JP5452809B2 - Heat sterilization method for airborne microorganisms - Google Patents

Heat sterilization method for airborne microorganisms Download PDF

Info

Publication number
JP5452809B2
JP5452809B2 JP2010096100A JP2010096100A JP5452809B2 JP 5452809 B2 JP5452809 B2 JP 5452809B2 JP 2010096100 A JP2010096100 A JP 2010096100A JP 2010096100 A JP2010096100 A JP 2010096100A JP 5452809 B2 JP5452809 B2 JP 5452809B2
Authority
JP
Japan
Prior art keywords
filter element
air
temperature
heated
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010096100A
Other languages
Japanese (ja)
Other versions
JP2011224121A (en
Inventor
伸介 小原
直久 藤田
小森敏明
Original Assignee
オパーツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オパーツ株式会社 filed Critical オパーツ株式会社
Priority to JP2010096100A priority Critical patent/JP5452809B2/en
Publication of JP2011224121A publication Critical patent/JP2011224121A/en
Application granted granted Critical
Publication of JP5452809B2 publication Critical patent/JP5452809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、医療施設、緊急隔離施設、航空機機内、船室、待合施設、教育施設、劇場、オフィス、宿舎、さらには獣舎、鶏舎のような閉鎖的空間内の空気中に浮遊する細菌やウイルス等の病原性微生物を高温で加熱、焼却処理し、死滅させために有用な空中浮遊微生物の加熱滅菌方法に関する。   The present invention relates to bacteria and viruses floating in the air in closed spaces such as medical facilities, emergency isolation facilities, aircraft cabins, cabins, waiting facilities, educational facilities, theaters, offices, lodgings, and even beasts and poultry houses. The present invention relates to a method for heat sterilization of airborne microorganisms that are useful for heating and incinerating pathogenic microorganisms such as

例えば医療施設内の空気中に浮遊する結核菌その他の病原性微生物やそれらを含む感染性飛沫等は、時として深刻な院内集団感染を引き起こすことが知られている。また、高病原性鳥インフルエンザ等の感染予防のために外部の感染源から遮断された無窓鶏舎内の空気中に浮遊するサルモネラ菌その他の病原性微生物やそれらを含む感染性飛沫等は、鶏舎内の空気衛生環境を著しく阻害するものである。   For example, tuberculosis bacteria and other pathogenic microorganisms floating in the air in medical facilities and infectious droplets containing them are known to sometimes cause serious nosocomial outbreaks. In addition, Salmonella or other pathogenic microorganisms floating in the air in a windowless poultry house that has been blocked from external infection sources to prevent infection of highly pathogenic avian influenza, etc. It significantly impedes the air hygiene environment.

前記のように閉鎖的空間内の空気中に浮遊する種々の病原性微生物やそれらを含む感染性飛沫等を除去すると共に該病原性微生物を死滅させる手段として、該閉鎖的空間内の空気をフィルタに通しつつ循環させ、或いは通過する空気を殺菌作用のある紫外線やオゾンで処理するようにした空気浄化装置が従来使用されている。   As described above, as a means for removing various pathogenic microorganisms floating in the air in the enclosed space, infectious droplets containing them, and killing the pathogenic microorganisms, the air in the enclosed space is filtered. Conventionally, air purifiers that circulate while passing through or treat the passing air with ultraviolet rays or ozone having a sterilizing effect have been used.

しかしながら、フィルタを用いた前記空気浄化装置では、捕捉除去堆積物による目詰まりを生じて、浄化効率が低下した使用済みフィルタを未使用のものと交換するに際して、捕捉されていた感染性飛沫や細菌が交換作業中に空気中に再浮遊する恐れがあり、また使用済みフィルタを厳重な消毒処理下に廃棄する必要があった。また、紫外線による殺菌装置を備えた前記空気浄化装置では、紫外線ランプ等の日常的な保守を要する上に、殺菌効果を高めるべく高出力のものを使用すると被爆事故発生の危険性が増大する問題が生じ、またオゾンによる殺菌装置を備えた前記空気浄化装置では、施設内のオゾン濃度を許容範囲内に抑えるように常時監視する必要がある上に、殺菌効果を高めるべく大量のオゾンを使用すると健康被害発生の危険性が増大する問題が生じる。   However, in the air purification apparatus using a filter, when the used filter whose purification efficiency is reduced due to clogging due to the capture and removal deposit is replaced with an unused one, the infectious droplets and bacteria captured May be resuspended in the air during replacement work, and used filters must be disposed of under strict disinfection. In addition, the air purification device provided with an ultraviolet ray sterilizer requires daily maintenance such as an ultraviolet lamp, and the use of a high output device to increase the sterilization effect increases the risk of an accident. In addition, it is necessary to constantly monitor the air purification apparatus having the ozone sterilization apparatus so as to keep the ozone concentration in the facility within the allowable range, and when a large amount of ozone is used to enhance the sterilization effect. There is a problem that the risk of health damage increases.

前記空気浄化方法の問題点を解決するものとして、特開2002−011083号、特開平9−245938号、特開平11−257048号等の公報には、金属箔材料に波形状又は凹凸形状の成形を施すと共に周縁にバリ状突起を有する多数の貫通孔を前記波形状又は凹凸形状の山部及び/又は谷部に穿設してなる多孔性金属箔を多孔性電気絶縁膜を介して渦巻き状に積層してなる抵抗加熱型フィルタ素子を、筒状ケース体内にそれと同軸方向に装填して構成したヒータを使用し、抵抗加熱により発熱させた前記フィルタ素子にその軸線方向に空気を通過させて加熱すると共に該空気中に浮遊する結核菌その他の細菌を含む感染性飛沫等を該フィルタ素子で捕捉し且つ加熱、燃焼させ、それによって前記細菌を死滅させると共に該フィルタ素子を初期状態に再生することができ、しかも従来技術にみられる使用済みフィルタの交換のように危険で且つ多くの工数を要する作業を必要としない空気滅菌装置が開示されている。   In order to solve the problems of the air purification method, Japanese Patent Application Laid-Open No. 2002-011083, Japanese Patent Application Laid-Open No. 9-245938, Japanese Patent Application Laid-Open No. 11-257048, etc., form a corrugated or uneven shape on a metal foil material And a porous metal foil formed by drilling a plurality of through-holes having burr-shaped protrusions in the periphery in the corrugated or uneven peaks and / or troughs through a porous electrical insulating film Using a heater constructed by loading a resistance heating filter element laminated in a cylindrical case in the same direction as that of the cylindrical heating element, air is passed through the filter element heated by resistance heating in the axial direction thereof. The filter element captures and heats and burns infectious droplets containing M. tuberculosis and other bacteria that are heated and suspended in the air, thereby killing the bacteria and the filter. Child can play the initial state, the air sterilization device is disclosed that addition does not require a work requiring dangerous and many steps as the replacement of used filters found in the prior art.

しかしながら、従来の前記加熱、燃焼式の空気滅菌装置では、例えば芽胞菌のような耐熱性細菌等を含む空気を処理した場合に、前記フィルタ素子が滅菌可能な温度に設定されているにもかかわらず、一部の細菌等が滅菌されることなく処理済みの排出空気と共に排出されてしまう等の問題があった。   However, in the conventional heating and combustion type air sterilization apparatus, when the air containing heat-resistant bacteria such as spore bacteria is treated, the filter element is set at a sterilizable temperature. In addition, there is a problem that some bacteria and the like are discharged together with the processed exhaust air without being sterilized.

本発明者等は、前記問題点について鋭意研究を重ねた結果、前記フィルタ素子の特に周辺部における空気の温度が、該フィルタ素子の中心部及び該中心部から半径方向中間部付近における空気の温度に比して格段に低く、この現象は、前記フィルタ素子を通過する空気の流量が適量に至らず、また該フィルタ素子を通過する空気の圧力損失が特に低い場合に顕著に現れることを見い出した。   As a result of intensive research on the above problems, the present inventors have found that the temperature of the air in the filter element, particularly in the peripheral part, is the temperature of the air in the central part of the filter element and in the vicinity of the center in the radial direction. It was found that this phenomenon is noticeable when the flow rate of the air passing through the filter element does not reach an appropriate amount and the pressure loss of the air passing through the filter element is particularly low. .

而して、前記のようにフィルタ素子を通過する空気に局部的な加熱不良が発生すれば、同時にその部分における空気の流速の増加、通過時間の短縮化等を招き、それらが相俟って空気の滅菌不良につながることになる。   Thus, if a local heating failure occurs in the air passing through the filter element as described above, at the same time, the flow velocity of the air in that portion is increased, the passage time is shortened, etc. This leads to poor air sterilization.

特開2002−011083号公報JP 2002-011083 A 特開平9−245938号公報Japanese Patent Laid-Open No. 9-245938 特開平11−257048号公報Japanese Patent Laid-Open No. 11-257048

本発明の解決すべき課題は、前記問題点に鑑み、前記構成のフィルタ素子を用いた空気の加熱、滅菌に際して、該フィルタ素子の特に周辺部における空気の温度と、該フィルタ素子の中心部及び該中心部から半径方向中間部付近における空気の温度の差を縮小して温度分布を平準化し、それによって該フィルタ素子を通過する空気中に含まれる細菌等を確実に加熱、滅菌することを可能にする空中浮遊微生物の加熱滅菌方法を提供することにある。   In view of the above problems, the problem to be solved by the present invention is that when heating and sterilizing air using the filter element having the above-described configuration, the temperature of the air in the peripheral part of the filter element, the center part of the filter element, It is possible to reduce the temperature difference in the air from the center to the middle in the radial direction and level the temperature distribution, thereby reliably heating and sterilizing bacteria contained in the air passing through the filter element. The object is to provide a method for heat sterilization of airborne microorganisms.

本発明に係る空中浮遊微生物の加熱滅菌方法は、金属箔材料に波形状又は凹凸形状の成形を施すと共に周縁にバリ状突起を有する多数の貫通孔を前記波形状又は凹凸形状の山部及び/又は谷部に穿設してなる多孔性金属箔を多孔性電気絶縁膜を介して渦巻き状に積層してなる抵抗加熱型フィルタ素子を、筒状ケース体内にそれと同軸方向に装填して構成したヒータを使用し、抵抗加熱により発熱させた前記フィルタ素子にその軸線方向に空気を通過させて加熱し、滅菌するようにした空中浮遊微生物の加熱滅菌方法において、
前記フィルタ素子を400℃以上の所要滅菌可能温度に設定すると共に前記筒状ケース体の外周を補助的に加熱し、且つ前記フィルタ素子を通過する空気の流量及び圧力損失を、該フィルタ素子の中心部から周辺部に至る間の温度分布が平準化を生じる大きさ以上に保持し、それらによって前記温度分布の最大幅を100℃以下に制御することを特徴としている。
In the method for heat sterilization of airborne microorganisms according to the present invention, a metal foil material is molded into a corrugated or uneven shape, and a plurality of through-holes having burr-shaped protrusions on the periphery are formed. Alternatively, a resistance heating type filter element formed by laminating a porous metal foil formed in a valley portion in a spiral shape through a porous electrical insulating film is loaded in the cylindrical case body in the same direction as that. In the method of heat sterilization of airborne microorganisms using a heater and heating the filter element that has generated heat by resistance heating by passing air in the axial direction thereof and sterilizing,
The filter element is set to a required sterilizable temperature of 400 ° C. or higher, and the outer periphery of the cylindrical case body is supplementarily heated, and the flow rate and pressure loss of air passing through the filter element are set to the center of the filter element. The temperature distribution between the part and the peripheral part is maintained to be equal to or greater than a level causing leveling, and the maximum width of the temperature distribution is controlled to 100 ° C. or less by them.

前記構成の加熱滅菌方法に用いる抵抗加熱型フィルタ素子では、渦巻き状に積層されてなる、高温に抵抗加熱された多孔性金属箔の対向面間に、波形状又は凹凸形状の山部及び谷部、並びにそれらに穿設された、周縁にバリ状突起を有する貫通孔による複雑に屈曲した流路空間が形成されているので、前記フィルタ素子に供給された空気は、前記流路空間内を通過しつつ複雑に衝突、拡散、混合し、互いに熱交換し、整流され、その間に空気中の病原性微生物や感染性飛沫等が前記のように高温に抵抗加熱された該フィルタ素子により捕捉されつつ加熱、燃焼させられる。   In the resistance heating type filter element used in the heat sterilization method having the above-described configuration, a corrugated or concavo-convex crest and trough are formed between opposing surfaces of a porous metal foil that is spirally laminated and resistance-heated to a high temperature. In addition, since a complicatedly bent flow path space is formed by a through-hole having a burr-like protrusion at the periphery, the air supplied to the filter element passes through the flow path space. While colliding, diffusing, mixing, exchanging heat with each other, and rectifying, while pathogenic microorganisms and infectious droplets in the air are captured by the filter element that is resistance-heated to a high temperature as described above Heated and burned.

前記フィルタ素子は、それを通過する空気を前記のように加熱しつつ拡散、混合し、整流するものであるが、該フィルタ素子を通過する空気の流量及び圧力損失が該フィルタ素子の特性その他の条件に対応した大きさに達しない場合はフィルタ素子の前記作用が十分に発揮されず、該フィルタ素子の周辺部における空気の温度が、該フィルタ素子の中心部及び該中心部から半径方向中間部付近における空気の温度に比して格段に低く、その場合の温度分布の最大幅は、該フィルタ素子の特性やの設定温度等にも依るが、場合によっては200℃以上となることもある。   The filter element diffuses, mixes and rectifies the air passing through it while heating as described above, and the flow rate and pressure loss of the air passing through the filter element are affected by the characteristics of the filter element and other factors. When the size corresponding to the condition is not reached, the above-mentioned action of the filter element is not sufficiently exerted, and the temperature of the air in the peripheral part of the filter element is the central part of the filter element and the intermediate part in the radial direction from the central part. It is much lower than the temperature of the air in the vicinity, and the maximum width of the temperature distribution in that case depends on the characteristics of the filter element and the set temperature, but may be 200 ° C. or higher depending on the case.

しかしながら、前記フィルタ素子では、既述のように、フィルタ素子を通過する空気の流量及び圧力損失を前記のような所要の大きさ以上に保持することにより、前記温度分布は急激に平準化されることが判明し、本発明の完成に至ったものである。本発明では、前記フィルタ素子を400℃以上の所要滅菌可能温度に設定すると共に前記筒状ケース体の外周を補助的に加熱し、且つ前記のように該フィルタ素子を通過する空気の流量及び圧力損失を、前記温度分布が平準化を生じる大きさ以上に保持することにより、前記温度分布の最大幅を100℃以下に制御するようにしている。なお、前記温度分布の最大幅が100℃を越える場合は、既述のような従来技術の問題点が顕在し易くなる。   However, in the filter element, as described above, the temperature distribution is rapidly leveled by maintaining the flow rate and pressure loss of the air passing through the filter element at or above the required magnitudes as described above. As a result, the present invention has been completed. In the present invention, the filter element is set to a required sterilizable temperature of 400 ° C. or higher, and the outer periphery of the cylindrical case body is supplementarily heated, and the flow rate and pressure of air passing through the filter element as described above The maximum width of the temperature distribution is controlled to 100 ° C. or less by maintaining the loss at or above the level at which the temperature distribution causes leveling. In addition, when the maximum width of the temperature distribution exceeds 100 ° C., the problems of the prior art as described above are likely to appear.

前記フィルタ素子は、既述のように、多孔性金属箔を、多孔性電気絶縁膜を介して渦巻き状に積層してなり、前記多孔性金属箔として、例えば、厚さ約15〜50μmのステンレス鋼等からなる金属箔材料に、波ピッチ約0.68mm、谷深さ約0.6mmの波形状の成形を施すと共に、前記波形状の山部及び谷部にそれらの稜線に沿って、該稜線方向の長さ約0.23mm、該稜線に対する直角方向の長さ約0.2mmのバリ付き貫通孔を約0.7mmのピッチで整列状配列又は千鳥状配列等で穿設してなり、加工上がり厚さ約0.4〜2.5mm、加工前の金属箔材料に比して約1.5〜3倍に増加した表面積を有する加工状態を呈する多孔性金属箔「パルブラット」(オパーツ株式会社製多孔性金属箔)が好適に使用可能である。   As described above, the filter element is formed by laminating a porous metal foil in a spiral shape with a porous electrical insulating film interposed therebetween. As the porous metal foil, for example, a stainless steel having a thickness of about 15 to 50 μm is used. A metal foil material made of steel or the like is formed into a wave shape having a wave pitch of about 0.68 mm and a valley depth of about 0.6 mm, and the wave-shaped peaks and valleys along the ridge lines, Perforated through-holes having a length of about 0.23 mm in the ridge line direction and a length of about 0.2 mm in a direction perpendicular to the ridge line are formed in an aligned arrangement or a staggered arrangement at a pitch of about 0.7 mm. Porous metal foil “Palblat” (Oparts) which has a processed state with a processed surface thickness of about 0.4 to 2.5 mm and a surface area increased about 1.5 to 3 times compared to the metal foil material before processing. Porous metal foil (manufactured by Co., Ltd.) can be suitably used.

また、前記多孔性電気絶縁膜は、渦巻き状に積層された多孔性金属箔の対向面間が通電加熱時に電気接触しないようにするものであり、多孔性金属箔表面に形成された絶縁皮膜であってもよく、或いは例えば膜厚約0.2mmのアルミナ系、シリカ系等の耐熱性無機繊維のように、感染性飛沫等の微粒子のフィルタ機能を有するものであってもよい。   The porous electrical insulation film is an insulation film formed on the surface of the porous metal foil, which prevents electrical contact between the opposed surfaces of the spirally laminated porous metal foil during energization heating. Alternatively, it may have a filter function of fine particles such as infectious droplets, such as heat-resistant inorganic fibers such as alumina and silica having a film thickness of about 0.2 mm.

なお、前記のように供給された空気を段階的に確実に加熱処理するために、前記筒状ケース体内に、前記構成の複数基のフィルタ素子が間隔を置いて、又はセラミック粒等からなる通気性絶縁層等を介して互いに同じ温度設定で又は相違する温度設定で温度制御可能に直列に配設されると共に、各フィルタ素子に対応する筒状ケース体の外周が補助加熱されるようにしてもよい。   In order to reliably heat-treat the air supplied as described above in a stepwise manner, a plurality of filter elements having the above-described structure are provided in the cylindrical case body at intervals or a ventilation made of ceramic particles or the like. Are arranged in series so as to be temperature-controllable at the same temperature setting or different temperature settings via a conductive insulating layer, etc., and the outer periphery of the cylindrical case body corresponding to each filter element is auxiliary heated. Also good.

また、前記構成のヒータにおいて、加熱処理前の空気と加熱処理後の空気との間で熱交換を行わせ、それによってヒータの加熱効率を高めると共に、前記加熱処理後の空気が排出される閉鎖的空間の温度上昇を抑制するようにしてもよい。また、前記加熱処理後の空気を種々の手段で積極的に冷却することにより、前記閉鎖的空間の温度上昇を抑制するようにしてもよい。一方、寒冷季等においては、前記加熱処理後の空気を利用して、閉鎖的空間の温度上昇を促進することもできる。   Further, in the heater having the above configuration, the heat exchange is performed between the air before the heat treatment and the air after the heat treatment, thereby increasing the heating efficiency of the heater and closing the air after the heat treatment is exhausted. The temperature rise in the target space may be suppressed. Moreover, you may make it suppress the temperature rise of the said closed space by actively cooling the air after the said heat processing with a various means. On the other hand, in the cold season or the like, the temperature rise in the closed space can be promoted using the air after the heat treatment.

本発明に係る空中浮遊微生物の加熱滅菌方法は以上のように構成されるので、抵抗加熱型フィルタ素子を用いたヒータにより空気を加熱、滅菌するに際して、該フィルタ素子を効果的に作動させてその温度分布を改善し、それによって該フィルタ素子を通過する空気中に含まれる細菌等を確実に加熱、滅菌することができる。   Since the method for heat sterilization of airborne microorganisms according to the present invention is configured as described above, when air is heated and sterilized by a heater using a resistance heating filter element, the filter element is effectively operated to By improving the temperature distribution, it is possible to reliably heat and sterilize bacteria contained in the air passing through the filter element.

図1は、本発明に係る空中浮遊微生物の加熱滅菌方法を示す説明図である。FIG. 1 is an explanatory view showing a method for heat sterilization of airborne microorganisms according to the present invention. 図2は、本発明に係る空中浮遊微生物の加熱滅菌方法と改良前の空中浮遊微生物の加熱滅菌方法との比較を説明するものであり、同図(A)は改良前の空中浮遊微生物の加熱滅菌方法に使用されるヒータの構成図とその稼動時におけるヒータの各部分の温度分布データ、同図(B)は本発明に係る空中浮遊微生物の加熱滅菌方法に使用されるヒータの構成図とその稼動時におけるヒータの各部分の温度分布データである。FIG. 2 illustrates a comparison between the method of heat sterilization of airborne microorganisms according to the present invention and the method of heat sterilization of airborne microorganisms before improvement. FIG. 2 (A) shows the heating of airborne microorganisms before improvement. Configuration diagram of the heater used in the sterilization method and temperature distribution data of each part of the heater during its operation, FIG. 5B is a configuration diagram of the heater used in the heat sterilization method for airborne microorganisms according to the present invention It is the temperature distribution data of each part of the heater at the time of the operation.

以下に、本発明を実施例に基づいて具体的に説明する。   The present invention will be specifically described below based on examples.

図1において、本発明に使用されるヒータ1は、筒状ケース体2内に抵抗加熱型フィルタ素子3を装填すると共に該筒状ケース体2の外周に補助ヒータ4を巻回してなり、前記フィルタ素子3及び補助ヒータ4は図示されない加熱制御装置により通電され、温度制御される。   In FIG. 1, a heater 1 used in the present invention has a resistance heating filter element 3 loaded in a cylindrical case body 2 and an auxiliary heater 4 wound around the outer periphery of the cylindrical case body 2. The filter element 3 and the auxiliary heater 4 are energized and controlled in temperature by a heating control device (not shown).

前記ヒータ1の筒状ケース体2内に図示されない流量調整装置を介して供給された処理前の空気Fは、内部のフィルタ素子3を通過しつつ高温で滅菌処理されて筒状ケース体2外へと排出される。また、前記ヒータ1には、必要に応じて、図示されない熱交換装置が併設され、筒状ケース体2内に供給される加熱処理前の空気Fと、筒状ケース体2外に排出される加熱処理後の空気Fとの間で熱交換するように構成される。   The unprocessed air F supplied into the cylindrical case body 2 of the heater 1 via a flow rate adjusting device (not shown) is sterilized at a high temperature while passing through the internal filter element 3 and is outside the cylindrical case body 2. Is discharged. In addition, the heater 1 is provided with a heat exchange device (not shown) as necessary, and is discharged to the outside of the cylindrical case body 2 and the air F before heat treatment supplied into the cylindrical case body 2. It is configured to exchange heat with the air F after the heat treatment.

前記フィルタ素子3は、公知のように、多孔性金属箔を、多孔性電気絶縁膜を介して渦巻き状に積層してなり、前記多孔性金属箔は、金属箔材料に波形状又は凹凸形状の成形を施すと共に、前記波形状又は凹凸形状の山部及び谷部にバリ付き貫通孔を整列状配列又は千鳥状配列等で穿設してなり、加工前の金属箔材料に比して1.5〜3倍に増加した表面積を有する加工状態を呈する。   As is well known, the filter element 3 is formed by laminating a porous metal foil in a spiral shape through a porous electrical insulating film, and the porous metal foil has a corrugated or uneven shape on the metal foil material. In addition to forming, the corrugated or uneven crests and troughs are perforated with burr through holes in an aligned arrangement or a staggered arrangement, etc. It exhibits a processed state with a surface area increased 5 to 3 times.

前記構成において、前記フィルタ素子3が400℃以上の所要滅菌可能温度に設定されると共に筒状ケース体2の外周が補助ヒータ4により加熱され、さらに前記フィルタ素子3を通過する空気Fの流量及び圧力損失は、該フィルタ素子3の中心部から周辺部に至る間の温度分布が平準化を生じる大きさ以上に保持され、それらによって前記温度分布の最大幅が100℃以下に制御される。   In the above configuration, the filter element 3 is set to a required sterilizable temperature of 400 ° C. or more, the outer periphery of the cylindrical case body 2 is heated by the auxiliary heater 4, and the flow rate of the air F passing through the filter element 3 and The pressure loss is maintained at a level at which the temperature distribution between the center portion and the peripheral portion of the filter element 3 is leveled or more, and the maximum width of the temperature distribution is controlled to 100 ° C. or less.

[改良前の空中浮遊微生物の加熱滅菌方法]
図2(A)において、ヒータ1は、耐熱ガラス製の筒状ケース体2に既述のような構成の2基のフィルタ素子31、32を上下に間隔を置いて直列に装填して構成され、各フィルタ素子31、32は、加工上がり厚さ約1.2mm、加工前の金属箔材料の約2倍の表面積を有する幅約30mmの多孔性金属箔「パルブラット」を、膜厚約0.2mmのアルミナ系無機繊維を介して外径約50mmの渦巻き状に巻回して構成されている。
[Method of heat sterilization of airborne microorganisms before improvement]
In FIG. 2 (A), the heater 1 is configured by loading two filter elements 31 and 32 having the above-described configuration in series in a cylindrical case body 2 made of heat-resistant glass with a vertical interval therebetween. Each of the filter elements 31 and 32 is made of a porous metal foil “PALBRAT” having a processed thickness of about 1.2 mm and a surface area about twice as large as that of the metal foil material before processing. It is configured by winding in a spiral shape with an outer diameter of about 50 mm through a 2 mm alumina inorganic fiber.

前記ヒータ1には、一段目(下方)及び二段目(上方)の各フィルタ素子31、32の中心部a1、a2、半径方向中間部(以下、単に中間部と略称する)b1、b2及び周辺部c1、c2、並びに各フィルタ素子31、32に対応する筒状ケース体2の外周部(以下、単に外周部と略称する)d1、d2に温度センサが配置され、前記フィルタ素子31、32の各部を通過する空気Fの温度等が測定される。また、前記フィルタ素子31、32を通過する空気Fの圧力損失ΔPが同時に測定される。   The heater 1 includes center portions a1 and a2 of the first-stage (lower) and second-stage (upper) filter elements 31 and 32, radial intermediate portions (hereinafter simply referred to as intermediate portions) b1 and b2, and Temperature sensors are arranged in the peripheral portions c1, c2 and the outer peripheral portions (hereinafter simply referred to as outer peripheral portions) d1, d2 of the cylindrical case body 2 corresponding to the filter elements 31, 32, respectively. The temperature etc. of the air F which passes each part of are measured. Further, the pressure loss ΔP of the air F passing through the filter elements 31 and 32 is simultaneously measured.

前記構成において、前記ヒータ1における各フィルタ素子31、32が、二段目のフィルタ素子32の中心部a2の温度を600℃に設定して加熱され、そのような状態下に、空気Fが20L/minの流量でヒータ1の下方から供給され、内部の一段目のフィルタ素子31から二段目のフィルタ素子32を順次通過し、加熱されてヒータ1の上方へと排出される。   In the above-described configuration, the filter elements 31 and 32 in the heater 1 are heated by setting the temperature of the central portion a2 of the second-stage filter element 32 to 600 ° C. Under such a state, the air F is 20 L. Is supplied from below the heater 1 at a flow rate of / min, sequentially passes through the first-stage filter element 31 and the second-stage filter element 32, heated, and discharged to the upper side of the heater 1.

前記試験によれば、一段目のフィルタ素子31における周辺部c1の温度は250℃であり、これは中心部a1の温度470℃及び中間部b1の温度450℃と比較して極めて低く、この場合の温度分布の最大幅ΔTは220℃であり、また二段目のフィルタ素子32における周辺部c2の温度は480℃であり、これは中心部a2の温度650℃及び中間部b2の温度800℃と比較して極めて低く、この場合の温度分布の最大幅ΔTは320℃にも達することが判明した。また、前記の場合における空気Fの圧力損失ΔPは約10〜11mmaqであった。   According to the above test, the temperature of the peripheral portion c1 in the first-stage filter element 31 is 250 ° C., which is extremely lower than the temperature 470 ° C. of the central portion a 1 and the temperature 450 ° C. of the intermediate portion b 1. The maximum width ΔT of the temperature distribution is 220 ° C., and the temperature of the peripheral portion c 2 in the second stage filter element 32 is 480 ° C., which is the temperature 650 ° C. of the central portion a 2 and the temperature 800 ° C. of the intermediate portion b 2. It was found that the maximum width ΔT of the temperature distribution in this case reaches 320 ° C. Further, the pressure loss ΔP of the air F in the above case was about 10 to 11 mmaq.

また、前記試験における空気Fの供給に際して、芽胞菌として安全な微粒子状の工業用納豆菌芽胞を選択し、106個以上の菌量を空気F中に飛散させて滅菌処理後に回収したところ、生菌数は0〜104個のようなバラツキがあり、完全な滅菌には至らなかった。 In addition, when supplying air F in the test, a safe particulate natto spore for industrial use was selected as a spore fungus, and 10 6 or more bacteria were scattered in air F and collected after sterilization. the number of viable cells is there are variations, such as 0 to four, did not lead to a complete sterilization.

[本発明に係る改良後の空中浮遊微生物の加熱滅菌方法]
図2(B)において、前記改良前の加熱滅菌方法に用いたヒータ1において、各フィルタ素子31、32に対応する筒状ケース体2の外周に、各フィルタ素子31、32の多孔性金属箔「パルブラット」と同様の多孔性金属箔からなる補助ヒータ4が巻回されている。
[Method for Heat Sterilization of Airborne Microorganisms After Improvement According to the Present Invention]
In FIG. 2 (B), in the heater 1 used in the heat sterilization method before improvement, the porous metal foil of each filter element 31, 32 is provided on the outer periphery of the cylindrical case body 2 corresponding to each filter element 31, 32. An auxiliary heater 4 made of a porous metal foil similar to “PALBRAT” is wound.

前記構成において、前記ヒータ1における各フィルタ素子31、32が、一段目及び二段目の各フィルタ素子31、32の中心部a1、a2の温度を何れも600℃に設定して加熱されると共に、筒状ケース体2の外周が補助ヒータ4で補助的に加熱され、そのような状態下に、空気Fが30L/minの流量でヒータ1の下方から供給され、内部の一段目のフィルタ素子31から二段目のフィルタ素子32を順次通過し、加熱されてヒータ1の上方へと排出されるようにした。   In the above configuration, the filter elements 31 and 32 in the heater 1 are heated by setting the temperatures of the central portions a1 and a2 of the first and second filter elements 31 and 32 to 600 ° C. The outer periphery of the cylindrical case body 2 is supplementarily heated by the auxiliary heater 4, and in such a state, air F is supplied from below the heater 1 at a flow rate of 30 L / min, and the internal first-stage filter element The filter element 32 is sequentially passed from 31 to the second stage, heated, and discharged to the upper side of the heater 1.

前記試験によれば、一段目のフィルタ素子31における周辺部c1の温度は440℃であり、これは中心部a1の温度520℃及び中間部b1の温度480℃と比較して接近し、この場合の温度分布の最大幅ΔTは80℃に留まり、また二段目のフィルタ素子32における周辺部c2の温度は570℃であり、これは中心部a2の温度580℃及び中間部b2の温度650℃と比較して接近し、この場合の温度分布の最大幅ΔTは80℃に留まるものであり、既述の改良前の加熱滅菌方法の場合に比して温度分布の大幅な改善が認められた。また、前記の場合における空気Fの圧力損失ΔPは約17〜18mmaqであり、既述の改良前の加熱滅菌方法の場合に比して明らかな上昇が認められた。   According to the test, the temperature of the peripheral portion c1 in the first-stage filter element 31 is 440 ° C., which is closer than the temperature 520 ° C. of the central portion a 1 and the temperature 480 ° C. of the intermediate portion b 1. The maximum width ΔT of the temperature distribution remains at 80 ° C., and the temperature of the peripheral portion c 2 in the second stage filter element 32 is 570 ° C., which is the temperature 580 ° C. of the central portion a 2 and the temperature 650 ° C. of the intermediate portion b 2. The maximum width ΔT of the temperature distribution in this case remains at 80 ° C., and a significant improvement in the temperature distribution was observed compared to the heat sterilization method before improvement described above. . Further, the pressure loss ΔP of the air F in the above case was about 17 to 18 mmaq, and a clear increase was recognized as compared with the heat sterilization method before improvement described above.

また、前記試験における空気Fの供給に際して、芽胞菌として安全な微粒子状の工業用納豆菌芽胞を選択し、106個以上の菌量を空気F中に飛散させて滅菌処理後に回収したところ、生菌数は0であり、完全な滅菌が認められた。なお、一段目及び二段目の各フィルタ素子31、32の中心部a1、a2の温度を何れも400℃に設定して前記と同様の試験を行ったところ、この場合も、各フィルタ素子3における温度分布の最大幅ΔTを100℃以下に制御した状態で、完全な滅菌が認められた。 In addition, when supplying air F in the test, a safe particulate natto spore for industrial use was selected as a spore fungus, and 10 6 or more bacteria were scattered in air F and collected after sterilization. The number of viable bacteria was 0, and complete sterilization was observed. In addition, when the same test as described above was performed by setting the temperatures of the central portions a1 and a2 of the first and second filter elements 31 and 32 to 400 ° C., in this case as well, each filter element 3 Complete sterilization was observed in a state where the maximum width ΔT of the temperature distribution was controlled to 100 ° C. or less.

F 空気
ΔT 温度分布の最大幅
ΔP 空気Fの圧力損失
1 ヒータ
2 筒状ケース体
3 抵抗加熱型フィルタ素子
4 補助ヒータ
31、32 抵抗加熱型フィルタ素子
a1、a2 フィルタ素子の中心部
b1、b2 フィルタ素子の中間部
c1、c2 フィルタ素子の周辺部
d1、d2 筒状ケース体の外周部
F Air ΔT Maximum width of temperature distribution ΔP Pressure loss of air F 1 Heater 2 Cylindrical case body 3 Resistance heating type filter element 4 Auxiliary heater 31, 32 Resistance heating type filter element a1, a2 Filter element center b1, b2 filter Middle part of element c1, c2 Peripheral part of filter element d1, d2 Peripheral part of cylindrical case body

Claims (1)

金属箔材料に波形状又は凹凸形状の成形を施すと共に周縁にバリ状突起を有する多数の貫通孔を前記波形状又は凹凸形状の山部及び/又は谷部に穿設してなる多孔性金属箔を多孔性電気絶縁膜を介して渦巻き状に積層してなる抵抗加熱型フィルタ素子を、筒状ケース体内にそれと同軸方向に装填して構成したヒータを使用し、抵抗加熱により発熱させた前記フィルタ素子にその軸線方向に空気を通過させて加熱し、滅菌するようにした空中浮遊微生物の加熱滅菌方法において、
前記フィルタ素子を400℃以上の所要滅菌可能温度に設定すると共に前記筒状ケース体外周を補助的に加熱し、且つ前記フィルタ素子を通過する空気の流量及び圧力損失を、該フィルタ素子の中心部から周辺部に至る間の温度分布が平準化を生じる大きさ以上に保持し、それらによって前記温度分布の最大幅を100℃以下に制御することを特徴とする空中浮遊微生物の加熱滅菌方法。
A porous metal foil obtained by forming a corrugated or concavo-convex shape on a metal foil material and drilling a plurality of through-holes having burr-shaped protrusions on the periphery in the corrugated or concavo-convex peak and / or trough The filter that is heated by resistance heating using a heater in which a resistance heating type filter element formed by laminating a coil in a spiral shape through a porous electrical insulating film is loaded in the cylindrical case body in the coaxial direction In the method for heat sterilization of airborne microorganisms, the element is heated by passing air in its axial direction and sterilized.
The filter element is set to a required sterilizable temperature of 400 ° C. or higher, and the outer periphery of the cylindrical case body is supplementarily heated, and the flow rate and pressure loss of the air passing through the filter element are set at the center of the filter element. A method for heat sterilization of airborne microorganisms, characterized in that the temperature distribution from the first to the peripheral part is maintained to be equal to or greater than a level causing leveling, and the maximum width of the temperature distribution is controlled to 100 ° C. or less by them.
JP2010096100A 2010-04-19 2010-04-19 Heat sterilization method for airborne microorganisms Active JP5452809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096100A JP5452809B2 (en) 2010-04-19 2010-04-19 Heat sterilization method for airborne microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096100A JP5452809B2 (en) 2010-04-19 2010-04-19 Heat sterilization method for airborne microorganisms

Publications (2)

Publication Number Publication Date
JP2011224121A JP2011224121A (en) 2011-11-10
JP5452809B2 true JP5452809B2 (en) 2014-03-26

Family

ID=45040266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096100A Active JP5452809B2 (en) 2010-04-19 2010-04-19 Heat sterilization method for airborne microorganisms

Country Status (1)

Country Link
JP (1) JP5452809B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892553B2 (en) * 2013-11-28 2016-03-23 エスイー工業株式会社 Air purification processing apparatus and air purification processing method using the same
CN111336659A (en) * 2020-03-13 2020-06-26 广东美的制冷设备有限公司 Air conditioner, method of sterilizing the same, and computer-readable storage medium
JP2023523837A (en) * 2020-04-30 2023-06-07 インテグレイテッド バイラル プロテクション ソリューションズ,エルエルシー Purification device with heated filter to kill biological species including COVID-19
JP7170193B2 (en) * 2020-04-30 2022-11-14 インテグレイテッド バイラル プロテクション ソリューションズ,エルエルシー Purifier with heated filter to kill biological species including COVID-19
MX2020009035A (en) * 2020-04-30 2022-05-20 Integrated Viral Prot Solutions Llc Mobile purification device having heated filter for killing biological species, including covid-19.
JP7170194B2 (en) * 2020-04-30 2022-11-14 インテグレイテッド バイラル プロテクション ソリューションズ,エルエルシー Portable purifier with heated filter to kill biological species, including COVID-19
JP7381080B2 (en) * 2020-05-13 2023-11-15 有限会社アーキネット air purification device
CN111840624A (en) * 2020-07-13 2020-10-30 珠海格力电器股份有限公司 Air sterilizer, sterilization method, apparatus, system and readable storage medium
KR102273895B1 (en) * 2021-02-22 2021-07-06 피닉스코리아(주) Virus removal system for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119834U (en) * 1983-02-01 1984-08-13 霧島産業株式会社 Air purifier that uses heat
JP3813234B2 (en) * 1996-03-11 2006-08-23 日新製鋼株式会社 Porous electric resistance heater
JPH11276561A (en) * 1998-03-31 1999-10-12 Aiwa Co Ltd Air disinfecting apparatus and air cleaner

Also Published As

Publication number Publication date
JP2011224121A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5452809B2 (en) Heat sterilization method for airborne microorganisms
EP1977771B1 (en) Photocatalytic air treatment system and method
IL264134A (en) Purified hydrogen peroxide gas generation methods and devices
US11958006B2 (en) Laser-induced graphene filters and methods of making and using same
RU2654023C2 (en) Filter unit and filtration method for air and gaseous media
JP2023523837A (en) Purification device with heated filter to kill biological species including COVID-19
KR0135434B1 (en) Apparatus for removing volatile organic compounds in air
WO2008014992A1 (en) Filter unit
US20230356133A1 (en) Mobile Purification Device Having Heated Filter for Killing Biological Species, Including COVID-19
JP2021171621A5 (en)
JPS60193517A (en) Removing method of microorganism
JP7170193B2 (en) Purifier with heated filter to kill biological species including COVID-19
JP2021173517A5 (en)
JP5892553B2 (en) Air purification processing apparatus and air purification processing method using the same
JP2009090217A (en) Filter apparatus
Pourhassan et al. Preparation of Photocatalytic TiO2–Polyacrylonitrile Nanofibers for Filtration of Airborne Microorganisms
JP5362193B2 (en) Air sterilizer
JP2021177997A (en) Air purification device
US20230248875A1 (en) System and method for killing microorganisms
DE102021104549B3 (en) Process for treating room air
US20220282877A1 (en) Air purifying system
JP2006142262A (en) Filter apparatus
CN112325431B (en) Removable decontamination device comprising a heated filter to kill biological species including covd-19
BR102020007802A2 (en) MICROWAVE AIR STERILIZATION APPARATUS
WO2023144795A1 (en) Air flow sterlization method and air sterlization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131009

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131231

R150 Certificate of patent or registration of utility model

Ref document number: 5452809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250