JP5453638B2 - Butter production method and butter component measurement method - Google Patents

Butter production method and butter component measurement method Download PDF

Info

Publication number
JP5453638B2
JP5453638B2 JP2009534264A JP2009534264A JP5453638B2 JP 5453638 B2 JP5453638 B2 JP 5453638B2 JP 2009534264 A JP2009534264 A JP 2009534264A JP 2009534264 A JP2009534264 A JP 2009534264A JP 5453638 B2 JP5453638 B2 JP 5453638B2
Authority
JP
Japan
Prior art keywords
butter
absorbance
salinity
water
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009534264A
Other languages
Japanese (ja)
Other versions
JPWO2009041252A1 (en
Inventor
崇 小杉
優子 延命
大和 伊藤
大督 笹倉
一男 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Priority to JP2009534264A priority Critical patent/JP5453638B2/en
Publication of JPWO2009041252A1 publication Critical patent/JPWO2009041252A1/en
Application granted granted Critical
Publication of JP5453638B2 publication Critical patent/JP5453638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C15/00Butter; Butter preparations; Making thereof
    • A23C15/02Making thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Description

本発明は、製造中のバターに添加する水または食塩の量を制御するバターの製造方法およびバターの複数成分の各濃度を同時に測定するバター成分の測定方法に関する。   The present invention relates to a method for producing butter for controlling the amount of water or salt added to butter during production, and a method for measuring a butter component for simultaneously measuring concentrations of a plurality of butter components.

通常、バターは、エージングさせたクリームを原料とし、チャーニング処理およびワーキング処理などを経て製造される。なお、バターに関する規格が、乳および乳製品の成分規格などに関する省令(乳等省令)で規定されている。たとえば、乳等省令において、バターは、生乳、牛乳または特別牛乳から得られた脂肪粒を練圧したもので、成分規格は乳脂肪分80.0%以上、水分17.0%以下、大腸菌群は陰性などと規定されている。   Usually, butter is made from an aged cream as a raw material and subjected to a charring process and a working process. In addition, the standards regarding butter are stipulated in the Ministerial Ordinance (Ministerial Ordinance on Milk, etc.) concerning the component standards of milk and dairy products. For example, in the ministerial ordinance of milk, butter is a mixture of fat grains obtained from raw milk, milk or special milk, and the component specifications are milk fat content 80.0% or more, moisture 17.0% or less, coliform group Is defined as negative.

バターの水分濃度および塩分濃度を、乳等省令に基づいた濃度値に保つために、ワーキング処理前のバター粒に対して水または食塩(食塩水)が添加される。しかし、バターの水分濃度および塩分濃度は、クリームの脂肪率、エージング時間、あるいはワーキング回転数などの製造条件で大きく変化する。したがって、バターの水分濃度および塩分濃度を一定にするには、バター粒に添加する水または食塩の量を、製造条件に応じて制御する必要がある。   In order to maintain the moisture concentration and salt concentration of butter at a concentration value based on the ordinance of milk and the like, water or salt (saline) is added to the butter granules before the working treatment. However, the moisture concentration and salt concentration of butter vary greatly depending on the production conditions such as the fat percentage of the cream, the aging time, or the working rotational speed. Therefore, in order to make the water concentration and the salt concentration of butter constant, it is necessary to control the amount of water or salt added to the butter granules according to the production conditions.

バター粒に添加する水または食塩の量の制御は、たとえば、以下のような方法で行われる。まず、バター製造機から流出するバターからサンプルを採取する。サンプルの水分濃度を乾燥減量法によって測定する。また、サンプルの塩分濃度をモール法によって測定する。そして、サンプルの水分濃度および塩分濃度と、水分濃度および塩分濃度の目標値とに基づいて、バター粒に添加する水または食塩の量を調整する。   The amount of water or salt added to the butter granules is controlled by, for example, the following method. First, a sample is taken from the butter flowing out of the butter production machine. The moisture content of the sample is measured by the loss on drying method. In addition, the salinity of the sample is measured by the Mole method. Then, the amount of water or salt to be added to the butter granules is adjusted based on the moisture concentration and salt concentration of the sample and the target values of the moisture concentration and salt concentration.

しかし、上述の調整方法は、サンプルの採取からサンプルの水分濃度および塩分濃度の測定結果を得るまでに10分〜20分程度の時間を必要とする。このため、バターの製造条件の変更に応じて、添加する水や食塩(食塩水)の量を迅速に調整することができない。この結果、バターの水分濃度および塩分濃度がばらつくことになり、バターの品質が一定しないという問題があった。また、バター製造開始からバター粒に添加する水または食塩の量を調整するまでの間、バター製造機から流出するバターを回収する必要がある。このため、効率よくバターを製造できないという問題があった。   However, the above-described adjustment method requires a time of about 10 minutes to 20 minutes from obtaining a sample to obtaining measurement results of the moisture concentration and salt concentration of the sample. For this reason, according to the change of the manufacturing conditions of a butter | batter, the quantity of the water and salt (saline solution) to add cannot be adjusted rapidly. As a result, the water concentration and the salt concentration of the butter vary, and there is a problem that the quality of the butter is not constant. Moreover, it is necessary to collect | recover the butter which flows out from a butter manufacturing machine until it adjusts the quantity of the water or salt added to a butter grain from the start of butter manufacture. For this reason, there existed a problem that a butter could not be manufactured efficiently.

そこで、バターの水分濃度および塩分濃度を迅速に測定する方法が、従来から提案されている。たとえば、特許文献1は、バターなどの油中水型乳化物の比重と非誘電率とを測定し、比重および非誘電率の測定結果に基づいて油中水型乳化物の水分濃度および塩分濃度を測定する方法を開示している。   Therefore, a method for quickly measuring the moisture concentration and the salt concentration of butter has been proposed. For example, Patent Document 1 measures the specific gravity and non-dielectric constant of a water-in-oil emulsion such as butter, and the water concentration and salt concentration of the water-in-oil emulsion based on the measurement results of the specific gravity and non-dielectric constant. Is disclosed.

また、特許文献2は、マイクロ波を用いたバターの水分濃度および塩分濃度の同時測定方法を開示している。具体的には、バターを透過する周波数1GHzのマイクロ波の減衰量と位相差とを測定する。そして、予め実測値から求めた回帰式に測定した減衰量と位相差とを代入して、バターの水分濃度および塩分濃度を求める。   Patent Document 2 discloses a method for simultaneously measuring the moisture concentration and salinity concentration of butter using microwaves. Specifically, the attenuation amount and phase difference of the microwave having a frequency of 1 GHz that passes through the butter are measured. Then, the moisture content and the salinity concentration of the butter are obtained by substituting the measured attenuation and the phase difference into the regression equation obtained from the actual measurement values.

また、特許文献3は、赤外線を用いたバターの水分測定方法を開示している。具体的には、水分および油分が吸収される二つの波長の近赤外線と、参照用の波長の近赤外線をバター表面に照射して各波長の吸光度を求める。また、バターの表面温度および色相などを測定する。そして、各測定値を重回帰式に代入してバターの水分濃度を求める。   Patent Document 3 discloses a method for measuring the moisture content of butter using infrared rays. Specifically, the near-infrared rays of two wavelengths where moisture and oil are absorbed and the near-infrared ray of a reference wavelength are irradiated on the butter surface to determine the absorbance of each wavelength. In addition, the surface temperature and hue of butter are measured. Then, each measured value is substituted into the multiple regression equation to obtain the moisture concentration of butter.

特開平04−140660号公報Japanese Patent Laid-Open No. 04-140660 特開平08−105845号公報Japanese Patent Laid-Open No. 08-105845 特開平07−270309号公報JP 07-270309 A

しかしながら、上記特許文献が開示する方法には、以下のような問題がある。特許文献1が開示する測定方法は、比重測定用のラインを別に設ける必要があり、測定装置の構成が複雑となる。また、特許文献2が開示する測定方法は、水分濃度および塩分濃度の他に、各種の成分の濃度を測定できない。また、特許文献3が開示する測定方法は、近赤外線の測定の他に、近赤外線センサとバター表面との距離を測定する変位センサ、温度センサ、色相計などを用いる必要があり、装置構成が複雑になる。   However, the method disclosed in the above patent document has the following problems. The measurement method disclosed in Patent Document 1 requires a separate specific gravity measurement line, which complicates the configuration of the measurement apparatus. In addition, the measurement method disclosed in Patent Document 2 cannot measure the concentration of various components in addition to the water concentration and the salt concentration. In addition, the measurement method disclosed in Patent Document 3 needs to use a displacement sensor, a temperature sensor, a hue meter, and the like that measure the distance between the near-infrared sensor and the butter surface in addition to the near-infrared measurement. It becomes complicated.

このように、上記特許文献が開示する方法は、それぞれに問題を有しており、水分濃度あるいは塩分濃度などのバターの各種成分を、オンラインで迅速に測定することは実質的に困難であった。   As described above, the methods disclosed in the above patent documents have their respective problems, and it has been substantially difficult to quickly measure various components of butter such as moisture concentration or salt concentration online. .

本発明のバターの製造方法は、水分濃度および水分吸光度が既知の複数の参照用バターを用いて、各参照用バターの水分濃度と水分吸光度との対応関係を示す水分検量線を作成する工程と、バターの製造装置の流出口から流出する製造後のバターに800nmから2500nmまでの波長域に含まれる連続する波長を有する近赤外線を時間的に連続して照射し、製造後のバターの表面で反射する近赤外線を時間的に連続して受光し、受光した近赤外線に基づいて製造後のバターの吸光度スペクトルを取得する工程と、製造後のバターの吸光度スペクトルから、波長域に含まれる水の吸収波長域に対応する水の吸光度スペクトルを抽出する工程と、水の吸光度スペクトルにおけるピーク値に基づいて、製造後のバターの水分吸光度を求める工程と、製造後のバターの水分吸光度と水分検量線とに基づいて、製造後のバターの水分濃度を求める工程と、製造後のバターの水分濃度に基づいて、製造中のバターに添加する水の量を調節する工程と、を備える。 The method for producing butter according to the present invention includes a step of creating a moisture calibration curve indicating the correspondence between the moisture concentration and moisture absorbance of each reference butter using a plurality of reference butters having known moisture concentrations and moisture absorbances. , butter after manufacture flowing out from the outlet of the butter manufacturing apparatus, the near infrared having a wavelength of successive included in the wavelength range from 800nm to 2500nm irradiated temporally continuously, butter surface after manufacture in receiving the near-infrared reflecting successively in time, a step acquire the absorbance spectra of butter after manufacture on the basis of the near infrared of light received, from the absorbance spectrum of butter after production, the water contained in the wavelength region The process of extracting the water absorbance spectrum corresponding to the absorption wavelength region of the water and the process for determining the water absorbance of the butter after production based on the peak value in the water absorbance spectrum And the step of determining the moisture concentration of the butter after manufacture based on the moisture absorbance and moisture calibration curve of the butter after manufacture, and the water added to the butter during manufacture based on the moisture concentration of the butter after manufacture Adjusting the amount of.

製造後のバターの水分濃度を非接触で測定するため、簡単な装置構成でバターの水分濃度を調節することが可能である。また、製造後のバターの水分濃度を所定の時間間隔で継続的に測定するため、製造条件の変更に応じて、製造中のバターに添加する水の量を速やかに調節することが可能である。   Since the moisture concentration of the butter after production is measured in a non-contact manner, it is possible to adjust the moisture concentration of the butter with a simple apparatus configuration. In addition, since the moisture concentration of butter after production is continuously measured at predetermined time intervals, it is possible to quickly adjust the amount of water added to the butter during production according to changes in the production conditions. .

また、本発明のバターの製造方法は、さらに、各参照用バターの塩分濃度および塩分吸光度が既知であり、各参照用バターの塩分濃度と塩分吸光度との対応関係を示す塩分検量線を作成する工程と、水の吸光度スペクトルにおけるピーク波長と所定波長との波長差に基づいて、製造後のバターの塩分吸光度を求める工程と、製造後のバターの塩分吸光度と塩分検量線とに基づいて、製造後のバターの塩分濃度を求める工程と、製造後のバターの塩分濃度に基づいて、製造中のバターに添加する食塩の量を調節する工程と、を備える。   Further, the butter production method of the present invention further creates a salinity calibration curve in which the salinity and salinity absorbance of each reference butter are known and shows the correspondence between the salinity and salinity absorbance of each reference butter. Based on the step, the step of obtaining the salt absorbance of the butter after production based on the wavelength difference between the peak wavelength and the predetermined wavelength in the absorbance spectrum of water, and the production based on the salt absorbance and salt calibration curve of the butter after production And a step of determining the salt concentration of the butter after, and a step of adjusting the amount of salt added to the butter during manufacture based on the salt concentration of the butter after manufacture.

製造後のバターの水分濃度だけでなく塩分濃度を非接触で測定するため、簡単な装置構成でバターの水分濃度と塩分濃度とを同時に調節することが可能である。また、製造後のバターの塩分濃度を所定の時間間隔で継続的に測定するため、製造条件の変更に応じて、製造中のバターに添加する食塩の量を速やかに変更することが可能である。   Since not only the butter water concentration after production but also the salt concentration is measured in a non-contact manner, it is possible to simultaneously adjust the butter water concentration and the salt concentration with a simple apparatus configuration. In addition, since the salt concentration of butter after production is continuously measured at predetermined time intervals, it is possible to quickly change the amount of sodium salt added to the butter during production according to changes in the production conditions. .

また、本発明のバター成分の測定方法は、測定成分の吸光度および濃度が既知の複数の参照用バターを用いて、各参照用バターの測定成分の吸光度と濃度との対応関係を示す検量線を作成する工程と、バターの製造装置の流出口から流出するバターに800nmから2500nmまでの波長域に含まれる連続する波長を有する近赤外線を時間的に連続して照射し、バターの表面で反射する近赤外線を時間的に連続して受光し、受光した近赤外線に基づいてバターの吸光度スペクトルを取得する工程と、バターの吸光度スペクトルから、波長域に含まれる測定成分の吸収波長域に対応する、測定成分の吸光度スペクトルを抽出する工程と、測定成分の吸光度スペクトルから、バターの測定成分の吸光度を求める工程と、バターの測定成分の吸光度と検量線とに基づいてバターの測定成分の濃度を求める工程と、を備える。 In addition, the method for measuring the butter component of the present invention uses a plurality of reference butters whose absorbance and concentration of the measurement component are known, and shows a calibration curve indicating the correspondence between the absorbance and concentration of the measurement component of each reference butter. a step of creating, the butter flows out from the outlet of the butter manufacturing apparatus, the near infrared is irradiated temporally continuously with wavelength consecutive included in the wavelength range from 800nm to 2500 nm, reflected by the surface of the butter The process of receiving the near-infrared light continuously in time, obtaining the absorbance spectrum of the butter based on the received near-infrared light, and corresponding to the absorption wavelength range of the measurement component included in the wavelength range from the absorbance spectrum of the butter Extracting the absorbance spectrum of the measurement component, obtaining the absorbance of the measurement component of the butter from the absorbance spectrum of the measurement component, and absorbing the measurement component of the butter Determining the concentration of the measurement component of butter based on the luminous intensity and the calibration curve.

バター成分の濃度を非接触で測定するため、簡易な装置構成でバター成分の濃度を測定することが可能である。また、複数のバター成分の吸光度スペクトルを同時に取得するため、複数のバター成分を同時に測定することが可能である。   Since the concentration of the butter component is measured without contact, the concentration of the butter component can be measured with a simple apparatus configuration. In addition, since the absorbance spectra of a plurality of butter components are acquired simultaneously, it is possible to measure a plurality of butter components simultaneously.

それゆえにこの発明の目的は、簡単な装置構成で、バターの複数成分の各濃度の測定が可能なバター成分の測定方法を提供することである。また、この発明の目的は、簡単な装置構成でバターの水分濃度および塩分濃度を制御することが可能なバターの製造方法を提供することである。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for measuring a butter component capable of measuring each concentration of a plurality of butter components with a simple apparatus configuration. Moreover, the objective of this invention is providing the manufacturing method of the butter | batter which can control the water | moisture-content density | concentration of a butter | batter and salt concentration with a simple apparatus structure.

この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面によって明白となる。   Objects, features, aspects and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.

第1の実施の形態に係るバター成分の測定方法に用いられる測定システムの概略図である。It is the schematic of the measurement system used for the measuring method of the butter component which concerns on 1st Embodiment. バターの水分濃度の測定結果を示す表である。It is a table | surface which shows the measurement result of the water concentration of a butter. 無塩バターの水分濃度の測定値の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the measured value of the water concentration of unsalted butter. 有塩バターの水分濃度の測定値の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the measured value of the water concentration of salted butter. 発酵バターの水分濃度の測定値の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the measured value of the moisture concentration of fermentation butter. バターの塩分濃度の測定結果を示す表である。It is a table | surface which shows the measurement result of the salt concentration of a butter. 有塩バターの塩分濃度の測定値の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the measured value of the salt concentration of salted butter. 第2の実施の形態に係るバターの製造方法に用いられるバター製造システムの概略図である。It is the schematic of the butter manufacturing system used for the manufacturing method of the butter which concerns on 2nd Embodiment. 無塩バターの水分濃度の自動制御試験の結果を示すグラフである。It is a graph which shows the result of the automatic control test of the moisture concentration of unsalted butter. 有塩バターの塩分濃度の自動制御試験の結果を示すグラフである。It is a graph which shows the result of the automatic control test of the salt concentration of salted butter.

{第1の実施の形態}
以下、図面を参照しつつ本発明の実施の形態について説明する。図1は、本実施の形態に係るバター成分の測定方法に用いられる、バター成分の測定システムの概略図である。図1に示す測定システムは、フーリエ変換型の近赤外分光器(FT−NIR。以下、単に「分光器」という)3がバター製造機1の流出口11から流出するバター20の吸光度スペクトルを取得し、取得した吸光度スペクトルを用いてPC(パーソナルコンピュータ)5がバターの各成分の濃度を求めるものである。
{First embodiment}
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a butter component measurement system used in the method for measuring a butter component according to the present embodiment. The measurement system shown in FIG. 1 is a Fourier transform type near-infrared spectrometer (FT-NIR; hereinafter simply referred to as “spectrometer”) 3 that shows the absorbance spectrum of butter 20 flowing out from the outlet 11 of the butter making machine 1. The PC (personal computer) 5 obtains the concentration of each component of the butter using the obtained absorbance spectrum.

バター製造機1は、チャーニング処理からワーキング処理までを連続的に行ってバター20を製造する装置である。ワーキング処理を経て流出口11から流出するバター20は、バターサイロ2に送られる。バターサイロ2は、内部に設置されたスクリュー(図示省略)によって、バター20を分散および混合しつつ、充填機(図示省略)へと送る。   The butter manufacturing machine 1 is an apparatus that manufactures the butter 20 by continuously performing the charring process to the working process. The butter 20 flowing out from the outlet 11 through the working process is sent to the butter silo 2. The butter silo 2 is sent to a filling machine (not shown) while dispersing and mixing the butter 20 with a screw (not shown) installed inside.

分光器3は、流出口11から流出するバター20の表面に波長域800nm〜2500nmの近赤外線を照射して、近赤外線におけるバター20の吸光度スペクトルを取得する装置である。   The spectroscope 3 is a device that irradiates the surface of the butter 20 flowing out from the outlet 11 with near-infrared rays having a wavelength range of 800 nm to 2500 nm and acquires the absorbance spectrum of the butter 20 in the near-infrared rays.

プローブ4は、分光器3が生成する近赤外線をバター20に照射するとともに、バター20の表面で反射する近赤外線を受光するための近赤外線センサヘッドである。プローブ4は、流出口11から流出した直後のバター20に赤外線を照射できる位置に設置される。これは、バター20がバターサイロ2内のスクリュー(図示省略)の回転によってねじられることで生じる、バター20の表面とプローブ4との距離(照射距離)の変動を抑制するためである。また、プローブ4は、バター20の表面で反射した近赤外線を効率よく受光するために、バター20の表面への赤外線の照射角度がほぼ垂直となるように設置される。   The probe 4 is a near-infrared sensor head for irradiating the butter 20 with near-infrared light generated by the spectroscope 3 and receiving near-infrared light reflected by the surface of the butter 20. The probe 4 is installed at a position where the butter 20 immediately after flowing out from the outlet 11 can be irradiated with infrared rays. This is to suppress fluctuations in the distance (irradiation distance) between the surface of the butter 20 and the probe 4 caused by the butter 20 being twisted by the rotation of a screw (not shown) in the butter silo 2. Further, the probe 4 is installed so that the irradiation angle of the infrared rays to the surface of the butter 20 is substantially vertical in order to efficiently receive near infrared rays reflected by the surface of the butter 20.

PC5は、分光器3が取得したバター20の吸光度スペクトルに基づいて、バター20の測定成分の濃度を求める。具体的には、PC5は、バター20の吸光度スペクトルに対してデータ処理を行う。これにより、PC5は、測定成分の吸収波長域における測定成分の吸光度スペクトルを取得し、測定成分の吸光度スペクトルから測定成分の吸光度を算出する。そして、PC5は、測定成分の吸光度と検量線とに基づいて、バター20の測定成分の濃度を求める。検量線とは、たとえば、測定成分の濃度と、測定成分の吸収波長域における測定成分の吸光度とを対応付けたものであり、測定前に予め作成される。   The PC 5 obtains the concentration of the measurement component of the butter 20 based on the absorbance spectrum of the butter 20 acquired by the spectroscope 3. Specifically, the PC 5 performs data processing on the absorbance spectrum of the butter 20. Thereby, PC5 acquires the absorbance spectrum of the measurement component in the absorption wavelength region of the measurement component, and calculates the absorbance of the measurement component from the absorbance spectrum of the measurement component. And PC5 calculates | requires the density | concentration of the measurement component of the butter 20 based on the light absorbency and calibration curve of a measurement component. The calibration curve is, for example, a correspondence between the concentration of the measurement component and the absorbance of the measurement component in the absorption wavelength region of the measurement component, and is created in advance before measurement.

以下、図1に示す測定システムを用いてバターの水分濃度および塩分濃度をそれぞれ測定した結果に基づいて、本実施の形態に係るバター成分の測定方法の詳細について説明する。   Hereinafter, the details of the method for measuring a butter component according to the present embodiment will be described based on the results of measuring the moisture concentration and the salt concentration of butter using the measurement system shown in FIG.

(測定1:バターの水分濃度の測定)
図1に示す測定システムを用いた、無塩バター、有塩バター、および発酵バターのそれぞれの水分濃度の測定を、2006年9月(第1回)、2006年11月〜12月(第2回)、および2007年2月(第3回)に行った。なお、分光器3として、フーリエ変換型の近赤外分光器である「MATRIX−FE(ブルカー・オプティクス株式会社製)」を用いた。
(Measurement 1: Measurement of butter water concentration)
The measurement of each water concentration of unsalted butter, salted butter, and fermented butter using the measurement system shown in FIG. 1 was conducted in September 2006 (first time) and November to December 2006 (second). ) And February 2007 (3rd). Note that “MATRIX-FE (manufactured by Bruker Optics)”, which is a Fourier transform type near-infrared spectrometer, was used as the spectrometer 3.

ここで、バターの水分濃度の測定手順を、無塩バターの水分濃度の測定を例にして説明する。以下に示す手順は、有塩バターおよび発酵バターの水分濃度の測定においても同様である。   Here, the procedure for measuring the moisture concentration of butter will be described by taking the measurement of the moisture concentration of unsalted butter as an example. The procedure shown below is the same in the measurement of the moisture concentration of salted butter and fermentation butter.

まず、無塩バターの水分検量線を作成した。流出口11から流出するバター20(無塩バター)から検量線作成用のサンプル(以下、「検量線サンプル」という)を複数採取して、乾燥減量法を用いて検量線サンプルの水分濃度を測定した。   First, a moisture calibration curve of unsalted butter was prepared. Collect multiple samples for preparing a calibration curve from the butter 20 (unsalted butter) flowing out from the outlet 11 (hereinafter referred to as “calibration curve sample”) and measure the moisture concentration of the calibration curve sample using the loss on drying method. did.

また、検量線サンプルの水分吸光度を、分光器3が取得した検量線サンプルの吸光度スペクトルに基づいて求めた。具体的には、検量線サンプルの採取と同時に、流出口11から流出する無塩バターの吸光度スペクトルを、分光器3を用いて取得した。   Further, the water absorbance of the calibration curve sample was determined based on the absorbance spectrum of the calibration curve sample acquired by the spectrometer 3. Specifically, the absorbance spectrum of unsalted butter flowing out from the outlet 11 was acquired using the spectrometer 3 simultaneously with the collection of the calibration curve sample.

具体的には、流出口11から流出する無塩バターに近赤外線を約0.5秒間照射して吸光度スペクトルを求める処理(1スキャン)を16回繰り返した。S/N比を向上させるために、各スキャンで得られた吸光度スペクトルを平均化し、平均化されたスペクトルを無塩バターの吸光度スペクトルとした。そして、PC5を用いて、取得した吸光度スペクトルに対して一次微分処理を行い、照射距離の変化に伴う近赤外線の強度変化、およびバターの滑らかさなどの変化に伴うバター表面の反射率の変化などの影響を抑制した。続いて、一次微分処理後の吸光度スペクトルに対してPLS解析を行った。具体的には、水の吸収波長域である波長1300nm〜1600nm(第1波長域)、および波長1800〜2100nm(第2波長域)における他のバター成分の近赤外線の吸収の影響を抑制し、水分の吸収による各波長域の吸光度値(データ)の抽出および圧縮を行った。こうして得られた検量線サンプルの水分の吸光度スペクトルにおける各波長域の吸光度値(水分の吸光度スペクトルのピーク値)と、検量線サンプルの水分濃度との相関関係を計算し、無塩バターの水分検量線を作成した。   Specifically, the process (one scan) for obtaining an absorbance spectrum by irradiating unsalted butter flowing out from the outlet 11 with near infrared rays for about 0.5 seconds was repeated 16 times. In order to improve the S / N ratio, the absorbance spectrum obtained in each scan was averaged, and the averaged spectrum was used as the absorbance spectrum of unsalted butter. Then, using PC5, first derivative processing is performed on the acquired absorbance spectrum, near-infrared intensity change due to change in irradiation distance, change in butter surface reflectivity due to changes in butter smoothness, etc. The influence of was suppressed. Subsequently, PLS analysis was performed on the absorbance spectrum after the first derivative treatment. Specifically, the influence of near-infrared absorption of other butter components in the wavelength range of 1300 nm to 1600 nm (first wavelength range), which is the absorption wavelength range of water, and the wavelength of 1800 to 2100 nm (second wavelength range) is suppressed, Absorbance values (data) in each wavelength range due to moisture absorption were extracted and compressed. Calculate the correlation between the absorbance value in each wavelength region (the peak value of the moisture absorbance spectrum) in the moisture absorbance spectrum of the calibration curve sample thus obtained and the moisture concentration of the calibration curve sample. Created a line.

水分検量線の作成後、流出口11から流出する無塩バターの水分濃度を、分光器3が取得する無塩バターの吸光度スペクトルに基づいて測定した。無塩バターの吸光度スペクトルに基づいて求める水分濃度を、無塩バターの水分測定値とする。なお、第1回〜第3回の測定を通じて、無塩バターの水分測定値を求める際に同一の水分検量線を用いた。   After preparing the moisture calibration curve, the moisture concentration of the unsalted butter flowing out from the outlet 11 was measured based on the absorbance spectrum of the unsalted butter acquired by the spectrometer 3. The water concentration determined based on the absorbance spectrum of the salt-free butter is taken as the moisture measurement value of the salt-free butter. In addition, the same moisture calibration curve was used when calculating | requiring the moisture measurement value of an unsalted butter through the 1st-3rd measurement.

まず、無塩バターの水分測定値を求めるために、分光器3を用いて、流出口11から流出する無塩バターに近赤外線を連続的に照射させ、無塩バターの吸光度スペクトルを取得した。そして、PC5を用いて、12秒〜15秒に1回の頻度で、分光器3が取得した吸光度スペクトルから無塩バターの水分吸光度を求めた。求めた水分吸光度と水分検量線とに基づいて、無塩バターの水分測定値を得た。なお、水分吸光度を求める手順は、上述の検量線サンプルの水分吸光度を求める手順と同じである。   First, in order to obtain a moisture measurement value of unsalted butter, near infrared rays were continuously irradiated to the unsalted butter flowing out from the outlet 11 using the spectroscope 3, and an absorbance spectrum of the unsalted butter was obtained. And using PC5, the water | moisture-content absorbance of the salt-free butter was calculated | required from the absorbance spectrum which the spectrometer 3 acquired at the frequency of once every 12 seconds-15 seconds. Based on the obtained water absorbance and moisture calibration curve, a moisture measurement value of unsalted butter was obtained. The procedure for obtaining the moisture absorbance is the same as the procedure for obtaining the moisture absorbance of the calibration curve sample described above.

また、1時間に1〜7回程度の頻度で無塩バターのサンプル(以下、「基準サンプル」という)を採取し、乾燥減量法を用いて基準サンプルの水分濃度を測定した。基準サンプルの水分濃度の測定値を水分基準値とする。そして、水分基準値と、基準サンプルの採取タイミングに対応する水分測定値とを比較した。   Further, a sample of unsalted butter (hereinafter referred to as “reference sample”) was collected at a frequency of about 1 to 7 times per hour, and the moisture concentration of the reference sample was measured using a loss on drying method. The measured value of the moisture concentration of the reference sample is taken as the moisture reference value. And the water | moisture-content reference value was compared with the moisture measurement value corresponding to the collection timing of a reference | standard sample.

また、無塩バターへの近赤外線の照射と並行して、エージングタンクの切り替え、あるいはバター製造機1のワーキング回転数の変更などを行った。これにより、無塩バターの製造条件の変更に伴う、図1に示す測定システムを用いた無塩バターの水分濃度の測定への影響を調べた。   In parallel with the near-infrared irradiation of the unsalted butter, the aging tank was switched or the working rotational speed of the butter manufacturing machine 1 was changed. Thereby, the influence on the measurement of the moisture concentration of unsalted butter using the measurement system shown in FIG. 1 accompanying the change in the production conditions of unsalted butter was examined.

次に、各バターの水分濃度の測定結果を説明する。図2に、各バターの水分基準値を基準とした、水分測定値の最大誤差、平均誤差、および標準偏差を示す。各測定回における水分測定値の平均誤差は0.1%以内であり、乾燥減量法の系統誤差(0.1%程度)と同じである。このことから、図1に示す測定システムを用いたバターの水分濃度の測定精度は、乾燥減量法の測定精度と同等であることを確認できた。   Next, the measurement result of the water concentration of each butter will be described. FIG. 2 shows the maximum error, average error, and standard deviation of the measured moisture values based on the moisture reference value of each butter. The average error of the moisture measurement value in each measurement time is within 0.1%, which is the same as the systematic error (about 0.1%) of the drying loss method. From this, it was confirmed that the measurement accuracy of the moisture concentration of the butter using the measurement system shown in FIG. 1 is equivalent to the measurement accuracy of the drying loss method.

なお、バターの色相および表面温度が近赤外線を用いた各バターの水分濃度の測定に影響を及ぼすことが知られている。各測定回において、バターの色相および表面温度が変化しているが、各測定回における水分測定値の平均誤差は0.1%以内である。このことから、図1に示す測定システムを用いることによって、バターの色相および表面温度の変化の影響を受けることなくバターの水分濃度を高精度で測定できるといえる。これは、フーリエ変換型の近赤外分光器は、1スキャンに要する時間が他の近赤外分光器(回折格子型、干渉フィルター型など)に対して圧倒的に短いために、サンプルの色相や温度変化を捉え難いためである。   It is known that the hue and surface temperature of butter affect the measurement of the moisture concentration of each butter using near infrared rays. In each measurement time, the hue and surface temperature of the butter change, but the average error of the moisture measurement value in each measurement time is within 0.1%. From this, it can be said that by using the measurement system shown in FIG. 1, the moisture concentration of butter can be measured with high accuracy without being affected by changes in the hue and surface temperature of the butter. This is because the Fourier transform type near-infrared spectrometer is overwhelmingly shorter than the other near-infrared spectrometers (diffraction grating type, interference filter type, etc.) for one scan. This is because it is difficult to detect changes in temperature.

次に、各バターの水分測定値の経時変化について説明する。図3は、無塩バターの水分測定値の経時変化の一例を示すグラフである。図4は、有塩バターの水分測定値の経時変化の一例を示すグラフである。図5は、発酵バターの水分測定値の経時変化の一例を示すグラフである。図3〜図5に示すグラフは、いずれも第2回の測定時に取得したデータである。   Next, the change with time of the moisture measurement value of each butter will be described. FIG. 3 is a graph showing an example of a time-dependent change in the moisture measurement value of unsalted butter. FIG. 4 is a graph showing an example of a time-dependent change in the moisture measurement value of salted butter. FIG. 5 is a graph showing an example of a time-dependent change in the moisture measurement value of fermentation butter. The graphs shown in FIGS. 3 to 5 are all data acquired at the time of the second measurement.

上述したように、各測定回においてバターの製造条件を変更している。たとえば、図3では、領域21においてエージングタンクを切り替えた。領域22および24においてバター粒に添加する水の量を増加させた。領域23においてバター粒に添加する水の量を減少させた。また、図4では、領域31においてワーキング回転数およびクリーム加温温度をそれぞれ上昇させた。領域32においてワーキング回転数を低下させた。領域33においてエージングタンクを切り替えた。また、図5では、領域41において発酵乳調合液の添加量を少なくした。領域42においてエージングタンクを切り替えた。   As described above, the production conditions of butter are changed in each measurement time. For example, in FIG. 3, the aging tank is switched in the region 21. In regions 22 and 24, the amount of water added to the butter grains was increased. In region 23, the amount of water added to the butter granules was reduced. In FIG. 4, the working rotational speed and the cream heating temperature are increased in the region 31. In region 32, the working speed was reduced. In area 33, the aging tank was switched. Moreover, in FIG. 5, the addition amount of fermented milk preparation liquid was decreased in the area | region 41. In FIG. In area 42, the aging tank was switched.

図3〜図5に示すように、バターの製造条件を変更しても、各バターの水分基準値と水分測定値とが同じように変動している。また、第1回および第3回の測定においても、同様の結果が得られた。つまり、図1に示す測定システムを用いたバターの水分濃度の測定において、各バターの製造条件の変更は、測定精度に影響を及ぼさないといえる。   As shown in FIGS. 3 to 5, even if the butter production conditions are changed, the moisture reference value and the moisture measurement value of each butter fluctuate in the same manner. Similar results were obtained in the first and third measurements. In other words, in the measurement of the moisture concentration of butter using the measurement system shown in FIG. 1, it can be said that the change in the production conditions of each butter does not affect the measurement accuracy.

(測定2:有塩バターの塩分濃度の測定)
また、上述の測定1で説明した有塩バターの水分濃度の測定と同時に、有塩バターの塩分濃度を測定した。以下、有塩バターの塩分濃度の測定手順、および測定結果について、上述の測定1の説明と異なる部分を中心に説明する。
(Measurement 2: Measurement of salinity of salted butter)
Moreover, simultaneously with the measurement of the moisture concentration of the salted butter described in Measurement 1 above, the salt concentration of the salted butter was measured. Hereinafter, the measurement procedure of the salinity concentration of salted butter and the measurement result will be described with a focus on the differences from the description of measurement 1 described above.

ここで、有塩バターの塩分濃度の測定手順を説明する。有塩バターの塩分濃度を測定する前に、有塩バターの塩分検量線を水分検量線と同時に作成した。   Here, the measurement procedure of the salt concentration of salted butter will be described. Before measuring the salt concentration of salted butter, a salt calibration curve of salted butter was created at the same time as the moisture calibration curve.

まず、有塩バターの検量線サンプルの塩分濃度を、モール法を用いて測定した。また、有塩バターの吸光度スペクトルを、無塩バターの吸光度スペクトルと同様の手順で取得した。つまり、水の吸収波長域である第1波長域および第2波長域における水分以外のバター成分の近赤外線の吸収の影響を抑制した。こうして得られた検量線サンプルの水分の吸光度スペクトルにおける、塩分が存在することによる水の吸収波長域のピークのシフトを塩分吸光度とし、各波長域における水の吸収波長を基準にして塩分吸光度を求めた。そして、ピークのシフト(塩分吸光度)と塩分濃度との相関関係を計算し、有塩バターの塩分検量線を作成した。   First, the salt concentration of a calibration curve sample of salted butter was measured using the Mole method. In addition, the absorbance spectrum of salted butter was obtained in the same procedure as the absorbance spectrum of unsalted butter. That is, the influence of near-infrared absorption of butter components other than moisture in the first wavelength range and the second wavelength range, which are water absorption wavelength ranges, was suppressed. In the moisture absorption spectrum of the calibration curve sample obtained in this way, the peak shift in the absorption wavelength range of water due to the presence of salinity is defined as the salinity absorbance, and the salt absorbance is obtained with reference to the absorption wavelength of water in each wavelength range It was. Then, the correlation between peak shift (salinity absorbance) and salinity concentration was calculated, and a salinity calibration curve for salted butter was prepared.

塩分検量線の作成後、流出口11から流出する有塩バターの塩分濃度を、分光器3が取得した有塩バターの吸光度スペクトルに基づいて測定した。有塩バターの吸光度スペクトルに基づいて求める塩分濃度を、有塩バターの塩分測定値とする。   After preparation of the salinity calibration curve, the salinity concentration of the salted butter flowing out from the outlet 11 was measured based on the absorbance spectrum of the salted butter acquired by the spectrometer 3. The salinity concentration obtained based on the absorbance spectrum of the salted butter is taken as the salinity measurement value of the salted butter.

具体的には、有塩バターの塩分濃度を求めるために、有塩バターの水分測定値を求める際に用いた水の吸光度スペクトルから、有塩バターの塩分吸光度を求めた。有塩バターの塩分吸光度を求める手順は、検量線サンプルの塩分吸光度を求める手順と同じである。求めた塩分吸光度と塩分検量線とに基づいて、有塩バターの塩分測定値を求めた。なお、第1回〜第3回の測定を通じて、有塩バターの塩分測定値を求める際に同一の塩分検量線を用いた。   Specifically, in order to determine the salinity concentration of the salted butter, the salt absorbance of the salted butter was determined from the absorbance spectrum of the water used when determining the moisture measurement value of the salted butter. The procedure for obtaining the salt absorbance of the salted butter is the same as the procedure for obtaining the salt absorbance of the calibration curve sample. Based on the obtained salt absorbance and the salt calibration curve, the salinity measurement value of the salted butter was obtained. In addition, the same salinity calibration curve was used when calculating | requiring the salinity measurement value of salted butter through the 1st-3rd measurement.

また、有塩バターの基準サンプルの塩分濃度を、モール法を用いて測定した。基準サンプルの塩分濃度を塩分基準値とする。そして、塩分基準値と基準サンプルの採取タイミングに対応する塩分測定値とを比較した。   Moreover, the salt concentration of the reference | standard sample of salted butter was measured using the Mole method. The salinity of the reference sample is taken as the salinity reference value. Then, the salinity reference value was compared with the salinity measurement value corresponding to the sampling timing of the reference sample.

次に、有塩バターの塩分濃度の測定結果を説明する。図6に、塩分基準値を基準とした塩分測定値の最大誤差、平均誤差、および標準偏差を示す。各測定回における塩分測定値の平均誤差は0.1%以内であり、モール法の系統誤差(0.1%程度)と同じである。このことから、図1に示す測定システムを用いることによって、有塩バターの色相および表面温度の変化の影響を受けることなく、有塩バターの塩分濃度を高精度で測定できることを確認できた。これは、近赤外線の波長域を連続的に測定可能なアレイ検出型の分光器、あるいは音響光学変調フィルタ(ATOF)型の近赤外分光器と比較して、フーリエ変換型の近赤外分光器の波長分解能が圧倒的に優れているためである。フーリエ変換型の分光器を用いることによって、塩分濃度によって変化する水の吸光度スペクトルにおけるピーク波長と所定波長(水の吸収波長)との僅かなズレを検知することができる。   Next, the measurement result of the salt concentration of salted butter will be described. FIG. 6 shows the maximum error, average error, and standard deviation of the salinity measurement values based on the salinity reference value. The average error of the salinity measurement value in each measurement time is within 0.1%, which is the same as the systematic error (about 0.1%) of the Mole method. From this, it was confirmed that by using the measurement system shown in FIG. 1, the salinity concentration of the salted butter can be measured with high accuracy without being affected by changes in the hue and surface temperature of the salted butter. Compared with an array detection type spectrometer capable of continuously measuring the near infrared wavelength range or an acousto-optic modulation filter (ATOF) type near infrared spectrometer, this is a Fourier transform type near infrared spectroscopy. This is because the wavelength resolution of the device is overwhelmingly excellent. By using a Fourier transform type spectroscope, it is possible to detect a slight deviation between the peak wavelength and the predetermined wavelength (water absorption wavelength) in the water absorbance spectrum that varies depending on the salinity concentration.

図7は、第2回測定時の有塩バターの塩分測定値の経時変化を示すグラフである。上述したように、有塩バターの水分濃度の測定時に、有塩バターの製造条件を変更している。図7では、領域51においてワーキング回転数およびクリーム加温温度をそれぞれ上昇させた。領域52においてワーキング回転数を低下させた。領域53においてエージングタンクを切り替えた。なお、図4に示す領域31〜33と、図7に示す領域51〜53とは、バターの製造条件の変更内容がそれぞれ対応している。   FIG. 7 is a graph showing the change over time in the measured salt content of salted butter during the second measurement. As described above, the production conditions of the salted butter are changed when the moisture concentration of the salted butter is measured. In FIG. 7, the working rotational speed and the cream heating temperature are increased in the region 51. In region 52, the working speed was reduced. In area 53, the aging tank was switched. Note that the areas 31 to 33 shown in FIG. 4 and the areas 51 to 53 shown in FIG.

図7に示すように、有塩バターの製造条件の変更に関係なく、有塩バターの塩分基準値と塩分測定値とが同じように変動している。第1回および第3回の測定でも、同様の結果が得られた。つまり、図1に示す測定システムを用いた有塩バターの塩分濃度の測定において、有塩バターの製造条件の変更は、測定精度に影響を及ぼさないといえる。   As shown in FIG. 7, the salinity reference value and the salinity measurement value of the salted butter fluctuate in the same manner regardless of changes in the production conditions of the salted butter. Similar results were obtained in the first and third measurements. That is, it can be said that, in the measurement of the salinity of salted butter using the measurement system shown in FIG. 1, the change in the production conditions of the salted butter does not affect the measurement accuracy.

以上、説明したように、本実施の形態に係るバター成分の測定方法は、フーリエ変換を用いた近赤外分光器3を用いることによって、従来の測定法と同じ精度で、バターの色相および表面温度の変化の影響を受けることなく、バターの水分濃度および塩分濃度を同時に測定することができる。   As described above, the measurement method of the butter component according to the present embodiment uses the near-infrared spectrometer 3 using the Fourier transform, so that the hue and surface of the butter can be obtained with the same accuracy as the conventional measurement method. Without being affected by changes in temperature, the water concentration and salinity concentration of butter can be measured simultaneously.

また、本実施の形態に係るバター成分の測定方法は、水の吸光度スペクトルから水分吸光度および塩分吸光度を一定間隔で取得することによって、バターの水分濃度および塩分濃度を、非接触、かつオンラインで、継続的に測定できる。これにより、製造条件の変更に伴うバターの水分濃度および塩分濃度の変化を迅速に捉えることができる。   In addition, the method for measuring the butter component according to the present embodiment obtains the moisture absorbance and the salinity absorbance from the water absorbance spectrum at regular intervals, so that the moisture concentration and the salinity concentration of the butter are contactless and online, Can measure continuously. Thereby, the change of the water | moisture content of a butter | batter and the salt concentration accompanying the change of manufacturing conditions can be caught quickly.

また、本実施の形態に係るバター成分の測定方法は、フーリエ変換を用いた近赤外分光器3を用いることによって、バター20の水分濃度および塩分濃度を同時に求めることができる。さらに、バターの水分濃度および塩分濃度を同時に測定するだけでなく、他の成分の濃度も同時に測定できる。   Moreover, the measuring method of the butter component which concerns on this Embodiment can obtain | require the water | moisture-content density | concentration and salt concentration of the butter 20 simultaneously by using the near-infrared spectrometer 3 using a Fourier transform. Furthermore, not only can the water content and salt concentration of butter be measured simultaneously, but also the concentrations of other components can be measured simultaneously.

具体的には、バター20の吸光度スペクトルから、測定成分の吸収波長域における測定成分の吸光度スペクトルを、水の吸光度スペクトルを取得した手順と同じ手順で取得し、測定成分の吸光度を求める。そして、測定成分の吸光度と検量線とに基づいて、バター20の測定成分の濃度を求めればよい。   Specifically, the absorbance spectrum of the measurement component in the absorption wavelength region of the measurement component is obtained from the absorbance spectrum of the butter 20 by the same procedure as the procedure for obtaining the absorbance spectrum of water, and the absorbance of the measurement component is obtained. Then, the concentration of the measurement component of butter 20 may be obtained based on the absorbance of the measurement component and the calibration curve.

たとえば、バター20の水分濃度および塩分濃度を測定すると同時に、バターの品質の指標となる乳酸、脂肪などの濃度を同時に測定することができる。乳酸の場合、発酵バターの吸光度スペクトルから1600nm〜1700nmにおけるメチル基の吸光度、1850nm〜1900nmにおけるカルボキシル基の吸光度、および2000nm〜2100nmにおけるヒドロキシル基の吸光度を求めることによって、乳酸の濃度を測定できる。さらに、乳酸の濃度とpHとが相関関係にあると仮定することによって、発酵バターのpH値を求めてもよい。また、脂肪の場合、バターの吸光度スペクトルから2200nm〜2500nmにおけるメチル基の吸光度を求めることによって、バターの脂肪の濃度を測定することができる。   For example, it is possible to simultaneously measure the concentration of lactic acid, fat, and the like, which serve as an index of butter quality, while measuring the moisture concentration and salt concentration of butter 20. In the case of lactic acid, the concentration of lactic acid can be measured by determining the absorbance of methyl group at 1600 nm to 1700 nm, the absorbance of carboxyl group at 1850 nm to 1900 nm, and the absorbance of hydroxyl group at 2000 nm to 2100 nm from the absorbance spectrum of fermentation butter. Further, the pH value of the fermentation butter may be obtained by assuming that the concentration of lactic acid and the pH are in a correlation. In the case of fat, the concentration of butter fat can be measured by determining the absorbance of the methyl group at 2200 nm to 2500 nm from the absorbance spectrum of butter.

{第2の実施の形態}
図8は、本実施の形態に係るバターの製造方法に用いられるバター製造システムの概略図である。図8に示すバター製造システムは、上記第1の実施の形態に係るバター成分の測定方法で得られたバターの水分濃度および塩分濃度に基づいて、ワーキング処理前のバター粒に添加する水または食塩水の量を制御する。なお、図8において、図1と同じ構成要素には同じ参照符号を付している。
{Second Embodiment}
FIG. 8 is a schematic diagram of a butter production system used in the method for producing butter according to the present embodiment. The butter production system shown in FIG. 8 is based on the water concentration and salt concentration of butter obtained by the method for measuring a butter component according to the first embodiment. Control the amount of water. In FIG. 8, the same components as those in FIG. 1 are denoted by the same reference numerals.

制御部6は、PC5が求めたバターの水分濃度あるいは塩分濃度などの測定値に応じて添加ポンプ12の動作周波数を制御し、バター粒に添加する水または食塩水の添加量を調節する。添加ポンプ12は、バター製造機1に組み込まれており、バター粒に水または食塩水を添加するポンプである。   The control unit 6 controls the operating frequency of the addition pump 12 in accordance with the measurement value such as the water concentration or salt concentration of butter obtained by the PC 5, and adjusts the amount of water or saline added to the butter granules. The addition pump 12 is incorporated in the butter making machine 1 and is a pump for adding water or saline to the butter granules.

以下、本実施の形態に係るバター製造方法の詳細を、図8に示すバター製造システムを用いて行った、バターの水分濃度および塩分濃度の自動制御試験の内容に基づいて説明する。   Hereinafter, the details of the butter manufacturing method according to the present embodiment will be described based on the contents of the automatic control test of the water concentration and the salt concentration of butter performed using the butter manufacturing system shown in FIG.

(制御試験1:無塩バターの水分濃度の制御試験)
まず、無塩バターの水分濃度の制御試験の手順について説明する。PC5を用いて、上述の測定1において説明した手順で、無塩バターの水分測定値および水分基準値を求めた。そして、制御部6を用いて、水分測定値と制御部6に予め設定された水分濃度の目標値(水分目標値)とに基づいて、添加ポンプ12の動作周波数を決定した。このとき、制御部6にワンループコントローラを用い、動作周波数をPID制御方式に基づいて決定した。このように、添加ポンプ12を決定した動作周波数で制御させることによって、バター粒に添加する水の量を調節した。
(Control test 1: Control test of moisture concentration of unsalted butter)
First, the procedure of the control test of the moisture concentration of unsalted butter will be described. Using PC5, the moisture measurement value and the moisture reference value of unsalted butter were obtained by the procedure described in Measurement 1 above. And using the control part 6, the operating frequency of the addition pump 12 was determined based on the moisture measurement value and the target value (moisture target value) of the moisture concentration preset in the control part 6. At this time, a one-loop controller was used for the controller 6 and the operating frequency was determined based on the PID control method. In this manner, the amount of water added to the butter granules was adjusted by controlling the addition pump 12 at the determined operating frequency.

なお、本試験において、水分濃度の目標値を、16.0%〜16.5%に設定した。また、本試験において、無塩バターの水分測定値を求めるために用いる水分検量線は、測定1における第1回〜第3回の測定時に用いた水分検量線と同一である。また、本試験中にPID制御の各パラメータ値を変更し、水分濃度値の変動幅を確認した。   In this test, the target value of the moisture concentration was set to 16.0% to 16.5%. In this test, the moisture calibration curve used for determining the moisture measurement value of unsalted butter is the same as the moisture calibration curve used during the first to third measurements in Measurement 1. Moreover, each parameter value of PID control was changed during this test, and the fluctuation range of the moisture concentration value was confirmed.

次に、無塩バターの水分濃度の制御試験の結果について説明する。図9は、本試験における無塩バターの水分測定値の経時変化を示すグラフである。なお、水分目標値が示された期間において、水分濃度の自動制御を行っている。   Next, the result of the control test of the moisture concentration of unsalted butter will be described. FIG. 9 is a graph showing the change with time of the moisture measurement value of unsalted butter in this test. The moisture concentration is automatically controlled during the period when the moisture target value is indicated.

図9に示す各領域におけるPID制御の条件を以下のように設定している。領域71において、P=87、I=139、D=35である。また、領域72において、P=120、I=139、D=35である。また、領域73および領域74において、P=120、I=80、D=35である。   The conditions for PID control in each area shown in FIG. 9 are set as follows. In the region 71, P = 87, I = 139, and D = 35. In the region 72, P = 120, I = 139, and D = 35. In the region 73 and the region 74, P = 120, I = 80, and D = 35.

図9に示すように、領域71〜73において水分目標値を16.0%に固定したが、無塩バターの水分測定値は、水分目標値を中心に変動した。また、PID制御の各パラメータの値に応じて、水分測定値の変動幅が異なることがわかる。特に、領域73における水分測定値は、水分目標値の±0.2%程度の範囲内で変動していた。一方、領域74では、水分目標値を16.0%〜16.5%の範囲で変化させた。このとき、水分目標値を変更してから無塩バターの水分測定値が水分目標値の±0.2%以内の範囲となるまでの時間は約1〜2分であった。また、各領域において、水分基準値に対する水分測定値の平均誤差は、0.1%以内であった。これらのことから、PID制御の各パラメータ値を適切に設定することによって、無塩バターの水分濃度を安定的に制御できることを確認できた。   As shown in FIG. 9, the moisture target value was fixed at 16.0% in the regions 71 to 73, but the moisture measurement value of the unsalted butter varied around the moisture target value. Moreover, it turns out that the fluctuation range of a moisture measurement value changes according to the value of each parameter of PID control. Particularly, the moisture measurement value in the region 73 fluctuated within a range of about ± 0.2% of the moisture target value. On the other hand, in the region 74, the moisture target value was changed in the range of 16.0% to 16.5%. At this time, the time from when the moisture target value was changed until the moisture measurement value of the unsalted butter was within ± 0.2% of the moisture target value was about 1-2 minutes. In each region, the average error of the moisture measurement value with respect to the moisture reference value was within 0.1%. From these facts, it was confirmed that the moisture concentration of unsalted butter can be stably controlled by appropriately setting each parameter value of PID control.

また、領域72においてエージングタンクを切り替えたが、切り替えの前後で無塩バターの水分測定値が水分目標値から大きく逸脱していない。この結果から、無塩バターの製造条件を変更しても、無塩バターの水分濃度が安定的に制御できることを確認できた。   Moreover, although the aging tank was switched in the area | region 72, the water | moisture-content measured value of an unsalted butter does not deviate significantly from the water | moisture-content target value before and after switching. From this result, it was confirmed that the moisture concentration of the unsalted butter could be stably controlled even if the production conditions for the unsalted butter were changed.

本試験の結果から、図8に示すバター製造システムを用いることによって、無塩バターの水分濃度を安定的に制御できるといえる。また、本試験の結果から、図8に示すバター製造システムを用いて、有塩バターおよび発酵バターの水分濃度についても、安定的に制御可能であるといえる。   From the results of this test, it can be said that the moisture concentration of unsalted butter can be stably controlled by using the butter production system shown in FIG. From the results of this test, it can be said that the water concentration of salted butter and fermented butter can be stably controlled using the butter production system shown in FIG.

(制御試験2:有塩バターの塩分濃度値の制御試験)
まず、有塩バターの塩分濃度の制御試験の手順について説明する。PC5を用いて、上述の測定2において説明した手順で、有塩バターの塩分測定値および塩分基準値を求めた。そして、制御部6を用いて、過去5回分の塩分測定値の平均値を求める処理を3分おきに行い、塩分測定値の平均値と、予め設定された塩分濃度の目標値(塩分目標値)とに基づいて添加ポンプ12の動作周波数を決定した。このとき、制御部6としてシーケンサを用いた。添加ポンプ12を決定した動作周波数で動作させることによって、バター粒に添加する食塩水の量を調節した。
(Control test 2: Control test of salinity value of salted butter)
First, the procedure of the salt concentration control test of salted butter will be described. Using PC5, the salinity measurement value and the salinity reference value of the salted butter were obtained by the procedure described in Measurement 2 above. And the process which calculates | requires the average value of the salinity measurement value for the past 5 times using the control part 6 is performed every 3 minutes, the average value of salinity measurement value, and the target value (salinity target value of preset salt concentration) ) And the operating frequency of the addition pump 12 was determined. At this time, a sequencer was used as the control unit 6. By operating the addition pump 12 at the determined operating frequency, the amount of saline solution added to the butter granules was adjusted.

なお、本試験において、有塩バターの塩分濃度の目標値(塩分目標値)を1.5%に設定した。また、本試験において、有塩バターの塩分測定値を求めるために用いる塩分検量線は、測定2における第1回〜第3回の測定時に用いた塩分検量線と同一である。   In this test, the target value of salt concentration of salted butter (salt target value) was set to 1.5%. In this test, the salinity calibration curve used to determine the salinity measurement value of salted butter is the same as the salinity calibration curve used during the first to third measurements in measurement 2.

次に、有塩バターの塩分濃度の制御試験の結果について説明する。図10は、本試験における有塩バターの塩分測定値の経時変化を示すグラフである。なお、塩分目標値が示された期間において、塩分濃度の自動制御を行っている。   Next, the results of the salt concentration control test of salted butter will be described. FIG. 10 is a graph showing the change over time in the measured salt content of salted butter in this test. In addition, the salinity concentration is automatically controlled during the period when the salinity target value is indicated.

図10に示すように、塩分濃度の自動制御中に、有塩バターの塩分測定値が目標値(1.5%)を中心に変動している。塩分測定値の変動幅は、塩分目標値の±0.05%程度の範囲内であった。図10に示す領域81においてエージングタンクを切り替えたが、有塩バターの塩分濃度値が切り替え前後で大きく変動することはなかった。また、塩分基準値に対する塩分測定値の平均誤差は、0.1%以内であった。これらのことから、有塩バターの製造条件の変更に関わらず、図8に示すバター製造システムを用いることによって、有塩バターの塩分濃度を安定的に制御できることを確認できた。   As shown in FIG. 10, during the automatic control of the salinity concentration, the salinity measurement value of the salted butter fluctuates around the target value (1.5%). The fluctuation range of the salinity measurement value was within a range of about ± 0.05% of the target salinity value. In the region 81 shown in FIG. 10, the aging tank was switched, but the salt concentration value of the salted butter did not vary greatly before and after the switching. Moreover, the average error of the salinity measurement value with respect to the salinity reference value was within 0.1%. From these facts, it was confirmed that the salt concentration of the salted butter can be stably controlled by using the butter manufacturing system shown in FIG. 8 regardless of changes in the manufacturing conditions of the salted butter.

また、塩分濃度の自動制御の効果を確認するために、領域82において、塩分濃度の自動制御を中断して、添加ポンプ12の動作周波数を一定にした。この結果、領域82で塩分測定値が約1.5%から1.35%まで低下した。しかし、自動制御を再開すると、塩分測定値は約1.5%まで回復した。また、自動制御の開始から1〜2分で、塩分測定値は、上記の変動幅となることを確認した。この結果からも、図8に示すバター製造システムを用いることによって、有塩バターの塩分濃度が変化しても速やかに塩分濃度を制御できるといえる。   Further, in order to confirm the effect of the automatic control of the salinity, in the region 82, the automatic control of the salinity was interrupted and the operating frequency of the addition pump 12 was made constant. As a result, the salinity measurement value in the region 82 decreased from about 1.5% to 1.35%. However, when automatic control was resumed, the salinity measurement recovered to about 1.5%. In addition, it was confirmed that the measured salinity was within the above fluctuation range in 1 to 2 minutes from the start of automatic control. From this result, it can be said that by using the butter production system shown in FIG. 8, even if the salt concentration of the salted butter changes, the salt concentration can be quickly controlled.

以上、説明したように、図8に示すバター製造システムは、バターの製造条件の変更に伴うバターの水分濃度および塩分濃度の変化を速やかに検出し、バター粒に添加する水または食塩(食塩水)の量を調節する。これにより、一定の水分濃度あるいは塩分濃度を有するバターを、安定的に製造することが可能となる。   As described above, the butter production system shown in FIG. 8 quickly detects changes in the moisture concentration and salt concentration of butter accompanying changes in the butter production conditions, and adds water or salt (saline solution) to the butter granules. ). Thereby, it becomes possible to stably produce butter having a constant moisture concentration or salt concentration.

また、図8に示すバター製造システムを用いることによって、バターの水分濃度および塩分濃度を、制御開始から数分で目標値の0.2%程度および0.05%程度の範囲で制御できる。これにより、製造開始直後のバターの回収量を大幅に低減することができるため、従来と比べて低コストでバターを製造することが可能となる。これは、他の近赤外分光器(回折格子型、干渉フィルター型など)と比較して、フーリエ変換型の近赤外分光器が圧倒的に短い時間で1スキャンを実行することが可能であり、高波長分解能の測定が可能なためである。このように、フーリエ変換型の近赤外分光器を用いることによって、バターの水分濃度および塩分濃度を速やかに調節することができる。   Further, by using the butter production system shown in FIG. 8, the water concentration and the salinity concentration of the butter can be controlled within a range of about 0.2% and 0.05% of the target values within a few minutes from the start of control. Thereby, since the amount of butter recovered immediately after the start of production can be greatly reduced, it becomes possible to produce butter at a lower cost than in the past. Compared with other near infrared spectrometers (diffraction grating type, interference filter type, etc.), the Fourier transform type near infrared spectrometer can execute one scan in an extremely short time. This is because measurement with high wavelength resolution is possible. Thus, by using a Fourier transform type near-infrared spectrometer, the moisture concentration and salinity concentration of butter can be quickly adjusted.

なお、本実施の形態において、水および食塩水のいずれかを個別にバター粒に添加するものとして説明したが、これに限られるものではない。たとえば、バター製造機1が2台の添加ポンプ12を有する場合、バター粒に添加する水および食塩水の量を同時に調節してもよい。これにより、一定の品質の有塩バターを製造することがさらに容易となる。   In addition, in this Embodiment, although demonstrated as what adds any one of water and salt solution to a butter grain separately, it is not restricted to this. For example, when the butter making machine 1 has two addition pumps 12, the amounts of water and saline added to the butter grains may be adjusted simultaneously. This makes it easier to produce salted butter of a certain quality.

また、本実施の形態で説明した制御試験において、水分基準値および塩分基準値を求めたが、実際のバターの製造現場において、水分基準値および塩分基準値を測定しなくてもよいことは言うまでもない。   Further, in the control test described in the present embodiment, the moisture reference value and the salinity reference value were obtained, but it goes without saying that the moisture reference value and the salinity reference value do not have to be measured at the actual butter production site. Yes.

また、上記実施の形態において、第1波長域の水の吸光度スペクトルと第2波長域の水の吸光度スペクトルとを用いて、水分吸光度および塩分吸光度を求めているが、これに限られるものではない。たとえば、第1波長域の水の吸光度スペクトル、および第2波長域の水の吸光度スペクトルのいずれかを用いて、水分吸光度および塩分吸光度を求めてもよい。   In the above embodiment, the water absorbance and the salt absorbance are obtained using the water absorbance spectrum of the first wavelength region and the water absorbance spectrum of the second wavelength region. However, the present invention is not limited to this. . For example, the water absorbance and the salt absorbance may be obtained using either the absorbance spectrum of water in the first wavelength range or the absorbance spectrum of water in the second wavelength range.

なお、上記実施の形態において、バターの水分濃度および塩分濃度を測定する例について説明したが、これに限られるものではない。上述した測定方法を用いて、一般的な食品や乳製品における水分、塩分、脂肪、乳酸(pH)などの各種成分を同時に測定することが可能である。また、上述した測定方法を用いて、製造中の一般的な食品や乳製品の各種成分の濃度を測定し、測定結果に基づいて、製造中の一般的な食品や乳製品などに(オンラインで)添加する各種成分の量を調整することも可能である。このとき、バターでは製造中の品質を一定にすることが特に難しいため、上記実施の形態の効果が特に発揮されやすいと考えられる。しかし、マーガリン、スプレッド、ナチュラルチーズ、プロセスチーズ、ヨーグルト、プリンなどでも、上記実施の形態の効果は十分に発揮されると考えられる。   In addition, although the example which measures the water | moisture content and salt concentration of a butter was demonstrated in the said embodiment, it is not restricted to this. Using the measurement method described above, various components such as moisture, salt, fat, and lactic acid (pH) in general foods and dairy products can be simultaneously measured. In addition, using the measurement method described above, the concentration of various components of general foods and dairy products being manufactured is measured, and on the basis of the measurement results, general foods and dairy products being manufactured (online It is also possible to adjust the amount of various components to be added. At this time, since it is particularly difficult to keep the quality during production with butter, it is considered that the effect of the above embodiment is particularly easily exhibited. However, it is considered that the effects of the above embodiments are sufficiently exhibited even with margarine, spread, natural cheese, process cheese, yogurt, pudding, and the like.

この発明を添付図面に示す実施態様について説明したが、この発明は、その詳細な説明の記載をもって制約されるものではなく、特許請求の範囲に記載する範囲において広く構成される。   Although the present invention has been described with reference to the embodiments shown in the accompanying drawings, the present invention is not limited by the description of the detailed description, and is broadly configured within the scope of the claims.

Claims (17)

バターの製造方法であって、
水分濃度および水分吸光度が既知の複数の参照用バターを用いて、各参照用バターの水分濃度と水分吸光度との対応関係を示す水分検量線を作成する工程と、
バターの製造装置の流出口から流出する製造後のバターに、800nmから2500nmまでの波長域に含まれる連続する波長を有する近赤外線を時間的に連続して照射し、前記製造後のバターの表面で反射する近赤外線を時間的に連続して受光し、受光した近赤外線に基づいて前記製造後のバターの吸光度スペクトルを取得する工程と、
前記製造後のバターの吸光度スペクトルから、前記波長域に含まれる水の吸収波長域に対応する水の吸光度スペクトルを抽出する工程と、
前記水の吸光度スペクトルにおけるピーク値に基づいて、前記製造後のバターの水分吸光度を求める工程と、
前記製造後のバターの水分吸光度と前記水分検量線とに基づいて、前記製造後のバターの水分濃度を求める工程と、
前記製造後のバターの水分濃度に基づいて、製造中のバターに添加する水の量を調節する工程と、
を備える。
A method for producing butter,
Using a plurality of reference butters with known moisture concentrations and moisture absorbances, creating a moisture calibration curve indicating the correspondence between the moisture concentration and moisture absorbance of each reference butter;
The butter over after manufacture flowing out from the outlet of the butter manufacturing apparatus, the near infrared having a wavelength of successive included in the wavelength range from 800nm to 2500nm irradiated temporally continuously, butter over after the production a step of the near infrared rays reflected light successively in time at the surface, get the absorbance spectra of butter over after the production, based on the near infrared ray received in,
From the absorbance spectrum of the butter over after the production, a step of extracting the absorbance spectrum of water corresponding to the absorption wavelength range of the water contained in the wavelength range,
A step of based on the peak value, determine the water absorbance of the butter over after the production of the absorbance spectrum of the water,
On the basis of moisture absorbance of butter over after manufacture and to said water calibration curve, and obtaining a water concentration of butter over after the production,
Based on the moisture concentration of butter over after the production, a step of adjusting the amount of water added to the butter during the production,
Is provided.
請求項1に記載のバターの製造方法において、さらに、
各参照用バターの塩分濃度および塩分吸光度が既知であり、各参照用バターの塩分濃度と塩分吸光度との対応関係を示す塩分検量線を作成する工程と、
前記水の吸光度スペクトルにおけるピーク波長と所定波長との波長差に基づいて、前記製造後のバターの塩分吸光度を求める工程と、
前記製造後のバターの塩分吸光度と前記塩分検量線とに基づいて、前記製造後のバターの塩分濃度を求める工程と、
前記製造後のバターの塩分濃度に基づいて、製造中のバターに添加する食塩の量を調節する工程と、
を備える。
The method for producing butter according to claim 1, further comprising:
Creating a salinity calibration curve in which the salinity and salinity absorbance of each reference butter are known and indicating the correspondence between the salinity and salinity of each reference butter;
A step of, based on the wavelength difference between the peak wavelength and the predetermined wavelength, obtaining a salinity absorbance of butter over after the production of the absorbance spectrum of the water,
On the basis of salinity absorbance butter over after manufacture and the said salinity calibration curve, and obtaining a salinity of butter over after the production,
Based on the salinity of the butter over after the production, a step of adjusting the amount of salt added to the butter during the production,
Is provided.
請求項1に記載のバターの製造方法において、さらに、
各参照用バターの塩分濃度および塩分吸光度が既知であり、各参照用バターの塩分濃度と塩分吸光度との対応関係を示す塩分検量線を作成する工程と、
前記水の吸光度スペクトルにおけるピーク波長と所定波長との波長差に基づいて、前記製造後のバターの塩分吸光度を求める工程と、
前記製造後のバターの塩分吸光度と前記塩分検量線とに基づいて、前記製造後のバターの塩分濃度を求める工程と、
を備え、
前記水の量を調節する工程は、
前記製造後のバターの前記水分濃度と前記塩分濃度とに基づいて、前記製造中のバターに添加する水の量と食塩の量とを決定する工程と、
前記決定する工程の決定に基づいて、前記製造中のバターに水および食塩を同時に添加する工程と、
を含む。
The method for producing butter according to claim 1, further comprising:
Creating a salinity calibration curve in which the salinity and salinity absorbance of each reference butter are known and indicating the correspondence between the salinity and salinity of each reference butter;
A step of, based on the wavelength difference between the peak wavelength and the predetermined wavelength, obtaining a salinity absorbance of butter over after the production of the absorbance spectrum of the water,
On the basis of salinity absorbance butter over after manufacture and the said salinity calibration curve, and obtaining a salinity of butter over after the production,
With
The step of adjusting the amount of water includes:
And determining the said water content and on the basis of said salinity, amount and the amount of salt in the water to be added to the butter during the production of butter over after the production,
Based on the determination of the determining step, simultaneously adding water and sodium chloride to the butter being manufactured;
including.
請求項3に記載のバターの製造方法において、
前記製造中のバターに添加される食塩は、濃度が既知の食塩水であり、
前記決定する工程は、前記製造後のバターの前記水分濃度と前記塩分濃度とに基づいて、前記製造中のバターに添加する前記食塩水の量を決定する。
The method for producing butter according to claim 3,
The salt added to the butter during manufacture is a saline solution having a known concentration,
It said step of determining is the basis the water content of the butter over after manufacture and the said salinity, to determine the amount of the saline to be added to the butter during the production.
請求項1に記載のバターの製造方法において、
前記水の吸収波長域は、1300nmから1600nmまでの波長域、および1800nmから2100nmまでの波長域である。
The method for producing butter according to claim 1,
The water absorption wavelength range is a wavelength range from 1300 nm to 1600 nm and a wavelength range from 1800 nm to 2100 nm.
請求項1に記載のバターの製造方法において、
前記バターの吸光度スペクトルを取得する工程は、フーリエ変換型の近赤外線分光器を用いて前記製造後のバターの吸光度スペクトルを取得する。
The method for producing butter according to claim 1,
A step of obtaining the absorbance spectrum of the butter obtains the absorbance spectrum of the butter over after the production using a Fourier transform near infrared spectrometer.
請求項1に記載のバターの製造方法において、
前記製造中のバターは、
製造条件の異なる複数のバター、
を含む。
The method for producing butter according to claim 1,
The butter being manufactured is
Multiple butters with different production conditions,
including.
請求項1に記載のバターの製造方法において、
前記水の吸光度スペクトルを抽出する工程は、前記製造後のバターの吸光度スペクトルに対して微分処理およびPLS(Partial Least Square)解析を実行する。
The method for producing butter according to claim 1,
A step of extracting the absorbance spectrum of the water performs a differential processing and PLS (Partial Least Square) analysis on the absorbance spectrum of the butter over after the production.
バター成分の測定方法であって、
測定成分の吸光度および濃度が既知の複数の参照用バターを用いて、各参照用バターの前記測定成分の吸光度と濃度との対応関係を示す検量線を作成する工程と、
バターの製造装置の流出口から流出するバターに、800nmから2500nmまでの波長域に含まれる連続する波長を有する近赤外線を時間的に連続して照射し、前記バターの表面で反射する近赤外線を時間的に連続して受光し、受光した近赤外線に基づいて前記バターの吸光度スペクトルを取得する工程と、
前記バターの吸光度スペクトルから、前記波長域に含まれる前記測定成分の吸収波長域に対応する、前記測定成分の吸光度スペクトルを抽出する工程と、
前記測定成分の吸光度スペクトルから、前記バターの前記測定成分の吸光度を求める工程と、
前記バターの前記測定成分の吸光度と前記検量線とに基づいて前記バターの前記測定成分の濃度を求める工程と、
を備える。
A method for measuring a butter component,
Using a plurality of reference butters whose absorbance and concentration of the measurement component are known, a step of creating a calibration curve indicating the correspondence between the absorbance and concentration of the measurement component of each reference butter;
The butter over flowing from the outlet of the butter manufacturing apparatus, the near infrared having a wavelength of successive included in the wavelength range from 800nm to 2500nm irradiated temporally continuously, near-reflected by the surface of the butter over infrared temporally consecutively received, a step of acquiring the absorbance spectrum of the butter over based on the near infrared rays received,
A step of extracting from the absorbance spectrum of the butter over, corresponding to the absorption wavelength region of the measurement component included in the wavelength range, the absorption spectrum of the measurement component,
From the absorbance spectrum of the measurement component, a step of determining the absorbance of the measurement component of the butter over,
A step of determining the concentration of the measurement component of the butter over based absorbance of the measurement component of the butter over to the above calibration curve,
Is provided.
請求項9に記載のバター成分の測定方法において、
前記測定成分は、水分であり、
前記吸光度を求める工程は、
前記測定成分の吸光度スペクトルのピーク値に基づいて、前記バターの水分吸光度を求める工程、
を含む。
The method for measuring a butter component according to claim 9,
The measurement component is moisture,
The step of obtaining the absorbance comprises
Based on the peak value of the absorbance spectrum of the measurement component, obtaining a water absorbance of the butter over,
including.
請求項10に記載のバター成分の測定方法において、
前記測定成分の吸収波長域は、1300nmから1600nmまでの波長域、および1800nmから2100nmまでの波長域である。
The method for measuring a butter component according to claim 10,
The absorption wavelength range of the measurement component is a wavelength range from 1300 nm to 1600 nm and a wavelength range from 1800 nm to 2100 nm.
請求項9に記載のバター成分の測定方法において、
前記測定成分は、塩分であり、
前記測定成分の吸光度スペクトルを抽出する工程は、
前記測定成分の吸光度スペクトルとして、水の吸収波長域に対応する水の吸光度スペクトルを取得する工程、
を含み、
前記吸光度を求める工程は、
前記水の吸光度スペクトルのピーク波長と所定波長との波長差に基づいて、前記バターの塩分吸光度を求める工程、
を含む。
The method for measuring a butter component according to claim 9,
The measurement component is salt,
The step of extracting the absorbance spectrum of the measurement component includes:
A step of obtaining an absorbance spectrum of water corresponding to an absorption wavelength range of water as an absorbance spectrum of the measurement component;
Including
The step of obtaining the absorbance comprises
Process based on the wavelength difference between the peak wavelength and the predetermined wavelength of the absorbance spectrum of the water to determine the salinity absorbance of the butter over,
including.
請求項12に記載のバター成分の測定方法において、
前記測定成分の吸収波長域は、1300nmから1600nmまでの波長域、および1800nmから2100nmまでの波長域である。
The method for measuring a butter component according to claim 12,
The absorption wavelength range of the measurement component is a wavelength range from 1300 nm to 1600 nm and a wavelength range from 1800 nm to 2100 nm.
請求項9に記載のバター成分の測定方法において、
前記測定成分は、脂肪であり、
前記測定成分の吸収波長域は、2200nmから2500nmまでの波長域である。
The method for measuring a butter component according to claim 9,
The measurement component is fat,
The absorption wavelength region of the measurement component is a wavelength region from 2200 nm to 2500 nm.
請求項9に記載のバター成分の測定方法において、
前記測定成分は、乳酸であり、
前記測定成分の吸収波長域は、1600nmから1700nmまでの波長域、1850nmから1900nm波長域、および2000nmから2100nmまでの波長域である。
The method for measuring a butter component according to claim 9,
The measurement component is lactic acid,
The absorption wavelength range of the measurement component is a wavelength range from 1600 nm to 1700 nm, a wavelength range from 1850 nm to 1900 nm, and a wavelength range from 2000 nm to 2100 nm.
請求項9に記載のバター成分の測定方法において、
前記バターの吸光度スペクトルを取得する工程は、フーリエ変換型の近赤外線分光器を用いる。
The method for measuring a butter component according to claim 9,
A step of obtaining the absorbance spectrum of the butter over the use of Fourier transform near infrared spectrometer.
請求項9に記載のバター成分の測定方法において、
前記測定成分の吸光度スペクトルを抽出する工程は、前記バターの吸光度スペクトルに対して微分処理およびPLS(Partial Least Square)解析を実行する。
The method for measuring a butter component according to claim 9,
It said step of extracting the absorbance spectrum of the measurement component performs differential processing and PLS (Partial Least Square) analysis on the absorbance spectrum of the butter over.
JP2009534264A 2007-09-25 2008-09-08 Butter production method and butter component measurement method Active JP5453638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009534264A JP5453638B2 (en) 2007-09-25 2008-09-08 Butter production method and butter component measurement method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007246859 2007-09-25
JP2007246859 2007-09-25
PCT/JP2008/066183 WO2009041252A1 (en) 2007-09-25 2008-09-08 Method of producing butter and method of measuring butter components
JP2009534264A JP5453638B2 (en) 2007-09-25 2008-09-08 Butter production method and butter component measurement method

Publications (2)

Publication Number Publication Date
JPWO2009041252A1 JPWO2009041252A1 (en) 2011-01-20
JP5453638B2 true JP5453638B2 (en) 2014-03-26

Family

ID=40511141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009534264A Active JP5453638B2 (en) 2007-09-25 2008-09-08 Butter production method and butter component measurement method

Country Status (2)

Country Link
JP (1) JP5453638B2 (en)
WO (1) WO2009041252A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6914018B2 (en) * 2016-09-16 2021-08-04 株式会社明治 Tissue inspection method and inspection equipment for soft mold cheese
GB202114308D0 (en) * 2021-10-06 2021-11-17 Nicoventures Trading Ltd Quantification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229913A (en) * 1993-02-03 1994-08-19 Shizuoka Seiki Co Ltd Measuring method for content of component of grain and the like
JPH07270309A (en) * 1994-03-29 1995-10-20 Snow Brand Milk Prod Co Ltd Method and apparatus for measuring moisture in butter
JPH08105845A (en) * 1994-10-03 1996-04-23 Snow Brand Milk Prod Co Ltd Method for concurrently measuring moisture and salinity
JPH08178871A (en) * 1994-12-22 1996-07-12 Snow Brand Milk Prod Co Ltd Method for measuring water and salt contents
JP2006262850A (en) * 2005-03-25 2006-10-05 Snow Brand Milk Prod Co Ltd Method for controlling butter moisture or method and apparatus for controlling number of revolution of churning cylinder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4263304B2 (en) * 1999-04-12 2009-05-13 雪印乳業株式会社 Apparatus and method for measuring fat concentration in cream

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229913A (en) * 1993-02-03 1994-08-19 Shizuoka Seiki Co Ltd Measuring method for content of component of grain and the like
JPH07270309A (en) * 1994-03-29 1995-10-20 Snow Brand Milk Prod Co Ltd Method and apparatus for measuring moisture in butter
JPH08105845A (en) * 1994-10-03 1996-04-23 Snow Brand Milk Prod Co Ltd Method for concurrently measuring moisture and salinity
JPH08178871A (en) * 1994-12-22 1996-07-12 Snow Brand Milk Prod Co Ltd Method for measuring water and salt contents
JP2006262850A (en) * 2005-03-25 2006-10-05 Snow Brand Milk Prod Co Ltd Method for controlling butter moisture or method and apparatus for controlling number of revolution of churning cylinder

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013045741; JAOCS, 1994, Vol.71, No.4, p.371-377 *
JPN6013045742; Jpn. J. Zootech. Sci., 1988, Vol.59, No.9, p.806-813 *
JPN6013045744; Journal of the Society of Dairy Technology, 1980, Vol.33, No.4, p.145-146 *

Also Published As

Publication number Publication date
JPWO2009041252A1 (en) 2011-01-20
WO2009041252A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
Collell et al. Non-destructive estimation of moisture, water activity and NaCl at ham surface during resting and drying using NIR spectroscopy
Eskildsen et al. Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: Understanding predictions of highly collinear reference variables
Muik et al. Direct, reagent-free determination of free fatty acid content in olive oil and olives by Fourier transform Raman spectrometry
JP4054854B2 (en) Analysis of liquid samples using near infrared spectroscopy
JP4505598B2 (en) Method for quantifying chemical components contained in tea leaves
Aheto et al. Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat
RU2564382C2 (en) Spectral analysis of fluid non-uniform substance in middle infrared range
CN105548070A (en) Apple soluble solid near-infrared detection part compensation method and system
Ma et al. Rapid determination of degradation of frying oil using near-infrared spectroscopy
Włodarska et al. Evaluation of quality parameters of apple juices using near-infrared spectroscopy and chemometrics
JP5453638B2 (en) Butter production method and butter component measurement method
Wold et al. In-line and non-destructive monitoring of core temperature in sausages during industrial heat treatment by NIR interaction spectroscopy
He et al. Model robustness improvement by absorption and reduced scattering spectra in short wave near infrared spectral region
Chen et al. FT-MIR modelling enhancement for the quantitative determination of haemoglobin in human blood by combined optimization of grid-search LSSVR algorithm with different pre-processing modes
US9983184B2 (en) Using fluorescence measurements for characterizing protein gel-firming processes
Mateo et al. Evaluation of on-line optical sensing techniques for monitoring curd moisture content and solids in whey during syneresis
Kokawa et al. Measuring cheese maturation with the fluorescence fingerprint
JP5369032B2 (en) Content component amount estimation method, evaluation value estimation method, and program for executing these methods
Dong et al. Nondestructive method for analysis of the soybean quality
Adamopoulos et al. Application of near-infrared reflectance spectroscopy in the determination of major components in taramosalata
Barba et al. Determining the composition of ammonia/water mixtures using short-wave near-infrared spectroscopy
CN117388209B (en) On-line near infrared spectrometer measuring method based on instant reference feedback
Chen et al. Near-infrared spectroscopic modeling optimization for quantitative determination of sugar brix in sugarcane initial-pressure juice
Silaghi et al. Estimation of rheological properties of gelato by FT-NIR spectroscopy
JP4263304B2 (en) Apparatus and method for measuring fat concentration in cream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5453638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350