JP5450637B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5450637B2
JP5450637B2 JP2011532956A JP2011532956A JP5450637B2 JP 5450637 B2 JP5450637 B2 JP 5450637B2 JP 2011532956 A JP2011532956 A JP 2011532956A JP 2011532956 A JP2011532956 A JP 2011532956A JP 5450637 B2 JP5450637 B2 JP 5450637B2
Authority
JP
Japan
Prior art keywords
compressor
temperature
refrigerant
air conditioner
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011532956A
Other languages
Japanese (ja)
Other versions
JPWO2011037012A1 (en
Inventor
勇輔 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2011532956A priority Critical patent/JP5450637B2/en
Publication of JPWO2011037012A1 publication Critical patent/JPWO2011037012A1/en
Application granted granted Critical
Publication of JP5450637B2 publication Critical patent/JP5450637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/074Details of compressors or related parts with multiple cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、圧縮機を備えた空気調和機に関する。   The present invention relates to an air conditioner including a compressor.

一般に、空気調和機の設置に際しては、設置場所の容積に適合する運転能力を備えた空気調和機が設置される。近年の空気調和機にはインバータが搭載され、このインバータによって圧縮機の回転数を変化させることで空気調和機の運転能力が制御される。このため、設置場所に適合する、或いは、利用者の希望に沿った最適運転が行えるようになっている。   In general, when installing an air conditioner, an air conditioner having an operation capability that matches the volume of the installation location is installed. An air conditioner in recent years is equipped with an inverter, and the operating capacity of the air conditioner is controlled by changing the rotation speed of the compressor by the inverter. For this reason, it can adapt to an installation place or can perform the optimal driving | operation according to a user's hope.

但し、低負荷時の冷房運転においては、室内温度が低下していって最小能力を下回る空調負荷条件となると圧縮機を停止し、再び室内の温度が上昇すると運転を再開するといった断続運転をしていた。この断続運転によって室内温度の変動が大きくなる傾向となることも多く、利用者の快適性は決して高くならない。   However, in cooling operation at low load, the compressor is stopped when the room temperature falls and the air conditioning load condition falls below the minimum capacity, and the operation is restarted when the room temperature rises again. It was. In many cases, the intermittent temperature tends to increase the fluctuation of the room temperature, and the user's comfort is never increased.

また、比較的広い室内に設置される空気調和機においては、圧縮機の容量が大きいので最小能力をあまり低減することができない。従って、断続運転において、圧縮機がONの時は、かなり冷たい空気が吹き出すので利用者がこの空気に直接当たると寒く感じたり、冷気が床に滞留して足下が冷える、といった快適性に問題が生じる。   Also, in an air conditioner installed in a relatively large room, the capacity of the compressor is large, so the minimum capacity cannot be reduced so much. Therefore, in intermittent operation, when the compressor is ON, a fairly cold air blows out, so there is a problem in comfort such that the user feels cold when directly hitting this air, or cold air stays on the floor and the feet cool down. Arise.

下記特許文献1に開示された空気調和機では、このような問題を防止するために、室内機内の二つの熱交換器の途中に設けられた室内側絞り機構[indoor throttle mechanism]によって、二つの熱交換器を蒸発機及び再熱器として機能させる除湿運転モードが設けられている。この空気調和機によれば、圧縮機を停止させずに、すなわち断続運転を行わずに最小能力運転を行うことができ、上述した問題を防止できる。   In the air conditioner disclosed in Patent Document 1 below, in order to prevent such a problem, two indoor throttle mechanisms provided in the middle of two heat exchangers in the indoor unit are used. A dehumidifying operation mode is provided in which the heat exchanger functions as an evaporator and a reheater. According to this air conditioner, the minimum capacity operation can be performed without stopping the compressor, that is, without performing the intermittent operation, and the above-described problems can be prevented.

日本国特開2006−162197号公報Japanese Unexamined Patent Publication No. 2006-162197

上記特許文献1に開示されている空気調和機では、通常冷房運転中に圧縮機の最小能力を下回る空調負荷条件であると判断された場合、室内側絞り機構が最小流量に設定された運転に移行する。これは、室内側絞り機構を変更することで上述した除湿運転モードに移行するもので、圧縮機は低能力運転されるが、圧縮機制御ではなく室内機内の熱交換器制御によって除湿運転が行われている。   In the air conditioner disclosed in Patent Document 1, when it is determined that the air conditioning load condition is lower than the minimum capacity of the compressor during the normal cooling operation, the indoor throttle mechanism is set to the minimum flow rate. Transition. This is a change to the dehumidifying operation mode described above by changing the indoor throttle mechanism. The compressor is operated at a low capacity, but the dehumidifying operation is performed not by the compressor control but by the heat exchanger control in the indoor unit. It has been broken.

すなわち、圧縮機の吐出冷媒量を大きく変化させることはできない。このため、冷凍サイクル内の循環冷媒量も大きな変化はないので、室内熱交換器での熱交換容量を大幅に低減させることはできない。このことは、除湿運転中にも同様で、圧縮機の最小能力を下回る空調負荷条件によって室内側絞り機構が最小流量に設定されると蒸発温度が低くなり、室内に吹き出される空気温度は低い。   That is, the amount of refrigerant discharged from the compressor cannot be changed greatly. For this reason, since the amount of circulating refrigerant in the refrigeration cycle does not change greatly, the heat exchange capacity in the indoor heat exchanger cannot be significantly reduced. This is the same during the dehumidifying operation. When the indoor throttle mechanism is set to the minimum flow rate under the air conditioning load condition that is lower than the minimum capacity of the compressor, the evaporation temperature becomes low and the air temperature blown into the room is low. .

この状態では、弱風に設定して連続運転を行った場合でも足下に冷気が滞留してしまう。また、就寝時には利用者の体全体が冷えてしまう。   In this state, cold air stays under the feet even when continuous operation is performed with a weak wind. In addition, the user's entire body cools down at bedtime.

従って、本発明の目的は、冷房時における吹出空気温度を冷やし過ぎないような運転制御によって、冷えすぎを防止して快適な空調運転を可能にする空気調和機を提供することにある。   Accordingly, it is an object of the present invention to provide an air conditioner that prevents comfortable cooling and enables comfortable air-conditioning operation by operating control that does not overcool the air temperature during cooling.

発明の空気調和機は、室内熱交換器、及び、室内ファンを備えた室内機と、前記室内機と接続され、かつ、複数のシリンダを有して運転シリンダ数を変化可能な圧縮機、室外熱交換器、及び、絞り機構を備えた室外機と、前記圧縮機の運転回転数を可変制御する制御ユニットとを備えている。ここで、前記制御ユニット、冷房運転時に、外気温に基づいて前記圧縮機の前記運転シリンダ数を最小シリンダ数に設定し、かつ、前記圧縮機の前記運転回転数を冷凍サイクル運転が可能な最小回転数に設定する運転モードで、前記空気調和機を運転可能である。さらに、上記運転モードでは、前記制御ユニットが、運転開始指令に基づいて外気温を取得して取得した外気温とプリセット温度と比較し、前記外気温度が前記プリセット温度以上である場合に、前記圧縮機の前記運転シリンダ数を前記最小シリンダ数に設定し、かつ、前記圧縮機の前記運転回転数を前記冷凍サイクル運転が可能な前記最小回転数に設定して、前記室内機の吸込温度と吹出温度との温度差が5℃以下となるように運転を制御する An air conditioner according to the present invention includes an indoor heat exchanger, an indoor unit including an indoor fan, a compressor connected to the indoor unit, and having a plurality of cylinders and capable of changing the number of operating cylinders, An outdoor heat exchanger, an outdoor unit provided with a throttle mechanism, and a control unit that variably controls the operating rotational speed of the compressor . Here, during the cooling operation, the control unit sets the number of operating cylinders of the compressor to the minimum number of cylinders based on the outside air temperature, and the operation rotational speed of the compressor can perform a refrigeration cycle operation. The air conditioner can be operated in the operation mode set to the minimum rotation speed . Further, in the operation mode, the control unit compares the outside air temperature acquired by acquiring the outside air temperature based on the operation start command and the preset temperature, and the compression unit is compressed when the outside air temperature is equal to or higher than the preset temperature. The operating cylinder number of the machine is set to the minimum cylinder number, and the operating rotational speed of the compressor is set to the minimum rotational speed at which the refrigeration cycle operation can be performed, and the suction temperature and the blow-out temperature of the indoor unit The operation is controlled so that the temperature difference from the temperature is 5 ° C. or less .

前記空気調和機によれば、運転シリンダ数および運転回転数を可変制御な圧縮機の採用によって、冷房運転中の最小能力運転時に冷媒吐出量を減少させた運転を行って冷凍サイクル全体の能力を下げて、室内機からの吹出空気の冷えすぎを防止して快適な空調が可能となる。   According to the air conditioner, by adopting a compressor in which the number of operating cylinders and the number of operating revolutions are variably controlled, the capacity of the entire refrigeration cycle is reduced by performing an operation with a reduced refrigerant discharge amount during the minimum capacity operation during the cooling operation. It can be lowered to prevent the air blown from the indoor unit from being too cold, and comfortable air conditioning becomes possible.

実施形態における空気調和機の全体構成を示す全体図である。It is a whole view showing the whole air conditioner composition in an embodiment. 前記空気調和機を含む冷凍サイクルの構成を示す回路図である。It is a circuit diagram which shows the structure of the refrigerating cycle containing the said air conditioner. 前記空気調和機の制御ユニットの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the control unit of the said air conditioner. 前記空気調和機の圧縮機の運転状態(2シリンダ運転)を示す説明図である。It is explanatory drawing which shows the driving | running state (2 cylinder operation) of the compressor of the said air conditioner. 前記圧縮機の運転状態(1シリンダ運転)を示す説明図である。It is explanatory drawing which shows the driving | running state (1 cylinder operation) of the said compressor. 前記空気調和機の制御のフローチャートである。It is a flowchart of control of the air conditioner. 前記空気調和機の涼風運転モード[cool breeze operation mode]開始後の各種データの測定結果を示すグラフである。It is a graph which shows the measurement result of the various data after the cool breeze operation mode [cool breeze operation mode] start of the said air conditioner.

以下、実施形態について図面を参照して詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

図1に示されるように、空気調和機1は、室内に設置される室内機2と、室内機2と接続された室外機3と、リモートコントローラ4とから構成されている。利用者は、基本的にリモートコントローラ4を用いて、空気調和機1の運転モード選択、温度設定、風量設定等の各種操作を行う。   As shown in FIG. 1, the air conditioner 1 includes an indoor unit 2 installed indoors, an outdoor unit 3 connected to the indoor unit 2, and a remote controller 4. The user basically performs various operations such as operation mode selection, temperature setting, and air volume setting of the air conditioner 1 using the remote controller 4.

室内機2は、その前面パネル[front panel]2aから離間可能な可動パネル[moving panel]2bを備えている。可動パネル2bが前面パネル2aから離間されることによって前面パネル2aと可動パネル2bとの間に空間が生じ、その空間を介して室内空気が吸い込まれる(吸
込口[air inlet])。また、室内機2の上面にも吸込口[air inlet]2cが設けられている。前面パネル2aの下部には吹出口[air outlet]2dが設けられている。吹出口2dには、吹出し風を上下に調整するための垂直空気流ルーバ[vertical air flow louver]2eと、吹出し風を左右に調整するための水平空気流ルーバ[horizontal air flow louver]2fも設けられている。
The indoor unit 2 includes a moving panel 2b that can be separated from the front panel 2a. When the movable panel 2b is separated from the front panel 2a, a space is generated between the front panel 2a and the movable panel 2b, and indoor air is sucked through the space (air inlet). An air inlet 2 c is also provided on the upper surface of the indoor unit 2. An air outlet 2d is provided at the lower part of the front panel 2a. The outlet 2d is also provided with a vertical air flow louver 2e for adjusting the blowing air up and down and a horizontal air flow louver 2f for adjusting the blowing air left and right. It has been.

室内機2は、前面パネル2aの吸込口及び吸込口2cから吹出口2dにかけての通風路に図示しない室内熱交換器及び室内ファンを収容している。   The indoor unit 2 accommodates an indoor heat exchanger and an indoor fan (not shown) in a suction port of the front panel 2a and a ventilation path from the suction port 2c to the air outlet 2d.

可動パネル2bは、前面パネル2aから離間する方向に移動可能であり、その移動によって内側の吸込口を開放する。また、可動パネル2bは、前面パネル2aに接する方向への移動(復帰)によって内側の吸込口を閉塞する。   The movable panel 2b is movable in a direction away from the front panel 2a, and the inner suction port is opened by the movement. Further, the movable panel 2b closes the inner suction port by moving (returning) in a direction in contact with the front panel 2a.

なお、本実施形態においては、図1に示されるような室内機2が採用されたが、他の種類の室内機(例えば、天井埋め込み型[ceiling mounted built-in type]室内機)が採用されてもよい。   In the present embodiment, the indoor unit 2 as shown in FIG. 1 is employed, but other types of indoor units (for example, ceiling mounted built-in type indoor units) are employed. May be.

室外機3は室外に設置され、冷凍サイクルA(図2参照)で接続された室内機2に冷媒を供給する。室外機3は、図1では簡略化して示されているが、後述するように、その内部には圧縮機31等を備えている。   The outdoor unit 3 is installed outside and supplies the refrigerant to the indoor unit 2 connected by the refrigeration cycle A (see FIG. 2). Although the outdoor unit 3 is shown in a simplified manner in FIG. 1, as will be described later, the outdoor unit 3 includes a compressor 31 and the like inside.

リモートコントローラ4は、利用者が選択した運転モード等の指示を室内機2に対して送信するために使用される。本実施形態におけるリモートコントローラ4には、図1に示されるように、各種表示を表わす表示部4aと「冷房」或いは「暖房」の運転モードを設定する運転モードボタン4bが設けられている。   The remote controller 4 is used to transmit an instruction such as an operation mode selected by the user to the indoor unit 2. As shown in FIG. 1, the remote controller 4 in the present embodiment is provided with a display unit 4a representing various displays and an operation mode button 4b for setting an operation mode of “cooling” or “heating”.

なお、図1のリモートコントローラ4には示されていないが、その他のボタン、例えば温度設定ボタン等も設けられている。また、リモートコントローラ4の形状やデザイン等は、あくまでも例示であって、その形状やデザイン等は限定されない。さらに、リモートコントローラ4と室内機2との間での信号の送受信は、図1又は図3に示されるような無線通信形式の他、各種通信形式によって行われ得る。   Although not shown in the remote controller 4 of FIG. 1, other buttons such as a temperature setting button are also provided. The shape, design, etc. of the remote controller 4 are merely examples, and the shape, design, etc. are not limited. Furthermore, transmission / reception of signals between the remote controller 4 and the indoor unit 2 can be performed by various communication formats in addition to the wireless communication format as shown in FIG. 1 or FIG. 3.

上述したように空気調和機1は、室内機2と、室内機2と接続された室外機3とから構成される。図2に示されるように、室内機2内には、冷媒と室内空気ととの間で熱交換を行う室内熱交換器21と、熱交換された空気を室内に送風する室内ファン22とが設けられている。   As described above, the air conditioner 1 includes the indoor unit 2 and the outdoor unit 3 connected to the indoor unit 2. As shown in FIG. 2, the indoor unit 2 includes an indoor heat exchanger 21 that performs heat exchange between the refrigerant and room air, and an indoor fan 22 that blows the heat-exchanged air into the room. Is provided.

図2の室内機2内には、室内熱交換器21と室内ファン22としか示されていないが、空気調和機の室内機が通常備える各機器は当然備えている。室内熱交換器21、室内ファン22、及び、図示されない各機器を制御する制御ユニット23が、さらに設けられている。図2の室内機2では、制御ユニット23の信号の送受信については簡略化して示されている。   Although only the indoor heat exchanger 21 and the indoor fan 22 are shown in the indoor unit 2 in FIG. 2, naturally, each device normally provided in the indoor unit of the air conditioner is provided. An indoor heat exchanger 21, an indoor fan 22, and a control unit 23 for controlling each device (not shown) are further provided. In the indoor unit 2 of FIG. 2, transmission / reception of signals of the control unit 23 is shown in a simplified manner.

室外機3では、圧縮機31と、四方弁32と、室外熱交換器33と、絞り機構34と、アキュムレータ35と、圧縮機31への供給冷媒を切り換える切替弁36とが、配管を介して接続されている。また、室内機2と室外機3とは冷媒循環配管によって接続されており、冷凍サイクルAが構成されている。すなわち、室外機3の絞り機構34と四方弁32との間に室内機2の室内熱交換器21が位置するように配管が接続されている。冷媒は、絞り機構34、室内熱交換器21、四方弁32の順(冷房時)、或いは、四方弁32、室内熱交換器21、絞り機構34の順(暖房時)に流れる。   In the outdoor unit 3, a compressor 31, a four-way valve 32, an outdoor heat exchanger 33, a throttling mechanism 34, an accumulator 35, and a switching valve 36 that switches a refrigerant supplied to the compressor 31 are connected via a pipe. It is connected. The indoor unit 2 and the outdoor unit 3 are connected by a refrigerant circulation pipe, and a refrigeration cycle A is configured. That is, the piping is connected between the throttle mechanism 34 of the outdoor unit 3 and the four-way valve 32 so that the indoor heat exchanger 21 of the indoor unit 2 is located. The refrigerant flows in the order of the throttle mechanism 34, the indoor heat exchanger 21, and the four-way valve 32 (during cooling), or in the order of the four-way valve 32, the indoor heat exchanger 21, and the throttle mechanism 34 (during heating).

なお、本実施形態では、絞り機構34としてパルスモータバルブ(PMV)が用いられており、切替弁36として四方弁が用いられている。また、上述した圧縮機31、室外熱交換器33、及び、切替弁36などの室外機3を構成する各機器の制御する制御ユニット37が、さらに設けられている。図2の室外機3では、制御ユニット33の信号の送受信については簡略化して示されている。   In the present embodiment, a pulse motor valve (PMV) is used as the throttle mechanism 34, and a four-way valve is used as the switching valve 36. Moreover, the control unit 37 which controls each apparatus which comprises the outdoor units 3, such as the compressor 31 mentioned above, the outdoor heat exchanger 33, and the switching valve 36, is further provided. In the outdoor unit 3 of FIG. 2, transmission / reception of signals of the control unit 33 is shown in a simplified manner.

圧縮機31は、後述するように複数(本実施形態では2つ)のシリンダを備えた、いわゆるデュアルコンプレッサである。冷媒は、アキュムレータ35を介して圧縮機31に供給される。また、後述する圧縮室31b及び31fで圧縮された高圧冷媒は、圧縮機31の内部空間を介して方弁32などに吐出される(圧縮機31の内部は吐出圧となる)。 As will be described later, the compressor 31 is a so-called dual compressor including a plurality of (two in this embodiment) cylinders. The refrigerant is supplied to the compressor 31 via the accumulator 35. Further, high-pressure refrigerant compressed in the compression chamber 31b and 31f will be described later is discharged to such four-way valve 32 through the internal space of the compressor 31 (the inside of the compressor 31 becomes the discharge pressure).

アキュムレータ35の吐出側には、圧縮機31の2つのシリンダに対してそれぞれ1系統の供給路が設けられている(図4及び図5も参照)。一方の系統である第1供給路Mは、圧縮機31に冷媒を直接供給する。第1供給路Mを経由して供給される冷媒は、アキュムレータ35を通過した低圧冷媒である。他方の系統である第2供給路Nは、切替弁36を経由して圧縮機31に冷媒を供給する。第2供給路Nを経由して供給される冷媒は、アキュムレータ35を通過してきた低圧冷媒(図4:N1+N2:O及びQ)、又は、圧縮機31から供給される高圧冷媒(図5:N2:P及びR)のいずれかである。   On the discharge side of the accumulator 35, one supply path is provided for each of the two cylinders of the compressor 31 (see also FIGS. 4 and 5). The first supply path M that is one system directly supplies the refrigerant to the compressor 31. The refrigerant supplied via the first supply path M is a low-pressure refrigerant that has passed through the accumulator 35. The second supply path N that is the other system supplies the refrigerant to the compressor 31 via the switching valve 36. The refrigerant supplied via the second supply path N is the low-pressure refrigerant (FIG. 4: N1 + N2: O and Q) that has passed through the accumulator 35, or the high-pressure refrigerant supplied from the compressor 31 (FIG. 5: N2). : Any one of P and R).

ここで、冷房運転を例にして、空気調和機1の運転について説明する。冷凍サイクルAによる冷房運転では、図2の実線矢印に示されている方向に冷媒が流れる。まず、室外機3内の圧縮機31によって冷媒が圧縮されて、高温高圧ガスとして吐出される。高温高圧の気体冷媒は、四方弁32を介して室外熱交換器33に導かれる。冷媒は室外熱交換器33で室外ファン38からの風を受けて冷却され、その一部、又は、全部が凝縮する。さらに、液相状態又は気液二相状態の冷媒は、絞り機構34で膨張して低圧になる。絞り機構34を出た気液二相状態の冷媒は、室内熱交換器21に流入し、室内空気と熱交換する。すなわち、冷媒は熱交換によって蒸発し、室内熱交換器21に吸い込まれた空気は冷却される。冷却された空気は、室内ファン22によって室内に供給され、室内が冷房される。熱交換後の冷媒は、四方弁32を通り、アキュムレータ35を介して圧縮機31に戻る。以降、上述した冷凍サイクルが繰り返される。一方、暖房運転では、図2の破線矢印に示される方向に冷媒が流れ、室内熱交換器21で冷媒が凝縮することで室内が暖房される。   Here, the operation of the air conditioner 1 will be described by taking the cooling operation as an example. In the cooling operation by the refrigeration cycle A, the refrigerant flows in the direction indicated by the solid line arrow in FIG. First, the refrigerant is compressed by the compressor 31 in the outdoor unit 3 and discharged as a high-temperature high-pressure gas. The high-temperature and high-pressure gaseous refrigerant is guided to the outdoor heat exchanger 33 through the four-way valve 32. The refrigerant is cooled by receiving wind from the outdoor fan 38 in the outdoor heat exchanger 33, and a part or all of the refrigerant is condensed. Furthermore, the refrigerant in the liquid phase state or the gas-liquid two-phase state is expanded by the throttle mechanism 34 and becomes a low pressure. The gas-liquid two-phase refrigerant that has exited the throttle mechanism 34 flows into the indoor heat exchanger 21 and exchanges heat with the indoor air. That is, the refrigerant evaporates by heat exchange, and the air sucked into the indoor heat exchanger 21 is cooled. The cooled air is supplied into the room by the indoor fan 22 and the room is cooled. The refrigerant after the heat exchange passes through the four-way valve 32 and returns to the compressor 31 via the accumulator 35. Thereafter, the above-described refrigeration cycle is repeated. On the other hand, in the heating operation, the refrigerant flows in the direction indicated by the broken-line arrow in FIG. 2, and the refrigerant is condensed in the indoor heat exchanger 21 to heat the room.

図3は、室内機2の制御ユニット23及び室外機3の制御ユニット37の内部構成を示すブロック図である。室内機2の制御ユニット23(以下、「室内制御ユニット23」と言う)は、リモートコントローラ4からの信号を受信する受信ユニット23aと、MCU(Micro Controller Unit)23bと、送信ユニット23cとを備える。   FIG. 3 is a block diagram showing the internal configuration of the control unit 23 of the indoor unit 2 and the control unit 37 of the outdoor unit 3. The control unit 23 of the indoor unit 2 (hereinafter referred to as “indoor control unit 23”) includes a reception unit 23a that receives a signal from the remote controller 4, an MCU (Micro Controller Unit) 23b, and a transmission unit 23c. .

利用者は、リモートコントローラ4を用いて空気調和機1の運転モードなどの各種運転条件を決定して、室内機2(室内制御ユニット23)に送信する。受信ユニット23aは、受信した運転条件をMCU23bに送信する。MCU23bは、例えば、駆動回路23dを介して室内ファン22の駆動を制御したり、駆動回路(図示せず)を介してルーバ2e,2fやダンパ等の各構成機器の駆動を制御することで、利用者からの運転指令に基づく運転を行う。さらに、MCU23bは、送信ユニット23cを介して室外機3にも信号を送信し、信号を受信した室外機3が圧縮機31等の駆動を制御する。   The user determines various operating conditions such as the operation mode of the air conditioner 1 using the remote controller 4 and transmits the determined conditions to the indoor unit 2 (indoor control unit 23). The receiving unit 23a transmits the received operating condition to the MCU 23b. The MCU 23b, for example, controls the driving of the indoor fan 22 via the driving circuit 23d, or controls the driving of each component device such as the louvers 2e and 2f and the damper via the driving circuit (not shown). Carry out driving based on driving commands from users. Further, the MCU 23b transmits a signal to the outdoor unit 3 through the transmission unit 23c, and the outdoor unit 3 that has received the signal controls driving of the compressor 31 and the like.

室内機2と室外機3とは電気的に接続されており、室内制御ユニット23から送信された信号は、室外機3の制御ユニット37(以下、「室外制御ユニット37」と言う)の受信ユニット37aによって受信される。受信された信号は、MCU37bを介して、室外機3を構成する各機器を駆動する駆動回路37c〜37gに送信される。例えば、駆動回路37cは、圧縮機31を駆動する。また、駆動回路37dは、四方弁32を駆動し、駆動回路37eは、絞り機構34を駆動する。さらに、駆動回路37fは、切替弁36を駆動し、駆動回路37gは、室外ファン38を駆動する。   The indoor unit 2 and the outdoor unit 3 are electrically connected, and a signal transmitted from the indoor control unit 23 is a receiving unit of the control unit 37 of the outdoor unit 3 (hereinafter referred to as “outdoor control unit 37”). Received by 37a. The received signal is transmitted to the drive circuits 37c to 37g that drive each device constituting the outdoor unit 3 via the MCU 37b. For example, the drive circuit 37 c drives the compressor 31. The drive circuit 37d drives the four-way valve 32, and the drive circuit 37e drives the throttle mechanism 34. Furthermore, the drive circuit 37f drives the switching valve 36, and the drive circuit 37g drives the outdoor fan 38.

次に、本実施形態における空気調和機の制御方法について説明する。   Next, the control method of the air conditioner in this embodiment is demonstrated.

図4に示されるように、圧縮機31の内部は、中間仕切板31aを挟んで上下2つの圧縮室31b及び31fが設けられている。上部圧縮室31bには、第1供給路Mを通して低圧冷媒が供給され、上部ローリングピストン31cが回転することによって、冷媒を圧縮する。上部ローリングピストン31cには上部ベーン31dが弾性体(スプリング)31eによって押しつけられている。そのため、上部ベーン31dは、上部ローリングピストン31cの回転に追従して往復動する。   As shown in FIG. 4, the compressor 31 is provided with two upper and lower compression chambers 31b and 31f with an intermediate partition plate 31a interposed therebetween. Low pressure refrigerant is supplied to the upper compression chamber 31b through the first supply path M, and the upper rolling piston 31c rotates to compress the refrigerant. An upper vane 31d is pressed against the upper rolling piston 31c by an elastic body (spring) 31e. Therefore, the upper vane 31d reciprocates following the rotation of the upper rolling piston 31c.

下部圧縮室31fには、後述するように、第2供給路Nを通して低圧、又は、高圧冷媒が供給される。低圧冷媒が供給される場合(図4)には、下部ローリングピストン31gが回転することによって、冷媒を圧縮して高圧冷媒にして室外熱交換器33に送る。下部ローリングピストン31gには下部ベーン31hが弾性体(スプリング:図示せず)によって押しつけられている。そのため、下部ベーン31hは、下部ローリングピストン31gの回転に追従して往復動する。ただし、高圧冷媒が供給される場合(図5)には、下部ベーン31hは磁性体31iによって下部ローリングピストン31gから離されて保持され、下部ローリングピストン31gは下部ベーン31hの往復動なく回転する。   Low pressure or high pressure refrigerant is supplied to the lower compression chamber 31f through the second supply path N, as will be described later. When the low-pressure refrigerant is supplied (FIG. 4), the lower rolling piston 31g rotates to compress the refrigerant into a high-pressure refrigerant and send it to the outdoor heat exchanger 33. A lower vane 31h is pressed against the lower rolling piston 31g by an elastic body (spring: not shown). Therefore, the lower vane 31h reciprocates following the rotation of the lower rolling piston 31g. However, when high-pressure refrigerant is supplied (FIG. 5), the lower vane 31h is held away from the lower rolling piston 31g by the magnetic body 31i, and the lower rolling piston 31g rotates without reciprocation of the lower vane 31h.

図4は、圧縮機31の2つのシリンダが駆動される場合である。なお、「シリンダ」の語は、各圧縮室31b,31fに設けられたローリングピストン31c,31gやベーン31d,31h等の機構をまとめて表わす。   FIG. 4 shows a case where two cylinders of the compressor 31 are driven. The term “cylinder” collectively represents mechanisms such as rolling pistons 31c and 31g and vanes 31d and 31h provided in the compression chambers 31b and 31f.

低圧冷媒は、室内熱交換器21から四方弁32を介してアキュムレータ35に流入する。上述したように、アキュムレータ35と圧縮機31とは2系統(第1供給路M及び第2供給路N)で接続されている。第1供給路Mは、アキュムレータ35と圧縮機31とを直接接続し、低圧冷媒を上部圧縮室31bに供給する。上部ローリングピストン31cの回転によって冷媒は圧縮されて高圧になって室外熱交換器33に送られる。   The low-pressure refrigerant flows from the indoor heat exchanger 21 into the accumulator 35 via the four-way valve 32. As described above, the accumulator 35 and the compressor 31 are connected by two systems (first supply path M and second supply path N). The first supply path M directly connects the accumulator 35 and the compressor 31 and supplies low-pressure refrigerant to the upper compression chamber 31b. The refrigerant is compressed by the rotation of the upper rolling piston 31c, becomes a high pressure, and is sent to the outdoor heat exchanger 33.

一方、下部圧縮室31fには第2供給路Nによって冷媒が供給される。第2供給路N上には切替弁36が設けられている。なお、説明上、アキュムレータ35から切替弁36までの経路を第2供給路N1とし、切替弁36から圧縮機31までの経路を第2供給路N2と表わす。第2供給路N2上には、急激な圧力変化を緩和するバッファタンク39が設けられている。   On the other hand, the refrigerant is supplied to the lower compression chamber 31f through the second supply path N. A switching valve 36 is provided on the second supply path N. For the sake of explanation, the path from the accumulator 35 to the switching valve 36 is referred to as a second supply path N1, and the path from the switching valve 36 to the compressor 31 is referred to as a second supply path N2. A buffer tank 39 is provided on the second supply path N2 to alleviate sudden pressure changes.

図4では、切替弁36が閉じられて第2供給路N1と第2供給路N2とが接続されている。従って、第1供給路Mを介して圧縮機31(上部圧縮室31b)に低圧冷媒が供給されるとともに、第2供給路Nを介して圧縮機31(下部圧縮室31f)に低圧冷媒が供給される。このように、上部圧縮室31b及び下部圧縮室31fに低圧冷媒が供給され、上部ローリングピストン31c及び下部ローリングピストン31gの回転によって冷媒が圧縮される。圧縮された高圧冷媒は、四方弁32を経由して室外熱交換器33に供給される。この運転は、いわゆる、2シリンダ運転であり、例えば、空気調和機1の起動時や中〜高能力運転時にこの2シリンダ運転が行われる。   In FIG. 4, the switching valve 36 is closed and the second supply path N1 and the second supply path N2 are connected. Accordingly, the low-pressure refrigerant is supplied to the compressor 31 (upper compression chamber 31b) via the first supply path M, and the low-pressure refrigerant is supplied to the compressor 31 (lower compression chamber 31f) via the second supply path N. Is done. In this way, the low-pressure refrigerant is supplied to the upper compression chamber 31b and the lower compression chamber 31f, and the refrigerant is compressed by the rotation of the upper rolling piston 31c and the lower rolling piston 31g. The compressed high-pressure refrigerant is supplied to the outdoor heat exchanger 33 via the four-way valve 32. This operation is a so-called two-cylinder operation. For example, the two-cylinder operation is performed when the air conditioner 1 is started or during a medium to high capacity operation.

なお、圧縮機31と四方弁32とをつなぐ配管の途中に、切替弁36に接続されるバイパス路40が設けられている。ただし、上述した場合には切替弁36が閉じられているので、バイパス路40を満たす高圧冷媒は第2供給路N2には供給されない。   A bypass path 40 connected to the switching valve 36 is provided in the middle of the pipe connecting the compressor 31 and the four-way valve 32. However, since the switching valve 36 is closed in the above-described case, the high-pressure refrigerant that satisfies the bypass passage 40 is not supplied to the second supply passage N2.

図2に示される冷凍サイクルAの回路には、切替弁36の周囲に4つの矢印O、P、Q、及び、Rが示されている。図4の2シリンダ運転の場合、切替弁36は閉じられているため、低圧冷媒はアキュムレータ35を通り、矢印Oが示すようにバッファタンク39を経て圧縮機31(下側圧縮室31f)に供給される。また、圧縮機31からバイパス路40に入り込んだ高圧冷媒は、切替弁36が閉じられているので矢印Qが示すように切替弁36で終端となる。   In the circuit of the refrigeration cycle A shown in FIG. 2, four arrows O, P, Q, and R are shown around the switching valve 36. In the two-cylinder operation of FIG. 4, since the switching valve 36 is closed, the low-pressure refrigerant passes through the accumulator 35 and is supplied to the compressor 31 (lower compression chamber 31f) through the buffer tank 39 as indicated by the arrow O. Is done. The high-pressure refrigerant that has entered the bypass passage 40 from the compressor 31 ends at the switching valve 36 as indicated by the arrow Q because the switching valve 36 is closed.

図5は、涼風運転モードの圧縮機31の運転状態を示している。「涼風運転」とは、空気調和機1(室内機2)の設置空間に涼風を吹き出す運転をいう。室内機2は、室内空気を吸い込んで室内熱交換器21で熱交換し、熱交換された空気を室内に吹き出す。「涼風運転」では、室内機2が吸い込んだ空気温度より5±1℃程度低い空気が室内に吹き出される。   FIG. 5 shows the operation state of the compressor 31 in the cool air operation mode. “Cool wind operation” refers to an operation of blowing cool air into the installation space of the air conditioner 1 (indoor unit 2). The indoor unit 2 sucks indoor air, exchanges heat with the indoor heat exchanger 21, and blows out the heat-exchanged air into the room. In “cool wind operation”, air that is about 5 ± 1 ° C. lower than the air temperature taken in by the indoor unit 2 is blown into the room.

すなわち、涼風運転モードは、吸込温度と吹出温度に差がない「送風運転モード」と吸込温度と吹出温度とに大きな差がある冷風を供給する「冷房運転モード」との間に位置する。空気調和機1に涼風運転を指令することで、利用者の冷えすぎといった弊害を防止できる。   That is, the cool air operation mode is located between a “blower operation mode” in which there is no difference between the suction temperature and the blowout temperature, and a “cooling operation mode” in which cool air having a large difference between the suction temperature and the blowout temperature is supplied. By instructing the air conditioner 1 to perform a cool air operation, it is possible to prevent the adverse effect of the user being too cold.

従来の涼風運転では、圧縮機の運転周波数を最小にし、かつ、室内熱交換器制御を行うことで対応していたが、圧縮機の能力によっては最小運転周波数による運転でも冷風が供給される場合があることは上述した通りである。そこで、本実施形態では、最小運転周波数での運転に加えて、さらに、圧縮機31の駆動シリンダ数を最小にすることで、冷凍サイクル内の流通冷媒量を減らして冷えすぎを防止し、利用者に快適な空間を提供する。   In conventional cool air operation, the operation frequency of the compressor is minimized and the indoor heat exchanger is controlled. However, depending on the capacity of the compressor, cold air is supplied even during operation at the minimum operation frequency. It is as described above. Therefore, in this embodiment, in addition to the operation at the minimum operation frequency, the number of drive cylinders of the compressor 31 is further minimized, thereby reducing the amount of refrigerant flowing in the refrigeration cycle and preventing overcooling. Provide a comfortable space for the elderly.

具体的に説明する。図5に示されるように、下部圧縮室31fには高圧冷媒が供給される。つまり、圧縮機31から室外熱交換器33へ供給される高圧冷媒の一部が、バイパス路40、切替弁36、及び、第2供給路N2を介して、下部圧縮室31fに供給される。切替弁36が開かれているので、高圧冷媒はこのような経路を流れる。この場合、アキュムレータ35からの低圧冷媒は、第2供給路N1には入るが、切替弁36で終端となるので下部圧縮室31fには供給されない。   This will be specifically described. As shown in FIG. 5, a high-pressure refrigerant is supplied to the lower compression chamber 31f. That is, a part of the high-pressure refrigerant supplied from the compressor 31 to the outdoor heat exchanger 33 is supplied to the lower compression chamber 31f via the bypass passage 40, the switching valve 36, and the second supply passage N2. Since the switching valve 36 is opened, the high-pressure refrigerant flows through such a path. In this case, the low-pressure refrigerant from the accumulator 35 enters the second supply path N1, but is not supplied to the lower compression chamber 31f because it terminates at the switching valve 36.

図2に示される冷凍サイクルAの回路に基づいて上述した涼風運転を再度説明する。図5に示される1シリンダ運転の場合、切替弁36は開かれている。従って、低圧冷媒はアキュムレータ35を通過するが、矢印Rが示すように切替弁36で終端となる。一方、圧縮機31からバイパス路40に入り込んだ高圧冷媒は、切替弁36が閉じられているので矢印Pが示す通りバッファタンク39を経て圧縮機31(下側圧縮室31f)に供給される。   The above-described cool air operation will be described again based on the circuit of the refrigeration cycle A shown in FIG. In the one-cylinder operation shown in FIG. 5, the switching valve 36 is opened. Therefore, the low-pressure refrigerant passes through the accumulator 35, but ends at the switching valve 36 as indicated by the arrow R. On the other hand, the high-pressure refrigerant that has entered the bypass passage 40 from the compressor 31 is supplied to the compressor 31 (lower compression chamber 31f) via the buffer tank 39 as indicated by the arrow P because the switching valve 36 is closed.

下部圧縮室31fの下部ベーン31hには、圧縮機31内部の圧力(吐出圧:高圧)が背圧として作用されており、この背圧とスプリングの弾性力とによって、下部ローリングピストン31gに押しつけられていた。低圧冷媒が下部圧縮室31fに供給される場合は、上述した背圧が有効に作用するため、下部ベーン31hは、下部ローリングピストン31gに押しつけられる(図4)。しかし、涼風運転モード(図5)では、高圧冷媒が下部圧縮室31fに供給されるので、上述した背圧は有効に作用しない。このため、下部ベーン31hは、磁性体31iの磁力によって下部ローリングピストン31gから離されて保持される。この結果、下部ローリングピストン31gは下部圧縮室31f内で空転する。   A pressure (discharge pressure: high pressure) inside the compressor 31 acts as a back pressure on the lower vane 31h of the lower compression chamber 31f, and is pressed against the lower rolling piston 31g by the back pressure and the elastic force of the spring. It was. When the low-pressure refrigerant is supplied to the lower compression chamber 31f, the above-described back pressure acts effectively, so the lower vane 31h is pressed against the lower rolling piston 31g (FIG. 4). However, in the cool breeze operation mode (FIG. 5), the high-pressure refrigerant is supplied to the lower compression chamber 31f, so the back pressure described above does not work effectively. For this reason, the lower vane 31h is separated from the lower rolling piston 31g and held by the magnetic force of the magnetic body 31i. As a result, the lower rolling piston 31g idles in the lower compression chamber 31f.

すなわち、下部ローリングピストン31gは、冷媒を圧縮する仕事をしないので、上部圧縮室31bのみでの1シリンダ運転が行われる。この状態では、圧縮される冷媒量が減少するので室外熱交換器33に吐出される冷媒量が減る。   That is, since the lower rolling piston 31g does not work to compress the refrigerant, the one-cylinder operation is performed only in the upper compression chamber 31b. In this state, the amount of refrigerant to be compressed decreases, so the amount of refrigerant discharged to the outdoor heat exchanger 33 decreases.

図6は、涼風運転モードでの制御のフローチャートである。まず、利用者がリモートコントローラ4を操作して涼風運転モードを選択する。例えば、この操作はリモートコントローラ4の「冷房」ボタンを長押しすることによって行われる。図1には、涼風運転モードに変更された状態が示されており、表示部4aには「涼風」が表示されている。リモートコントローラ4からは、涼風運転モードの開始指令(信号)が室内機2の受信ユニット23aに送信される(ST1)。   FIG. 6 is a flowchart of the control in the cool wind operation mode. First, the user operates the remote controller 4 to select the cool wind operation mode. For example, this operation is performed by long-pressing the “cooling” button of the remote controller 4. FIG. 1 shows the state changed to the cool wind operation mode, and “cool wind” is displayed on the display unit 4a. From the remote controller 4, a cool wind operation mode start command (signal) is transmitted to the receiving unit 23a of the indoor unit 2 (ST1).

受信ユニット23aは、リモートコントローラ4から受信した涼風運転開始指令を、MCU23b及び送信ユニット23cを介して、室外制御ユニット37aに送信する。受信ユニット37aは、受信した涼風運転開始指令をMCU37bに送信する。MCU37bは、プリセット温度と室外温度とを比較する(ST2)。   The reception unit 23a transmits the cool wind operation start command received from the remote controller 4 to the outdoor control unit 37a via the MCU 23b and the transmission unit 23c. The receiving unit 37a transmits the received cool wind operation start command to the MCU 37b. The MCU 37b compares the preset temperature with the outdoor temperature (ST2).

プリセット温度とは、涼風運転を開始するか否かを判断するための温度(例えば、35℃)であり、MCU37b内に記憶されている。プリセット温度は、空気調和機1の設置場所等を考慮して任意に設定可能である。なお、室外温度は、外気温センサ50によって測定されてMCU37bに送信される。   The preset temperature is a temperature (for example, 35 ° C.) for determining whether or not to start the cool wind operation, and is stored in the MCU 37b. The preset temperature can be arbitrarily set in consideration of the installation location of the air conditioner 1 and the like. The outdoor temperature is measured by the outside air temperature sensor 50 and transmitted to the MCU 37b.

MCU37bは、室外温度とプリセット温度とを比較して、室外温度がプリセット温度未満であると判断した場合には(ST2でNO)、涼風運転開始指令を受信しても涼風運転モードに移行せずに待機する。従って、この場合は、涼風運転モードが選択される直前の運転モードが継続される。   When the MCU 37b compares the outdoor temperature with the preset temperature and determines that the outdoor temperature is lower than the preset temperature (NO in ST2), the MCU 37b does not shift to the cool wind operation mode even if the cool wind operation start command is received. To wait. Therefore, in this case, the operation mode immediately before the cool wind operation mode is selected is continued.

一方、MCU37bは、室外温度がプリセット温度以上であると判断した場合には(ST2でYES)、圧縮機31の駆動シリンダ数を2シリンダから1シリンダへと切り換えるとともに、最小運転周波数での運転を開始する。すなわち、涼風運転が開始される(ST3)。   On the other hand, if the MCU 37b determines that the outdoor temperature is equal to or higher than the preset temperature (YES in ST2), it switches the number of drive cylinders of the compressor 31 from 2 cylinders to 1 cylinder and operates at the minimum operating frequency. Start. That is, cool air operation is started (ST3).

なお、涼風運転開始直後は、圧縮機31の保護のために最小運転周波数の2倍程度の周波数(例えば、20Hz前後)で約10分間2シリンダ運転を実行する。その後、開始後19分までは最小周波数(例えば、10Hz前後)での2シリンダ運転を実行し、19分経過後に最小周波数での1シリンダ運転に移行する(安定運転)。   Immediately after the start of the cool air operation, the 2-cylinder operation is performed for about 10 minutes at a frequency (for example, around 20 Hz) about twice the minimum operation frequency for protecting the compressor 31. Thereafter, a two-cylinder operation at the minimum frequency (for example, around 10 Hz) is executed until 19 minutes after the start, and after a lapse of 19 minutes, the operation shifts to a one-cylinder operation at the minimum frequency (stable operation).

実際には、MCU37bが駆動回路37dを介して切替弁36を閉状態(図4)から開状態(図5)へと切り換え、下部圧縮室31fに高圧冷媒が供給される。下部圧縮室31fに高圧冷媒が供給されると、上述したように下部ベーン31hが磁性体31iに保持され、下部ローリングピストン31gが空転して1シリンダ運転となる。このように圧縮機31を運転することで、冷凍サイクルA内を流れる冷媒量が減少し、室内熱交換器21で熱交換される冷媒量が減少する。この結果、室内には「冷風」ではなく「涼風」が供給される。   In practice, the MCU 37b switches the switching valve 36 from the closed state (FIG. 4) to the open state (FIG. 5) via the drive circuit 37d, and high pressure refrigerant is supplied to the lower compression chamber 31f. When the high-pressure refrigerant is supplied to the lower compression chamber 31f, as described above, the lower vane 31h is held by the magnetic body 31i, and the lower rolling piston 31g idles to perform one cylinder operation. By operating the compressor 31 in this manner, the amount of refrigerant flowing through the refrigeration cycle A is reduced, and the amount of refrigerant that is heat-exchanged by the indoor heat exchanger 21 is reduced. As a result, not “cold wind” but “cool wind” is supplied to the room.

MCU37bは、室内制御ユニット23から涼風運転終了指令を受信しない限り、涼風運転を継続する(ST4でNO)。涼風運転終了指令は、例えば、利用者が「冷房」ボタンを再度長押しして、涼風運転モードを解除して冷房運転モードを選択する操作をした場合に送信される。このように別の運転モードが選択されると、その指令が涼風運転終了指令として室外制御ユニット37に送信される。   The MCU 37b continues the cool air operation unless it receives a cool air operation end command from the indoor control unit 23 (NO in ST4). The cool wind operation end command is transmitted, for example, when the user presses and holds down the “cooling” button again to cancel the cool wind operation mode and select the cooling operation mode. When another operation mode is selected in this way, the command is transmitted to the outdoor control unit 37 as a cool wind operation end command.

MCU37bは、涼風運転終了指令を受信した場合(ST4でYES)、涼風運転を終了する。すなわち、1シリンダ運転のままで負荷に応じた周波数による運転が行われるか、1シリンダ運転から2シリンダ運転に移行して負荷に応じた周波数による運転が行われる(ST5)。   When the MCU 37b receives the cool wind operation end command (YES in ST4), the MCU 37b ends the cool wind operation. That is, the operation with the frequency according to the load is performed while the one cylinder operation is performed, or the operation with the frequency according to the load is performed by shifting from the one cylinder operation to the two cylinder operation (ST5).

2シリンダ運転への移行は、実際には以下のように行われる。まず、切替弁36が、駆動回路37dを介して、開状態(図5)から閉状態(図4)に切り換えられる。この結果、下部圧縮室31fへの高圧冷媒の供給が終了し、第2供給路N1と第2供給路N2とが接続されて下部圧縮室31fにアキュムレータ35を介して低圧冷媒が供給される。低圧冷媒の供給によって、下部ベーン31hは磁性体31iから離れて下部ローリングピストン31gに接触して、下部ローリングピストン31gの回転に追従する。このようにして、圧縮機31は2シリンダ運転に移行する。   The transition to the two-cylinder operation is actually performed as follows. First, the switching valve 36 is switched from the open state (FIG. 5) to the closed state (FIG. 4) via the drive circuit 37d. As a result, the supply of the high-pressure refrigerant to the lower compression chamber 31f is finished, the second supply path N1 and the second supply path N2 are connected, and the low-pressure refrigerant is supplied to the lower compression chamber 31f via the accumulator 35. Due to the supply of the low-pressure refrigerant, the lower vane 31h moves away from the magnetic body 31i, contacts the lower rolling piston 31g, and follows the rotation of the lower rolling piston 31g. In this way, the compressor 31 shifts to the 2-cylinder operation.

空気調和機の涼風運転モードにおける運転開始後の各種データの測定結果を図7(グラフ)及び下記表1に示す。なお、上記測定は、室内機2を12.5畳の部屋に設置し、涼風運転を行った場合の結果である。また、開始時の室内温は約33℃(=外気温)であり湿度70%であった。   The measurement results of various data after the start of operation in the cool air operation mode of the air conditioner are shown in FIG. In addition, the said measurement is a result at the time of installing the indoor unit 2 in a 12.5 tatami room, and performing the cool wind operation. Further, the room temperature at the start was about 33 ° C. (= outside temperature) and the humidity was 70%.

図7のグラフには、左側縦軸に「温度(℃)」、右側縦軸に「電力(W)」、横軸に「時間(min)」を取り、「吸い込み温度」、「室内平均温度」、「吹出し温度」、及び、「電力」と4つの項目についての時間的推移が示されている。また、表1には、設定された各時間ごとの温度、消費電力等の具体的数値が示されている。なお、室内機2の前面パネル2aには、その時点での消費電力などを表示するエネルギーモニタが設けられており、使用者が運転状態を確認できるようになっている。表1中の項目「エネルギーモニタ表示値」は、このモニタに表示された数値(5W刻みで表示)である。   In the graph of FIG. 7, “temperature (° C.)” is plotted on the left vertical axis, “power (W)” is plotted on the right vertical axis, “time (min)” is plotted on the horizontal axis, “suction temperature”, and “room average temperature”. ”,“ Blowout temperature ”, and“ Power ”are shown as temporal transitions. Table 1 also shows specific numerical values such as the set temperature and power consumption for each time. The front panel 2a of the indoor unit 2 is provided with an energy monitor that displays the power consumption at that time and the like so that the user can check the driving state. The item “energy monitor display value” in Table 1 is a numerical value (displayed in increments of 5 W) displayed on this monitor.

Figure 0005450637
Figure 0005450637

図7のグラフに示されるように、涼風運転が開始されると、吹出温度と吸込温度との差が短時間で涼風温度差(例えば、5±1℃程度)で安定するように、まず、吹出温度を低く設定して制御される。例えば、開始から10分経過時には、表1に示されるように吸込温度は32.2℃であるのに対して吹出温度は22.2℃となっている。また、この時点では室内温度を急激に下げている状態であるので、消費電力も「219W」と大きい。   As shown in the graph of FIG. 7, when the cool air operation is started, first, so that the difference between the blowing temperature and the suction temperature is stabilized in a short time with a cool air temperature difference (for example, about 5 ± 1 ° C.), It is controlled by setting the blowout temperature low. For example, when 10 minutes have elapsed from the start, the suction temperature is 22.2 ° C. while the suction temperature is 32.2 ° C. as shown in Table 1. In addition, since the room temperature is rapidly lowered at this time, the power consumption is as large as “219 W”.

一方、図7のグラフに示されるように、約20分を経過すると、圧縮機31の消費電力は56Wで安定する。また、吸込温度と吹出温度との差も、表1に示されるように、60分経過時で「−4.8℃」と上述した涼風温度差の範囲内にあることが分かる。   On the other hand, as shown in the graph of FIG. 7, when about 20 minutes have elapsed, the power consumption of the compressor 31 is stabilized at 56 W. Further, as shown in Table 1, it can be seen that the difference between the suction temperature and the blowout temperature is within the range of the above-described cool wind temperature difference of “−4.8 ° C.” after 60 minutes.

以上説明したように、運転能力を変化させることのできる圧縮機を採用することによって、最小能力運転に加えてさらに冷媒の吐出量を減少させて圧縮機を運転することで冷えすぎを防止して快適な空調を行うことができ、また、エネルギー消費を抑えた運転も可能となる。   As described above, by adopting a compressor that can change the operating capacity, it is possible to prevent overcooling by operating the compressor by further reducing the refrigerant discharge amount in addition to the minimum capacity operation. Comfortable air conditioning can be performed, and operation with reduced energy consumption is also possible.

特に、圧縮機が2シリンダ運転から1シリンダ運転へと移行することによって、最小周波数運転とも相まって、室内機は室内温度(吸込温度)から大きく冷やし過ぎない吹出温度の涼風を室内に供給することができる。このため、涼しいと感じる空気を利用者に供給するとともに、冷えすぎによる弊害を与えることがない。また、このような運転は圧縮機の運転においても省エネルギーとなる。   In particular, when the compressor shifts from the two-cylinder operation to the one-cylinder operation, the indoor unit can supply cool air having a blowing temperature that is not excessively cooled from the indoor temperature (suction temperature) into the room, coupled with the minimum frequency operation. it can. For this reason, while supplying the air which feels cool to a user, the bad influence by too cold is not given. Such operation also saves energy in the operation of the compressor.

なお、本発明は、上記実施形態に限定されず、その要旨の範囲内で構成要素が変形されて具体化され得る。例えば、上記実施形態では、室外制御ユニットが涼風運転モードを開始するか否かを判断したが、室内制御ユニットが判断してもよい。   In addition, this invention is not limited to the said embodiment, A component can be deform | transformed and embodied within the range of the summary. For example, in the above embodiment, it is determined whether or not the outdoor control unit starts the cool wind operation mode, but the indoor control unit may determine.

また、上記実施形態の複数の構成要素を適宜組み合わせてもよい。例えば、上記実施形態の全構成要素から幾つかの構成要素を削除してもよい。   Moreover, you may combine the some component of the said embodiment suitably. For example, you may delete some components from all the components of the said embodiment.

Claims (4)

空気調和機であって、
室内熱交換器、及び、室内ファンを備えた室内機と、
前記室内機と接続され、かつ、複数のシリンダを有して運転シリンダ数を変化可能な圧縮機、室外熱交換器、及び、絞り機構を備えた室外機と、
前記圧縮機の運転回転数を可変制御する制御ユニットとを備え、
前記制御ユニットが、冷房運転時に、外気温に基づいて前記圧縮機の前記運転シリンダ数を最小シリンダ数に設定し、かつ、前記圧縮機の前記運転回転数を冷凍サイクル運転が可能な最小回転数に設定する運転モードで、前記空気調和機を運転可能であり、
上記運転モードでは、
前記制御ユニットが、
運転開始指令に基づいて外気温を取得して取得した外気温とプリセット温度と比較し、
前記外気温度が前記プリセット温度以上である場合に、前記圧縮機の前記運転シリンダ数を前記最小シリンダ数に設定し、かつ、前記圧縮機の前記運転回転数を前記冷凍サイクル運転が可能な前記最小回転数に設定して、前記室内機の吸込温度と吹出温度との温度差が5℃以下となるように運転を制御する、ことを特徴とする空気調和機。
An air conditioner,
An indoor heat exchanger and an indoor unit equipped with an indoor fan;
A compressor connected to the indoor unit and having a plurality of cylinders and capable of changing the number of operating cylinders, an outdoor heat exchanger, and an outdoor unit including a throttle mechanism;
A control unit that variably controls the operating rotational speed of the compressor,
The control unit sets the number of operating cylinders of the compressor to the minimum number of cylinders based on outside air temperature during cooling operation, and the minimum number of rotations at which the operating speed of the compressor can be operated in a refrigeration cycle in the operation mode is set to, Ri operable der the air conditioner,
In the above operation mode,
The control unit is
Compare the outside temperature obtained by acquiring the outside temperature based on the operation start command and the preset temperature,
When the outside air temperature is equal to or higher than the preset temperature, the number of operating cylinders of the compressor is set to the minimum number of cylinders, and the operating speed of the compressor is set to the minimum at which the refrigeration cycle operation can be performed. The air conditioner is characterized in that the operation is controlled so that the temperature difference between the suction temperature and the blowout temperature of the indoor unit is set to 5 ° C. or less by setting the number of rotations .
前記圧縮機が、ケース内に前記複数のシリンダを有しており、
前記ケース内が、冷媒吐出圧とされており、
前記制御ユニットが、前記運転モード時に、運転シリンダに前記冷媒吐出圧より低圧の冷媒を供給すると共に、休止シリンダに前記冷媒吐出圧の冷媒を供給する、請求項1に記載の空気調和機。
The compressor has the plurality of cylinders in a case;
The inside of the case is the refrigerant discharge pressure,
2. The air conditioner according to claim 1, wherein the control unit supplies a refrigerant having a pressure lower than the refrigerant discharge pressure to the operation cylinder and supplies a refrigerant having the refrigerant discharge pressure to the idle cylinder during the operation mode.
前記室外機が、前記圧縮機の前記複数のシリンダに供給される冷媒供給経路を切り換える切替弁をさらに有しており、
前記制御ユニットが、前記運転モード時に、前記切替弁を切り換えて、前記休止シリンダに前記圧縮機から吐出された冷媒を供給する、請求項に記載の空気調和機。
The outdoor unit further includes a switching valve for switching a refrigerant supply path supplied to the plurality of cylinders of the compressor;
The air conditioner according to claim 2 , wherein the control unit supplies the refrigerant discharged from the compressor to the idle cylinder by switching the switching valve during the operation mode.
前記複数のシリンダのそれぞれが、ローリングピストン及びベーンを有しており、
前記運転モード中の前記休止シリンダに、前記ベーンが前記ローリングピストンに接触しないように待避させる待避機構が設けられている、請求項に記載の空気調和機。
Each of the plurality of cylinders has a rolling piston and a vane;
The air conditioner according to claim 3 , wherein a retracting mechanism for retracting the vane so as not to contact the rolling piston is provided in the idle cylinder in the operation mode.
JP2011532956A 2009-09-28 2010-09-08 Air conditioner Active JP5450637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011532956A JP5450637B2 (en) 2009-09-28 2010-09-08 Air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009222255 2009-09-28
JP2009222255 2009-09-28
JP2011532956A JP5450637B2 (en) 2009-09-28 2010-09-08 Air conditioner
PCT/JP2010/065442 WO2011037012A1 (en) 2009-09-28 2010-09-08 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2011037012A1 JPWO2011037012A1 (en) 2013-02-21
JP5450637B2 true JP5450637B2 (en) 2014-03-26

Family

ID=43795763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011532956A Active JP5450637B2 (en) 2009-09-28 2010-09-08 Air conditioner

Country Status (3)

Country Link
JP (1) JP5450637B2 (en)
CN (1) CN102667354B (en)
WO (1) WO2011037012A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871385A (en) * 2017-04-13 2017-06-20 青岛海尔空调器有限总公司 A kind of air-conditioner and control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012011519A1 (en) * 2012-06-08 2013-12-12 Yack SAS air conditioning
JP5981376B2 (en) * 2013-03-27 2016-08-31 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner and method of operating air conditioner
JP6334896B2 (en) * 2013-11-19 2018-05-30 東芝ライフスタイル株式会社 Air conditioner
CN109654686B (en) * 2018-12-20 2020-12-29 珠海格力电器股份有限公司 Air conditioner control method, air conditioner and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184916A (en) * 1986-02-07 1987-08-13 Sanden Corp Cooling device including variable displacement compressor
JPH10115450A (en) * 1996-08-22 1998-05-06 Mitsubishi Electric Corp Air conditioner
JP2002228234A (en) * 2001-01-29 2002-08-14 Hitachi Ltd Air conditioner and its control method
JP2005077039A (en) * 2003-09-02 2005-03-24 Toshiba Kyaria Kk Air conditioner
JP2005171848A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120335C (en) * 2000-06-07 2003-09-03 三星电子株式会社 System for controlling starting of air conditioner and control method thereof
JP2006022723A (en) * 2004-07-08 2006-01-26 Sanyo Electric Co Ltd Compression system and refrigerating apparatus using the same
JP4555671B2 (en) * 2004-12-09 2010-10-06 東芝キヤリア株式会社 Air conditioner
KR100595766B1 (en) * 2005-02-23 2006-07-03 엘지전자 주식회사 Modulation apparatus for rotary compressor and airconditioner with this
KR100802016B1 (en) * 2005-02-25 2008-02-12 삼성전자주식회사 Variable capacity rotary compressor and method to operate starting thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184916A (en) * 1986-02-07 1987-08-13 Sanden Corp Cooling device including variable displacement compressor
JPH10115450A (en) * 1996-08-22 1998-05-06 Mitsubishi Electric Corp Air conditioner
JP2002228234A (en) * 2001-01-29 2002-08-14 Hitachi Ltd Air conditioner and its control method
JP2005077039A (en) * 2003-09-02 2005-03-24 Toshiba Kyaria Kk Air conditioner
JP2005171848A (en) * 2003-12-10 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871385A (en) * 2017-04-13 2017-06-20 青岛海尔空调器有限总公司 A kind of air-conditioner and control method

Also Published As

Publication number Publication date
CN102667354A (en) 2012-09-12
CN102667354B (en) 2015-05-06
JPWO2011037012A1 (en) 2013-02-21
WO2011037012A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5642279B2 (en) Refrigeration cycle apparatus and air conditioner
CN111780362B (en) Air conditioner and control method thereof
CA2530895C (en) Air-conditioning system with multiple indoor and outdoor units and control system therefore
JP5450637B2 (en) Air conditioner
EP1598606A2 (en) Air conditioner and method for controlling operation thereof
JP2013072568A (en) Air conditioner
JP2008185292A (en) Refrigerating device
JP5631012B2 (en) Air conditioner and control method of air conditioner
US20120131935A1 (en) Air conditioner and method for operating same
WO2008015930A1 (en) Air conditioner
JP2008064439A (en) Air conditioner
KR20110004152A (en) Air conditioner
KR20100128956A (en) Air conditioner
KR101558503B1 (en) Air conditioner
JP2012189258A (en) Refrigeration cycle equipment
JP2003121015A (en) Refrigerating apparatus
CN111981641A (en) Air conditioner defrosting control method and air conditioner system
JP2003240310A (en) Air conditioner and outdoor machine used in the same
JP5056794B2 (en) Air conditioner
JP4941008B2 (en) Air conditioner
JP2005016884A (en) Air conditioner
JP2003042585A (en) Air conditioner
JP2003302111A (en) Air conditioner
JP4692002B2 (en) Air conditioner
WO2023112428A1 (en) Ventilator, air-conditioning system, ventilation method, and ventilation system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5450637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250