JP5446610B2 - Intake air amount measuring method and intake air amount measuring device - Google Patents

Intake air amount measuring method and intake air amount measuring device Download PDF

Info

Publication number
JP5446610B2
JP5446610B2 JP2009198639A JP2009198639A JP5446610B2 JP 5446610 B2 JP5446610 B2 JP 5446610B2 JP 2009198639 A JP2009198639 A JP 2009198639A JP 2009198639 A JP2009198639 A JP 2009198639A JP 5446610 B2 JP5446610 B2 JP 5446610B2
Authority
JP
Japan
Prior art keywords
air amount
execution condition
satisfied
relationship
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009198639A
Other languages
Japanese (ja)
Other versions
JP2011047377A (en
Inventor
益廣 森本
智之 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009198639A priority Critical patent/JP5446610B2/en
Publication of JP2011047377A publication Critical patent/JP2011047377A/en
Application granted granted Critical
Publication of JP5446610B2 publication Critical patent/JP5446610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、MAFセンサの初期ばらつきとダクト形状による影響がなく、経時変化分を補正することができる吸入空気量測定方法及び吸入空気量測定装置に関する。   The present invention relates to an intake air amount measurement method and an intake air amount measurement device that are capable of correcting a change with time without being affected by initial variation of a MAF sensor and a duct shape.

エンジンの制御において、吸入空気量(MAF)は重要な数量であるので、吸入空気量を正確に測定する必要がある。例えば、EGR制御においてEGR率を求めるのに吸入空気量が必要である。また、EGRバルブ、吸気スロットル、排気スロットルなどのアクチュエータのパフォーマンスを診断する際に、その診断の根拠となる数量として吸入空気量が使用される。   In the control of the engine, the intake air amount (MAF) is an important quantity, so it is necessary to accurately measure the intake air amount. For example, the intake air amount is required to obtain the EGR rate in the EGR control. Further, when diagnosing the performance of actuators such as an EGR valve, an intake throttle, and an exhaust throttle, the intake air amount is used as a quantity that is a basis for the diagnosis.

従来、吸入空気量は、外気からターボチャージャのコンプレッサ入口に至るダクトに、空気の流量を測定するMAFセンサを設置して測定している。   Conventionally, the amount of intake air is measured by installing a MAF sensor that measures the flow rate of air in a duct extending from the outside air to the compressor inlet of the turbocharger.

特開2008−223516号公報JP 2008-223516 A 特許第4218702号公報Japanese Patent No. 4218702 特開平7−293347号公報JP-A-7-293347 特開平8−338287号公報JP-A-8-338287

MAFセンサが設置されるダクトは、真っ直ぐではなく、曲がりくねっている。ダクト内を流れる空気の流れは、均一で安定とは言えない。このため、MAFセンサに実験用風洞などで与えた流量とMAFセンサの読み値とが一致したとしても、車両のダクトに配置されたMAFセンサの読み値は実際にダクトを流れる空気の流量に対して直線的であるとは限らない。エンジンの吸入空気量の場合、エンジン状態によって理論値(理論空気量)が一意的に定まるが、ダクトにおいて測定した空気の流量は、前述のようにダクトの曲がりに影響されてしまうので、理論空気量と同じにならない。   The duct in which the MAF sensor is installed is not straight but winding. The air flow through the duct is not uniform and stable. For this reason, even if the flow rate given to the MAF sensor in the experimental wind tunnel or the like matches the reading value of the MAF sensor, the reading value of the MAF sensor arranged in the duct of the vehicle is actually relative to the flow rate of the air flowing through the duct. It is not always straight. In the case of the intake air amount of the engine, the theoretical value (theoretical air amount) is uniquely determined depending on the engine state, but the air flow rate measured in the duct is influenced by the bending of the duct as described above. It will not be the same as the amount.

また、MAFセンサには個体のばらつきがある。このため、車両において、MAFセンサの読み値をそのまま吸入空気量にしてしまうと、MAFセンサの個体のばらつきにより吸入空気量が正確でなくなる。   Further, the MAF sensor has individual variations. For this reason, in a vehicle, if the reading value of the MAF sensor is set to the intake air amount as it is, the intake air amount becomes inaccurate due to individual variations of the MAF sensor.

これらに加え、MAFセンサが経年変化によって、同じ空気の流量に対する読み値が変わっていく。このため、仮に、MAFセンサを車両に取り付けた初期においてMAFセンサの読み値のままの吸入空気量が正確であったとしても、長期の使用により吸入空気量が正確でなくなってくる。   In addition to these, the readings for the same air flow rate change as the MAF sensor changes over time. For this reason, even if the intake air amount as the reading of the MAF sensor is accurate at the initial stage of attaching the MAF sensor to the vehicle, the intake air amount becomes inaccurate due to long-term use.

そこで、本発明の目的は、上記課題を解決し、MAFセンサの初期ばらつきとダクト形状による影響がなく、経時変化分を補正することができる吸入空気量測定方法及び吸入空気量測定装置を提供することにある。   Accordingly, an object of the present invention is to provide an intake air amount measuring method and an intake air amount measuring apparatus that can solve the above-described problems and can correct a change with time without being affected by the initial variation of the MAF sensor and the duct shape. There is.

本発明は、エンジンへの吸入空気量を外気からターボチャージャのコンプレッサ入口に至るダクトに設置したMAFセンサで測定する吸入空気量測定方法において、エンジン状態があらかじめ設定された吸入空気量が安定するエンジン状態であるとき学習実行条件が成立したと判定する第1ステップと、学習実行条件が成立したとき、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との関係を学習する第2ステップと、前記MAFセンサの読み値に基づく測定空気量を前記関係に基づいて補正して吸入空気量とする第3ステップと、を備え、前記第2ステップでは、学習実行条件が成立するたびに、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との測定記憶関係であって今回学習実行条件が成立したときに学習された測定記憶関係と、前回学習実行条件が成立したときに学習された測定記憶関係と前記今回学習実行条件が成立したときに学習された測定記憶関係とに基づいて算出した算出関係と、をそれぞれ独立して記憶すると共に、前記今回学習実行条件が成立したときに学習された測定記憶関係を前記前回学習実行条件が成立したときに学習された測定記憶関係として次回学習実行条件が成立して前記算出関係が算出されるまで記憶し、前記第3ステップでは、前記MAFセンサの読み値に基づく測定空気量を、前記算出関係に基づいて補正して吸入空気量とする吸入空気量測定方法である。 The present invention relates to an intake air amount measuring method for measuring an intake air amount into an engine with a MAF sensor installed in a duct extending from outside air to a compressor inlet of a turbocharger. The relationship between the first step for determining that the learning execution condition is satisfied when the engine is in the state, and the theoretical air amount estimated from the engine state and the measured air amount based on the reading value of the MAF sensor when the learning execution condition is satisfied And a third step of correcting the measured air amount based on the reading value of the MAF sensor based on the relationship to obtain the intake air amount. In the second step, the learning execution condition is each time but which satisfies the measurement SL between the measured air amount to the theoretical air amount estimated from the engine state based on the readings of the MAF sensor Measurement memory relationship learned when the current learning execution condition is satisfied, measurement memory relationship learned when the previous learning execution condition was satisfied, and learned when the current learning execution condition was satisfied The calculation relationship calculated based on the measurement storage relationship is stored independently, and the measurement storage relationship learned when the current learning execution condition is satisfied is learned when the previous learning execution condition is satisfied. The measured measurement relationship is stored until the next learning execution condition is satisfied and the calculation relationship is calculated . In the third step, the measured air amount based on the reading value of the MAF sensor is calculated based on the calculation relationship. This is a method for measuring the amount of intake air corrected to the amount of intake air.

また、本発明は、エンジンへの吸入空気量を外気からターボチャージャのコンプレッサ入口に至るダクトに設置したMAFセンサで測定する吸入空気量測定装置において、エンジン状態があらかじめ設定された吸入空気量が安定するエンジン状態であるとき学習実行条件が成立したと判定する学習実行条件成立判定部と、学習実行条件が成立したとき、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との関係を学習する関係学習部と、前記MAFセンサの読み値に基づく測定空気量を前記関係に基づいて補正して吸入空気量とする補正実行部と、を備え、前記関係学習部は、学習実行条件が成立するたびに、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との測定記憶関係であって今回学習実行条件が成立したときに学習された測定記憶関係と、前回学習実行条件が成立したときに学習された測定記憶関係と前記今回学習実行条件が成立したときに学習された測定記憶関係とに基づいて算出した算出関係と、をそれぞれ独立して記憶すると共に、前記今回学習実行条件が成立したときに学習された測定記憶関係を前記前回学習実行条件が成立したときに学習された測定記憶関係として次回学習実行条件が成立して前記算出関係が算出されるまで記憶し、前記補正実行部は、前記MAFセンサの読み値に基づく測定空気量を、前記算出関係に基づいて補正して吸入空気量とする吸入空気量測定装置である。 Further, the present invention provides an intake air amount measuring apparatus that measures an intake air amount to an engine with a MAF sensor installed in a duct extending from outside air to a compressor inlet of a turbocharger. A learning execution condition establishment determination unit that determines that the learning execution condition is established when the engine is in an engine state, and a measurement based on the theoretical air amount estimated from the engine state and the reading value of the MAF sensor when the learning execution condition is established A relationship learning unit that learns a relationship with an air amount; and a correction execution unit that corrects a measured air amount based on a reading value of the MAF sensor based on the relationship to obtain an intake air amount, and the relationship learning unit whenever the learning execution condition is satisfied, the measurement air amount to the theoretical air amount estimated from the engine state based on the readings of the MAF sensor A measurement memory relationship that is learned when the current learning execution condition is satisfied, a measurement memory relationship that is learned when the previous learning execution condition is satisfied, and a learning that is performed when the current learning execution condition is satisfied When the previous learning execution condition is satisfied, the calculation relation calculated based on the measured storage relation is stored independently, and the measurement storage relation learned when the current learning execution condition is satisfied Until the next learning execution condition is established and the calculation relationship is calculated , and the correction execution unit sets the measured air amount based on the reading value of the MAF sensor to the calculation relationship . This is an intake air amount measuring device which corrects based on the intake air amount.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)MAFセンサの初期ばらつきとダクト形状による影響がなくなる。   (1) The influence of the initial variation of the MAF sensor and the duct shape is eliminated.

(2)MAFセンサの経時変化分を補正することができる。   (2) A change with time of the MAF sensor can be corrected.

本発明の吸入空気量測定方法における処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the intake air amount measuring method of this invention. 本発明を適用する車両の主要部を含む吸入空気量測定装置の構成図である。1 is a configuration diagram of an intake air amount measuring device including a main part of a vehicle to which the present invention is applied. 本発明における帯域幅設定を説明するための測定空気量対理論空気量特性図である。FIG. 6 is a characteristic diagram of measured air volume versus theoretical air volume for explaining bandwidth setting in the present invention. 本発明において測定で得られた測定空気量の例を示した測定空気量対理論空気量特性図である。It is a characteristic diagram of measured air quantity versus theoretical air quantity showing an example of measured air quantity obtained by measurement in the present invention. 本発明において吸入空気量を求める例を示した測定空気量対理論空気量特性図である。FIG. 6 is a characteristic diagram of measured air quantity versus theoretical air quantity showing an example of obtaining an intake air quantity in the present invention. 本発明において記憶曲線を更新する例を示した測定空気量対理論空気量特性図である。It is a measured air quantity versus theoretical air quantity characteristic diagram showing an example of updating a memory curve in the present invention.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明の吸入空気量測定方法における処理手順では、現在のエンジン状態は学習実行条件が成立するエンジン状態であるかどうか判定するステップS1と、理論空気量を算出するステップS2と、測定空気量を算出するステップS3と、学習用特性曲線を算出するステップS4と、MAFセンサの読み値に基づく測定空気量を補正して吸入空気量とするステップS5とを有する。   As shown in FIG. 1, in the processing procedure in the intake air amount measurement method of the present invention, step S1 for determining whether or not the current engine state is an engine state that satisfies the learning execution condition, and the theoretical air amount is calculated. Step S2, Step S3 for calculating the measured air amount, Step S4 for calculating the learning characteristic curve, and Step S5 for correcting the measured air amount based on the reading value of the MAF sensor to obtain the intake air amount.

本発明の吸入空気量測定方法では、学習後は、MAFセンサの読み値に基づく測定空気量を前記関係に基づいて補正して吸入空気量とし、この吸入空気量をEGR制御やアクチュエータのパフォーマンス診断などに利用する。   In the intake air amount measuring method of the present invention, after learning, the measured air amount based on the reading value of the MAF sensor is corrected based on the above relationship to obtain the intake air amount, and this intake air amount is used for EGR control and actuator performance diagnosis. Use for such as.

本発明の吸入空気量測定方法では、学習実行条件が成立するたびに学習が実行される。学習時の測定空気量は学習後も保存され、次回の学習時の測定空気量との比較に使用される。すなわち、本発明では、MAFセンサの初期ばらつきとダクト形状による影響からくる理論空気量と測定空気量の関係を最初の学習機会に学習し、その後の経時変化については学習実行条件が成立するたびに学習して随時、理論空気量と測定空気量の関係を更新するようになっている。   In the intake air amount measurement method of the present invention, learning is executed every time the learning execution condition is satisfied. The measured air amount at the time of learning is stored after learning, and is used for comparison with the measured air amount at the next learning. In other words, in the present invention, the relationship between the theoretical air amount and the measured air amount resulting from the influence of the initial variation of the MAF sensor and the duct shape is learned at the first learning opportunity, and the subsequent change with time each time the learning execution condition is satisfied. As a result of learning, the relationship between the theoretical air volume and the measured air volume is updated.

図2に示されるように、車両には、エンジン1と、エンジン1への吸入空気を圧縮するターボチャージャ2と、EGR量を調節するEGRバルブ3と、ターボチャージャ2のコンプレッサ出口からエンジンまでの吸気管4を開閉する吸気スロットル5と、ターボチャージャ2のタービン出口から外気までの排気管6を開閉する排気スロットル7と、外気からターボチャージャ2のコンプレッサ入口に至るダクト8に設置したMAFセンサ9と、エンジン1を制御するコントローラ(ECM;Engine Control Module)10と、コントローラ10にアクセルペダルの操作量を入力するアクセルペダルセンサ11とを備える。なお、これらの他にも車両には、公知のセンサ、アクチュエータ、制御器などが設けられるが、説明は省略する。   As shown in FIG. 2, the vehicle includes an engine 1, a turbocharger 2 that compresses the intake air to the engine 1, an EGR valve 3 that adjusts the EGR amount, and a compressor outlet of the turbocharger 2 to the engine. An intake throttle 5 for opening and closing the intake pipe 4, an exhaust throttle 7 for opening and closing an exhaust pipe 6 from the turbine outlet of the turbocharger 2 to the outside air, and a MAF sensor 9 installed in a duct 8 extending from the outside air to the compressor inlet of the turbocharger 2. And a controller (ECM; Engine Control Module) 10 for controlling the engine 1 and an accelerator pedal sensor 11 for inputting an operation amount of an accelerator pedal to the controller 10. In addition to these, the vehicle is provided with known sensors, actuators, controllers, etc., but description thereof is omitted.

本発明の吸入空気量測定装置にあっては、エンジン状態があらかじめ設定された吸入空気量が安定するエンジン状態であるとき学習実行条件が成立したと判定して学習を開始する学習実行条件成立判定部12と、学習実行条件が成立したとき、エンジン状態から推定される理論空気量とMAFセンサ9の読み値に基づく測定空気量との関係を学習する関係学習部13と、MAFセンサ9の読み値に基づく測定空気量を前記関係に基づいて補正して吸入空気量とする補正実行部14とを備える。これら学習実行条件成立判定部12、関係学習部13、補正実行部14は、エンジン制御用のコントローラ10に設けてもよいし、エンジン制御用のコントローラ10とは別のコントローラに設けてもよい。   In the intake air amount measurement device according to the present invention, when the engine state is an engine state in which the preset intake air amount is stable, it is determined that the learning execution condition is satisfied and learning learning condition establishment determination is started to start learning. When the learning execution condition is satisfied, the relationship learning unit 13 that learns the relationship between the theoretical air amount estimated from the engine state and the measured air amount based on the reading value of the MAF sensor 9, and the reading of the MAF sensor 9 And a correction execution unit that corrects the measured air amount based on the value based on the relationship to obtain the intake air amount. The learning execution condition establishment determination unit 12, the relationship learning unit 13, and the correction execution unit 14 may be provided in the controller 10 for engine control, or may be provided in a controller different from the controller 10 for engine control.

以下、図1の手順に従い、本発明の吸入空気量測定方法を詳しく説明する。   Hereinafter, the intake air amount measurement method of the present invention will be described in detail according to the procedure of FIG.

ステップS1では、学習実行条件の成立を判定する。   In step S1, it is determined whether the learning execution condition is satisfied.

学習実行条件は、エンジンが理想的な状態であることである。理想的な状態とは吸入空気量が安定している状態のことである。具体的には、以下に列記する全ての条件が満たされたとき、学習実行条件が成立する。   The learning execution condition is that the engine is in an ideal state. The ideal state is a state where the intake air amount is stable. Specifically, the learning execution condition is satisfied when all the conditions listed below are satisfied.

1)アクチュエータのパフォーマンス診断中でないこと。   1) The actuator performance is not being diagnosed.

EGRバルブ3、吸気スロットル5、排気スロットル7などのアクチュエータが壊れていないか診断するとき、吸入空気量がその診断の根拠となるので、アクチュエータのパフォーマンス診断中には学習はしない。   When diagnosing whether the actuators such as the EGR valve 3, the intake throttle 5 and the exhaust throttle 7 are broken, the amount of intake air is the basis of the diagnosis, so learning is not performed during the performance diagnosis of the actuator.

2)MAFセンサ9に電気的異常がないこと。   2) The MAF sensor 9 has no electrical abnormality.

MAFセンサ9の読み値を与える電圧又は電流が実際に有り得ない値(上限値又は下限値を超えた値)であったり、エンジン状態に無関係に一定であったりするのは異常であり、MAFセンサ9が壊れているので、学習はしない。   It is abnormal that the voltage or current giving the reading value of the MAF sensor 9 is a value that is not actually possible (a value exceeding the upper limit value or the lower limit value) or constant regardless of the engine state. Since 9 is broken, we don't learn.

3)大気圧が設定範囲以内であること。   3) The atmospheric pressure is within the set range.

大気圧センサ(図示せず)で測定された大気圧があらかじめ設定された上限値を超えるか下限値未満であるときには学習はしない。大気圧があまり高い又はあまり低いと吸入空気量に大幅の影響があるからである。   No learning is performed when the atmospheric pressure measured by an atmospheric pressure sensor (not shown) exceeds a preset upper limit value or less than a lower limit value. This is because if the atmospheric pressure is too high or too low, the intake air amount is significantly affected.

4)エンジン1が暖まっていること。熱すぎないこと。   4) The engine 1 is warm. Don't be too hot.

水温センサ(図示せず)で測定されたエンジン冷却水の水温があらかじめ設定された下限値未満であるか上限値を超えていると、学習はしない。これは、エンジン1が暖まっていないときや極端に熱いときは、吸入空気量が安定しないからである。   If the water temperature of the engine coolant measured by a water temperature sensor (not shown) is less than a preset lower limit value or exceeds an upper limit value, learning is not performed. This is because the intake air amount is not stable when the engine 1 is not warmed or extremely hot.

5)吸気温度が設定範囲以内であること。   5) The intake air temperature is within the set range.

吸気温度センサ(図示せず)で測定された吸気温度があらかじめ設定された下限値未満であるか上限値を超えていると、学習はしない。これは、温度によって空気の密度が大きく変わると、MAFセンサ9の読み値が影響を受けるからである。   If the intake air temperature measured by an intake air temperature sensor (not shown) is less than a preset lower limit value or exceeds an upper limit value, learning is not performed. This is because the reading value of the MAF sensor 9 is affected when the density of the air greatly changes depending on the temperature.

6)EGRクーラ(図示せず)の出口温度が設定範囲以内であること。   6) The outlet temperature of the EGR cooler (not shown) is within the set range.

EGRクーラの出口に設置された温度センサ(図示せず)で測定されたEGRガスの温度があらかじめ設定された下限値未満であるか上限値を超えていると、学習はしない。これは、吸入空気量に影響があるからである。すなわち、吸入している空気とそこへ戻ってくるEGRガスの温度に大きな差があると空気が吸入しにくくなる。   If the temperature of the EGR gas measured by a temperature sensor (not shown) installed at the outlet of the EGR cooler is less than a preset lower limit value or exceeds an upper limit value, learning is not performed. This is because the intake air amount is affected. That is, if there is a large difference between the temperature of the inhaled air and the temperature of the EGR gas returning to the air, it becomes difficult to inhale the air.

7)排気ブレーキ7が非作動中であること。   7) The exhaust brake 7 is not operating.

8)DPD(Diesel Paticulate Defuser)(図示せず)の後処理(再生処理)中でないこと。   8) DPD (Diesel Paticulate Defuser) (not shown) is not in post-processing (reproduction processing).

9)エンジン始動後、所定時間が経過していること。   9) A predetermined time has elapsed since the engine was started.

エンジン始動直後は、エンジン状態が不安定であり、吸入空気量も安定しないので、学習はしない。   Immediately after the engine is started, the engine state is unstable and the intake air amount is not stable, so learning is not performed.

10)エンジン回転数の変動が設定範囲以内であること。   10) The engine speed fluctuation is within the set range.

エンジン1がハンチングしていてエンジン回転数の変動が大きいときは、吸入空気量が安定しないので、学習はしない。   When the engine 1 is hunting and the fluctuation of the engine speed is large, the amount of intake air is not stable and learning is not performed.

11)燃料噴射量の変動が設定範囲以内であること。   11) The variation of the fuel injection amount is within the set range.

燃料噴射量の変動が大きいときは、吸入空気量が安定しないので、学習はしない。   When the variation in the fuel injection amount is large, the intake air amount is not stable, so learning is not performed.

12)ターボチャージャ2のブースト圧の変動が設定範囲以内であること。   12) The boost pressure fluctuation of the turbocharger 2 is within the set range.

ブースト圧の変動が大きいときは、吸入空気量が安定しないので、学習はしない。   When the fluctuation of the boost pressure is large, the intake air amount is not stable, so learning is not performed.

13)EGRバルブ3の開度が設定値以下であること。   13) The opening degree of the EGR valve 3 is not more than a set value.

EGRバルブ3が全閉であることが望ましい。   It is desirable that the EGR valve 3 is fully closed.

14)吸気スロットル5の開度が設定値以上であること。   14) The opening degree of the intake throttle 5 is not less than the set value.

吸気スロットル5が全開であることが望ましい。   It is desirable that the intake throttle 5 is fully open.

15)アクチュエータに異常がないこと。   15) There is no abnormality in the actuator.

EGRバルブ3、吸気スロットル5、排気スロットル7などのアクチュエータが壊れていると吸入空気量に影響があるので、学習はしない。   If actuators such as the EGR valve 3, the intake throttle 5, and the exhaust throttle 7 are broken, the intake air amount is affected, so learning is not performed.

全ての条件が満たされたとき、エンジン状態は、吸入空気量が安定している理想的な状態となっているので、吸入空気量測定の学習に好適である。そこで、学習実行条件が成立すると、ステップS2〜S5に進んで学習を実行する。   When all the conditions are satisfied, the engine state is an ideal state in which the intake air amount is stable, which is suitable for learning the intake air amount measurement. Therefore, when the learning execution condition is satisfied, the process proceeds to steps S2 to S5 to execute learning.

ステップS2では、理論空気量を算出する。   In step S2, a theoretical air amount is calculated.

理論空気量は、現在のエンジン状態において気筒に入るはずの空気量である。理論空気量は、おおむねエンジン回転数によって決まるが、詳しくは、次の理論式で算出される。   The theoretical air amount is the amount of air that should enter the cylinder in the current engine state. The theoretical air amount is generally determined by the engine speed, but is calculated in detail by the following theoretical formula.

Figure 0005446610
Figure 0005446610

体積効率は、気筒に入る空気の密度であり温度に依存する。気筒総容積はエンジン機種ごとに設定する。エンジン回転数の分母=2は、エンジン1が4気筒の場合のものであり、1回転あたり2気筒を意味する。大気の空気密度は、1.293kg/m3の固定値とする。標準吸気圧は、101.3kPaの固定値とする。 Volumetric efficiency is the density of air entering the cylinder and depends on temperature. The total cylinder volume is set for each engine model. The engine speed denominator = 2 is for the case where the engine 1 has four cylinders, and means two cylinders per revolution. The air density of the atmosphere is a fixed value of 1.293 kg / m 3 . The standard intake pressure is a fixed value of 101.3 kPa.

ステップS3では、測定空気量を算出する。   In step S3, a measurement air amount is calculated.

準備として、図3の縦軸となる理論空気量に対して複数の測定帯域を設定する。このとき、測定帯域の個数はあらかじめ定数として設定しておく。次に、測定帯域の幅を設定する。例えば、15個の測定帯域を設定するものとし、各測定帯域の開始点をMSBAND1〜MSBAND15とする。MSBAND1〜MSBAND15の具体的な値は、大気圧で参照される1次元のマップに設定する。一方、各測定帯域の幅は全て同じとし、その値を帯域幅MAFBANDとする。帯域幅MAFBANDの具体的な値は、大気圧で参照される1次元のマップに設定する。このように測定帯域の開始点と幅を大気圧に応じて変えるのは海抜高の違いに対応するためである。   As a preparation, a plurality of measurement bands are set with respect to the theoretical air amount on the vertical axis of FIG. At this time, the number of measurement bands is set as a constant in advance. Next, the width of the measurement band is set. For example, 15 measurement bands are set, and the start points of the measurement bands are MSBAND1 to MSBAND15. Specific values of MSBAND1 to MSBAND15 are set in a one-dimensional map referred to by atmospheric pressure. On the other hand, the widths of the measurement bands are all the same, and the value is defined as a bandwidth MAFBAND. A specific value of the bandwidth MAFBAND is set in a one-dimensional map that is referred to by atmospheric pressure. The reason why the starting point and width of the measurement band are changed according to the atmospheric pressure is to cope with the difference in the sea level.

図3に示されるように、理論空気量がMSBAND1からMSBAND1+MAFBANDまでの範囲が1つの測定帯域であり、理論空気量がMSBAND2からMSBAND2+MAFBANDまでの範囲が別の1つの測定帯域である。この図は1つの例であり、隣り合う測定帯域同士が間隔を隔てているが、測定帯域の開始点同士の間隔を帯域幅より狭くして、隣り合う測定帯域同士が部分的に重なり合うようにしてもよい。   As shown in FIG. 3, the range from the theoretical air amount MSBAND1 to MSBAND1 + MAFBAND is one measurement band, and the range from the theoretical air amount MSBAND2 to MSBAND2 + MAFBAND is another measurement band. This figure is an example. Adjacent measurement bands are spaced from each other, but the distance between the measurement band start points is made narrower than the bandwidth so that the adjacent measurement bands partially overlap. May be.

図3のグラフに、エンジン状態から前記の理論式を用いて推定された理論空気量に対応させて、MAFセンサの読み値に基づく測定空気量をプロットする。各測定帯域において、理論空気量と測定空気量との関係を調べることになる。図示例では、プロットした2つの測定点のうち、MSBAND1の測定帯域にある測定点は理論空気量と測定空気量とがほぼ一致していることを示すのに対し、MSBAND2の測定帯域にある測定点は理論空気量と測定空気量とがずれていることを示している。つまり、理想的には測定空気量と理論空気量が1対1であるところ、実際には測定空気量にばらつきがある。   In the graph of FIG. 3, the measured air amount based on the reading value of the MAF sensor is plotted in correspondence with the theoretical air amount estimated from the engine state using the above theoretical formula. In each measurement band, the relationship between the theoretical air amount and the measured air amount is examined. In the illustrated example, among the two plotted measurement points, the measurement point in the measurement band of MSBAND1 indicates that the theoretical air amount and the measurement air amount substantially coincide, whereas the measurement in the measurement band of MSBAND2 The point indicates that the theoretical air amount and the measured air amount are deviated. That is, ideally, the measured air amount and the theoretical air amount are 1: 1, but actually the measured air amount varies.

このような測定点を各測定帯域ごとに10点以上集めるのが望ましい。   It is desirable to collect 10 or more such measurement points for each measurement band.

ステップS4では、学習用特性曲線を算出する。   In step S4, a learning characteristic curve is calculated.

各測定帯域ごとに、測定帯域内にある全ての測定点について測定空気量の平均値を算出し、当該測定帯域の測定空気量(代表点)とする。これらの代表点を図4のグラフにプロットする(図4は代表点が8つの例)。これらの代表点から、最小二乗法により2次の近似曲線を求める。ここで、求める近似曲線を、
Y=AX2+BX+C
Yは縦軸変数、Xは横軸変数、A,B,Cは可変定数。
とする。
For each measurement band, the average value of the measurement air volume is calculated for all measurement points in the measurement band, and the measurement air volume (representative point) in the measurement band is calculated. These representative points are plotted in the graph of FIG. 4 (FIG. 4 shows an example with eight representative points). From these representative points, a quadratic approximate curve is obtained by the method of least squares. Here, the approximate curve to be obtained is
Y = AX 2 + BX + C
Y is a vertical axis variable, X is a horizontal axis variable, and A, B, and C are variable constants.
And

代表点(Xi,Yi)(i=1〜15)は、近似曲線上の点であるから、Yi−Yを最小にする可変定数A,B,Cを求める。すなわち、
S=Σ(Yi−AXi2−BXi−C)2
のSを最小にする可変定数A,B,Cを求める。
Since the representative point (Xi, Yi) (i = 1 to 15) is a point on the approximate curve, variable constants A, B, and C that minimize Yi−Y are obtained. That is,
S = Σ (Yi−AXi 2 −BXi−C) 2
The variable constants A, B, and C that minimize the S of are obtained.

Sを可変定数A,B,Cそれぞれで微分し、=0とおいて得られる連立方程式は、
A(ΣXi4)+B(ΣXi3)+C(ΣXi2
=ΣXi2Yi
A(ΣXi3)+B(ΣXi2)+C(ΣXi)
=ΣXiYi
A(ΣXi2)+B(ΣXi)+C(Σ1)
=ΣYi
となる。この連立方程式より可変定数A,B,Cを求める。
Differentiating S with each of the variable constants A, B, and C, and the simultaneous equations obtained with = 0,
A (ΣXi 4 ) + B (ΣXi 3 ) + C (ΣXi 2 )
= ΣXi 2 Yi
A (ΣXi 3 ) + B (ΣXi 2 ) + C (ΣXi)
= ΣXiYi
A (ΣXi 2 ) + B (ΣXi) + C (Σ1)
= ΣYi
It becomes. Variable constants A, B, and C are obtained from these simultaneous equations.

このようにして求めた図4の近似曲線は、MAFセンサ9の初期ばらつきとダクト形状による影響からくる理論空気量と測定空気量の関係を表したものとなる。この近似曲線を学習記憶曲線として保存しておく。   The approximate curve of FIG. 4 obtained in this way represents the relationship between the theoretical air amount and the measured air amount resulting from the initial variation of the MAF sensor 9 and the influence of the duct shape. This approximate curve is stored as a learning memory curve.

ステップS5、すなわち学習後は、MAFセンサ9の読み値に基づく測定空気量を学習記憶曲線に適用して理論空気量を読み出し、この理論空気量を吸入空気量とする測定空気量の補正をすることになる。これにより、MAFセンサ9の初期ばらつきとダクト形状による影響が除去されて正確な吸入空気量が測定できることになる。   In step S5, that is, after learning, the measured air amount based on the reading value of the MAF sensor 9 is applied to the learning memory curve to read the theoretical air amount, and the measured air amount is corrected using the theoretical air amount as the intake air amount. It will be. As a result, the initial variation of the MAF sensor 9 and the influence of the duct shape are removed, and an accurate intake air amount can be measured.

次に、記憶曲線の更新を説明する。   Next, the update of the memory curve will be described.

図5に示されるように、MAFセンサ9に経時変化が生じると、前述の手順で学習を実行し近似曲線(測定記憶曲線)を求めたとき、最初の学習機会に得た学習記憶曲線とは、ずれが生じる。この測定記憶曲線を保存しておき、次回からの測定空気量の補正手順において用いる。例えば、MAFセンサ9の読み値に基づく測定空気量を測定記憶曲線に適用して理論空気量を読み出し、この理論空気量を吸入空気量とする。   As shown in FIG. 5, when the MAF sensor 9 changes with time, the learning memory curve obtained at the first learning opportunity is obtained when learning is performed by the above-described procedure to obtain an approximate curve (measurement memory curve). Deviation occurs. This measurement memory curve is saved and used in the procedure for correcting the measured air amount from the next time. For example, the theoretical air amount is read by applying the measured air amount based on the reading value of the MAF sensor 9 to the measurement memory curve, and this theoretical air amount is set as the intake air amount.

このように、学習を実行するたびに、測定記憶曲線を更新していくことにより、常時、MAFセンサ9の経時変化の進行に合わせた測定記憶曲線を使用してMAFセンサ9の経時変化分を補正することができる。   In this way, by updating the measurement memory curve every time learning is performed, the change over time of the MAF sensor 9 is always used using the measurement memory curve that matches the progress of the MAF sensor 9 over time. It can be corrected.

本実施形態では、測定記憶曲線の更新を次のように行う。   In the present embodiment, the measurement memory curve is updated as follows.

図6に示されるように、前回の学習において作成・保存した測定記憶曲線(前回記憶曲線;実線で示す)に対して、今回の学習において作成した測定記憶曲線(今回測定記憶曲線;破線で示す)は、MAFセンサ9の経時変化によってずれている。このとき、今回測定記憶曲線をそのまま、その後の補正手順に用いるのではなく、前回記憶曲線と今回測定記憶曲線との中間的な曲線(今回算出曲線;点線で示す)を作成する。今回算出曲線は、例えば、同じ理論空気量における前回記憶曲線と今回測定記憶曲線の平均値から求める。この今回算出曲線を保存しておき、今回の学習後の測定空気量の補正手順に使用する。今回測定記憶曲線は保存しておき、次回の学習において作成される測定記憶曲線との平均値を求めるのに用いる。   As shown in FIG. 6, the measurement memory curve (current measurement memory curve; indicated by a broken line) created in the current learning with respect to the measurement memory curve (previous memory curve; indicated by a solid line) created and saved in the previous learning. ) Is shifted due to the time-dependent change of the MAF sensor 9. At this time, the current measurement memory curve is not used as it is for the subsequent correction procedure, but an intermediate curve (current calculation curve; indicated by a dotted line) between the previous memory curve and the current measurement memory curve is created. The current calculation curve is obtained from, for example, the average value of the previous memory curve and the current measurement memory curve at the same theoretical air amount. This calculated curve is stored and used for the correction procedure of the measured air amount after the current learning. This time, the measurement memory curve is stored and used to obtain an average value with the measurement memory curve created in the next learning.

このように、今回の学習において作成した測定記憶曲線と前回の学習において作成・保存した測定記憶曲線との中間を取るようにしたので、仮に、なんらかの外乱によって今回の学習において作成した今回測定記憶曲線が不正確であっても、今回算出曲線には前回記憶曲線の影響が残るので、吸入空気量が極端に不正確になることが防止される。   In this way, since the measurement memory curve created in the current learning and the measurement memory curve created / saved in the previous learning are taken in between, the current measurement memory curve created in the current learning due to some disturbance is assumed. Even if is inaccurate, the effect of the previous memory curve remains on the current calculated curve, so that the intake air amount is prevented from becoming extremely inaccurate.

以上説明したように、本発明の吸入空気量測定方法によれば、学習により理論空気量と測定空気量の関係を表した学習記憶曲線を作成し、学習後は、MAFセンサ9の読み値に基づく測定空気量を学習記憶曲線に適用して吸入空気量を求めるようにしたので、MAFセンサ9の初期ばらつきとダクト形状による影響が除去されて正確な吸入空気量が測定できることになる。   As described above, according to the intake air amount measuring method of the present invention, a learning memory curve representing the relationship between the theoretical air amount and the measured air amount is created by learning, and after learning, the reading value of the MAF sensor 9 is used. Since the measured air amount is applied to the learning memory curve to obtain the intake air amount, the initial variation of the MAF sensor 9 and the influence of the duct shape are removed, and the accurate intake air amount can be measured.

また、本発明の吸入空気量測定方法によれば、あらかじめ吸入空気量が安定するエンジン状態を学習実行条件としておき、学習実行条件が成立するエンジン状態のとき学習を実行するようにしたので、理論空気量と測定空気量の関係を正確に求めることができ、学習後の補正が正確になる。   Further, according to the intake air amount measurement method of the present invention, the engine state where the intake air amount is stabilized is set as the learning execution condition in advance, and the learning is executed when the engine execution state satisfies the learning execution condition. The relationship between the air amount and the measured air amount can be accurately obtained, and the correction after learning becomes accurate.

また、本発明の吸入空気量測定方法によれば、学習を実行するたびに、測定記憶曲線を更新していくようにしたので、MAFセンサ9の経時変化分を補正することができる。   Also, according to the intake air amount measurement method of the present invention, the measurement memory curve is updated each time learning is performed, so that the change over time of the MAF sensor 9 can be corrected.

また、本発明の吸入空気量測定方法によれば、MAFセンサ9の読み値に基づく測定空気量を算出するにあたり、複数の測定帯域を設定し、測定帯域ごとに複数点の測定点を求め、測定帯域ごとにその平均値からなる代表点を求めるので、MAFセンサ9に入る電気的外来ノイズ等による雑音要因が排除され、測定空気量(代表点)が正確になる。そして、複数の測定帯域の代表点から最小二乗法により近似曲線を求めるので、雑音要因に起因した誤学習が回避される。   Further, according to the intake air amount measurement method of the present invention, in calculating the measurement air amount based on the reading value of the MAF sensor 9, a plurality of measurement bands are set, and a plurality of measurement points are obtained for each measurement band. Since a representative point consisting of the average value is obtained for each measurement band, noise factors such as electrical external noise entering the MAF sensor 9 are eliminated, and the measurement air amount (representative point) becomes accurate. And since an approximate curve is calculated | required by the least squares method from the representative point of a some measurement zone | band, the mislearning resulting from a noise factor is avoided.

また、本発明の吸入空気量測定方法は、MAFセンサ9の読み値に基づく測定空気量を算出するにあたり、測定帯域の開始点と幅を大気圧に応じてマップを参照して変えるようになっている。米国など世界各地では人が生活する海抜3000m以上の高地地域があり、このような高地地域で使用される車両においては、高地地域に適した学習記憶曲線が学習できることが望まれるが、本発明によれば、測定帯域の開始点と幅が大気圧に連動して適切に設定されるので、海抜高の違いによらず、地域に適した学習記憶曲線が学習できる。   Further, in the method for measuring the intake air amount of the present invention, when calculating the measurement air amount based on the reading value of the MAF sensor 9, the start point and the width of the measurement band are changed with reference to the map according to the atmospheric pressure. ing. In the United States and other parts of the world, there are high-altitude areas where people live at an altitude of 3000 m or more. In vehicles used in such high-altitude areas, it is desirable that a learning memory curve suitable for the high-altitude areas can be learned. According to this, since the start point and width of the measurement band are appropriately set in conjunction with the atmospheric pressure, a learning memory curve suitable for the region can be learned regardless of the difference in sea level.

1 エンジン
2 ターボチャージャ
3 EGRバルブ
5 吸気スロットル
7 排気スロットル
9 MAFセンサ
10 ECM
12 学習実行条件成立判定部
13 関係学習部
14 補正実行部
1 Engine 2 Turbocharger 3 EGR valve 5 Intake throttle 7 Exhaust throttle 9 MAF sensor 10 ECM
12 learning execution condition establishment determination unit 13 relation learning unit 14 correction execution unit

Claims (2)

エンジンへの吸入空気量を外気からターボチャージャのコンプレッサ入口に至るダクトに設置したMAFセンサで測定する吸入空気量測定方法において、
エンジン状態があらかじめ設定された吸入空気量が安定するエンジン状態であるとき学習実行条件が成立したと判定する第1ステップと、
学習実行条件が成立したとき、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との関係を学習する第2ステップと、
前記MAFセンサの読み値に基づく測定空気量を前記関係に基づいて補正して吸入空気量とする第3ステップと、
を備え、
前記第2ステップでは、学習実行条件が成立するたびに、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との測定記憶関係であって今回学習実行条件が成立したときに学習された測定記憶関係と、前回学習実行条件が成立したときに学習された測定記憶関係と前記今回学習実行条件が成立したときに学習された測定記憶関係とに基づいて算出した算出関係と、をそれぞれ独立して記憶すると共に、前記今回学習実行条件が成立したときに学習された測定記憶関係を前記前回学習実行条件が成立したときに学習された測定記憶関係として次回学習実行条件が成立して前記算出関係が算出されるまで記憶し
前記第3ステップでは、前記MAFセンサの読み値に基づく測定空気量を、前記算出関係に基づいて補正して吸入空気量とすることを特徴とする吸入空気量測定方法。
In an intake air amount measurement method for measuring an intake air amount into an engine with a MAF sensor installed in a duct extending from outside air to a turbocharger compressor inlet,
A first step of determining that the learning execution condition is satisfied when the engine state is an engine state in which a preset intake air amount is stable;
A second step of learning a relationship between a theoretical air amount estimated from an engine state and a measured air amount based on a reading value of the MAF sensor when a learning execution condition is satisfied;
A third step of correcting the measured air amount based on the reading value of the MAF sensor based on the relationship to obtain an intake air amount;
With
In the second step, every time the learning execution condition is satisfied, the current learning execution condition is satisfied by the measurement storage relationship between the theoretical air amount estimated from the engine state and the measured air amount based on the reading value of the MAF sensor. Calculated based on the measurement memory relationship learned when the learning execution condition was satisfied, the measurement memory relationship learned when the previous learning execution condition was satisfied, and the measurement memory relationship learned when the current learning execution condition was satisfied And the next learning execution condition as the measurement memory relation learned when the previous learning execution condition is satisfied, and the measurement storage relation learned when the current learning execution condition is satisfied. Is stored until the calculation relationship is calculated ,
In the third step, the intake air amount measuring method is characterized in that the measured air amount based on the reading value of the MAF sensor is corrected based on the calculation relationship to be an intake air amount.
エンジンへの吸入空気量を外気からターボチャージャのコンプレッサ入口に至るダクトに設置したMAFセンサで測定する吸入空気量測定装置において、
エンジン状態があらかじめ設定された吸入空気量が安定するエンジン状態であるとき学習実行条件が成立したと判定する学習実行条件成立判定部と、
学習実行条件が成立したとき、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との関係を学習する関係学習部と、
前記MAFセンサの読み値に基づく測定空気量を前記関係に基づいて補正して吸入空気量とする補正実行部と、
を備え、
前記関係学習部は、学習実行条件が成立するたびに、エンジン状態から推定される理論空気量と前記MAFセンサの読み値に基づく測定空気量との測定記憶関係であって今回学習実行条件が成立したときに学習された測定記憶関係と、前回学習実行条件が成立したときに学習された測定記憶関係と前記今回学習実行条件が成立したときに学習された測定記憶関係とに基づいて算出した算出関係と、をそれぞれ独立して記憶すると共に、前記今回学習実行条件が成立したときに学習された測定記憶関係を前記前回学習実行条件が成立したときに学習された測定記憶関係として次回学習実行条件が成立して前記算出関係が算出されるまで記憶し
前記補正実行部は、前記MAFセンサの読み値に基づく測定空気量を、前記算出関係に基づいて補正して吸入空気量とすることを特徴とする吸入空気量測定装置。
In an intake air amount measuring device that measures an intake air amount to an engine with a MAF sensor installed in a duct extending from outside air to a turbocharger compressor inlet,
A learning execution condition establishment determination unit that determines that the learning execution condition is established when the engine state is an engine state in which a preset intake air amount is stable;
A relationship learning unit for learning a relationship between a theoretical air amount estimated from an engine state and a measured air amount based on a reading value of the MAF sensor when a learning execution condition is satisfied;
A correction execution unit that corrects a measured air amount based on the reading value of the MAF sensor based on the relationship to obtain an intake air amount;
With
The relationship learning unit is a measurement storage relationship between the theoretical air amount estimated from the engine state and the measured air amount based on the reading value of the MAF sensor each time the learning execution condition is satisfied, and the current learning execution condition is satisfied. Calculated based on the measurement memory relationship learned when the learning execution condition was satisfied, the measurement memory relationship learned when the previous learning execution condition was satisfied, and the measurement memory relationship learned when the current learning execution condition was satisfied And the next learning execution condition as the measurement memory relation learned when the previous learning execution condition is satisfied, and the measurement storage relation learned when the current learning execution condition is satisfied. Is stored until the calculation relationship is calculated ,
The correction execution unit corrects the measured air amount based on the reading value of the MAF sensor based on the calculation relationship to obtain an intake air amount.
JP2009198639A 2009-08-28 2009-08-28 Intake air amount measuring method and intake air amount measuring device Expired - Fee Related JP5446610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198639A JP5446610B2 (en) 2009-08-28 2009-08-28 Intake air amount measuring method and intake air amount measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009198639A JP5446610B2 (en) 2009-08-28 2009-08-28 Intake air amount measuring method and intake air amount measuring device

Publications (2)

Publication Number Publication Date
JP2011047377A JP2011047377A (en) 2011-03-10
JP5446610B2 true JP5446610B2 (en) 2014-03-19

Family

ID=43833943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198639A Expired - Fee Related JP5446610B2 (en) 2009-08-28 2009-08-28 Intake air amount measuring method and intake air amount measuring device

Country Status (1)

Country Link
JP (1) JP5446610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190691A (en) * 2016-04-12 2017-10-19 いすゞ自動車株式会社 Learning device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861291B2 (en) * 2011-07-14 2016-02-16 いすゞ自動車株式会社 Air flow sensor calibration device
WO2013161097A1 (en) 2012-04-25 2013-10-31 株式会社小松製作所 Diesel engine and method for controlling diesel engine
JP7088093B2 (en) * 2019-03-15 2022-06-21 株式会社豊田自動織機 Intake control device
JP6705540B1 (en) * 2019-08-22 2020-06-03 トヨタ自動車株式会社 Vehicle learning system, vehicle control device, and vehicle learning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733600B2 (en) * 1994-08-31 2006-01-11 株式会社デンソー Engine valve operation timing adjustment device
JP2000282926A (en) * 1999-03-30 2000-10-10 Mazda Motor Corp Control device of diesel engine
JP2006336608A (en) * 2005-06-06 2006-12-14 Nissan Diesel Motor Co Ltd Intake air flow rate measuring device
JP2008274836A (en) * 2007-04-27 2008-11-13 Mitsubishi Fuso Truck & Bus Corp Failure diagnostic device for intake air flow rate sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017190691A (en) * 2016-04-12 2017-10-19 いすゞ自動車株式会社 Learning device

Also Published As

Publication number Publication date
JP2011047377A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US7677091B2 (en) Air-fuel ratio controller for an internal combustion engine and diagnosis apparatus for intake sensors
US7438061B2 (en) Method and apparatus for estimating exhaust pressure of an internal combustion engine
JP5642222B2 (en) Control device for internal combustion engine
US7748217B2 (en) System and method for modeling of turbo-charged engines and indirect measurement of turbine and waste-gate flow and turbine efficiency
CN102817729B (en) Control system for an internal combustion engine
US7529614B1 (en) System and method for turbo compressor recirculation valve control
JP5642233B1 (en) Control device for internal combustion engine
KR101548908B1 (en) Method and device for the operation of an internal combustion engine comprising an exhaust gas turbocharger
JP2014169684A (en) Egr control device of internal combustion engine
JP2016056734A (en) Egr flow rate estimation device for internal combustion engine and control device of internal combustion engine
JP5761138B2 (en) EGR device and EGR valve characteristic inspection device
EP3124776B1 (en) Control device for internal combustion engine
JP5446610B2 (en) Intake air amount measuring method and intake air amount measuring device
US20140325982A1 (en) Wastegate valve control device for internal combustion engine and wastegate valve control method for internal combustion engine
CN110582627B (en) Method for modifying the dynamics of the adjustment of the abundance value in an engine to a set value
JP5277349B2 (en) Intake parameter calculation device and intake parameter calculation method for internal combustion engine
CN104321516B (en) The control device of the internal combustion engine with booster
KR101032845B1 (en) Method for controlling an internal combustion engine
US8489307B2 (en) Method and device for operating an internal combustion engine
JP6451705B2 (en) Control device for internal combustion engine
CN108699980B (en) Control device for internal combustion engine
JP5861291B2 (en) Air flow sensor calibration device
CN108999709B (en) Method for calculating the charge of an internal combustion engine
JP4877217B2 (en) Control device for internal combustion engine
JP3337339B2 (en) Apparatus for estimating intake air amount of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees