光学セルを透過する前記信号光の強度変調および/または光束密度変調を行う光制御方法であって、前記制御光および前記信号光を各々収束させて前記光学セルへ照射し、かつ、前記制御光および前記信号光のそれぞれの焦点近傍の光子密度が最も高い領域が前記光学セル内の前記光応答性組成物中において互いに重なり合うように前記制御光および前記信号光の光路をそれぞれ配置し、前記光学素子中の前記光応答性組成物を透過した後、発散していく信号光光線束を、前記信号光の収束手段よりも小さい開口数の凸レンズまたは凹面鏡で受光することによって、前記強度変調および/または光束密度変調を強く受けた領域の信号光光線束を分別して取り出すことを特徴とする光制御方法を発明した(特許文献6参照)。特許文献6にも、溶剤の屈折率および粘度の温度特性に関する記述はない。特許文献6には、光学セルの2枚のガラス板とスペーサーにより構成される扁平直方体型空間に色素溶液が満たされた形態の熱レンズ形成素子が記載されているが、この素子の向きを重力の方向に対して変化させた場合の熱レンズ効果の変動に関しては全く記述されていない。 Some of the present inventors irradiate an optical cell filled with a liquid photoresponsive composition with control light having a wavelength to which the photoresponsive composition is sensitive, and a signal in a wavelength band different from that of the control light. A light control method for performing intensity modulation and / or light flux density modulation of the signal light transmitted through the optical cell by reversibly changing light transmittance and / or refractive index, wherein the control light and the light Signal light is converged and irradiated to the optical cell, and regions having the highest photon density in the vicinity of the respective focal points of the control light and the signal light are mutually in the photoresponsive composition in the optical cell. The optical paths of the control light and the signal light are respectively arranged so as to overlap, and the signal light beam bundle that diverges after passing through the photoresponsive composition in the optical element is reflected by the signal light convergence means. Also small Invented a light control method characterized by separating and extracting signal light beam bundles in a region that has been strongly subjected to intensity modulation and / or light beam density modulation by receiving light with a convex lens or concave mirror having a numerical aperture (Patent Document 6). reference). Patent Document 6 also does not describe the temperature characteristics of the refractive index and viscosity of the solvent. Patent Document 6 describes a thermal lens forming element in a form in which a flat rectangular parallelepiped space composed of two glass plates and a spacer of an optical cell is filled with a dye solution. There is no description at all regarding the fluctuation of the thermal lens effect when the direction is changed.
本発明者の一部他は、液状の光応答性組成物を充填した光学セルを熱レンズ形成素子と呼び、前記光応答性組成物が感応する波長の制御光を吸収する色素溶液の溶剤として、160℃以上における粘度が0ないし3mPa・sであり、かつ、160℃における粘度の値で、40℃における粘度の値を除した値が1以上、6以下である溶剤を用い、更に、光学セルの形態として前記色素溶液を入射信号光の光軸を中心軸とする円柱またはその円柱に外接するN角柱(Nは4以上の整数)の形状の第1の空間内に充填して制御光吸収領域とし、前記第1の空間を溶液導入路および堰を介して第2の空間に接続させ、この第2の空間には前記色素溶液および不活性気体の気泡14が充填されている構造を開示した(特許文献7参照)。特許文献7の熱レンズ形成素子(光学セル)においては、光学セルの色素溶液注入孔に蓋を接着剤で接着し色素溶液を封止する方式が開示されているに過ぎない。 Some of the present inventors have called an optical cell filled with a liquid photoresponsive composition as a thermal lens forming element, and used as a solvent for a dye solution that absorbs control light having a wavelength to which the photoresponsive composition is sensitive. A solvent having a viscosity at 160 ° C. or higher of 0 to 3 mPa · s and a viscosity value at 160 ° C. of the viscosity at 40 ° C. of 1 or higher and 6 or lower; As a cell form, the dye solution is filled in a first space in the shape of a cylinder having an optical axis of incident signal light as a central axis or an N prism (N is an integer of 4 or more) circumscribing the cylinder. As an absorption region, the first space is connected to the second space via a solution introduction path and a weir, and the second space is filled with the dye solution and the inert gas bubbles 14. It disclosed (refer patent document 7). In the thermal lens forming element (optical cell) of Patent Document 7, only a method of sealing a dye solution by adhering a lid to the dye solution injection hole of the optical cell with an adhesive is disclosed.
本発明は、熱レンズ形成素子の光学セルへ色素溶液を注入した後、注入孔に蓋を接着する方式を廃し、接着剤層を溶剤分子、酸素分子、水分子が透過する可能性を排除することを目的とする。 The present invention eliminates the method of adhering a lid to an injection hole after injecting a dye solution into an optical cell of a thermal lens forming element, and eliminates the possibility of solvent molecules, oxygen molecules, and water molecules permeating through the adhesive layer. For the purpose.
本発明は、また、熱レンズ形成素子の光学セルの形状を単純化して製造コストを低減させることを目的とする。 Another object of the present invention is to reduce the manufacturing cost by simplifying the shape of the optical cell of the thermal lens forming element.
本発明は、更に、熱レンズ形成素子の向きを重力の方向に対して変えた場合の熱レンズ効果の変動を最小化することを目的とする。 Another object of the present invention is to minimize fluctuations in the thermal lens effect when the orientation of the thermal lens forming element is changed with respect to the direction of gravity.
本発明は、以下の特徴を有する。 The present invention has the following features.
(1)信号光の波長の光を吸収せず、制御光の光を吸収する色素を溶剤に溶解させた色素溶液を充填した光学セルを備える熱レンズ形成素子であって、
前記光学セルは、少なくとも制御光が焦点を結ぶように配置された制御光吸収領域を有し、
前記制御光吸収領域の形状は、合計4つの当該平面について互いに平行な2つの外側平面および2つの内側平面、を有する角型断面中空管であって、前記互いに平行な2つの外側平面および2つの内側平面はともに、前記制御光が照射されず前記信号光が直進する場合の光軸に対して垂直であり、前記互いに平行な2つの外側平面および2つの内側平面の大きさは、前記制御光および信号光の入射する領域および直進または光路切替されて出射する信号光が通過する領域において平面である大きさであり、前記角型断面中空管の両端はその素材の融点において溶融封止されており、前記制御光吸収領域には、前記制御光吸収領域が吸収する波長帯域から選ばれる波長の制御光と、前記制御光吸収領域が吸収しない波長帯域から選ばれる波長の信号光とが各々収束されて照射され、かつ前記制御光および前記信号光の各々の収束点の位置が同一または相異なるように照射され、前記制御光吸収領域が前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因して可逆的に形成される屈折率の分布に基づいた熱レンズが形成され、
前記制御光が照射されず熱レンズが形成されていない場合は前記収束された信号光が通常の開き角度と直進方向で出射する状態と、
前記制御光および前記信号光の各々の収束点の位置が同一になるよう制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度よりも大きい開き角度で出射する状態、または、前記制御光および前記信号光の各々の収束点の位置が相異なるよう制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度と異なる開き角度と直進方向とは異なる方向で出射する状態とを、
前記制御光の照射の有無に対応させて実現させ、
かつ、
前記角型断面中空管内の一端には色素溶液が1本の液柱として気泡無しに存在し、他端には前記1本の液柱を維持するための1つの気泡が前記色素溶液の液柱に接して存在し、
前記気泡の室温における圧力が0.4ないし0.7気圧であり、
同圧力が0.4ないし0.5気圧のとき、前記気泡の体積が、前記角型断面中空管容積の20%以上、60%以下であり、
同圧力が0.6気圧のとき、前記気泡の体積が、前記角型断面中空管容積の25%以上、60%以下であり、
同圧力が0.7気圧のとき、前記気泡の体積が、前記角型断面中空管容積の40%以上、60%以下、であることを特徴とする熱レンズ形成素子である。
(1) A thermal lens forming element comprising an optical cell filled with a dye solution prepared by dissolving a dye that absorbs light of control light in a solvent without absorbing light of the wavelength of the signal light,
The optical cell has a control light absorption region arranged so that at least the control light is focused,
The shape of the control light absorption region is a square cross-section hollow tube having two outer planes and two inner planes parallel to each other for a total of four of the planes, the two outer planes and 2 being parallel to each other Both inner planes are perpendicular to the optical axis when the control light is not irradiated and the signal light travels straight, and the sizes of the two outer planes and the two inner planes parallel to each other are The area where the light and signal light are incident and the area where the signal light which goes straight or is switched after passing through the optical path passes are flat, and both ends of the square cross-section hollow tube are melt sealed at the melting point of the material. The control light absorption region has a control light having a wavelength selected from a wavelength band absorbed by the control light absorption region and a wavelength selected from a wavelength band not absorbed by the control light absorption region. And the control light and the signal light are irradiated so that the positions of the convergence points of the control light and the signal light are the same or different, and the control light absorption region absorbs the control light, and A thermal lens is formed based on the refractive index distribution that is reversibly formed due to the temperature rise that occurs in the surrounding area,
When the control light is not irradiated and a thermal lens is not formed, the converged signal light is emitted in a normal opening angle and a straight direction, and
When the control light is irradiated so that the positions of the convergence points of the control light and the signal light are the same to form a thermal lens, the converged signal light has an opening angle larger than a normal opening angle. When the control lens is irradiated with the control light and the thermal lens is formed so that the positions of the convergence points of the control light and the signal light are different from each other, the converged signal light has a normal opening angle. A different opening angle and a state of emitting in a direction different from the straight direction,
Realized corresponding to the presence or absence of irradiation of the control light ,
And,
The dye solution is present as one liquid column without bubbles at one end in the square cross-section hollow tube, and one bubble for maintaining the one liquid column is present at the other end as a liquid column of the dye solution. Exists in contact with
The pressure of the bubbles at room temperature is 0.4 to 0.7 atm,
When the pressure is 0.4 to 0.5 atm, the volume of the bubbles is 20% or more and 60% or less of the volume of the square cross-section hollow tube,
When the pressure is 0.6 atm, the volume of the bubbles is 25% or more and 60% or less of the square cross-section hollow tube volume,
When the pressure is 0.7 atm, the bubble volume is 40% or more and 60% or less of the square cross-section hollow tube volume .
(2)前記1つの気泡を構成する気体中の酸素濃度が0.5ppm以下、0ppm以上であることを特徴とする上記(1)に記載の熱レンズ形成素子である。 (2) The thermal lens forming element according to the above (1), wherein the oxygen concentration in the gas constituting the one bubble is 0.5 ppm or less and 0 ppm or more .
(3)前記角型断面中空管の表面に屈折率1.2ないし1.4の透明有機高分子膜からなる厚さ10nmないし200μmの無反射コート膜を有することを特徴とする上記(1)または(2)に記載の熱レンズ形成素子である。 (3) The non-reflective coating film having a thickness of 10 nm to 200 μm made of a transparent organic polymer film having a refractive index of 1.2 to 1.4 is provided on the surface of the square cross-section hollow tube (1) Or a thermal lens forming element according to (2).
(4)少なくとも、熱レンズ形成素子の角型断面容器として用いられる石英ガラス製角型断面中空管のためのプリフォームを、互いに平行な2つの外側平面および2つの内側平面からなる角型断面中空管に変形させる工程と、
前記角型断面中空管を切断して両端が開いた中空管とする工程と、
互いに平行な2つの外側平面および2つの内側平面を有する角型断面中空管の一端を封じる工程と、
信号光の波長の光を吸収せず、制御光の光を吸収する色素を溶剤に溶解させた色素溶液を調製する工程と、
一端を封止した互いに平行な2つの外側平面および2つの内側平面を有する角型断面中空管の内部に前記色素溶液を注入する工程と、
前記色素溶液を注入した後、前記角型断面中空管の色素溶液が注入されていない空間を真空にした後、接着剤で仮封止する工程と、
前記色素溶液が注入された角型断面中空管の、色素溶液が存在しない位置において前記角型断面中空管の一端を加熱溶融封止する工程と、
を有する熱レンズ形成素子の製造方法である。
(4) at least, angles made preforms for quartz glass square section hollow tubes used as rectangular cross-section container of the thermal lens forming device, the two outer planes and two inner planes parallel to each other physician A step of deforming into a mold-section hollow tube;
Cutting the square cross-section hollow tube into a hollow tube having both ends open;
Sealing one end of a square cross-section hollow tube having two outer planes and two inner planes parallel to each other ;
A step of preparing a dye solution in which a dye that does not absorb the light of the signal light and absorbs the light of the control light is dissolved in a solvent;
Injecting the dye solution into a square cross-section hollow tube having two parallel outer flat surfaces and two inner flat surfaces sealed at one end;
After injecting the dye solution, vacuuming the space where the dye solution of the square cross-section hollow tube is not injected, and then temporarily sealing with an adhesive; and
Heating and sealing one end of the square cross-section hollow tube at a position where the dye solution does not exist in the square cross-section hollow tube into which the dye solution has been injected;
The manufacturing method of the thermal lens formation element which has this.
制御光の出力30mW以下という小さいパワーで、リングビーム方式の場合1ミリ秒未満、丸ビーム方式の場合10ミリ秒未満の高速な応答速度で熱レンズ効果を発揮する熱レンズ形成素子を低い製造コストで実現することができる。また、素子の向きを重力方向に対して変化させても、熱レンズ効果の変動が少ない熱レンズ形成素子を提供することができる。更に、−40〜85℃の温度範囲で使用可能な熱レンズ形成素子を提供することができる。更にまた、実使用条件において5年以上、熱レンズ形成性能を維持するとこのできる熱レンズ形成素子を提供することができる。 Low manufacturing cost of thermal lens forming element that exhibits thermal lens effect with low power of less than 30mW of control light, high response speed of less than 1ms for ring beam method and less than 10ms for round beam method Can be realized. Further, it is possible to provide a thermal lens forming element with little variation in the thermal lens effect even when the direction of the element is changed with respect to the direction of gravity. Furthermore, the thermal lens formation element which can be used in the temperature range of -40-85 degreeC can be provided. Furthermore, if the thermal lens forming performance is maintained for 5 years or more under actual use conditions, a thermal lens forming element capable of this can be provided.
以下、図1〜図15の図面を参照して本発明の実施の形態を説明する。なお、図1(b)は図1(a)のA−A’線に沿った断面図であり、図2aおよび図2bは図1(b)のB−B‘線に沿った断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings of FIGS. 1B is a cross-sectional view taken along the line AA ′ in FIG. 1A, and FIGS. 2A and 2B are cross-sectional views taken along the line BB ′ in FIG. is there.
(実施の形態1)
図1(a)〜図1(b)は本発明の実施の形態1に係る熱レンズ形成素子1の一例の概略構成図である。
(Embodiment 1)
FIG. 1A to FIG. 1B are schematic configuration diagrams of an example of a thermal lens forming element 1 according to Embodiment 1 of the present invention.
熱レンズ形成素子の構成:
[角型断面中空管]
本発明の熱レンズ形成素子1に用いられる、合計4つの当該平面について互いに平行な2つの外側平面および2つの内側平面を有する角型断面中空管の材質は石英ガラスが好適に用いられる。
Configuration of thermal lens forming element:
[Square cross-section hollow tube]
Quartz glass is preferably used as the material of the square cross-section hollow tube used in the thermal lens forming element 1 of the present invention and having two outer planes and two inner planes parallel to each other for a total of four such planes.
前記角型断面中空管の管壁を構成する石英ガラスの板材の厚さSは100μmないし500μmが好適である。石英ガラスの板材の厚さSが100μmよりも薄いと、強度不足で加工時に破損し易くなる。一方、石英ガラスの板材の厚さが500μmよりも厚いと、収束しながら入射する信号光あるいは拡散・変更しながら出射する信号光のビーム形状が屈折の影響で劣化する度合い、すなわちビーム断面形状の円からの乖離が大きくなり好ましくない。 The thickness S of the quartz glass plate constituting the tube wall of the square cross-section hollow tube is preferably 100 μm to 500 μm. If the thickness S of the quartz glass plate material is thinner than 100 μm, the quartz glass plate is easily damaged due to insufficient strength. On the other hand, if the thickness of the quartz glass plate is greater than 500 μm, the degree of deterioration of the beam shape of the signal light that is incident while converging or the signal light that is emitted while diffusing and changing is affected by refraction, that is, the beam cross-sectional shape This is not preferable because the deviation from the yen increases.
前記角型断面中空管の寸法は加工上の制約、内部に注入される色素溶液の液柱の長さの制約、および、熱レンズ効果の大きさ、との関係で最適な大きさが決定される。 The size of the square cross-section hollow tube is determined to be the optimum size in relation to processing constraints, the length of the liquid column length of the dye solution injected into the inside, and the size of the thermal lens effect. Is done.
まず、加工上の制約として、外側平面の幅1mm以下の前記角型断面中空管の末端を石英ガラスの融点約170℃において加熱溶融によって封止する場合、内部の色素溶液の端部と溶融封止部分の距離Hは最小10mmであり、上限については加工上の制限はなく、産業上の利用の観点からはできるだけ短いことが好ましく、15mm以内であれば好適である。一方、前記角型断面中空管の寸法は加工上の制約、内部に注入される色素溶液の液柱の長さMは、最小1mm、最長15mm程度であることが好ましい。液柱の長さMが1mmよりも短いと、信号光および制御光の通過する平面部分が、前記角型断面中空管の溶融封止端面の形状の影響を受けるおそれがある。液柱の長さMには特に上限はないが、色素溶液充填操作上、最長15mmよりも短いことが好ましい。したがって、前記角型断面中空管の一方の端に色素溶液の液柱を一端に寄せて5ないし10mmの長さで充填した場合、前記角型断面中空管の全長は20ないし25mmである。 First, as a processing restriction, when the end of the square cross-section hollow tube having a width of 1 mm or less on the outer plane is sealed by heating and melting at a melting point of about 170 ° C. of quartz glass, the end of the inner dye solution is melted. The distance H of the sealing portion is a minimum of 10 mm, the upper limit is not limited in processing, and is preferably as short as possible from the viewpoint of industrial use, and is preferably within 15 mm. On the other hand, it is preferable that the size of the square cross-section hollow tube is limited in processing, and the length M of the liquid column of the dye solution injected therein is about 1 mm at the minimum and about 15 mm at the maximum. If the length M of the liquid column is shorter than 1 mm, the plane portion through which the signal light and the control light pass may be affected by the shape of the melt-sealed end face of the square cross-section hollow tube. There is no particular upper limit on the length M of the liquid column, but it is preferably shorter than 15 mm at the longest in the dye solution filling operation. Accordingly, when the liquid column of the dye solution is brought to one end of the square cross-section hollow tube and filled with a length of 5 to 10 mm, the total length of the square cross-section hollow tube is 20 to 25 mm. .
一方、熱レンズ形成素子1に用いられる前記角型断面中空管の内側平面2つの間隔、すなわち、色素溶液の厚さ(光路長d)は、熱レンズ形成および消滅の応答速度の観点から最適な大きさが決定される。すなわち、制御光吸収領域における熱レンズ形成をできるだけ効果的に行うには、特定の領域にある程度の熱エネルギーが蓄積される必要がある。例えば、ガラス基板に色素薄膜を真空蒸着によって直接形成した場合には、制御光を収束照射しても発生した熱は瞬時に拡散してしまうため、検知できるような熱レンズ効果は起こらない。後述の色素溶液を用い、制御光および信号光が進行する色素溶液の厚さを変えて、熱レンズ効果の大きさを調べた結果、色素溶液の厚さ(光路長d)は200μmないし500μmが好適であることが判った。色素溶液の厚さを200μmよりも薄くすると、制御光パワーを大きくしても、熱の拡散による損失が支配的となって、大きな熱レンズ効果は得られない。また、色素溶液の厚さを500μmよりも厚くしても熱レンズ効果の大きさは変わらなくなり、反面、色素溶液内を信号光ビームが入射面・出射面に対して斜めに、あるいは、拡散しながら長距離進行することによる、出射後の信号光ビームの形状劣化の度合いが大きくなり、好ましくない。なお、以上の実験において「熱レンズ効果の大きさ」は、リングビーム方式の場合、出射信号光断面のリングの大きさとして、また、丸ビーム方式の場合、熱レンズ形成素子を出射する信号光の光路切替角度の大きさとして明確に検知・比較可能である。 On the other hand, the distance between the two inner planes of the square cross-section hollow tube used for the thermal lens forming element 1, that is, the thickness of the dye solution (optical path length d) is optimal from the viewpoint of the response speed of thermal lens formation and extinction. The size is determined. That is, in order to form the thermal lens in the control light absorption region as effectively as possible, a certain amount of thermal energy needs to be accumulated in a specific region. For example, when a dye thin film is directly formed on a glass substrate by vacuum vapor deposition, even if the control light is convergently irradiated, the generated heat is instantaneously diffused, so that a detectable thermal lens effect does not occur. As a result of investigating the magnitude of the thermal lens effect by using the dye solution described later and changing the thickness of the dye solution in which the control light and the signal light travel, the thickness (optical path length d) of the dye solution is 200 μm to 500 μm. It was found to be suitable. When the thickness of the dye solution is less than 200 μm, even if the control light power is increased, loss due to heat diffusion becomes dominant, and a large thermal lens effect cannot be obtained. In addition, even if the thickness of the dye solution is thicker than 500 μm, the magnitude of the thermal lens effect does not change. On the other hand, the signal light beam diffuses in the dye solution obliquely or with respect to the incident surface and the exit surface. However, the degree of deterioration of the shape of the signal light beam after emission due to traveling for a long distance increases, which is not preferable. In the above experiment, “the size of the thermal lens effect” means the ring size of the cross section of the outgoing signal light in the case of the ring beam method, and the signal light emitted from the thermal lens forming element in the case of the round beam method. The optical path switching angle can be clearly detected and compared.
また、熱レンズ形成素子1に用いられる前記角型断面中空管の内側平面の幅Dは、平面部分に収束されて入射する制御光および信号光のビーム径、および、広がりながら出射する信号光のビーム径、および、光路が変更されて出射する信号光のビーム径と出射位置から規定される。なお、信号光は角型断面中空管の内側平面6または7に内接する円9(その直径Q=D)の中心を通過するものとする。具体的には、熱レンズ形成素子1に入射する前記信号光および制御光のビーム直径の大きい方をRとしたとき、前記角型断面中空管の内側平面の幅Dの最小値は、前記大きい方のビーム直径Rの2倍程度であれば良い。幅Dの最小値または長さMの最小値が2Rよりも小さいと、広がりながら出射する信号光が、前記角型断面中空管の内側平面に直交する内側側面に遮られる可能性がある。ビーム直径Rが最も大きくなるのは、マルチモードファイバーからの出射光をコリメートした平行光を信号光または制御光として入射させる場合であって、Rは100μm前後である。すなわち、2RすなわちDの最小値は200μmである。 The width D of the inner plane of the rectangular cross-section hollow tube used for the thermal lens forming element 1 is such that the control beam and the signal beam are converged and incident on the plane portion, and the signal beam is emitted while spreading. , And the beam diameter and output position of the signal light emitted by changing the optical path. It is assumed that the signal light passes through the center of a circle 9 (its diameter Q = D) inscribed in the inner plane 6 or 7 of the square cross-section hollow tube. Specifically, when the larger beam diameter of the signal light and control light incident on the thermal lens forming element 1 is R, the minimum value of the width D of the inner plane of the square cross-section hollow tube is It may be about twice as large as the larger beam diameter R. When the minimum value of the width D or the minimum value of the length M is smaller than 2R, the signal light emitted while spreading may be blocked by the inner side surface orthogonal to the inner plane of the rectangular cross-section hollow tube. The beam diameter R is the largest when collimated collimated light from the multimode fiber is incident as signal light or control light, and R is around 100 μm. That is, the minimum value of 2R, that is, D is 200 μm.
前記角型断面中空管の内側平面の幅Dは、前記角型断面中空管の管壁を構成する石英ガラスの強度上の制約を受け、当該石英ガラスの板材の厚さSの2倍を超えると破損し易くなる。厚さSが100μmの場合、信号光または制御光ビームの制約、すなわちDは200μmとすると前記2つの制約を同時に満足する。厚さSが200〜250μmの場合、Dの最大値は400〜500μmであり、強度的にも信号光または制御光ビームの透過上にも好適である。 The width D of the inner flat surface of the square cross-section hollow tube is twice the thickness S of the quartz glass plate material due to restrictions on the strength of the quartz glass constituting the tube wall of the square cross-section hollow tube. If it exceeds, it becomes easy to break. When the thickness S is 100 μm, the restriction of the signal light or the control light beam, that is, D is 200 μm, the two restrictions are satisfied simultaneously. When the thickness S is 200 to 250 μm, the maximum value of D is 400 to 500 μm, which is suitable in terms of intensity and transmission of signal light or control light beam.
以上まとめると、熱レンズ形成素子1に用いられる前記角型断面中空管の寸法上の好ましい実施の形態は次の通りである:
(1)前記角型断面中空管の管壁の厚さS: 200〜250μm
(2)前記角型断面中空管の内側平面の幅D: 400〜500μm
(3)前記角型断面中空管の外側平面の幅D: 800〜1000μm
(4)前記角型断面中空管の内側平面2つの間隔d: 200〜500μm
(5)前記角型断面中空管の内部の一端に注入される色素溶液の液柱の長さM:
1〜15mm
(6)内部の色素溶液の端部と溶融封止部分の距離H: 10〜15mm。
In summary, preferred embodiments of the dimensions of the square cross-section hollow tube used in the thermal lens forming element 1 are as follows:
(1) Tube wall thickness S of the square cross-section hollow tube: 200 to 250 μm
(2) Width D of inner plane of the square cross-section hollow tube: 400 to 500 μm
(3) Width D of outer plane of the square cross-section hollow tube: 800 to 1000 μm
(4) Distance between two inner planes of the square cross-section hollow tube d: 200 to 500 μm
(5) Length M of the liquid column of the dye solution injected into one end inside the square cross-section hollow tube:
1-15mm
(6) Distance H between the end portion of the internal dye solution and the melt-sealed portion: 10 to 15 mm.
[角型断面中空管の製造]
公知の方法によって製造された角型断面中空管のプリフォームを公知の方法によって溶融延伸・冷却することによって、本発明の熱レンズ形成素子1に用いられる角型断面中空管3を製造することができる。前記角型断面中空管の寸法上の好ましい実施の形態は前述の通りである。
[Manufacture of square cross-section hollow tubes]
A square cross-section hollow tube 3 used in the thermal lens forming element 1 of the present invention is manufactured by melt-drawing and cooling a preform of a square cross-section hollow tube manufactured by a known method by a known method. be able to. A preferred embodiment in terms of the dimensions of the square cross-section hollow tube is as described above.
信号光が通過する角型断面中空管の4つの面(2つの外側平面4,5および2つの内側平面6,7)の平行度および平滑性については、次のような公差を満足することが好ましい。なお、X,Y,Z軸は以下のように定義する。 The following tolerances must be satisfied for the parallelism and smoothness of the four surfaces (two outer planes 4, 5 and two inner planes 6, 7) of the rectangular cross-section hollow tube through which the signal light passes. Is preferred. The X, Y, and Z axes are defined as follows.
X軸: 角型断面中空管の長軸方向
Y軸: 信号光が通過する角型断面中空管の4つの面に平行で、角型断面中空管の長軸に直交
Z軸: 角型断面中空管の4つの面4,5,6,7を垂直に通過する信号光の方向
(1)平滑性: 波長(λ)980〜1600nmの光についてλ/4
(2)Z軸に対するX軸方向の角度ずれ: 1度以下、好ましくは0.5度以下
(3)Z軸に対するY軸方向の角度ずれ: 1度以下、好ましくは0.5度以下
X-axis: Longitudinal direction of the square cross-section hollow tube Y-axis: Parallel to the four faces of the square cross-section hollow tube through which signal light passes and orthogonal to the long axis of the square cross-section hollow tube Z-axis: Angle Direction of signal light passing perpendicularly through the four surfaces 4, 5, 6, and 7 of the mold section hollow tube (1) Smoothness: λ / 4 for light with a wavelength (λ) of 980 to 1600 nm
(2) Angle deviation in the X axis direction with respect to the Z axis: 1 degree or less, preferably 0.5 degrees or less (3) Angle deviation in the Y axis direction with respect to the Z axis: 1 degree or less, preferably 0.5 degrees or less
[角型断面中空管の切断および洗浄]
熱レンズ形成素子1の長軸方向の長さ(H+M)は、例えば、色素溶液の液柱の長さMが10mmの場合、20〜25mmである。この長さの熱レンズ形成素子1を製造するためには、後述の工程で失われる部分の長さを補って、予め、長さ(H+M)の2ないし3倍の長さ(具体的には50〜80mm)に、角型断面中空管の切断を行うことが好ましい。角型断面中空管の切断は公知の方法で行うことができる。切断の際に発生する破片が、角型断面中空管内部に入ることがあるので、切断後、角型断面中空管の内部および外部を公知の洗浄用溶剤で洗浄し、洗浄後、乾燥させる。
[Cutting and cleaning of square cross-section hollow tubes]
The length (H + M) in the major axis direction of the thermal lens forming element 1 is, for example, 20 to 25 mm when the length M of the liquid column of the dye solution is 10 mm. In order to manufacture the thermal lens forming element 1 having this length, a length (specifically, 2 to 3 times the length (H + M) is compensated for in advance by compensating for the length of a portion lost in a process described later. 50-80 mm), it is preferable to cut the square cross-section hollow tube. The square cross-section hollow tube can be cut by a known method. Debris generated during cutting may enter the inside of the square cross-section hollow tube. After cutting, the inside and outside of the square cross-section hollow tube are washed with a known cleaning solvent, washed, and then dried. Let
[角型断面中空管の一端封止と真空乾燥]
角型断面中空管の一端をバーナーで加熱溶融し、封止する。封止部分を光学顕微鏡で拡大して観察し、ピンホールが残っていないことを確認することが好ましい。バーナーの燃焼ガス中の水分が溶融封止した角型断面中空管内部に結露することがあるので、一端封止した角型断面中空管を、適当な密閉可能な真空容器(図示せず)に入れ、例えば80℃以上に加熱しながら真空乾燥する。真空乾燥チャンバー内部の圧力が3×10−4Pa未満に到達すれば、乾燥は充分である。
[One-end sealing and vacuum drying of square cross-section hollow tube]
One end of the square cross-section hollow tube is heated and melted with a burner and sealed. It is preferable to confirm that the pinhole does not remain by magnifying and observing the sealed portion with an optical microscope. Since moisture in the combustion gas of the burner may condense inside the melt-sealed square cross-section hollow tube, the square cross-section hollow tube sealed once is connected to a suitable vacuum container (not shown). ) And vacuum-dried while heating to 80 ° C. or higher, for example. If the pressure inside the vacuum drying chamber reaches less than 3 × 10 −4 Pa, the drying is sufficient.
[角型断面中空管への溶液注入]
色素溶液への水分および酸素の悪影響を避けるため、色素溶液の調整および以下の注入工程は、次のような条件を満足するグローブボックス(図示せず)内で実施することが好ましい。
(1)酸素濃度0.5ppm未満
(2)水分濃度0.5ppm未満(露点温度−80℃以下)
[Solution injection into hollow tube with square cross section]
In order to avoid the adverse effects of moisture and oxygen on the dye solution, the preparation of the dye solution and the following injection process are preferably performed in a glove box (not shown) that satisfies the following conditions.
(1) Oxygen concentration less than 0.5 ppm (2) Moisture concentration less than 0.5 ppm (dew point temperature -80 ° C or less)
前記密閉可能な真空容器(図示せず)をパスボックスを通じて前記グローブボックス内部へ入れてから、真空乾燥が済んだ一端封止角型断面中空管8を取り出す。一端封止角型断面中空管8の内部へ溶液注入管20を、その先端が一端封止角型断面中空管8の封止端に届くまで挿入し、溶液注入管20を通じて、色素溶液を注入する。色素溶液の注入量は、溶液注入管20を引き抜いた後で、色素溶液の液柱の長さが1〜15mmになるように調整する。 The sealable vacuum container (not shown) is put into the glove box through a pass box, and then the one-end-sealed rectangular cross-section hollow tube 8 after vacuum drying is taken out. The solution injection tube 20 is inserted into the inside of the one-end sealed square cross-section hollow tube 8 until the tip reaches the sealed end of the one-end sealed square-section hollow tube 8, and the dye solution is passed through the solution injection tube 20. Inject. The injection amount of the dye solution is adjusted so that the length of the liquid column of the dye solution is 1 to 15 mm after the solution injection tube 20 is pulled out.
[角型断面中空管の一端仮封止]
溶融封止端側に色素溶液が注入された一端封止角型断面中空管8を硬化に1時間以上を要する接着剤であって、後述の圧力まで減圧した際に揮発する成分のない接着剤を入れた容器の中に入れ、これを適当な真空チャンバー(例、前記パスボックス)に入れて、例えば圧力を0.4気圧に保ち、接着剤が硬化するのを待つ。接着剤としては、例えば、揮発成分のないエポキシ接着剤を好適に用いることができる。接着剤の使用量は一端封止角型断面中空管8の開放端を仮封止するに最小限の量、例えば50〜100mgが好ましく、接着剤を入れる容器の大きさは、例えば、高さ10〜20mmで、一端封止角型断面中空管8を縦に支えるのに充分な大きさであり、断面は、一端封止角型断面中空管8を挿入するのに必要最小限な大きさ、例えば、直径2〜3mmの円形であれば良い。
[Temporary sealed hollow tube with one end temporarily sealed]
Adhesive that requires one hour or more for curing the one-end-sealed rectangular cross-section hollow tube 8 in which the dye solution is injected on the melt-sealed end side, and has no component that volatilizes when the pressure is reduced to the pressure described later. Place it in a container containing the agent and place it in a suitable vacuum chamber (eg, the pass box), for example, maintain the pressure at 0.4 atm and wait for the adhesive to cure. As the adhesive, for example, an epoxy adhesive having no volatile component can be suitably used. The amount of the adhesive used is preferably a minimum amount for temporarily sealing the open end of the one-end-sealed square cross-section hollow tube 8, for example, 50 to 100 mg. The size of the container for containing the adhesive is, for example, high It is 10-20 mm in length and is large enough to vertically support the one-end sealed square cross-section hollow tube 8, and the cross-section is the minimum necessary for inserting the one-end sealed square cross-section hollow tube 8 It may be a large size, for example, a circle having a diameter of 2 to 3 mm.
[角型断面中空管の他端封止]
前記接着剤が硬化し、一端封止角型断面中空管8の仮封止が完了した後、一端封止角型断面中空管8をグローブボックス・前記真空チャンバーから取り出し、色素溶液充填部分を上にしてつり下げ、色素溶液の存在しない部分をガスバーナーで溶融封止する。溶融封止を必要最小限の大きさのバーナー炎を用い、1秒以内で行うことで、内部の色素溶液に影響を与えること無しに、石英ガラスの溶融封止を完了することができる。両端が封止されて完成した本発明の熱レンズ形成素子1の封止状態の完全性を確認するため、熱レンズ形成素子1の重量(10〜数十ミリグラム)をμg単位で精密に測定した後、例えば、85℃において1000時間、加熱を継続した後、重量を精密に測定した。その結果、重量変化が±2μg以内であることが確認され、封止が完全であることが判った。
[Sealing the other end of the square tube]
After the adhesive is cured and the temporary sealing of the one-end sealed square cross-section hollow tube 8 is completed, the one-end sealed square cross-section hollow tube 8 is taken out from the glove box / the vacuum chamber and filled with the dye solution. The part where the dye solution does not exist is melt-sealed with a gas burner. By performing the melting and sealing within 1 second using a burner flame of the minimum necessary size, the melting and sealing of quartz glass can be completed without affecting the internal dye solution. In order to confirm the completeness of the sealed state of the thermal lens forming element 1 of the present invention completed by sealing both ends, the weight (10 to several tens of milligrams) of the thermal lens forming element 1 was precisely measured in μg units. Thereafter, for example, after heating was continued at 85 ° C. for 1000 hours, the weight was accurately measured. As a result, it was confirmed that the weight change was within ± 2 μg, and it was found that the sealing was complete.
[無反射コート]
空気の屈折率1.00に対し本発明の熱レンズ形成素子1の前記角型断面中空管の材質・石英ガラスの屈折率は可視光領域から波長1.5μmの赤外線領域において1.46ないし1.44であり、したがって、無反射コートを行わないと、外側平面4または5へ垂直入射する信号光または制御光について4〜5%の反射ロスが発生するため、使用する信号光および制御光の波長に対応した無反射(AR)コートを行うことが推奨される。ARコートとしては公知のものを使用することができる。例えば、使用する信号光および制御光の波長に対応した誘電体多層膜や空気と石英ガラスの屈折率の中間の値の屈折率を有する透明有機高分子膜を使用することができる。ただし、透明有機高分子膜を熱レンズ形成素子1の表面に形成する真空プロセスは通常、バッチ処理で生産性が低く、また、高温に曝されるため、色素溶液を充填する前にARコートを行う必要があり、その際、熱レンズ形成素子1の前記角型断面中空管内部が汚染されないよう、例えば、前記角型断面中空管の両端を仮に溶融封止し、色素溶液を注入する前に一端を開放する、などの工程を追加する必要が生ずる。これに対し、透明有機高分子を適当な揮発性溶剤に溶解した溶液を熱レンズ形成素子1の表面にディッピング法などで塗工、乾燥してARコート層を形成する方法は、熱レンズ形成素子1の前記角型断面中空管内部に色素溶液を注入し、両端を溶融封止してからARコートが可能であり、製造プロセスを合理化可能である。透明有機高分子の屈折率は可視光領域から波長1.5μmの赤外線領域において1.2ないし1.4であることが好ましい。更に好ましくは屈折率1.35程度が好適である。屈折率が前記の範囲よりも小さくても、大きくても、反射ロスの低減効果が小さくなる。透明有機高分子溶液の具体例としては、有機フッ素樹脂「サイトップ(CYTOP)」(登録商標)(旭硝子株式会社製)をフッ素系溶剤に溶解した溶液を好適に使用することができる。この高分子膜の屈折率は1.34である。塗工によるARコート膜の膜厚は10nmないし200μmであることが好ましい。これよりも薄いと塗膜にピンホールができるおそれがある。また、これよりも厚い膜を塗工法で作成すると、膜厚のムラが発生し易くなる。なお、ARコート膜の厚さを100μmないし200μmとすると、非常に薄い石英ガラスからなる、本発明の熱レンズ形成素子1の平面部分を補強し、耐衝撃性を高めることもできる。
[Non-reflective coating]
For the refractive index of air, the refractive index of quartz glass, which is the material of the square cross-section hollow tube of the thermal lens forming element 1 of the present invention, is 1.46 to 1.50 in the infrared region with a wavelength of 1.5 μm. Therefore, if the non-reflective coating is not performed, a reflection loss of 4 to 5% is generated with respect to the signal light or the control light that is perpendicularly incident on the outer plane 4 or 5, so that the signal light and the control light to be used are used. It is recommended to apply an anti-reflection (AR) coating corresponding to the wavelength of. As the AR coat, a known one can be used. For example, a dielectric multilayer film corresponding to the wavelength of signal light and control light to be used, or a transparent organic polymer film having a refractive index intermediate between the refractive indices of air and quartz glass can be used. However, the vacuum process for forming the transparent organic polymer film on the surface of the thermal lens forming element 1 is usually low in productivity by batch processing and exposed to high temperature. In order to prevent contamination of the inside of the square cross-section hollow tube of the thermal lens forming element 1, for example, both ends of the square cross-section hollow tube are temporarily melt-sealed and a dye solution is injected. It is necessary to add a process such as opening one end before. On the other hand, a method in which an AR coating layer is formed by applying a solution obtained by dissolving a transparent organic polymer in an appropriate volatile solvent to the surface of the thermal lens forming element 1 by dipping or the like, and drying it. AR coating is possible after injecting the dye solution into the inside of the square cross-section hollow tube 1 and melting and sealing both ends, and the manufacturing process can be rationalized. The refractive index of the transparent organic polymer is preferably 1.2 to 1.4 in the infrared region having a wavelength of 1.5 μm from the visible light region. A refractive index of about 1.35 is more preferable. Even if the refractive index is smaller or larger than the above range, the effect of reducing the reflection loss is small. As a specific example of the transparent organic polymer solution, a solution obtained by dissolving an organic fluororesin “CYTOP” (registered trademark) (manufactured by Asahi Glass Co., Ltd.) in a fluorine-based solvent can be preferably used. The refractive index of this polymer film is 1.34. The thickness of the AR coating film by coating is preferably 10 nm to 200 μm. If it is thinner than this, a pinhole may be formed in the coating film. Moreover, when a film thicker than this is formed by a coating method, unevenness in film thickness tends to occur. If the thickness of the AR coating film is 100 μm to 200 μm, the planar portion of the thermal lens forming element 1 of the present invention made of very thin quartz glass can be reinforced to improve impact resistance.
[色素溶液]
本発明における色素溶液は、信号光の波長の光を吸収せず、制御光の光を吸収する色素を溶剤に溶解させたものである。
[Dye solution]
The dye solution in the present invention is a solution in which a dye that does not absorb signal light wavelength but absorbs control light is dissolved in a solvent.
[色素]
本発明の熱レンズ形成素子に用いられる色素は以下のような過酷な要件を満足しなければならない。
[Dye]
The dye used in the thermal lens forming element of the present invention must satisfy the following severe requirements.
(A)制御光の吸収波長帯域の収束レーザーの照射に2千時間以上、可能であれば数万時間以上耐えること。
(B)制御光の吸収波長帯域の収束レーザーの収束位置における200℃を超える温度上昇に2千時間以上、可能であれば数万時間以上耐えること。
(C)制御光吸収波長帯域の収束レーザーの照射および温度上昇によって分解物、反応生成物、あるいは会合体などの固体粒子を形成しないこと。
(D)信号光の波長帯域において光吸収や光散乱を起こさないこと。
(A) Withstand the irradiation of the convergent laser in the absorption wavelength band of the control light for 2,000 hours or more, preferably tens of thousands of hours or more.
(B) Withstand a temperature increase exceeding 200 ° C. at the convergence position of the converging laser in the absorption wavelength band of the control light for 2,000 hours or more, and tens of thousands of hours if possible.
(C) Do not form solid particles such as decomposition products, reaction products, or aggregates by irradiation with a converging laser in the controlled light absorption wavelength band and temperature rise.
(D) Do not cause light absorption or light scattering in the wavelength band of signal light.
色素の具体例としては、信号光波長980〜2000nmの場合、制御光波長の帯域に応じて、以下のような溶剤可溶性フタロシアニン誘導体を好適に用いることができる。
・650〜670nm:1,5,9,13−テトラ−tert−ブチル銅フタロシアニン、
・685〜715nm:1,5,9,13−テトラ−tert−ブチルオキシバナジウムフタロシアニン、
・730〜830nm:2,11,20,29−テトラ−tert−ブチルオキシバナジウムナフタロシアニン、
・840〜890nm:5,9,14,18,23,27,32,36−オクタ−n−ブトキシ−2,3−銅ナフタロシアニン。
As specific examples of the dye, in the case of a signal light wavelength of 980 to 2000 nm, the following solvent-soluble phthalocyanine derivatives can be suitably used according to the band of the control light wavelength.
650-670 nm: 1,5,9,13-tetra-tert-butyl copper phthalocyanine,
685-715 nm: 1,5,9,13-tetra-tert-butyloxyvanadium phthalocyanine,
730-830 nm: 2,11,20,29-tetra-tert-butyloxyvanadium naphthalocyanine,
840-890 nm: 5, 9, 14, 18, 23, 27, 32, 36-octa-n-butoxy-2,3-copper naphthalocyanine.
[溶剤]
本発明の熱レンズ形成素子に用いられる溶剤は以下のような複数の要件を満足しなければならない。
[solvent]
The solvent used in the thermal lens forming element of the present invention must satisfy a plurality of requirements as follows.
[1]本発明の熱レンズ形成素子に用いられる色素を適切な濃度で安定に溶解すること。
[2]信号光および制御光レーザーの照射に2千時間以上、可能であれば数万時間以上耐えること。
[3]信号光および制御光レーザーの収束位置における200℃を超える温度上昇に2千時間以上、可能であれば数万時間以上耐えること。
[4]信号光および制御光レーザーの照射および温度上昇によって分解物、反応生成物、あるいは会合体などの固体粒子を形成しないこと。
[5]信号光の波長帯域において光吸収や光散乱を起こさないこと。
[6]制御光レーザーの収束位置における光吸収に伴う発熱・温度上昇に敏感に応答し、温度1℃の変化当たりの屈折率変化として0.0004以上を示すこと。
[1] The dye used for the thermal lens forming element of the present invention is stably dissolved at an appropriate concentration.
[2] Endure 2,000 hours or more, preferably tens of thousands of hours if possible, with signal light and control light laser irradiation.
[3] Withstand a temperature rise exceeding 200 ° C. at the convergence position of the signal light and the control light laser for 2,000 hours or more, preferably tens of thousands of hours or more.
[4] Do not form solid particles such as decomposition products, reaction products, or aggregates by irradiation with signal light and control light laser and temperature rise.
[5] Do not cause light absorption or light scattering in the wavelength band of signal light.
[6] Respond sensitively to heat generation and temperature rise accompanying light absorption at the converging position of the control light laser, and indicate a refractive index change per change of 1 ° C. of 0.0004 or more.
[溶剤の融点と沸点]
熱レンズ形成素子としての利用分野を広くするためには、使用可能温度範囲が広範であることが好ましい。例えば、光通信の分野で活用するには−40℃から85℃の温度範囲で支障なく稼働することが要求される。溶剤の融点が−40℃未満であれば、このような低温域の要求に応えることができる。また、制御光が照射されていない状態において、すでに85℃に到達している場合、熱レンズ形成素子としての機能を充分に発揮するためには、制御光照射部の温度が200℃以上、可能であれば300℃程度まで到達しても色素溶液が液体状態である必要がある。すなわち、本発明の熱レンズ形成素子に用いられる溶剤の沸点は、200℃以上、可能であれば300℃を超えることが好ましい。溶剤成分の化学構造は単一である必要はなく、混合物であって良い。
[Melting point and boiling point of solvent]
In order to widen the application field as a thermal lens forming element, it is preferable that the usable temperature range is wide. For example, in order to utilize in the field of optical communication, it is required to operate without any trouble in a temperature range of -40 ° C to 85 ° C. If the melting point of the solvent is less than −40 ° C., it is possible to meet such a requirement in a low temperature range. In addition, when the temperature has already reached 85 ° C. in the state where the control light is not irradiated, the temperature of the control light irradiation portion can be 200 ° C. or higher in order to fully function as a thermal lens forming element. If so, the dye solution needs to be in a liquid state even when the temperature reaches about 300 ° C. That is, the boiling point of the solvent used in the thermal lens forming element of the present invention is preferably 200 ° C. or higher, and preferably over 300 ° C. if possible. The chemical structure of the solvent component need not be a single structure, but may be a mixture.
本発明の熱レンズ形成素子に好適に用いられる溶剤として、次に示す構造異性体4成分(分子量は同一)の混合溶剤が推奨される。この溶剤を以下「溶剤#1」と呼ぶ。
・第1成分:1−フェニル−1−(2,5−キシリル)エタン
・第2成分:1−フェニル−1−(2,4−キシリル)エタン
・第3成分:1−フェニル−1−(3,4−キシリル)エタン
・第4成分:1−フェニル−1−(4−エチルフェニル)エタン
As a solvent suitably used for the thermal lens forming element of the present invention, a mixed solvent of the following four structural isomers (with the same molecular weight) is recommended. This solvent is hereinafter referred to as “Solvent # 1”.
First component: 1-phenyl-1- (2,5-xylyl) ethane Second component: 1-phenyl-1- (2,4-xylyl) ethane Third component: 1-phenyl-1- ( 3,4-Xylyl) ethane / fourth component: 1-phenyl-1- (4-ethylphenyl) ethane
溶剤#1の質量分析ガスクロマトグラムを図6に示す。主ピーク4本とも、分子イオンピークの質量は210である。個々のピークと上記化学構造との対応については未解決であるが、分子量が同一の構造異性体混合物であることは明確である。 A mass spectrometric gas chromatogram of solvent # 1 is shown in FIG. All four main peaks have a molecular ion peak mass of 210. The correspondence between the individual peaks and the chemical structure is unsolved, but it is clear that the mixture is a structural isomer mixture having the same molecular weight.
溶剤#1の諸物性は以下の通りである。
・外観:無色透明液体
・臭気:弱い芳香臭
・沸点:290〜305℃
・融点:−47.5℃
・蒸気圧:0.067Pa (25℃)
・蒸気密度:7.2 (空気=1)
・比重(水=1):0.987
・水溶解度(20℃):水に溶けない。
・体積熱膨張率(25℃から85℃):約5%
Various physical properties of the solvent # 1 are as follows.
・ Appearance: Colorless transparent liquid ・ Odor: Weak aromatic odor ・ Boiling point: 290-305 ℃
Melting point: -47.5 ° C
・ Vapor pressure: 0.067Pa (25 ℃)
・ Vapor density: 7.2 (Air = 1)
Specific gravity (water = 1): 0.987
-Water solubility (20 ° C): Insoluble in water.
Volume thermal expansion coefficient (25 ° C to 85 ° C): about 5%
一方、沸点が300℃以上であって、前記フタロシアニン誘導体を良く溶解する溶剤として、アルキルナフタレン系の油拡散ポンプ用オイル「ライオンS」(ライオン株式会社)を挙げることができる。この溶剤を以下「溶剤#2」と呼ぶ。溶剤#2の体積熱膨張率(25℃から85℃)は約4%である。 On the other hand, examples of the solvent having a boiling point of 300 ° C. or higher and that dissolves the phthalocyanine derivative well include alkylnaphthalene oil for oil diffusion pump “Lion S” (Lion Corporation). This solvent is hereinafter referred to as “Solvent # 2”. The volume coefficient of thermal expansion (25 ° C. to 85 ° C.) of solvent # 2 is about 4%.
溶剤#1の替わりに溶剤#2を用いた熱レンズ形成素子は、熱レンズ効果は示すものの、リングビーム方式の場合、制御光パワーを同一で比較したとき、溶剤#1よりもリングのサイズが小さく、応答速度も遅くなることが判った。また、丸ビーム方式の場合、溶剤#1よりも変更角が小さく、応答速度も遅くなることが判った。 Although the thermal lens forming element using solvent # 2 instead of solvent # 1 shows the thermal lens effect, the ring beam method has a ring size larger than that of solvent # 1 when compared with the same control light power. It was small and the response speed was slow. In the case of the round beam method, the change angle is smaller than that of the solvent # 1, and the response speed is slow.
このような溶剤の種類による熱レンズ効果の良否の原因を解明するため、以下のような検討を行った。 In order to elucidate the cause of the quality of the thermal lens effect due to the kind of the solvent, the following examination was performed.
[屈折率の温度変化の測定]
試料部温水循環式屈折率計NAR−2T型(株式会社アタゴ製)を用い、20℃から90℃までの屈折率を測定した。溶剤#1および溶剤#2の屈折率・温度変化の様子を図7および図8に各々示す。
[Measurement of temperature change of refractive index]
The refractive index from 20 ° C. to 90 ° C. was measured using a sample part warm water circulation refractometer NAR-2T type (manufactured by Atago Co., Ltd.). Changes in refractive index and temperature of solvent # 1 and solvent # 2 are shown in FIGS. 7 and 8, respectively.
観察された屈折率の温度変化は、直線近似可能であり、200℃以上まで外挿しても特に問題ないと判断される。屈折率の温度変化係数は以下のように測定された。
・溶剤#1:−0.00048866
・溶剤#2:−0.00042963
すなわち、溶剤#1および溶剤#2の屈折率・温度変化係数の差はあるものの、さほど顕著なものではないことが判った。
The observed temperature change of the refractive index can be approximated by a straight line, and it is determined that there is no particular problem even if extrapolating to 200 ° C. or higher. The temperature change coefficient of the refractive index was measured as follows.
Solvent # 1: -0.00048866
Solvent # 2: -0.00042963
That is, it was found that although there was a difference in refractive index and temperature change coefficient between solvent # 1 and solvent # 2, it was not so remarkable.
[粘度の温度変化の測定]
溶剤#1および溶剤#2の粘度・温度変化を測定・比較したところ、著しい相違があることを見出し、本発明に至った。
[Measurement of temperature change of viscosity]
When the viscosity and temperature changes of solvent # 1 and solvent # 2 were measured and compared, it was found that there was a significant difference, leading to the present invention.
粘度・温度変化の測定には、毛細管粘度計やヘプラー型落球式粘度計などの測定装置内に試料液体を入れ、全体を所定の温度まで加熱してから測定する方法の他、試料液体の温度のみを昇温し、回転式センサー、あるいは、音叉式センサーを液中に挿入して、温度とともに粘度を測定する方法がある。測定温度を150℃以上の高温にする場合、粘度計全体の温度を均一に加熱しながら測定操作を行うことが容易でないことから、試料液体のみ昇温する測定方法を採用することとした。回転式センサーを試料液体に挿入する方法は、センサーを沈める深さを正確に制御することが困難であること、および、昇温時のセンサーの温度を正確に測定することが困難であることから、熱容量の小さい、音叉式センサーを試料液体に一定深さで挿入し、共振周波数の変化から粘度を測定する方式にて測定することとした。測定装置として音叉振動式粘度計SV−10型(株式会社エー・アンド・デイ製造)を用い、JIS規格「粘度10」の標準液を用いて25℃前後の温度で校正してから、粘度・温度変化の測定を行った。なお、装置の仕様上、測定温度の上限は160℃とした。試料液体の量は100mlとし、マグネチックスターラー付ホットプレートにて、緩やかに攪拌しながら昇温速度5℃/分で加熱した。温度上昇に伴い試料液体の体積が膨張し、液面が上昇する。そこで、試料容器およびマグネチックスターラー付ホットプレートをラボジャッキの上に設置し、試料容器の高さを調整し、粘度計の音叉センサーと試料液面の位置関係を一定に保った。 Viscosity and temperature change can be measured by placing the sample liquid in a measuring device such as a capillary viscometer or Heppler type falling ball viscometer and heating the whole to a specified temperature, and then measuring the temperature of the sample liquid. There is a method in which only the temperature is increased and a viscosity sensor is measured together with the temperature by inserting a rotary sensor or tuning fork sensor into the liquid. When the measurement temperature is set to a high temperature of 150 ° C. or higher, it is not easy to perform the measurement operation while uniformly heating the temperature of the entire viscometer. Therefore, a measurement method in which only the sample liquid is heated is adopted. In the method of inserting a rotary sensor into a sample liquid, it is difficult to accurately control the depth at which the sensor is submerged, and it is difficult to accurately measure the temperature of the sensor when the temperature is raised. Then, a tuning fork type sensor having a small heat capacity was inserted into the sample liquid at a certain depth, and the viscosity was measured from the change in the resonance frequency. Use a tuning fork vibration type viscometer SV-10 (manufactured by A & D Co., Ltd.) as a measuring device, calibrate it at a temperature of about 25 ° C. using a standard solution of JIS standard “viscosity 10”, The temperature change was measured. Note that the upper limit of the measurement temperature was set to 160 ° C. due to the specifications of the apparatus. The amount of the sample liquid was 100 ml, and it was heated on a hot plate with a magnetic stirrer at a heating rate of 5 ° C./min with gentle stirring. As the temperature rises, the volume of the sample liquid expands and the liquid level rises. Therefore, a sample container and a hot plate with a magnetic stirrer were placed on a lab jack, the height of the sample container was adjusted, and the positional relationship between the tuning fork sensor of the viscometer and the sample liquid level was kept constant.
以上のようにして測定した溶剤#1および溶剤#2の粘度・温度特性を図9に示す。いずれの溶剤の場合も、室温から温度が上昇すると、粘度は急激に減少した後、100℃を超えたあたりから、減少の度合いが徐々に減じ、150℃以上では温度変化に対する粘度変化が緩慢になることが判る。また、図9において、溶剤#1(太い曲線)に比べ、溶剤#2(細い曲線)の温度に対する粘度変化が非常に大きいことが判る。このような粘度・温度特性の相違を定量的に表すため、室温よりも若干高い40℃における粘度の値(η1)を、160℃における粘度の値(η2)で除算した数値(η1/η2)を用いることとした。なお、潤滑油の分野では粘度・温度特性の数値表現として、40℃における粘度の値を、100℃における粘度の値で除算した数値が用いられている。室温から昇温開始して測定する際、温度上昇速度が安定し始める領域であることから低温側の代表温度として40℃を選定した。使用した粘度計の仕様の制約で、高温側の値として160℃の粘度を用いることとしたが、150℃以上では温度変化に対する粘度変化が緩慢になることから、熱レンズ効果に関連する高温側の代表値として意味があると判断される。測定誤差を考慮し、3回測定した結果を表1に示す。 FIG. 9 shows the viscosity / temperature characteristics of solvent # 1 and solvent # 2 measured as described above. In any solvent, when the temperature rises from room temperature, the viscosity rapidly decreases, and then the degree of decrease gradually decreases from around 100 ° C. At 150 ° C or higher, the viscosity change gradually changes. It turns out that it becomes. Moreover, in FIG. 9, it turns out that the viscosity change with respect to the temperature of solvent # 2 (thin curve) is very large compared with solvent # 1 (thick curve). In order to quantitatively represent such a difference in viscosity and temperature characteristics, a numerical value (η1 / η2) obtained by dividing a viscosity value (η1) at 40 ° C. slightly higher than room temperature by a viscosity value (η2) at 160 ° C. It was decided to use. In the field of lubricating oil, a numerical value obtained by dividing the viscosity value at 40 ° C. by the viscosity value at 100 ° C. is used as a numerical expression of the viscosity / temperature characteristics. When the temperature was raised from room temperature and measured, 40 ° C. was selected as the representative temperature on the low temperature side because it was a region where the rate of temperature rise began to stabilize. Due to the limitations of the specifications of the viscometer used, we decided to use a viscosity of 160 ° C as the value on the high temperature side. However, since the viscosity change with respect to the temperature change becomes slow above 150 ° C, the high temperature side related to the thermal lens effect It is judged that it is meaningful as a representative value of. Table 1 shows the results of three measurements taking measurement errors into account.
溶剤#1および溶剤#2について、η1/η2を比較すると、溶剤#1の40℃/160℃の粘度変化η1/η2は平均5.00であるのに対し、溶剤#2では同13.7と大きい。このような粘度・温度特性の相違を「熱レンズ形成」のプロセスに当てはめて考察すると、収束された制御光ビーム収束点(サイズは数μmのオーダー)で発生した熱で色素溶液の温度が上昇し、熱膨張と屈折率の減少が起こり、その領域が周辺に伝搬していく際、溶剤#1のように、室温近辺の粘度が比較的低く、温度上昇に伴う粘度変化も小さい場合、粘度、すなわち、溶剤分子間のズリ応力が小さく、「熱膨張の伝搬」(単なる熱伝導とは異なり、分子の移動を伴う現象)が円滑に進行するものと推測される。一方、溶剤#2のように室温近辺の粘度が比較的高く、温度上昇に伴う粘度変化は大きい場合、「熱膨張の伝搬」は近接する「低温状態の溶剤分子」との大きなズリ応力によって妨害され、通常の「熱伝導」で近接分子の温度上昇(すなわち分子の振動増大)が起きて、粘度が低下して初めて、「熱膨張の伝搬」が起こると考えられる。温度上昇に伴う屈折率の低下は、「体積膨張=密度の低下」に寄るところが大きいため、結果的に「体積膨張領域の伝搬が速い溶剤#1の方が、遅い溶剤#2よりも速く、屈折率低下領域=熱レンズ効果領域が広がる」と考察される。 When η1 / η2 is compared for solvent # 1 and solvent # 2, the viscosity change η1 / η2 at 40 ° C./160° C. of solvent # 1 is 5.00 on average, while that of solvent # 2 is 13.7 And big. Considering this difference in viscosity and temperature characteristics in the process of “thermal lens formation”, the temperature of the dye solution rises due to the heat generated at the focused control light beam convergence point (size is on the order of several μm). However, when thermal expansion and a decrease in refractive index occur and the region propagates to the periphery, the viscosity around room temperature is relatively low as in solvent # 1, and the viscosity change with temperature rise is small. That is, it is presumed that the shear stress between the solvent molecules is small, and “propagation of thermal expansion” (a phenomenon involving movement of molecules unlike simple heat conduction) proceeds smoothly. On the other hand, when the viscosity near room temperature is relatively high like solvent # 2 and the viscosity change with increasing temperature is large, “propagation of thermal expansion” is hindered by large shear stress with the adjacent “cold solvent molecules”. In addition, it is considered that “propagation of thermal expansion” occurs only when the temperature of neighboring molecules increases (that is, the vibration of molecules increases) due to normal “thermal conduction” and the viscosity decreases. The decrease in the refractive index due to the temperature rise is largely due to “volume expansion = decrease in density”. As a result, “the solvent # 1 in which the volume expansion region propagates faster is faster than the slower solvent # 2, “Refractive index lowering region = thermal lens effect region is widened”.
以上の観点から、種々の溶剤の粘度・温度特性を測定・比較し、熱レンズ効果の大きさおよび応答速度との比較を行った結果、特に優れた熱レンズ形成素子の色素溶液の溶剤の温度・粘度特性として、160℃以上における粘度が0ないし3mPa・sであり、かつ、前記溶剤の160℃における粘度の値η2で、前記溶剤の40℃における粘度の値η1を除した値η1/η2が1以上、6以下であることを見出した。160℃以上における好ましい溶剤の粘度は3mPa・s以下であり、下限については0mPa・sより大きい値であれば特に制約はない。160℃以上における粘度が3mPa・sを超えていると、溶剤#2の場合よりも更に熱レンズ形成特性が悪くなり、応答速度も遅くなり、熱レンズ形成素子としての実用性がなくなってしまう。溶剤の160℃における粘度の値η2で、前記溶剤の40℃における粘度の値η1を除した値η1/η2の上限6は、溶剤#1とほぼ同等の高い熱レンズ効果・応答速度を与える溶剤としての上限値であり、これを超えた場合は、制御光パワーを同一で溶剤#1と比較した場合、熱レンズ効果による光路切替角度が小さくなったり、応答速度が遅くなったりする。η1/η2の下限については1よりも大きい値であれば特に制約はない。 From the above viewpoints, as a result of measuring and comparing the viscosity and temperature characteristics of various solvents and comparing them with the magnitude and response speed of the thermal lens effect, the temperature of the solvent in the dye solution of the particularly excellent thermal lens forming element -As viscosity characteristics, the viscosity at 160 ° C or higher is 0 to 3 mPa · s, and the viscosity value η2 of the solvent at 160 ° C divided by the viscosity value η1 of the solvent at 40 ° C η1 / η2 Was found to be 1 or more and 6 or less. The viscosity of a preferable solvent at 160 ° C. or higher is 3 mPa · s or less, and the lower limit is not particularly limited as long as it is a value larger than 0 mPa · s. When the viscosity at 160 ° C. or higher exceeds 3 mPa · s, the thermal lens forming characteristics are further deteriorated and the response speed is lowered as compared with the case of the solvent # 2, and the practicality as a thermal lens forming element is lost. The upper limit 6 of the value η1 / η2 obtained by dividing the viscosity value η1 of the solvent at 160 ° C. by the viscosity value η1 of the solvent at 40 ° C. is a solvent that gives a high thermal lens effect / response speed almost equal to that of the solvent # 1 When the control light power is the same and compared with solvent # 1, the optical path switching angle due to the thermal lens effect becomes smaller or the response speed becomes slower. The lower limit of η1 / η2 is not particularly limited as long as it is a value larger than 1.
以上のような粘度・温度特性を必須要件として、更に、先に列挙した溶剤の要求項目[1]〜[6]および「沸点200℃以上、融点−40℃以下」という制約を加えると、使用できる溶剤の種類は極めて限定される。具体的には先に詳しく説明した混合溶剤「溶剤#1」(図6に示す組成のもの)およびその組成を変化させたものを特に好適に使用することができる。 Using the above-mentioned viscosity / temperature characteristics as essential requirements, and further adding the restrictions [1] to [6] of the above-listed solvent requirements and “boiling point 200 ° C. or higher, melting point −40 ° C. or lower” The types of solvents that can be produced are very limited. Specifically, the mixed solvent “solvent # 1” (having the composition shown in FIG. 6) described in detail above and those having a changed composition can be used particularly preferably.
[不活性気体の気泡]
本発明の熱レンズ形成素子1は図1(a)および図1(b)に示すように、一部平面化された角型断面中空管3の一端には色素溶液10が1本の液柱として気泡無しに存在し、他端には後述の不活性気体からなる1つの気泡11が前記色素溶液10の液柱に接して存在することを特徴とする。色素溶液が1本の液中として存在しているため、角型断面中空管の壁面と溶液の摩擦力によって、熱レンズ形成素子1に外部から衝撃を受けても、液中は分断されにくくなっている。
[Inert gas bubbles]
As shown in FIGS. 1A and 1B, the thermal lens forming element 1 of the present invention has a single dye solution 10 at one end of a partially flattened square cross-section hollow tube 3. The column is present without bubbles, and one bubble 11 made of an inert gas described later is in contact with the liquid column of the dye solution 10 at the other end. Since the dye solution exists as a single liquid, even if the thermal lens forming element 1 is impacted from the outside by the frictional force between the wall of the square cross-section hollow tube and the solution, the liquid is not easily divided. It has become.
不活性気体からなる1つの気泡11の角型断面中空管3の好適な長さHは、前述のように10〜15mmである。 A suitable length H of the square cross-section hollow tube 3 of one bubble 11 made of an inert gas is 10 to 15 mm as described above.
一方、不活性気体からなる1つの気泡11の体積Kが熱レンズ形成素子1の総内容積Tに占める気泡比率(K/T)は上記の液柱分裂の悪影響を避けるためには、小さいことが好ましい。また、熱レンズ形成素子1の温度が上昇した場合、色素溶液10の温度上昇による気泡11の圧縮および気泡11自体の温度上昇による気体の状態方程式に準拠した圧力上昇によって、気泡11の圧力は上昇する。ここで、熱レンズ形成素子1を構成する石英ガラスの厚さは100ないし500μmであるため、内部の圧力上昇によって破裂するおそれがある。熱レンズ形成素子1の温度上昇に伴う気泡11の圧力上昇を低減するためには、気泡比率K/Tは大きい方が好ましい。ここで、前述のように、熱レンズ形成素子1内の色素溶液10の端部と溶融封止部分との距離は最小10mmであるから、気泡比率K/Tは熱レンズ形成素子1の角型断面中空管の長軸方向の長さ(H+M)から式〔1〕によって計算される。 On the other hand, the bubble ratio (K / T) in which the volume K of one bubble 11 made of an inert gas occupies the total internal volume T of the thermal lens forming element 1 is small in order to avoid the adverse effects of the liquid column splitting. Is preferred. Further, when the temperature of the thermal lens forming element 1 rises, the pressure of the bubble 11 rises due to the compression of the bubble 11 due to the temperature rise of the dye solution 10 and the pressure rise based on the gas state equation due to the temperature rise of the bubble 11 itself. To do. Here, since the thickness of the quartz glass which comprises the thermal lens formation element 1 is 100-500 micrometers, there exists a possibility of bursting by the internal pressure rise. In order to reduce the pressure increase of the bubbles 11 accompanying the temperature increase of the thermal lens forming element 1, it is preferable that the bubble ratio K / T is large. Here, as described above, since the distance between the end of the dye solution 10 in the thermal lens forming element 1 and the melt-sealed portion is a minimum of 10 mm, the bubble ratio K / T is a square shape of the thermal lens forming element 1. It is calculated by the formula [1] from the length (H + M) in the long axis direction of the cross-section hollow tube.
[数1]
K/T = 10/(H+M) … 〔1〕
[Equation 1]
K / T = 10 / (H + M) [1]
室温を25℃、昇温時の温度を85℃(この温度は電気通信分野の電子部品の信頼性試験に広く用いられている)と仮定すると、この温度変化に伴う色素溶液10の体積熱膨張率は4ないし5%、更に100℃を超えて昇温した場合は10%程度であると推測される。液体の体積の圧力による変化は数メガパスカルの超高圧でないと観察されない程、小さいため、密閉容器内に気体と液体が共存する場合、液体の体積が熱膨張した分、気体の体積は圧縮される。室温時の気泡11の体積をV1、液体の体積をV3、昇温時の気泡11の体積をV2、液体の体積をV4、液体の体積膨張率をΔVとすると次の数式の関係がある。 Assuming that the room temperature is 25 ° C. and the temperature at the time of temperature increase is 85 ° C. (this temperature is widely used in reliability testing of electronic components in the telecommunications field), the volumetric thermal expansion of the dye solution 10 accompanying this temperature change. The rate is estimated to be about 4 to 5%, and about 10% when the temperature is raised above 100 ° C. Since the change in the volume of the liquid due to the pressure is so small that it cannot be observed unless it is an ultrahigh pressure of several megapascals, when the gas and the liquid coexist in the sealed container, the volume of the gas is compressed by the amount of thermal expansion. The When the volume of the bubble 11 at room temperature is V1, the volume of the liquid is V3, the volume of the bubble 11 at the time of temperature rise is V2, the volume of the liquid is V4, and the volume expansion coefficient of the liquid is ΔV, the following relationship is established.
[数2]
V3=100−V1 … 〔2〕
[数3]
V4=V3×ΔV … 〔3〕
[数4]
V2=100−V4 … 〔4〕
[Equation 2]
V3 = 100-V1 [2]
[Equation 3]
V4 = V3 × ΔV (3)
[Equation 4]
V2 = 100-V4 [4]
nを気体の分子数、Rを気体常数、室温T1における体積V1の気泡11の圧力をP1とし、昇温時温度T2における体積V2の気泡11の圧力をP2とすると、気体の状態方程式は以下の通りである。 If n is the number of gas molecules, R is the gas constant, the pressure of the bubble 11 of the volume V1 at room temperature T1 is P1, and the pressure of the bubble 11 of the volume V2 at the temperature T2 is P2, the gas equation of state is It is as follows.
[数5]
P1×V1=n×R×T1 … 〔5〕
[数6]
P2×V2=n×R×T2 … 〔6〕
[Equation 5]
P1 * V1 = n * R * T1 [5]
[Equation 6]
P2 * V2 = n * R * T2 [6]
したがって、気体の状態方程式から計算される、気泡11の圧力上昇倍率Fは次の式で計算される:
[数7]
F=P2/P1=(T2/T1)×(V1/V2) … 〔7〕
Therefore, the pressure increase factor F of the bubble 11 calculated from the gas equation of state is calculated by the following formula:
[Equation 7]
F = P2 / P1 = (T2 / T1) × (V1 / V2) (7)
以上から、室温時の気泡11の圧力を0.5気圧と仮定した場合の、温度上昇時の気泡11の圧力は、表2および表3のように試算される。 From the above, when the pressure of the bubble 11 at room temperature is assumed to be 0.5 atm, the pressure of the bubble 11 when the temperature rises is calculated as shown in Tables 2 and 3.
すなわち、温度変化に伴う色素溶液10の体積熱膨張率が10%の場合であっても、気泡比率が20ないし60%であれば、室温における気泡11の圧力が0.5気圧のとき、昇温時の気泡11の圧力を、ほぼ大気圧以下に維持することが可能である。気泡比率が前記範囲よりも小さい場合は色素溶液充填部分の長さが、また、気泡比率が前記範囲よりも大きい場合は気泡部分の長さが、無駄に長くなり実用上、好ましくない。 That is, even when the volumetric thermal expansion coefficient of the dye solution 10 due to the temperature change is 10%, if the bubble ratio is 20 to 60%, the temperature rises when the pressure of the bubble 11 at room temperature is 0.5 atm. It is possible to maintain the pressure of the bubble 11 at the time of the temperature substantially below atmospheric pressure. When the bubble ratio is smaller than the above range, the length of the dye solution-filled portion is unpreferably practically unfavorable, and when the bubble ratio is larger than the above range, the length of the bubble portion is unnecessarily long.
更に、室温における気泡11の圧力を0.4ないし0.8気圧とした場合の昇温時の気泡11の圧力を試算した結果を表4に掲げる。 Further, Table 4 shows the results of trial calculation of the pressure of the bubbles 11 at the time of temperature rise when the pressure of the bubbles 11 at room temperature is 0.4 to 0.8 atm.
室温における気泡11の圧力を0.4気圧以下にすると、衝撃を受けた際に色素溶液の液柱が分断される危険性が高まる。また、室温における気泡11の圧力が0.7気圧を超え、0.8気圧に近づくと85℃まで昇温した場合、熱レンズ形成素子1が破裂する危険性が高まることが判る。更に、室温における気泡11の圧力に応じて、気泡比率の最適範囲は以下のように変化する。
0.4ないし0.5気圧のとき、20ないし60%、
0.6気圧のとき、25ないし60%、
0.7気圧のとき、40ないし60%。
When the pressure of the bubbles 11 at room temperature is 0.4 atm or less, there is an increased risk that the liquid column of the dye solution is divided when subjected to an impact. Further, it can be seen that when the pressure of the bubble 11 at room temperature exceeds 0.7 atm and approaches 0.8 atm, when the temperature rises to 85 ° C., the risk of the thermal lens forming element 1 bursting increases. Furthermore, the optimum range of the bubble ratio changes as follows according to the pressure of the bubble 11 at room temperature.
20 to 60% at 0.4 to 0.5 atm,
25 to 60% at 0.6 bar,
40 to 60% at 0.7 atm.
不活性気体の種類としては、ヘリウム、窒素、アルゴン、キセノンなどを好適に用いることができる。 As the kind of inert gas, helium, nitrogen, argon, xenon, or the like can be preferably used.
これら不活性気体で満たされた色素溶液充填装置を用い、酸素濃度計にて残留酸素濃度を測定しながら、熱レンズ形成素子1への色素溶液の注入と封止を行い、残留酸素濃度の異なる不活性気体からなる気泡11を有する熱レンズ形成素子1を複数作成した。色素溶液10としては、酸素分子の存在下、光照射すると一重項酸素による酸化分解を起こし易い色素として1,5,9,13−テトラ−tert−ブチル銅フタロシアニンを前記溶剤#1へ0.2重量%で溶解して用いた。この色素溶液は大気中で室内光の照射下、数日で色素の光酸化分解が急激に進行する。不活性気体からなる気泡11中の残留酸素が数ppmの場合、室温では、1,5,9,13−テトラ−tert−ブチル銅フタロシアニン溶液の吸収スペクトルはほとんど変化しない。しかしながら、85℃の加熱加速試験を行うと、残留酸素濃度が0.5ppm以下であれば、1万時間以上、色素の吸収スペクトルは変化しないが、残留酸素濃度が0.5ppmを超えた試料については、85℃数千時間で色素分解による吸光度の低下が確認された。残留酸素濃度の好ましい、理想的下限は、言うまでもなく0ppmである。現実的には0.5ppm以下であれば充分である。残留酸素濃度0.5ppm以下は、例えば市販の高純度アルゴンガスを使用することで、あるいは循環ガス再生装置を使用することで実現可能である。 Using the dye solution filling apparatus filled with these inert gases, the residual oxygen concentration is measured with an oxygen concentration meter, and the dye solution is injected into the thermal lens forming element 1 and sealed, so that the residual oxygen concentrations are different. A plurality of thermal lens forming elements 1 having bubbles 11 made of an inert gas were produced. As the dye solution 10, 1,5,9,13-tetra-tert-butylcopper phthalocyanine is added to the solvent # 1 as a dye that easily undergoes oxidative decomposition due to singlet oxygen when irradiated with light in the presence of oxygen molecules. Used by dissolving at weight%. This dye solution undergoes rapid photooxidative degradation of the dye within a few days under room light irradiation in the atmosphere. When the residual oxygen in the bubbles 11 made of inert gas is several ppm, the absorption spectrum of the 1,5,9,13-tetra-tert-butyl copper phthalocyanine solution hardly changes at room temperature. However, when a heat acceleration test at 85 ° C. is performed, if the residual oxygen concentration is 0.5 ppm or less, the absorption spectrum of the dye does not change for 10,000 hours or more, but about a sample having a residual oxygen concentration exceeding 0.5 ppm. The decrease in absorbance due to dye decomposition was confirmed at 85 ° C. for several thousand hours. Needless to say, the preferable lower limit of the residual oxygen concentration is 0 ppm. Actually, 0.5 ppm or less is sufficient. The residual oxygen concentration of 0.5 ppm or less can be realized, for example, by using a commercially available high purity argon gas or by using a circulating gas regenerator.
[リングビーム方式光路切替への応用]
図4は本発明の熱レンズ形成素子1を用いた、リングビーム方式光路切替装置の一例の概略構成図である。リングビーム方式光路切替装置の詳細は特許文献1に記載されている。概要として、入力側信号光・光ファイバー400から出射した入射信号光をコリメートレンズ40にてほぼ平行なビーム401に変換してダイクロミックミラー42を透過させ、更に集光レンズ43にて収束させ、収束光として熱レンズ形成素子1に入射させる。一方、制御光・光ファイバー410から出射した制御光をコリメートレンズ41にてほぼ平行なビーム411としてダイクロミックミラー42にて反射させ、信号光ビーム401と光軸を一致させ、更に集光レンズ43にて収束させ、収束光として熱レンズ形成素子1に入射させる。リングビーム方式光路切替装置および方法においては、制御光と信号光を同一光軸で熱レンズ形成素子の制御光吸収領域へ収束入射させ、更に、制御光および信号光双方の収束領域が重なり合い、前記制御光吸収領域の信号光入射側近傍に位置するよう、光学系が微調整される。こうすると、熱レンズ形成素子・制御光吸収領域の信号光入射側近傍へ収束入射した制御光は、前記制御光吸収領域において光吸収されながら進行し、吸収された光エネルギーは熱に変わり、色素溶液の熱膨張に伴う密度減少および屈折率の低下を引き起こし、光の進行方向に特定の形状の熱レンズを形成させる。このように前記制御光吸収領域に形成された熱レンズ内部に収束入射された信号光が広がりながら進行すると、入射時にはガウス分布であった信号光のビーム断面のエネルギー分布は、リング状に変換され、制御光が照射されていない場合の角度よりも大きな開き角度で、熱レンズ形成素子1から出射する。この出射信号光を、集光レンズ43よりも大きな開口数の受光レンズ44にて受光し、ほぼ平行なビームに変換してから、制御光が照射されず直進する場合の信号光・光路に45度の角度で設置され、制御光が照射されず直進する場合の信号光ビームが通過するのに充分な大きさの穴が設けられた穴付ミラー45に入射させると、制御光が照射されていない場合、信号光(直進信号光)421は直進し、結合レンズ46に入射し、収束され、直進出力側信号光・光ファイバー420に入射していく。一方、制御光が照射された場合は、熱レンズ効果によってリングビームに変換された信号光は、穴付ミラー45の穴の周辺で反射され、結合レンズ47にて収束され、光路切替信号光431として光路切替出力側信号光・光ファイバー430に入射していく。
[Application to ring beam optical path switching]
FIG. 4 is a schematic configuration diagram of an example of a ring beam type optical path switching device using the thermal lens forming element 1 of the present invention. Details of the ring beam type optical path switching device are described in Patent Document 1. As an outline, the input signal light / incident signal light emitted from the optical fiber 400 is converted into a substantially parallel beam 401 by the collimator lens 40, transmitted through the dichroic mirror 42, and further converged by the condenser lens 43. The light is incident on the thermal lens forming element 1 as light. On the other hand, the control light emitted from the control light / optical fiber 410 is reflected by the dichroic mirror 42 as a substantially parallel beam 411 by the collimator lens 41, and the optical axis of the signal light beam 401 is made coincident. And converged to enter the thermal lens forming element 1 as convergent light. In the ring beam type optical path switching device and method, the control light and the signal light are converged and incident on the control light absorption area of the thermal lens forming element with the same optical axis, and the convergence areas of both the control light and the signal light overlap, The optical system is finely adjusted so as to be positioned near the signal light incident side of the control light absorption region. Then, the control light converged and incident on the vicinity of the signal light incident side of the thermal lens forming element / control light absorption region proceeds while being absorbed in the control light absorption region, and the absorbed light energy is changed to heat, and the dye A density decrease and a refractive index decrease due to the thermal expansion of the solution cause a thermal lens having a specific shape in the light traveling direction. Thus, when the signal light converged and incident inside the thermal lens formed in the control light absorption region travels while spreading, the energy distribution of the beam cross section of the signal light that was Gaussian at the time of incidence is converted into a ring shape. The light is emitted from the thermal lens forming element 1 at an opening angle larger than the angle when the control light is not irradiated. The outgoing signal light is received by a light receiving lens 44 having a numerical aperture larger than that of the condenser lens 43, converted into a substantially parallel beam, and then is sent to a signal light / optical path 45 when traveling straight without being irradiated with control light. When the light is incident on the mirror 45 with a hole provided with a hole of a size large enough to allow the signal light beam to travel straight without being irradiated with the control light, the control light is irradiated. If not, the signal light (straight-ahead signal light) 421 goes straight, enters the coupling lens 46, converges, and enters the straight-ahead output side signal light / optical fiber 420. On the other hand, when the control light is irradiated, the signal light converted into the ring beam by the thermal lens effect is reflected around the hole of the holed mirror 45, converged by the coupling lens 47, and the optical path switching signal light 431. Then, it enters the optical path switching output side signal light / optical fiber 430.
図10aから図10dに、信号光光源として波長1550nm、制御光光源として波長660nmのレーザーを用い、色素として1,5,9,13−テトラ−tert−ブチル銅フタロシアニンを溶剤#1に0.2重量%の濃度で溶解した溶液を本発明の熱レンズ形成素子1(光路長d=500μm)に充填した場合の出射信号光ビームの断面形状と制御光パワーの対応を示す。制御光を照射しない場合、図10aのように信号光のビーム断面はエネルギーがガウス分布の丸ビームである。制御光パワーを2.2mW、4.3mW、7.6mWと大きくすると、信号光のビーム断面は、各々図10b,図10c,図10dのように変化する。この場合、制御光パワーが4.3mWのとき、リングの形状および大きさが最適になり、同2.2mWではパワーが足りず「リングの開き具合」が不充分であり、同7.6mWでは制御光が強すぎて熱レンズの形状が乱れ、リングが多重に形成される。 10a to 10d, a laser having a wavelength of 1550 nm is used as a signal light source, a laser having a wavelength of 660 nm is used as a control light source, and 1,5,9,13-tetra-tert-butylcopper phthalocyanine is used as a pigment in a solvent # 1 in 0.2. The correspondence between the cross-sectional shape of the outgoing signal light beam and the control light power when the thermal lens forming element 1 (optical path length d = 500 μm) of the present invention is filled with a solution dissolved at a concentration of weight% is shown. When the control light is not irradiated, the beam cross-section of the signal light is a round beam having a Gaussian distribution as shown in FIG. 10a. When the control light power is increased to 2.2 mW, 4.3 mW, and 7.6 mW, the beam cross section of the signal light changes as shown in FIGS. 10b, 10c, and 10d, respectively. In this case, when the control light power is 4.3 mW, the shape and size of the ring are optimum. When the power is 2.2 mW, the power is insufficient and the “openness of the ring” is insufficient, and when the power is 7.6 mW, The control light is too strong, the shape of the thermal lens is disturbed, and multiple rings are formed.
本発明の熱レンズ形成素子を用いた、リングビーム方式光路切替装置は、4ないし5mWという小さい制御光パワーで、制御光を照射しない場合のガウス分布・丸ビームと、制御光を照射した場合のリングビームの変換を行うことができる。 The ring beam type optical path switching device using the thermal lens forming element of the present invention has a control light power as small as 4 to 5 mW, and a Gaussian distribution / round beam when the control light is not irradiated and a control light when the control light is irradiated. Ring beam conversion can be performed.
本発明の熱レンズ形成素子を用いた、リングビーム方式光路切替装置の応答速度を調べるため、制御光パワーをデューティ比1:1(すなわち制御光光源点灯時間と消灯時間の比率1:1)で、周波数を変えて断続させ、それに対応する直進制御光の強度変化の波形をオシロスコープで観察した。図4において、熱レンズ形成素子1に入射する制御光(入射制御光)411の一部分を光検出器に導いてオシロスコープ上で測定した制御光の波形4110および制御光411の明滅に対応して光路切替された信号光(光路切替信号光)431を光検出器に導いてオシロスコープ上で測定した信号光の波形4310を図11および図12に示す。なお、図12の縦軸は図11の場合の3倍に拡大されている。また、制御光411を断続する矩形波の周波数を0.1kHzないし100kHzに設定し、そのときの制御光411の断続に対応する光路切替信号光431の波形4310の振幅Lを測定した結果を図13に示す。 In order to investigate the response speed of the ring beam type optical path switching device using the thermal lens forming element of the present invention, the control light power is set at a duty ratio of 1: 1 (that is, the ratio of the control light source lighting time to the turn-off time is 1: 1). The waveform was changed intermittently, and the intensity change waveform of the straight control light was observed with an oscilloscope. In FIG. 4, a part of the control light (incident control light) 411 incident on the thermal lens forming element 1 is guided to the photodetector and the optical path corresponding to the control light waveform 4110 measured on the oscilloscope and the blinking of the control light 411. The switched signal light (optical path switching signal light) 431 is guided to a photodetector and a signal light waveform 4310 measured on an oscilloscope is shown in FIGS. In addition, the vertical axis | shaft of FIG. 12 is expanded 3 times compared with the case of FIG. The result of measuring the amplitude L of the waveform 4310 of the optical path switching signal light 431 corresponding to the interruption of the control light 411 at that time is set to the frequency of the rectangular wave that interrupts the control light 411 from 0.1 kHz to 100 kHz. It is shown in FIG.
図11において制御光411(図4)を断続する矩形波の周波数500Hzであり、このときの信号光の断続に対応する信号光の波形4310の振幅Lを基準の1とすると、制御光411を断続する矩形波の周波数範囲0.2から2kHzにおいて、振幅Lは、ほぼ1であった。すなわち、応答速度250マイクロ秒で完全な光路切替が可能であることが確認された。 In FIG. 11, the frequency of a rectangular wave that interrupts the control light 411 (FIG. 4) is 500 Hz. If the amplitude L of the waveform 4310 of the signal light corresponding to the intermittent signal light at this time is 1, the control light 411 is In the frequency range of intermittent rectangular waves of 0.2 to 2 kHz, the amplitude L was approximately 1. That is, it was confirmed that complete optical path switching was possible at a response speed of 250 microseconds.
更に周波数を高めた場合の例として、周波数20kHzにおける信号光の波形4310を図12に示す。図12から判るように熱レンズ効果による光路切替が完了しない内に制御光を消灯すると、信号光の波形はのこぎりの刃状になり、振幅Lは小さくなっていく。 As an example when the frequency is further increased, a waveform 4310 of signal light at a frequency of 20 kHz is shown in FIG. As can be seen from FIG. 12, when the control light is turned off before the switching of the optical path due to the thermal lens effect is completed, the waveform of the signal light becomes a saw blade and the amplitude L decreases.
すなわち、熱レンズ効果の応答速度を超えると光路の切替は不完全になり、信号光の一部は光路切替されずに直進する。制御光411を断続する矩形波の周波数を2kHzから高めた場合の信号光の振幅Lは、図13に示すように漸減していく。 That is, when the response speed of the thermal lens effect is exceeded, the switching of the optical path becomes incomplete, and a part of the signal light goes straight without being switched. As shown in FIG. 13, the amplitude L of the signal light when the frequency of the rectangular wave that interrupts the control light 411 is increased from 2 kHz gradually decreases.
本実施形態(図4に示す)の光路切替装置の耐久性を測定するため、信号光を連続光とし、一方、制御光を周波数数1kHzで、デューティ比1:1の矩形波断続光線として照射し、光路切替された信号光の強度振幅の時間を比較した。その結果、連続1万時間経過しても、信号光の強度振幅は減衰しなかった。 In order to measure the durability of the optical path switching device of the present embodiment (shown in FIG. 4), the signal light is continuous light, while the control light is irradiated as a rectangular wave intermittent light beam having a frequency of 1 kHz and a duty ratio of 1: 1. Then, the time of the intensity amplitude of the signal light whose optical path was switched was compared. As a result, the intensity amplitude of the signal light was not attenuated even after 10,000 hours had elapsed.
[比較実施形態1]
溶剤#1の替わりに、温度を変えた場合の粘度変化が大きな溶剤#2を用いた他は溶剤#1を用いた場合と同様にして、図4に示す本発明の熱レンズ形成素子を用いた、リングビーム方式光路切替装置において制御光411を断続する矩形波の周波数を0.1kHzないし20kHzに設定し、そのときの制御光411の断続に対応する光路切替信号光431の波形4310の振幅Lを測定した結果を図14に示す。制御光411を断続する矩形波の周波数を20Hz(応答速度25ミリ秒)とした場合(図示せず)、信号光の振幅Lは1であるが、200〜500Hz(同2.5〜1ミリ秒)では同0.97に減じ、更に周波数を高めると信号光の振幅Lは、図14に示すように漸減していく。以上、まとめると、溶剤#2を用いた場合、熱レンズ形成素子の応答速度は溶剤#1の場合の4分の1以下に減ずることが判った。この原因は、先に詳細に述べたように、温度が上昇したとき、溶剤#2の粘度が下がりにくいため、信号光収束・吸収部分の温度上昇に伴う低密度・低屈折率領域の膨張が妨げられ、熱レンズの形成に時間を要するものと推定される。
[Comparative Embodiment 1]
The thermal lens forming element of the present invention shown in FIG. 4 is used in the same manner as in the case of using the solvent # 1, except that the solvent # 2 having a large viscosity change when the temperature is changed is used instead of the solvent # 1. In the ring beam type optical path switching device, the frequency of the rectangular wave that interrupts the control light 411 is set to 0.1 kHz to 20 kHz, and the amplitude of the waveform 4310 of the optical path switching signal light 431 corresponding to the intermittentness of the control light 411 at that time The result of measuring L is shown in FIG. When the frequency of the rectangular wave that interrupts the control light 411 is 20 Hz (response speed 25 milliseconds) (not shown), the amplitude L of the signal light is 1, but 200 to 500 Hz (2.5 to 1 millimeter). Second), the signal light amplitude L gradually decreases as shown in FIG. In summary, it has been found that when solvent # 2 is used, the response speed of the thermal lens forming element is reduced to less than one-fourth that of solvent # 1. As described above in detail, since the viscosity of the solvent # 2 is not easily lowered when the temperature rises, the expansion of the low density / low refractive index region accompanying the temperature rise of the signal light convergence / absorption portion is caused. It is estimated that it takes time to form the thermal lens.
[丸ビーム方式光路切替への応用]
図5は本発明の熱レンズ形成素子1を用いた、丸ビーム方式光路切替装置の一例の概略構成図である。丸ビーム方式光路切替装置の詳細は特許文献3〜5に記載されている。概要として、入力側信号光・光ファイバー500から出射した入射信号光をコリメートレンズ50にてほぼ平行なビーム501に変換してダイクロミックミラー52を透過させ、更に集光レンズ53にて収束させ、収束光として熱レンズ形成素子1に入射させる。一方、制御光・光ファイバー510から出射した制御光をコリメートレンズ51にてほぼ平行なビーム511としてダイクロミックミラー52にて反射させ、更に集光レンズ53にて収束させ、収束光として熱レンズ形成素子1に入射させる。丸ビーム方式光路切替装置および方法においては、制御光と信号光を熱レンズ形成素子の制御光吸収領域へ収束入射させ、更に、制御光および信号光双方の収束領域中心点が30μm程度離れて重なり合い、前記制御光吸収領域の信号光入射側近傍に位置するよう、光学系が微調整される。こうすると、熱レンズ形成素子・制御光吸収領域の信号光入射側近傍へ、僅かに離れて収束入射した制御光は、前記制御光吸収領域において光吸収されながら進行し、吸収された光エネルギーは熱に変わり、色素溶液の熱膨張に伴う密度減少および屈折率の低下を引き起こし、光の進行方向に特定の形状の熱レンズを形成させる。このように前記制御光吸収領域に形成された熱レンズ内部に、異なる収束位置で収束入射された信号光が広がりながら進行すると、入射時のガウス分布の丸ビーム断面のエネルギー分布を保ちながら進行方向が変更され、制御光が照射されていない場合の直進方向から数度、光路が変更されて、熱レンズ形成素子1から出射する。この出射信号光を、受光レンズ54にて受光し、ほぼ平行なビームに変換し、制御光が照射されていない場合、信号光(直進信号光)521は直進し、結合レンズ56に入射し、収束され、直進出力側信号光・光ファイバー520に入射していく。一方、制御光が照射された場合は、熱レンズ効果によって丸ビームのまま光路が変更された信号光(光路切替信号光)531はミラー58を経由して、信号光(光路切替信号光)532として結合レンズ57に入射し、収束され、光路切替出力側信号光・光ファイバー530に入射していく。
[Application to round beam optical path switching]
FIG. 5 is a schematic configuration diagram of an example of a round beam type optical path switching device using the thermal lens forming element 1 of the present invention. Details of the round beam type optical path switching device are described in Patent Documents 3 to 5. As an outline, input signal light / incident signal light emitted from the optical fiber 500 is converted into a substantially parallel beam 501 by the collimator lens 50, transmitted through the dichroic mirror 52, further converged by the condenser lens 53, and converged. The light is incident on the thermal lens forming element 1 as light. On the other hand, the control light emitted from the control light / optical fiber 510 is reflected by the dichroic mirror 52 as a substantially parallel beam 511 by the collimator lens 51, further converged by the condenser lens 53, and the thermal lens forming element as convergent light. 1 is incident. In the round beam type optical path switching device and method, the control light and the signal light are converged and incident on the control light absorption area of the thermal lens forming element, and the center points of the convergence areas of both the control light and the signal light overlap each other by about 30 μm. The optical system is finely adjusted so as to be positioned near the signal light incident side of the control light absorption region. In this way, the control light that has converged and entered slightly away from the thermal lens forming element / control light absorption region in the vicinity of the signal light incident side proceeds while being absorbed in the control light absorption region, and the absorbed light energy is Instead of heat, it causes a decrease in density and a decrease in refractive index due to thermal expansion of the dye solution, and a thermal lens having a specific shape is formed in the light traveling direction. Thus, if the signal light converged and incident at different convergence positions travels inside the thermal lens formed in the control light absorption region, the traveling direction is maintained while maintaining the energy distribution of the cross section of the Gaussian round beam at the time of incidence. Is changed, the optical path is changed several degrees from the straight traveling direction when the control light is not irradiated, and the light is emitted from the thermal lens forming element 1. When this outgoing signal light is received by the light receiving lens 54 and converted into a substantially parallel beam, and the control light is not irradiated, the signal light (straight forward signal light) 521 goes straight and enters the coupling lens 56, The light is converged and enters the straight output signal light / optical fiber 520. On the other hand, when the control light is irradiated, the signal light (optical path switching signal light) 531 whose optical path has been changed as a round beam due to the thermal lens effect passes through the mirror 58, and the signal light (optical path switching signal light) 532. Is incident on the coupling lens 57, converged, and incident on the optical path switching output side signal light / optical fiber 530.
ここで、信号光光源として波長1550nm、制御光光源として波長660nmのレーザーを用い、色素として1,5,9,13−テトラ−tert−ブチル銅フタロシアニンを溶剤#1に0.1重量%の濃度で溶解した溶液を本発明の熱レンズ形成素子1(光路長500μm)に充填し、図5に示す丸ビーム方式光路切替装置に取り付け、光学系を調整した。制御光パワーを10.0mW,12.2mW,15.3mW,18.7mWとしたとき、熱レンズ効果によって丸ビームのまま変更された信号光531の変更角を、制御光が照射されていない場合に信号光が熱レンズ形成素子1を出射する点を原点とし、制御光が照射されていない場合の信号光出射方向を「0度」として測定した結果を図15に示す。制御光パワーを強くするにしたがい、変更角は9.3度、11.4度、12.8、13.7度と大きくなった。 Here, a laser beam having a wavelength of 1550 nm is used as the signal light source, a laser beam having a wavelength of 660 nm is used as the control light source, and 1,5,9,13-tetra-tert-butylcopper phthalocyanine is used as the dye. The solution dissolved in (1) was filled in the thermal lens forming element 1 (optical path length: 500 μm) of the present invention and attached to the round beam type optical path switching device shown in FIG. 5 to adjust the optical system. When the control light power is 10.0 mW, 12.2 mW, 15.3 mW, 18.7 mW, the change angle of the signal light 531 changed as a round beam by the thermal lens effect is not irradiated with the control light FIG. 15 shows the measurement results when the signal light exit direction is “0 degree” when the control light is not irradiated with the point where the signal light exits the thermal lens forming element 1 as the origin. As the control light power was increased, the change angles increased to 9.3 degrees, 11.4 degrees, 12.8, and 13.7 degrees.
制御光パワーを15.5mWとし、光学系を調整して光路切替特性を最適化した結果、制御光の点灯−消灯に対応した直進信号光521および光路切替信号光532各々の消光比および挿入ロスは表5に掲げる通りであり、優れた光路切替特性を発揮した。なお、この測定の際、熱レンズ形成素子1の角型断面中空管の長軸、および、信号光の光軸は重力方向に直交する配置とした(図5において、熱レンズ形成素子1の角型断面中空管の長軸、および、信号光の光軸は紙面と平行であり、重力の方向は紙面上方から下方のZ軸マイナス方向である)。 As a result of optimizing the optical path switching characteristics by adjusting the optical system by setting the control light power to 15.5 mW, the extinction ratio and insertion loss of each of the straight signal light 521 and the optical path switching signal light 532 corresponding to the turning on and off of the control light Was as shown in Table 5 and exhibited excellent optical path switching characteristics. In this measurement, the long axis of the square cross-section hollow tube of the thermal lens forming element 1 and the optical axis of the signal light are arranged perpendicular to the direction of gravity (in FIG. The major axis of the rectangular cross-section hollow tube and the optical axis of the signal light are parallel to the paper surface, and the direction of gravity is the Z-axis minus direction from the top to the bottom of the paper).
[比較実施形態2]
信号光光源として波長1550nm、制御光光源として波長660nmのレーザーを用い、色素として1,5,9,13−テトラ−tert−ブチル銅フタロシアニンを溶剤#2に0.1重量%の濃度で溶解した溶液を用いた他は本実施形態と同様にして、制御光パワーを10.0mW、12.2mW、15.3mW、18.7mWとしたとき、熱レンズ効果によって丸ビームのまま変更された信号光531の変更角は、各々、6.8度、7.8度、9.4度、10.3度と、図15に示すように、溶剤#1を用いた場合よりも明らかに小さくなった。溶剤の相違によって、同一制御光パワーを継続的に照射した場合に誘起される熱レンズ効果、すなわち熱レンズの大きさに大小ができたものと推測される。
[Comparative Embodiment 2]
Using a laser having a wavelength of 1550 nm as the signal light source and a wavelength of 660 nm as the control light source, 1,5,9,13-tetra-tert-butylcopper phthalocyanine as a dye was dissolved in solvent # 2 at a concentration of 0.1% by weight. In the same manner as in this embodiment except that the solution is used, when the control light power is 10.0 mW, 12.2 mW, 15.3 mW, and 18.7 mW, the signal light is changed as a round beam by the thermal lens effect. The change angles of 531 were 6.8 degrees, 7.8 degrees, 9.4 degrees, and 10.3 degrees, respectively, which were clearly smaller than when using solvent # 1, as shown in FIG. . It is presumed that the size of the thermal lens effect induced when the same control light power is continuously applied, that is, the size of the thermal lens, can be estimated due to the difference in the solvent.
[熱レンズ素子の方位と光路切替特性]
図5に示すように、前記丸ビーム方式光路切替装置に載置された実施の形態1における熱レンズ形成素子1の合計4つの当該平面について互いに平行な、2つの外側平面および2つの内側平面を紙面に平行になるよう置き、角型中空管の中空断面中心を通る長軸を紙面に平行に「Y軸」とし、熱レンズ形成素子1の外側平面へ垂直に入射する信号光の進行方向を「X軸」とし、紙面に垂直に紙面から上に進む方向を「Z軸」と定義した。そこで、Z軸の正方向を重力と同じ方向に向けて前記丸ビーム方式光路切替装置を設置した場合を「Z−」、同、重力と逆方向に設置した場合を「Z+」、同様に、X軸の正方向を重力と同じ方向に向けて前記丸ビーム方式光路切替装置を設置した場合を「X−」、同、重力と逆方向に設置した場合を「X+」、Y軸の正方向を重力と同じ方向に向けて前記丸ビーム方式光路切替装置を設置した場合を「Y−」、同、重力と逆方向に設置した場合を「Y+」と表示し、各々の状態において、制御光を消灯−点灯した場合の光路切替信号光の消光比および挿入ロスを測定した結果を表6に掲げる。
[Direction of thermal lens element and optical path switching characteristics]
As shown in FIG. 5, two outer planes and two inner planes parallel to each other for a total of four planes of the thermal lens forming element 1 in the first embodiment mounted on the round beam type optical path switching device are shown. Placed parallel to the paper surface, the long axis passing through the hollow cross-sectional center of the square hollow tube is the “Y axis” parallel to the paper surface, and the traveling direction of the signal light that is perpendicularly incident on the outer plane of the thermal lens forming element 1 Is defined as “X axis”, and the direction of moving upward from the page perpendicular to the page is defined as “Z axis”. Therefore, the case where the round beam type optical path switching device is installed with the positive direction of the Z-axis directed in the same direction as gravity is “Z−”, the case where it is installed in the opposite direction of gravity is “Z +”, and similarly, “X-” when the round beam type optical path switching device is installed with the positive direction of the X-axis directed in the same direction as gravity, “X +” when the circular beam type optical path switching device is installed, and the positive direction of the Y-axis. When the round beam type optical path switching device is installed in the same direction as gravity, “Y−” is displayed, and when it is installed in the opposite direction to gravity, “Y +” is displayed. Table 6 shows the results of measuring the extinction ratio and insertion loss of the optical path switching signal light when is turned off.
光路切替信号光の消光比の方位依存性は0.6dB以内、同挿入ロスの方位依存性は0.05dB以内であり、顕著な方位依存性は観察されなかった。 The azimuth dependence of the extinction ratio of the optical path switching signal light is within 0.6 dB, the azimuth dependence of the insertion loss is within 0.05 dB, and no significant azimuth dependence was observed.
[比較実施形態3]
比較実施形態3の熱レンズ形成素子(図示せず)は、「コイン型セル」と呼ばれるもので、厚さが500μmの石英ガラス板材を直径8mmの円盤状に加工した部材2枚(1枚には直径1mmの色素溶液注入孔を円盤の中心から離して設ける)および外径8mm、内径が6.5mmの石英ガラスパイプを高さが500μmになるよう切断・研磨した部材を順に重ね、融着加工することによって製造される。このコイン型光学セルの内部の、扁平な円筒型空間に、色素溶液および不活性気体の気泡(直径1mm程度)を封入し、色素溶液注入孔をエポキシ接着剤にて蓋(直径3mm、厚さ500μmの石英ガラス板材の円盤)で封印したものである。
[Comparative Embodiment 3]
The thermal lens forming element (not shown) of Comparative Embodiment 3 is a so-called “coin-type cell”, and is composed of two members (on one sheet) obtained by processing a quartz glass plate having a thickness of 500 μm into a disk shape having a diameter of 8 mm. 1 mm diameter dye solution injection hole is provided apart from the center of the disk) and a quartz glass pipe having an outer diameter of 8 mm and an inner diameter of 6.5 mm cut and polished so as to have a height of 500 μm is stacked and fused in order. Manufactured by processing. A dye solution and an inert gas bubble (diameter of about 1 mm) are sealed in a flat cylindrical space inside the coin-type optical cell, and the dye solution injection hole is covered with an epoxy adhesive (diameter 3 mm, thickness). Sealed with a disk of quartz glass plate of 500 μm).
本比較実施形態3のコイン型熱レンズ形成素子を用いた以外は、実施の形態1の場合と同一の装置、色素、溶剤、調整・測定手順によって、信号光(および制御光)の光軸、すなわち、ビーム501が重力の方向に直交するよう装置の方位を設定して、制御光の波長660nm、強度15.5mW、信号光の波長1550nm、強度2mW、として、丸ビーム方式光路偏向装置に入射する信号光・光ファイバーから入射する信号光強度に対する、制御光の消灯・点灯に対応して出射する直進信号光521および光路切替信号光532の強度を測定・比較した。結果を表7に示す。 The optical axis of the signal light (and control light) is the same as that of the first embodiment except that the coin-type thermal lens forming element of the third comparative embodiment is used, the dye, the solvent, and the adjustment / measurement procedure. That is, the orientation of the apparatus is set so that the beam 501 is orthogonal to the direction of gravity, and the control light wavelength 660 nm, the intensity 15.5 mW, the signal light wavelength 1550 nm, and the intensity 2 mW are incident on the round beam type optical path deflecting apparatus. The intensities of the straight signal light 521 and the optical path switching signal light 532 emitted in response to the turning-off / lighting of the control light with respect to the intensity of the signal light / signal light incident from the optical fiber were measured and compared. The results are shown in Table 7.
表7を表5と比較して判るように、信号光の光軸、すなわち、ビーム501が重力の方向に直交するよう装置の方位を設定した場合については、比較実施形態3のコイン型熱レンズ形成素子は、本発明の実施の形態1の一部平面化円筒型熱レンズ形成素子1の場合に遜色ない光スイッチ特性を発揮する。 As can be seen by comparing Table 7 with Table 5, when the orientation of the apparatus is set so that the optical axis of the signal light, that is, the beam 501 is orthogonal to the direction of gravity, the coin-type thermal lens of Comparative Embodiment 3 The forming element exhibits optical switch characteristics comparable to those of the partially planarized cylindrical thermal lens forming element 1 according to the first embodiment of the present invention.
ところが、信号光(および制御光)の光軸、すなわち、ビーム501を回転軸として、コイン型熱レンズ形成素子の方位がコイン型を形成する円盤の中心軸を中心に回転するよう、丸ビーム方式光路偏向装置の向きを45度ずつ変えて、上記の消光比を測定した。消光比の変動は大きく、1ないし2dBの変化が認められた。 However, the round beam method is used so that the azimuth of the coin-type thermal lens forming element rotates around the central axis of the disk forming the coin shape, with the optical axis of the signal light (and control light), that is, the beam 501 as the rotation axis. The above-mentioned extinction ratio was measured by changing the direction of the optical path deflector by 45 degrees. The fluctuation of the extinction ratio was large, and a change of 1 to 2 dB was recognized.
更に、コイン型の熱レンズ形成素子を構成する円盤状平面に平行で、信号光の光軸501に直交する方向を回転軸とし、丸ビーム方式光路偏向装置の向きを45度ずつ変えて、上記の強度比を測定した。強度比の変動は一層大きくなり、値の変動は最大±5dBに達した。 Further, the direction of the round beam type optical path deflecting device is changed by 45 degrees in parallel with the disk-shaped plane constituting the coin-shaped thermal lens forming element, and the direction orthogonal to the optical axis 501 of the signal light is set as the rotation axis. The intensity ratio was measured. The intensity ratio variation was even greater and the value variation reached a maximum of ± 5 dB.
以上の方位を変える測定において、装置の特定の方位で強度比の変動が特に大きくなる現象が数回観察され、信号光強度比の変動は一時的に±10dBに達した。これは、コイン型光学セル内に封印された不活性ガスの気泡が内部を自由に移動可能であるため、装置の方位を変える操作中に、制御光および信号光の光路をよぎったものと推測される。 In the measurement of changing the above azimuth, a phenomenon in which the fluctuation of the intensity ratio was particularly large in a specific azimuth of the apparatus was observed several times, and the fluctuation of the signal light intensity ratio temporarily reached ± 10 dB. This is presumed that the inert gas bubbles sealed in the coin-type optical cell can move freely inside, so that the control light and signal light paths were crossed during the operation to change the orientation of the device. Is done.
以上、本比較実施形態3が示唆するように、熱レンズ形成素子の光学セル内部が適度に仕切られていないと、色素溶液内部で温度が上昇した部分およびその周辺に引き起こされる「熱対流」が激しく起こり、素子の方位の変化にしたがって、熱レンズの形成に好ましくない影響を与える。一方、実施の形態1に詳しく記載したように、本発明の一部平面化円筒型熱レンズ形成素子1の内部空間は、対称性の高い、適度な大きさの空間(細長い円柱状)に仕切られているため、素子の方位が変化しても光スイッチ特性への影響を小さくすることができる。 As mentioned above, as this Comparative Embodiment 3 suggests, if the inside of the optical cell of the thermal lens forming element is not partitioned properly, the “thermal convection” caused in the portion where the temperature rises inside the dye solution and in the vicinity thereof. It happens violently and undesirably affects the formation of the thermal lens as the orientation of the element changes. On the other hand, as described in detail in the first embodiment, the internal space of the partially planarized cylindrical thermal lens forming element 1 of the present invention is partitioned into a highly symmetric and moderately sized space (elongated cylindrical shape). Therefore, even if the orientation of the element changes, the influence on the optical switch characteristics can be reduced.
以上のように、本発明の熱レンズ形成素子は、熱レンズ形成素子の向きを重力の方向に対して変えた場合の熱レンズ効果の変動を極めて小さくすることができる。 As described above, the thermal lens forming element of the present invention can extremely reduce fluctuations in the thermal lens effect when the orientation of the thermal lens forming element is changed with respect to the direction of gravity.
本発明は、光通信分野および光情報処理分野において有効に用いることができる。 The present invention can be effectively used in the fields of optical communication and optical information processing.
1 熱レンズ形成素子、3 角型断面中空管、4,5 外側平面、6,7 内側平面、8 一端封止角型断面中空管、9 円、10 色素溶液、11 気泡、15,16,17 角型断面中空管封止部、20 溶液注入管、40,41,50,51 コリメートレンズ、42,52 ダイクロミックミラー、43,53 集光レンズ、44,54 受光レンズ、45 穴付ミラー、46,47,56,57 結合レンズ、58 ミラー、400 入力側信号光・光ファイバー、401 入射信号光(ビーム)、410 制御光・光ファイバー、411 入射制御光(ビーム)、420 直進出力側信号光・光ファイバー、421 直進信号光、430 光路切替出力側信号光・光ファイバー、431 光路切替信号光、500 入力側信号光・光ファイバー、501 入射信号光(ビーム)、510 制御光・光ファイバー、511 入射制御光(ビーム)、520 直進出力側信号光・光ファイバー、521 直進信号光、530 光路切替出力側信号光・光ファイバー、531,532 光路切替信号光、4110 制御光の波形、4310 信号光の波形。 DESCRIPTION OF SYMBOLS 1 Thermal lens formation element, 3 square cross-section hollow tube, 4,5 outer plane, 6,7 inner plane, 8 end sealed square cross-section hollow tube, 9 circle, 10 dye solution, 11 bubble, 15, 16 , 17 Square section hollow tube sealing part, 20 solution injection tube, 40, 41, 50, 51 collimating lens, 42, 52 dichroic mirror, 43, 53 condenser lens, 44, 54 light receiving lens, 45 holes Mirror, 46, 47, 56, 57 Coupled lens, 58 Mirror, 400 Input side signal light / optical fiber, 401 Incident signal light (beam), 410 Control light / optical fiber, 411 Incident control light (beam), 420 Straight output side signal Light / Optical fiber, 421 Straight signal light, 430 Optical path switching output signal light / optical fiber, 431 Optical path switching signal light, 500 Input signal light / optical fiber, 5 01 Incident signal light (beam), 510 Control light / optical fiber, 511 Incident control light (beam), 520 Linear output signal light / optical fiber, 521 Linear signal light, 530 Optical path switching output signal light / optical fiber, 531 532 optical path Switching signal light, 4110 Control light waveform, 4310 Signal light waveform.
Claims (4)
前記光学セルは、少なくとも制御光が焦点を結ぶように配置された制御光吸収領域を有し、
前記制御光吸収領域の形状は、合計4つの当該平面について互いに平行な2つの外側平面および2つの内側平面、を有する角型断面中空管であって、前記互いに平行な2つの外側平面および2つの内側平面はともに、前記制御光が照射されず前記信号光が直進する場合の光軸に対して垂直であり、前記互いに平行な2つの外側平面および2つの内側平面の大きさは、前記制御光および信号光の入射する領域および直進または光路切替されて出射する信号光が通過する領域において平面である大きさであり、前記角型断面中空管の両端はその素材の融点において溶融封止されており、前記制御光吸収領域には、前記制御光吸収領域が吸収する波長帯域から選ばれる波長の制御光と、前記制御光吸収領域が吸収しない波長帯域から選ばれる波長の信号光とが各々収束されて照射され、かつ前記制御光および前記信号光の各々の収束点の位置が同一または相異なるように照射され、前記制御光吸収領域が前記制御光を吸収した領域およびその周辺領域に起こる温度上昇に起因して可逆的に形成される屈折率の分布に基づいた熱レンズが形成され、
前記制御光が照射されず熱レンズが形成されていない場合は前記収束された信号光が通常の開き角度と直進方向で出射する状態と、
前記制御光および前記信号光の各々の収束点の位置が同一になるよう制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度よりも大きい開き角度で出射する状態、または、前記制御光および前記信号光の各々の収束点の位置が相異なるよう制御光が照射されて熱レンズが形成される場合は前記収束された信号光が通常の開き角度と異なる開き角度と直進方向とは異なる方向で出射する状態とを、
前記制御光の照射の有無に対応させて実現させ、
かつ、
前記角型断面中空管内の一端には色素溶液が1本の液柱として気泡無しに存在し、他端には前記1本の液柱を維持するための1つの気泡が前記色素溶液の液柱に接して存在し、
前記気泡の室温における圧力が0.4ないし0.7気圧であり、
同圧力が0.4ないし0.5気圧のとき、前記気泡の体積が、前記角型断面中空管容積の20%以上、60%以下であり、
同圧力が0.6気圧のとき、前記気泡の体積が、前記角型断面中空管容積の25%以上、60%以下であり、
同圧力が0.7気圧のとき、前記気泡の体積が、前記角型断面中空管容積の40%以上、60%以下、であることを特徴とする熱レンズ形成素子。 A thermal lens forming element comprising an optical cell filled with a dye solution prepared by dissolving a dye that absorbs light of control light in a solvent without absorbing light of the wavelength of the signal light,
The optical cell has a control light absorption region arranged so that at least the control light is focused,
The shape of the control light absorption region is a square cross-section hollow tube having two outer planes and two inner planes parallel to each other for a total of four of the planes, the two outer planes and 2 being parallel to each other Both inner planes are perpendicular to the optical axis when the control light is not irradiated and the signal light travels straight, and the sizes of the two outer planes and the two inner planes parallel to each other are The area where the light and signal light are incident and the area where the signal light which goes straight or is switched after passing through the optical path passes are flat, and both ends of the square cross-section hollow tube are melt sealed at the melting point of the material. The control light absorption region has a control light having a wavelength selected from a wavelength band absorbed by the control light absorption region and a wavelength selected from a wavelength band not absorbed by the control light absorption region. And the control light and the signal light are irradiated so that the positions of the convergence points of the control light and the signal light are the same or different, and the control light absorption region absorbs the control light, and A thermal lens is formed based on the refractive index distribution that is reversibly formed due to the temperature rise that occurs in the surrounding area,
When the control light is not irradiated and a thermal lens is not formed, the converged signal light is emitted in a normal opening angle and a straight direction, and
When the control light is irradiated so that the positions of the convergence points of the control light and the signal light are the same to form a thermal lens, the converged signal light has an opening angle larger than a normal opening angle. When the control lens is irradiated with the control light and the thermal lens is formed so that the positions of the convergence points of the control light and the signal light are different from each other, the converged signal light has a normal opening angle. A different opening angle and a state of emitting in a direction different from the straight direction,
Realized corresponding to the presence or absence of irradiation of the control light ,
And,
The dye solution is present as one liquid column without bubbles at one end in the square cross-section hollow tube, and one bubble for maintaining the one liquid column is present at the other end as a liquid column of the dye solution. Exists in contact with
The pressure of the bubbles at room temperature is 0.4 to 0.7 atm,
When the pressure is 0.4 to 0.5 atm, the volume of the bubbles is 20% or more and 60% or less of the volume of the square cross-section hollow tube,
When the pressure is 0.6 atm, the volume of the bubbles is 25% or more and 60% or less of the square cross-section hollow tube volume,
A thermal lens forming element characterized in that, when the pressure is 0.7 atm, the volume of the bubbles is 40% or more and 60% or less of the volume of the square cross-section hollow tube .
前記角型断面中空管を切断して両端が開いた中空管とする工程と、
互いに平行な2つの外側平面および2つの内側平面を有する角型断面中空管の一端を封じる工程と、
信号光の波長の光を吸収せず、制御光の光を吸収する色素を溶剤に溶解させた色素溶液を調製する工程と、
一端を封止した互いに平行な2つの外側平面および2つの内側平面を有する角型断面中空管の内部に前記色素溶液を注入する工程と、
前記色素溶液を注入した後、前記角型断面中空管の色素溶液が注入されていない空間を真空にした後、接着剤で仮封止する工程と、
前記色素溶液が注入された角型断面中空管の、色素溶液が存在しない位置において前記角型断面中空管の一端を加熱溶融封止する工程と、
を有する熱レンズ形成素子の製造方法。 At least a preform for a square cross-section hollow tube made of quartz glass used as a square cross-section container of a thermal lens forming element, a square cross-section hollow tube comprising two outer planes and two inner planes parallel to each other A step of transforming into
Cutting the square cross-section hollow tube into a hollow tube having both ends open;
Sealing one end of a square cross-section hollow tube having two outer planes and two inner planes parallel to each other;
A step of preparing a dye solution in which a dye that does not absorb the light of the signal light and absorbs the light of the control light is dissolved in a solvent;
Injecting the dye solution into a square cross-section hollow tube having two parallel outer flat surfaces and two inner flat surfaces sealed at one end;
After injecting the dye solution, vacuuming the space where the dye solution of the square cross-section hollow tube is not injected, and then temporarily sealing with an adhesive; and
Heating and sealing one end of the square cross-section hollow tube at a position where the dye solution does not exist in the square cross-section hollow tube into which the dye solution has been injected;
The manufacturing method of the thermal lens formation element which has this .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011012364A JP5453656B2 (en) | 2011-01-24 | 2011-01-24 | Thermal lens forming element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011012364A JP5453656B2 (en) | 2011-01-24 | 2011-01-24 | Thermal lens forming element and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012155031A JP2012155031A (en) | 2012-08-16 |
JP5453656B2 true JP5453656B2 (en) | 2014-03-26 |
Family
ID=46836836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011012364A Expired - Fee Related JP5453656B2 (en) | 2011-01-24 | 2011-01-24 | Thermal lens forming element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5453656B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3972066B2 (en) * | 2004-03-16 | 2007-09-05 | 大日精化工業株式会社 | Light control type optical path switching type data distribution apparatus and distribution method |
JP5370711B2 (en) * | 2007-12-25 | 2013-12-18 | 独立行政法人産業技術総合研究所 | Thermal lens forming element |
-
2011
- 2011-01-24 JP JP2011012364A patent/JP5453656B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012155031A (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jaworski et al. | Nitrous oxide detection at 5.26 µm with a compound glass antiresonant hollow-core optical fiber | |
Ott et al. | Millimeter-long fiber Fabry-Perot cavities | |
Ashkin | The pressure of laser light | |
US8077749B2 (en) | Pulsed laser source with adjustable grating compressor | |
JP5493126B2 (en) | Optical path switching device and optical signal optical path switching method | |
US9488778B2 (en) | Method for realizing an optical waveguide in a substrate by means of a femtosecond laser | |
CN1672073A (en) | Dimesize construction of femtosecond light pulse optical wave guide apparatus | |
Russo et al. | Lens-ended fibers for medical applications: a new fabrication technique | |
Hasse et al. | Selective etching of fs-laser inscribed high aspect ratio microstructures in YAG | |
JP5370711B2 (en) | Thermal lens forming element | |
JP5453656B2 (en) | Thermal lens forming element and manufacturing method thereof | |
JP2004144479A (en) | Multi-capillary array electrophoresis system | |
JP5261646B2 (en) | Thermal lens forming element | |
Wang et al. | Industrial, Medical and Military Applications of Fluoride and Chalcogenide Glass Fibers | |
Toney Fernandez et al. | Laser writing in tellurite glasses | |
US10180544B2 (en) | Micro-optical systems and assemblies using glass tubes and methods of forming same | |
JP2016151622A (en) | Thermal lens forming element and method for manufacturing the same | |
da Silva Maia | Fabrication of Optofluidic Systems by Femtosecond Laser Micromachining | |
Jaworski et al. | Laser-based nitric oxide detection at 5.26 µm using Antiresonant Hollow-Core Fiber | |
Dobek | Optical aberrations and modulation transfer function of a thermal lens for use in imaging | |
Leroi et al. | Record power transmission of intense UV radiation in a single-mode hollow-core fiber with 23.3 W, 155µJ, 10ns pulses at 343nm | |
JP2016151623A (en) | Thermal lens forming element and method for manufacturing the same | |
CN107941707A (en) | A kind of pump probe apparatus and method based on optical fiber transmission | |
JP2019002964A (en) | Optical path switching device and optical path switching method | |
Wang et al. | Point-by-point fiber gratings inscription by using high repetition rate femtosecond laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5453656 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |