JP5446382B2 - Manufacturing method of cooling structure - Google Patents

Manufacturing method of cooling structure Download PDF

Info

Publication number
JP5446382B2
JP5446382B2 JP2009082752A JP2009082752A JP5446382B2 JP 5446382 B2 JP5446382 B2 JP 5446382B2 JP 2009082752 A JP2009082752 A JP 2009082752A JP 2009082752 A JP2009082752 A JP 2009082752A JP 5446382 B2 JP5446382 B2 JP 5446382B2
Authority
JP
Japan
Prior art keywords
water
heat receiving
cooling
cooling pipe
powder composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009082752A
Other languages
Japanese (ja)
Other versions
JP2010235978A (en
Inventor
俊久 佐々木
法生 新田
一志 赤木
俊之 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009082752A priority Critical patent/JP5446382B2/en
Publication of JP2010235978A publication Critical patent/JP2010235978A/en
Application granted granted Critical
Publication of JP5446382B2 publication Critical patent/JP5446382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、冷却対象物に取り付けられる受熱盤と、この受熱盤内に挿通され、内部を冷却媒体が流れる冷却パイプとを備えた冷却構造体に関し、特に高炉その他の工業炉の炉体を冷却するために用いられる冷却構造体の製作方法に関する。   The present invention relates to a cooling structure including a heat receiving plate attached to an object to be cooled and a cooling pipe that is inserted into the heat receiving plate and through which a cooling medium flows, and in particular, cools a furnace body of a blast furnace or other industrial furnaces. The present invention relates to a method of manufacturing a cooling structure used for the purpose.

例えば、高炉においては、炉内で生じる熱による炉体の劣化を抑えるために、冷却構造体としてのステーブクーラを用いて、炉体を冷却しながら操業が行われる。   For example, in a blast furnace, in order to suppress deterioration of the furnace body due to heat generated in the furnace, operation is performed while cooling the furnace body using a stave cooler as a cooling structure.

図2は、高炉の炉壁の断面図である。ステーブクーラ1は、不定形耐火物2を介して鉄皮3に取り付けられた受熱盤1aと、この受熱盤1a内に挿通され、内部を冷却水が流れる冷却パイプ1bとを備える。冷却パイプ1bの内部を流れる冷却水により、冷却パイプ1b及び受熱盤1aを通じて炉体が冷却される。   FIG. 2 is a cross-sectional view of the furnace wall of the blast furnace. The stave cooler 1 includes a heat receiving plate 1a attached to the iron shell 3 via an irregular refractory 2 and a cooling pipe 1b that is inserted into the heat receiving plate 1a and through which cooling water flows. The furnace body is cooled by the cooling water flowing inside the cooling pipe 1b through the cooling pipe 1b and the heat receiving board 1a.

高炉内の苛酷な熱環境下においては、熱負荷が原因して受熱盤1aに亀裂が生じることがあり得る。仮に受熱盤1aに亀裂が生じた場合、それが冷却パイプ1bにまで伝播すると水漏れが発生し、高炉の操業に支障をきたすこととなる。そこで、受熱盤1aから冷却パイプ1bへの亀裂の伝播を防止するために、両者間に微小間隙Gを確保している(例えば、特許文献1参照)。   Under a severe heat environment in the blast furnace, a crack may occur in the heat receiving platen 1a due to a heat load. If a crack occurs in the heat receiving platen 1a, if it propagates to the cooling pipe 1b, a water leak occurs, which hinders the operation of the blast furnace. Therefore, in order to prevent the propagation of cracks from the heat receiving platen 1a to the cooling pipe 1b, a minute gap G is secured between them (see, for example, Patent Document 1).

しかし、微小間隙Gの存在は、受熱盤1aから冷却パイプ1bへの熱の移動を妨げ、ひいてはステーブクーラ1の冷却能力を低下させる原因となる。   However, the presence of the minute gap G hinders the movement of heat from the heat receiving platen 1a to the cooling pipe 1b, and as a result, reduces the cooling capacity of the stave cooler 1.

そこで、図2の微小間隙Gの部分に、薄銅板(特許文献2)、あるいは低融点金属粉をピッチで練り込んだ混練物(特許文献3)を介在させることで、受熱盤1aから冷却パイプ1bへの亀裂の伝播を防止する効果は残しつつ、受熱盤1aと冷却パイプ1bとの間の熱抵抗を低減し、ステーブクーラ1の冷却能力の低下を防止する提案がなされている。   Therefore, a thin copper plate (Patent Document 2) or a kneaded material (Patent Document 3) in which a low melting point metal powder is kneaded at a pitch is interposed in the portion of the minute gap G in FIG. Proposals have been made to reduce the thermal resistance between the heat receiving platen 1a and the cooling pipe 1b and prevent the cooling capacity of the stave cooler 1 from being lowered, while retaining the effect of preventing the propagation of cracks to 1b.

特公昭50−21420号公報Japanese Patent Publication No. 50-21420 特開2002−146418号公報JP 2002-146418 A 実公昭48−36086号公報Japanese Utility Model Publication No. 48-36086 特開2008−156133号公報JP 2008-156133 A 特開昭53−133217号公報JP-A-53-133217

特許文献2の薄銅板だと、微小間隙Gを隙間なく埋めることができず、どうしても空隙が残ってしまう。このため、受熱盤1aと冷却パイプ1bとの間の熱抵抗を充分に低減することができない。   If it is the thin copper plate of patent document 2, the minute gap G cannot be filled without a gap, and a gap will remain. For this reason, the thermal resistance between the heat receiving board 1a and the cooling pipe 1b cannot be reduced sufficiently.

特許文献3の非水系混練物だと、微小間隙Gを隙間なく埋めることはできるが、混練に熱伝導性の悪いピッチを用いているため、受熱盤1aと冷却パイプ1bとの間の熱抵抗を充分に低減することができない。   With the non-aqueous kneaded material of Patent Document 3, the minute gap G can be filled without any gap, but since a pitch with poor thermal conductivity is used for kneading, the thermal resistance between the heat receiving platen 1a and the cooling pipe 1b. Cannot be reduced sufficiently.

なお、ピッチに限らず、液状レジンやタール等も含めたいわゆる非水系バインダは、熱伝導性が悪いため、これを混練液に用いると、如何に粉体に熱伝導性に優れたものを用いても、それによる熱伝導性の向上効果が減殺されることとなる。   In addition, not only pitch but also so-called non-aqueous binders including liquid resin and tar have poor thermal conductivity. Even so, the effect of improving the thermal conductivity is reduced.

本発明の目的は、受熱盤と冷却パイプとの間の熱抵抗を充分に低減することで冷却能力の改善を図ることができる冷却構造体の製作方法を提供することである。   The objective of this invention is providing the manufacturing method of the cooling structure which can aim at the improvement of a cooling capability by fully reducing the thermal resistance between a heat receiving board and a cooling pipe.

本発明の一観点によれば、(a)内部を冷却媒体が流れる冷却パイプと、冷却対象物に取り付けられ、前記冷却パイプ外面との間に微小間隙を確保して前記冷却パイプを覆う受熱盤とを準備する工程、並びに(b)前記微小間隙に、粉体組成物を水及び/又はアルコールで練り込んだ混練物を封入する工程を有し、前記粉体組成物が、水溶性高分子を含むことを特徴とする冷却構造体の製作方法が提供される。 According to an aspect of the present invention, (a) a heat receiving plate that is attached to a cooling pipe through which a cooling medium flows and a cooling target, and covers the cooling pipe with a minute gap between the cooling pipe and the outer surface. preparing a preparative, and (b) in the minute gap, the powder composition have a step of encapsulating the kneaded product kneaded with water and / or alcohol, the powder composition, water-soluble polymer A method for manufacturing a cooling structure is provided.

水及び/又はアルコールは、非水系バインダに比べて熱伝導性に優れる。本発明の混練物は受熱盤と冷却パイプとの間に封入状態で使用されるため、冷却構造体の稼動中も混練物中の水及び/又はアルコールが逸散しにくい。このため、水及び/又はアルコールの熱伝導性の良さがいかんなく活かされる。   Water and / or alcohol is excellent in thermal conductivity as compared with a non-aqueous binder. Since the kneaded material of the present invention is used in an enclosed state between the heat receiving plate and the cooling pipe, water and / or alcohol in the kneaded material is not easily dissipated even during operation of the cooling structure. For this reason, the good thermal conductivity of water and / or alcohol is fully utilized.

従って、用いる粉体組成物の構成が同じであっても、非水系バインダを用いる従来よりも冷却パイプと受熱盤との間の熱抵抗を低減することができ、冷却構造体の冷却能力を改善することができる。   Therefore, even if the composition of the powder composition to be used is the same, the thermal resistance between the cooling pipe and the heat receiving panel can be reduced as compared with the conventional case using a non-aqueous binder, and the cooling capacity of the cooling structure is improved. can do.

なお、混練液に水を用いた水系の混練物そのものは従来からよく知られている。また、その熱伝導性を高める検討も従来からなされている(特許文献4及び5参照)。しかし、従来の水系の混練物はいずれも、乾燥し固化させてから使用することが前提であり、水そのものの熱伝導性の良さを利用しようという技術思想に基づくものではない。   In addition, the water-based kneaded material itself using water for the kneading liquid is well known. Moreover, the examination which raises the heat conductivity is also made | formed conventionally (refer patent documents 4 and 5). However, any conventional water-based kneaded product is premised on use after being dried and solidified, and is not based on the technical idea of utilizing the good thermal conductivity of water itself.

ステーブクーラの断面図である。It is sectional drawing of a stave cooler. 高炉のシャフト部における炉壁の断面図である。It is sectional drawing of the furnace wall in the shaft part of a blast furnace.

図1に、高炉の冷却に用いられるステーブクーラの断面図を示す。このステーブクーラは、炉体に取り付けられる受熱盤10と、受熱盤10内に挿通され、内部を冷却水が流れる冷却パイプ11とを備え、冷却パイプ11内を流れる冷却水により、冷却パイプ11及び受熱盤10を通じて炉体を冷却するものである。   FIG. 1 shows a cross-sectional view of a stave cooler used for cooling a blast furnace. The stave cooler includes a heat receiving plate 10 attached to the furnace body and a cooling pipe 11 that is inserted into the heat receiving plate 10 and through which cooling water flows. The cooling water flowing through the cooling pipe 11 causes the cooling pipe 11 and The furnace body is cooled through the heat receiving board 10.

受熱盤10及び冷却パイプ11の素材としては、慣用のもの、例えば、鉄若しくは銅又はこれらのいずれかを含む合金その他の金属が用いられる。   As a material for the heat receiving plate 10 and the cooling pipe 11, a conventional material, for example, iron or copper, or an alloy or other metal containing any of these is used.

このステーブクーラは、受熱盤10の内面と、冷却パイプ11の外面との間に、混練液に水及び/又はアルコールを用いた混練物12を封入した点を最大の特徴としている。   This stave cooler is characterized in that the kneaded material 12 using water and / or alcohol in the kneaded liquid is sealed between the inner surface of the heat receiving plate 10 and the outer surface of the cooling pipe 11.

混練物12は封入状態で使用されるため、ステーブクーラの稼動中も、混練物12中の水及び/又はアルコールが逸散しにくい。このため、水及び/又はアルコールの熱伝導性の良さがいかんなく活かされ、混練物12が良好な熱伝導性を示すことができる。このことが、ステーブクーラの冷却能力の改善に寄与する。   Since the kneaded product 12 is used in an enclosed state, water and / or alcohol in the kneaded product 12 is not easily dissipated even during operation of the stave cooler. For this reason, the good thermal conductivity of water and / or alcohol is utilized, and the kneaded material 12 can exhibit good thermal conductivity. This contributes to the improvement of the cooling capacity of the stave cooler.

既述のように、水系の混練物そのものは従来からよく知られている。しかし、水系の混練物は工業炉、特に高炉には通常適用されない。これは、高炉に用いられる内張り耐火物が水蒸気により酸化をきらうためである。この点、本ステーブクーラにおいては、水及び/又はアルコールの逸散を封入により防止したため、混練物12の使用が上記水蒸気酸化の問題を引き起こすことはない。   As described above, the aqueous kneaded material itself has been well known. However, water-based kneaded materials are not usually applied to industrial furnaces, particularly blast furnaces. This is because the lined refractory used in the blast furnace is resistant to oxidation by steam. In this respect, in this stave cooler, since the dissipation of water and / or alcohol is prevented by sealing, the use of the kneaded material 12 does not cause the above-mentioned problem of steam oxidation.

なお、図1において、水及び/又はアルコールのみを、受熱盤10と冷却パイプ11との間に封入することも考えられるが、水及び/又はアルコールのみを液密に封入することは難しい。仮に、封入ができたとしても、例えば、使用中の熱負荷で受熱盤10に亀裂が生じた場合、その亀裂を通じて水及び/又はアルコールが外部、即ち高炉内に容易に流出する懸念がある。   In FIG. 1, it is conceivable to enclose only water and / or alcohol between the heat receiving board 10 and the cooling pipe 11, but it is difficult to enclose only water and / or alcohol in a liquid-tight manner. Even if the sealing can be performed, for example, when a crack is generated in the heat receiving panel 10 due to a heat load during use, there is a concern that water and / or alcohol easily flows out to the outside, that is, into the blast furnace through the crack.

水及び/又はアルコールと共に粉体組成物を併用することで、封入を容易に行え、また仮に受熱盤10に亀裂が生じた場合でも水及び/又はアルコールが外部に流出しにくい。粉体組成物の存在により、水及び/又はアルコールの逸散を防止する効果が高まる。   By using the powder composition together with water and / or alcohol, it is easy to enclose, and even if the heat receiving panel 10 is cracked, water and / or alcohol hardly flows out. The presence of the powder composition increases the effect of preventing the dissipation of water and / or alcohol.

また、粉体組成物のみを、受熱盤10と冷却パイプ11との間に封入することも考えられるが、粉体組成物中の粒子間にどうしても空隙が残るため、受熱盤10と冷却パイプ11との間の熱抵抗を充分に低減することができない。   In addition, it is conceivable to enclose only the powder composition between the heat receiving platen 10 and the cooling pipe 11, but a gap is inevitably left between the particles in the powder composition. The thermal resistance between the two cannot be sufficiently reduced.

以下、上記ステーブクーラの製作方法について説明する。   Hereinafter, a method for manufacturing the stave cooler will be described.

〔第1の例〕   [First example]

まず、冷却パイプ11を準備し、これを受熱盤10となる溶融金属、例えば鋳鉄で鋳ぐるむ。但し、鋳ぐるみに際し、冷却パイプ11と受熱盤10との間に微小間隙が形成されるようにする。   First, the cooling pipe 11 is prepared, and this is cast with a molten metal that becomes the heat receiving plate 10, for example, cast iron. However, a minute gap is formed between the cooling pipe 11 and the heat receiving plate 10 during casting.

具体的には、冷却パイプ11の外面に耐火ペーストを塗布して受熱盤10の鋳込みを行うことで、微小間隙が形成される。耐火ペーストは、例えば、シリカ粉や粘土を用いて構成される。   Specifically, a minute gap is formed by applying a refractory paste to the outer surface of the cooling pipe 11 and casting the heat receiving board 10. The refractory paste is composed of, for example, silica powder or clay.

なお、このようにして微小間隙を形成する方法は、公知であるため詳細な説明は省略する(例えば、特許文献1参照)。   In addition, since the method of forming the minute gap in this way is known, detailed description is omitted (for example, refer to Patent Document 1).

次に、受熱盤10と冷却パイプ11との間の上記微小間隙に、外部から混練物12を圧入する。   Next, the kneaded material 12 is press-fitted into the minute gap between the heat receiving plate 10 and the cooling pipe 11 from the outside.

次に、受熱盤10の表面における混練物12の露出部分をシール材13で閉塞する。シール材13には、例えば、シリコーンを用いることができる。これにより、混練物12が封入状態となる。   Next, the exposed portion of the kneaded material 12 on the surface of the heat receiving board 10 is closed with the sealing material 13. For the sealing material 13, for example, silicone can be used. Thereby, the kneaded material 12 will be in an encapsulated state.

〔第2の例〕   [Second example]

まず、冷却パイプ11と、微小間隙を確保して冷却パイプ11を挟み込むように組み合わされる複数の部材に分割して構成された受熱盤10とを準備する。   First, the cooling pipe 11 and the heat receiving board 10 divided into a plurality of members combined so as to secure the minute gap and sandwich the cooling pipe 11 are prepared.

次に、上記複数の部材及び冷却パイプ11の少なくともいずれか一方の他方との対向面に混練物12を塗布する。   Next, the kneaded material 12 is applied to the surface facing the other of at least one of the plurality of members and the cooling pipe 11.

次に、上記複数の部材で冷却パイプ11を挟み込み、この状態で上記複数の部材をボルト等で連結して受熱盤10と成す。   Next, the cooling pipe 11 is sandwiched between the plurality of members, and in this state, the plurality of members are connected with bolts or the like to form the heat receiving board 10.

なお、このように複数の部材の連結によって受熱盤10を構成する手法は、公知であるため詳細な説明は省略する(例えば、特許文献2参照)。   In addition, since the method which comprises the heat receiving board 10 by connecting several members in this way is well-known, detailed description is abbreviate | omitted (for example, refer patent document 2).

上述した第1の例では、受熱盤10の表面の位置における上記微小間隙の開口面積を、混練物12を外部から圧入できる程度に広く確保する必要があったが、本第2の例によると、外部から混練物12を圧入する必要がないので、上記微小間隙の開口面積を可能な限り小さくすることができる。   In the first example described above, the opening area of the micro gap at the surface position of the heat receiving board 10 has to be secured wide enough to allow the kneaded material 12 to be press-fitted from the outside. According to the second example, Since there is no need to press-fit the kneaded material 12 from the outside, the opening area of the micro gap can be made as small as possible.

このため、上記微小隙間の開口面積を、混練物12中の水及び/又はアルコールが受熱盤10の外部に殆ど逸散しない程度に狭くすることで、必ずしもシール材13を用いなくても、上記複数の部材の連結と同時に混練物12の封入状態が得られる。   For this reason, the opening area of the minute gap is narrowed to such an extent that water and / or alcohol in the kneaded material 12 hardly dissipates to the outside of the heat receiving board 10, so that the sealing material 13 is not necessarily used. The encapsulated state of the kneaded material 12 is obtained simultaneously with the connection of the plurality of members.

具体的には、混練物12を構成する粉体組成物の最大粒径をdとしたとき、上記微小間隙の最大の開口幅が12d以下であれば、シール材13を用いなくても、上記複数の部材の連結と同時に混練物12の封入状態が得られる。上記微小間隙の最大の開口幅は6d以下であることが好ましい。   Specifically, when the maximum particle size of the powder composition constituting the kneaded product 12 is d, the maximum opening width of the fine gap is 12 d or less, without using the sealing material 13. The encapsulated state of the kneaded material 12 is obtained simultaneously with the connection of the plurality of members. The maximum opening width of the minute gap is preferably 6d or less.

例えば、粉体組成物の最大粒径が150μmのとき、上記微小間隙の最大の開口幅は1.8mm以下、好ましくは、0.9mm以下であれば、上記複数の部材の連結と同時に混練物12の封入状態が得られる。   For example, when the maximum particle size of the powder composition is 150 μm, the maximum opening width of the fine gap is 1.8 mm or less, preferably 0.9 mm or less, and the kneaded material is simultaneously connected with the plurality of members. Twelve encapsulated states are obtained.

但し、微小間隙の開口幅を大きくし、上記複数の部材の連結の後に、外部から混練物12を追加的に圧入してもよい。その場合は、第1の例の場合と同様、受熱盤10の表面における混練物12の露出部分をシール材13で塞ぐ。   However, the opening width of the minute gap may be increased, and the kneaded material 12 may be additionally press-fitted from the outside after the plurality of members are connected. In that case, similarly to the case of the first example, the exposed portion of the kneaded material 12 on the surface of the heat receiving board 10 is closed with the sealing material 13.

以下、混練物12の構成について具体的に説明する。   Hereinafter, the structure of the kneaded material 12 is demonstrated concretely.

混練物12は、粉体組成物を水及び/又はアルコールで練り込んでなる。   The kneaded product 12 is obtained by kneading a powder composition with water and / or alcohol.

粉体組成物には、例えば、炭素質原料、炭化珪素質原料、アルミナ質原料、シリカ質原料、アルミナ‐シリカ質原料、その他の耐火性粉体、及び金属粉から選択される一種以上を用いることができる。   For the powder composition, for example, one or more selected from carbonaceous raw materials, silicon carbide raw materials, alumina raw materials, siliceous raw materials, alumina-siliceous raw materials, other refractory powders, and metal powders are used. be able to.

粉体組成物としては水及びアルコールよりも熱伝導性に優れたものが好ましい。これにより、水及び/又はアルコールのみを受熱盤10と冷却パイプ11との間に封入する場合に比べて、両者間の熱抵抗を低減することができる。   As the powder composition, those having better thermal conductivity than water and alcohol are preferred. Thereby, compared with the case where only water and / or alcohol are enclosed between the heat receiving board 10 and the cooling pipe 11, the thermal resistance between both can be reduced.

粉体組成物としては、良好な熱伝導性だけでなく、耐酸及び耐アルカリ性も兼ね備える点で炭素質原料、特に黒鉛が好ましい。粉体組成物に占める炭素質原料の割合は60質量%以上が好ましく、90質量%以上がより好ましい。   As the powder composition, a carbonaceous raw material, particularly graphite, is preferable because it has not only good thermal conductivity but also acid resistance and alkali resistance. The proportion of the carbonaceous raw material in the powder composition is preferably 60% by mass or more, and more preferably 90% by mass or more.

また、粉体組成物に水溶性高分子を含め。水溶性高分子としては、例えば、メチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリエチレンオキサイド、及びポリアクリルアミド等が挙げられる。 Further, the powder composition Include the water-soluble polymer. Examples of the water-soluble polymer include methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, hydroxyethyl cellulose, hydroxypropyl cellulose, polyethylene oxide, and polyacrylamide.

水溶性高分子は、以下の(ア)〜(エ)の効果をもつ。   The water-soluble polymer has the following effects (a) to (d).

(ア)粉体組成物に水及び/又はアルコールに対する濡れ性の悪い材料、例えば炭素質原料を多く用いた場合でも、これを水及び/又はアルコールと分離させることなく容易に練り込むことを可能とする効果。   (A) Even when a material having poor wettability to water and / or alcohol, such as a carbonaceous raw material, is used in the powder composition, it can be easily kneaded without being separated from water and / or alcohol. Effect.

(イ)水溶性高分子がもつ保水性によって混練物からの水及び/又はアルコールの逸散を防止する効果。   (A) The effect of preventing water and / or alcohol from escaping from the kneaded product due to water retention of the water-soluble polymer.

(ウ)仮に混練物中の水及び/又はアルコールが多少逸散したとしても、粉体組成物を構成する粒子どうしを隔離させることなく繋ぎ止めることで、混練物の熱伝導性の低下を抑制する効果。   (C) Even if water and / or alcohol in the kneaded material is somewhat dissipated, the decrease in the thermal conductivity of the kneaded material is suppressed by segregating the particles constituting the powder composition without isolating them. Effect.

(エ)混練物に、平滑な面にもだれ落ちることなく付着させることができる塗布容易性や、狭い空隙にも粉体組成物を水及び/又はアルコールと分離させることなく行き渡らせることができる圧入容易性を付与する効果。   (D) Easiness of application that can adhere to a kneaded product without falling on a smooth surface, and can spread even a narrow gap without separating the powder composition from water and / or alcohol. The effect of giving ease of press-fitting.

上記(ア)〜(エ)の効果を得る観点から、水溶性高分子の配合量は、粉体組成物に占める割合で、例えば、0.5質量%以上が好ましい。   From the viewpoint of obtaining the effects (a) to (d) above, the blending amount of the water-soluble polymer is a proportion of the powder composition, and is preferably 0.5% by mass or more, for example.

以上の他、粉体組成物は、βナフタレンスルホン酸ソーダ等の分散剤や、アルミナセメント等の硬化剤といった添加剤を含んでもよい。但し、硬化剤は含まないことが好ましい。混練物12に硬化剤を含めないことで、受熱盤10から冷却パイプ11への亀裂の伝播を防止する効果をより確実なものとすることができる。   In addition to the above, the powder composition may contain an additive such as a dispersant such as β-naphthalene sulfonic acid soda and a curing agent such as alumina cement. However, it is preferable not to contain a curing agent. By not including the curing agent in the kneaded material 12, the effect of preventing the propagation of cracks from the heat receiving board 10 to the cooling pipe 11 can be made more reliable.

水及び/又はアルコールの添加量は、特に限定されない。例えば、粉体組成物100体積%に対する外かけで5〜80体積%程度とすることで、混練物に圧入や塗布が可能な作業性を付与することができる。なお、アルコールとしては、メタノールやエタノール等の1価アルコールが好ましい。   The amount of water and / or alcohol added is not particularly limited. For example, workability capable of being press-fitted and applied to the kneaded product can be imparted by setting the powder composition to about 5 to 80% by volume with respect to 100% by volume. In addition, as alcohol, monohydric alcohols, such as methanol and ethanol, are preferable.

本明細書において、混練液の添加量(体積%)は、粉体組成物のゆるみ嵩に基づいて定めるものとする。ゆるみ嵩とは、対象粉体を容器に静かにそそぎ込んだときの対象粉体が占める体積をいう。   In the present specification, the addition amount (volume%) of the kneading liquid is determined based on the loose bulk of the powder composition. The loose bulk refers to the volume occupied by the target powder when the target powder is gently poured into the container.

図1のステーブクーラを用い、以下の実験を行った。   The following experiment was conducted using the stave cooler of FIG.

受熱盤10の下面(以下、受熱面という)10aを電気ヒータで加熱する。受熱面10aが800℃に安定したら、電気ヒータの発熱量は維持したまま、冷却パイプ11の供給口11aから冷却水として約25℃の工業水を供給する。冷却水の流量は一定値に保ち、冷却パイプ11の排出口11bから排出される冷却水は循環させることなく廃棄する。   A lower surface (hereinafter referred to as a heat receiving surface) 10a of the heat receiving board 10 is heated by an electric heater. When the heat receiving surface 10a is stabilized at 800 ° C., about 25 ° C. industrial water is supplied as cooling water from the supply port 11a of the cooling pipe 11 while maintaining the heat generation amount of the electric heater. The flow rate of the cooling water is kept constant, and the cooling water discharged from the discharge port 11b of the cooling pipe 11 is discarded without being circulated.

このようにしてある期間、冷却水を流し続け、受熱盤10内部の温度分布が定常状態に達したときの、図1の点Aの温度、即ち受熱盤10の内部における冷却パイプ11との対向面の温度(以下、受熱盤温度という。)Tと、冷却パイプ11から排出された冷却水の温度(以下、出水温度という。)Tとを測定する。 In this way, the cooling water continues to flow for a certain period of time, and the temperature at the point A in FIG. 1 when the temperature distribution inside the heat receiving panel 10 reaches a steady state, that is, facing the cooling pipe 11 inside the heat receiving panel 10. temperature of the surface (hereinafter, referred to as the heat receiving plate temperature.) T a and, the cooling water discharged from the cooling pipe 11 temperature (hereinafter, referred to as the water temperature.) measuring a T B.

表1に、受熱盤10と冷却パイプ11との間に介在させたもの(以下、介在物という。)の別に、受熱盤温度Tと出水温度Tとを示す。受熱盤温度Tが低く、出水温度Tが高い程、ステーブクーラの冷却能力が高いことを意味する。 Table 1, which is interposed between the heat-receiving plate 10 and the cooling pipe 11 (hereinafter, referred to. Inclusions) to another, showing the the water outlet temperature T B heat plate temperature T A. Heat receiving plate temperature T A is low, the higher the water temperature T B, which means that higher cooling capacity of the stave cooler.

Figure 0005446382
Figure 0005446382

実施例1は、鱗状黒鉛:60質量%と、粘土:40質量%とよりなる粉体組成物を外かけ30体積%の量の水で練り込んだ混練物を用いたものであり、受熱盤温度Tが比較的低く、かつ出水温度Tが比較的高いことから、ステーブクーラが良好な冷却能力を発揮できていることが分かる。 Example 1 uses a kneaded product obtained by kneading a powder composition composed of scaly graphite: 60% by mass and clay: 40% by mass with an amount of 30% by volume of water. temperature T a is comparatively low, and since it is relatively high water outlet temperature T B, it can be seen that the stave cooler is made exhibit good cooling capacity.

実施例2は、鱗状黒鉛:95質量%と、増粘剤:5質量%とよりなる粉体組成物を外かけ30体積%の量の水で練り込んだ混練物を用いたもので、粉体組成物に占める鱗状黒鉛の割合が実施例1よりも高いため、実施例1よりも優れた冷却能力を発揮することができている。   Example 2 uses a kneaded product obtained by kneading a powder composition consisting of scaly graphite: 95% by mass and a thickener: 5% by mass with water in an amount of 30% by volume. Since the ratio of the scaly graphite to the body composition is higher than that of Example 1, the cooling ability superior to that of Example 1 can be exhibited.

実施例3は、実施例2の混練液である水をアルコールに変更したもので、実施例2にはやや劣るが、優れた冷却能力を発揮することができている。なお、実施例2と3の比較から、混練液としてはアルコールよりも水の方が好ましいことが分かる。   In Example 3, water that is the kneading liquid of Example 2 was changed to alcohol, and although it was slightly inferior to Example 2, it was possible to exhibit excellent cooling ability. From the comparison between Examples 2 and 3, it can be seen that water is preferable to alcohol as the kneading liquid.

比較例1は、実施例1に対する比較例であり、粉体組成物の構成は実施例1と同じであるが、混練液に熱伝導性の悪いピッチを用いたため、実施例1に比べると、ステーブクーラの冷却能力に劣る。   Comparative Example 1 is a comparative example with respect to Example 1, and the composition of the powder composition is the same as that of Example 1. However, since a pitch having poor thermal conductivity was used for the kneading liquid, compared with Example 1, The cooling capacity of the stave cooler is inferior.

比較例2は、粉体組成物に占める鱗状黒鉛の割合が100質量%と実施例2及び3よりも高いが、施工液に熱伝導性の悪いピッチを用いたため、実施例2及び3に比べると、ステーブクーラの冷却能力に著しく劣る。   In Comparative Example 2, the proportion of scaly graphite in the powder composition is 100% by mass, which is higher than Examples 2 and 3, but compared to Examples 2 and 3 because a pitch having poor thermal conductivity was used for the construction liquid. And the cooling capacity of the stave cooler is remarkably inferior.

比較例3は、介在物として水のみを用いたもので、実施例1〜3のいずれよりもステーブクーラの冷却能力に劣る。実施例1及び2は、水と共に水よりも熱伝導性に優れた粉体組成物を併用したので、混練物全体としての熱伝導性が水よりも高い。   The comparative example 3 uses only water as an inclusion, and is inferior to the cooling capability of a stave cooler than any of Examples 1-3. In Examples 1 and 2, since the powder composition having higher thermal conductivity than water is used together with water, the thermal conductivity of the entire kneaded product is higher than that of water.

比較例4は、充填材として薄銅板を用いたもので、上記微小間隙を完全に埋めることができず、隙間ができたためか、受熱盤温度Tが相対的に高く、出水温度Tが相対的に低い。即ち、冷却パイプの冷却能力がステーブクーラの冷却能力にいかんなく反映されていない。 Comparative Example 4 is one using a thin copper plate as a filler, it is impossible to completely fill the small gap, or because of a gap, the heat receiving plate temperature T A is relatively high, and the water temperature T B Relatively low. That is, the cooling capacity of the cooling pipe is not reflected in the cooling capacity of the stave cooler.

以上、本発明について具体的に説明したが、本発明はこれに限られない。例えば、種々の組み合わせ及び改良が可能なことは当業者に自明であろう。   Although the present invention has been specifically described above, the present invention is not limited to this. For example, it will be apparent to those skilled in the art that various combinations and improvements are possible.

1…ステーブクーラ、1a…受熱盤、1b…冷却パイプ、2…不定形耐火物、3…鉄皮、G…微小間隙、10…受熱盤、10a…受熱面、11…冷却パイプ、11a…供給口、11b…排出口、12…混練物、13…シール材。   DESCRIPTION OF SYMBOLS 1 ... Stave cooler, 1a ... Heat receiving board, 1b ... Cooling pipe, 2 ... Indeterminate refractory, 3 ... Iron skin, G ... Fine gap, 10 ... Heat receiving board, 10a ... Heat receiving surface, 11 ... Cooling pipe, 11a ... Supply Mouth, 11b ... discharge port, 12 ... kneaded product, 13 ... sealing material.

Claims (3)

(a)内部を冷却媒体が流れる冷却パイプと、冷却対象物に取り付けられ、前記冷却パイプ外面との間に微小間隙を確保して前記冷却パイプを覆う受熱盤とを準備する工程、並びに(b)前記微小間隙に、粉体組成物を水及び/又はアルコールで練り込んだ混練物を封入する工程を有し、前記粉体組成物が、水溶性高分子を含むことを特徴とする冷却構造体の製作方法。 (A) preparing a cooling pipe through which a cooling medium flows, and a heat receiving plate attached to the object to be cooled and securing a minute gap between the cooling pipe outer surface and covering the cooling pipe; and (b ) wherein the minute gap, the powder composition have a step of encapsulating the kneaded product kneaded with water and / or alcohol, cooling structure the powder composition, characterized in that it comprises a water-soluble polymer How to make a body. 前記粉体組成物が、黒鉛を60質量%以上含む請求項1に記載の製作方法。   The manufacturing method according to claim 1, wherein the powder composition contains 60% by mass or more of graphite. 請求項1又は2に記載の製作方法に使用される前記混練物。 The said kneaded material used for the manufacturing method of Claim 1 or 2 .
JP2009082752A 2009-03-30 2009-03-30 Manufacturing method of cooling structure Active JP5446382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082752A JP5446382B2 (en) 2009-03-30 2009-03-30 Manufacturing method of cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082752A JP5446382B2 (en) 2009-03-30 2009-03-30 Manufacturing method of cooling structure

Publications (2)

Publication Number Publication Date
JP2010235978A JP2010235978A (en) 2010-10-21
JP5446382B2 true JP5446382B2 (en) 2014-03-19

Family

ID=43090585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082752A Active JP5446382B2 (en) 2009-03-30 2009-03-30 Manufacturing method of cooling structure

Country Status (1)

Country Link
JP (1) JP5446382B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897404U (en) * 1972-02-23 1973-11-19

Also Published As

Publication number Publication date
JP2010235978A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
CN101220195A (en) Phenolic resin containing nano-carbon powder, nano-carbon modified low carbon magnesium carbon brick and production method thereof
JP4720981B2 (en) Magnesium matrix composite
JP3615400B2 (en) Unfired carbon-containing refractories and molten metal containers
CN103803994B (en) Small blast furnace main iron runner castable
CN106747510A (en) One kind is without silicon powder iron runner castable and preparation method thereof
CN111517815A (en) Silicon nitride composite high-thermal conductivity castable
CN102924097B (en) Carbon titanium combining self-protection brick for blast furnace hearth and furnace bottom
CN101898240B (en) Preparation method of SiC/Al composite material for electronic packaging
CN105884381A (en) Preparation technology of silicon carbide-based castable
CN108083829A (en) A kind of high tenacity insulated pouring material
JP5446382B2 (en) Manufacturing method of cooling structure
CN108031788A (en) A kind of aluminium alloy casting compound sand core of high heat conduction and preparation method thereof
CN108971477B (en) Lining material for continuous casting ladle long nozzle
CN108191403A (en) A kind of preparation method of shock resistance radiation nano ceramic material
CN103804000B (en) A kind of dense form high strength SiAlON is in conjunction with iron runner castable and preparation method thereof
CN104478454B (en) Refractory material used for ladle and preparation method of refractory material
CN107602137A (en) A kind of moulding by casting converter taphole inner nozzle brick and preparation method thereof
JP6441685B2 (en) Castable refractories for lids of molten metal containers
JP6441684B2 (en) Castable refractories for lids of molten metal containers
JP4399579B2 (en) Castable molded product and method for producing the same
JP2009195989A (en) Intermediate stokehold, its manufacturing method, and low pressure casting device
CN101758165A (en) Novel process flow of steel castings
CN101856719A (en) Sealing cup refractory material for continuous casting ladle long nozzle and manufacturing method thereof
CN110256050A (en) A kind of pyrolytic semlting magnesium carbonaceous artesian repairing material
JP2010052996A (en) Vessel for producing polycrystalline silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R151 Written notification of patent or utility model registration

Ref document number: 5446382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350