JP5445472B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP5445472B2
JP5445472B2 JP2011005301A JP2011005301A JP5445472B2 JP 5445472 B2 JP5445472 B2 JP 5445472B2 JP 2011005301 A JP2011005301 A JP 2011005301A JP 2011005301 A JP2011005301 A JP 2011005301A JP 5445472 B2 JP5445472 B2 JP 5445472B2
Authority
JP
Japan
Prior art keywords
pressure receiver
pressure
refrigerant
low
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011005301A
Other languages
Japanese (ja)
Other versions
JP2012145296A (en
Inventor
正伸 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Original Assignee
TOYO. SS. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD. filed Critical TOYO. SS. CO., LTD.
Priority to JP2011005301A priority Critical patent/JP5445472B2/en
Publication of JP2012145296A publication Critical patent/JP2012145296A/en
Application granted granted Critical
Publication of JP5445472B2 publication Critical patent/JP5445472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば環境試験装置における試験室内を、1液冷媒で低温から高温に至るまで広い範囲に亘って制御するための冷凍システムに関するものである。   The present invention relates to a refrigeration system for controlling, for example, a test chamber in an environmental test apparatus over a wide range from a low temperature to a high temperature with one liquid refrigerant.

従来、自動車の環境試験を屋内で行うための環境試験装置は知られている(例えば、特許文献1参照)。この環境試験装置は、試験室内で各種のテストを行うことができるように、試験室である被空調室内を−50℃〜60℃の温度に冷却あるいは加温できる構成となっている。しかしながら、特許文献1で知られる環境試験装置では、システムが乾式直接膨張式のため、運転が不安定になる問題点がある。   2. Description of the Related Art Conventionally, an environmental test apparatus for performing an automobile environmental test indoors is known (see, for example, Patent Document 1). This environmental test apparatus has a configuration in which an air-conditioned room as a test room can be cooled or heated to a temperature of −50 ° C. to 60 ° C. so that various tests can be performed in the test room. However, the environmental test apparatus known from Patent Document 1 has a problem that the operation becomes unstable because the system is a dry direct expansion system.

また、従来の環境試験装置として、例えば図2に示すような被空調室内を空気調和する冷凍システムが知られている。同図において、該冷凍システム50は、冷媒圧縮機51、凝縮器52、高圧受液器53、膨張弁54、低圧受液器55及び蒸発器56等により構成された循環冷媒回路を有している。   Moreover, as a conventional environmental test apparatus, for example, a refrigeration system for air conditioning an air-conditioned room as shown in FIG. 2 is known. In the figure, the refrigeration system 50 has a circulating refrigerant circuit including a refrigerant compressor 51, a condenser 52, a high-pressure receiver 53, an expansion valve 54, a low-pressure receiver 55, an evaporator 56, and the like. Yes.

さらに詳述すると、前記蒸発器56と前記低圧受液器55を接続している冷媒配管57aには、該低圧受液器55内の冷媒液を該蒸発器56内の冷却コイル56aに分流器(ディストリビュータ)58を介して供給する冷媒液ポンプ59が設けられ、前記低圧受液器55と前記冷媒圧縮機51を接続している冷媒配管57cには、調整弁60が設けられ、前記高圧受液器53と前記低圧受液器55を接続している冷媒配管57fには、逆止弁61及び前記膨張弁54が順に設けられている。また、前記低圧受液器55と前記高圧受液器53には、前記低圧受液器55内と前記高圧受液器53内の冷媒液の量をそれぞれ検出する液面センサー62,63が設けられている。   More specifically, the refrigerant pipe 57a connecting the evaporator 56 and the low-pressure receiver 55 is connected to the refrigerant liquid in the low-pressure receiver 55 to the cooling coil 56a in the evaporator 56. (Distributor) A refrigerant liquid pump 59 to be supplied via the distributor 58 is provided, and an adjustment valve 60 is provided in the refrigerant pipe 57c connecting the low-pressure receiver 55 and the refrigerant compressor 51, and the high-pressure receiver A check pipe 61 and the expansion valve 54 are sequentially provided in a refrigerant pipe 57f that connects the liquid container 53 and the low-pressure liquid receiver 55. The low-pressure receiver 55 and the high-pressure receiver 53 are provided with liquid level sensors 62 and 63 for detecting the amount of refrigerant liquid in the low-pressure receiver 55 and the high-pressure receiver 53, respectively. It has been.

このように構成された冷凍システムでは、前記高圧受液器53より前記冷媒配管57fに排出された冷媒液は、前記膨張弁54により減圧気化させて上部より前記低圧受液器55内に導入される。   In the refrigeration system configured as described above, the refrigerant liquid discharged from the high-pressure receiver 53 to the refrigerant pipe 57f is reduced in pressure by the expansion valve 54 and introduced into the low-pressure receiver 55 from above. The

また、前記低圧受液器55内の気化冷媒は、前記調整弁60を介して前記圧縮機51内に吸入され、かつ、圧縮される。その圧縮ガスは、冷媒配管57dを通って前記凝縮器52に送られ、該凝縮器52内で冷却水64と熱交換が行われて凝縮液化し、ガス状態から液状態に変化をする。また、前記凝縮器52内で液化された冷媒液は、冷媒配管57eを介して前記高圧受液器53に上部から導入される。ここで、前記凝縮器52内で50℃前後に昇温された冷却水は、高温試験の場合に被空調室内に流される空気を暖めるのに使用される。   The vaporized refrigerant in the low-pressure receiver 55 is sucked into the compressor 51 through the regulating valve 60 and compressed. The compressed gas is sent to the condenser 52 through the refrigerant pipe 57d, and heat is exchanged with the cooling water 64 in the condenser 52 to be condensed and liquefied to change from a gas state to a liquid state. The refrigerant liquid liquefied in the condenser 52 is introduced into the high-pressure liquid receiver 53 from above through a refrigerant pipe 57e. Here, the cooling water heated to about 50 ° C. in the condenser 52 is used to warm the air flowing into the air-conditioned room in the case of the high temperature test.

一方、前記蒸発器56は、冷媒液ポンプ59が駆動されると、前記低圧受液器55から冷媒配管57aを介して低圧の冷媒液が送られて来て、この冷媒液が分流器58を介して内部の冷却コイル56aに供給される。そして、前記低圧受液器55から送られて来た冷媒液は、前記蒸発器56内の冷却コイル56aを通過するときに蒸発され、その気化熱で前記蒸発器56を通って被空調室内に流される空気を冷却する。また、該蒸発器56内で液状態からガス状態に変化をして冷却に寄与した冷媒ガスは、冷媒配管57bを介して前記低圧受液器55内に上部から導入される。   On the other hand, when the refrigerant liquid pump 59 is driven, the evaporator 56 is supplied with a low-pressure refrigerant liquid from the low-pressure liquid receiver 55 via the refrigerant pipe 57a. To the internal cooling coil 56a. The refrigerant liquid sent from the low-pressure receiver 55 is evaporated when passing through the cooling coil 56a in the evaporator 56, and the heat of vaporization passes through the evaporator 56 into the air-conditioned room. Cool the flowing air. The refrigerant gas that has changed from the liquid state to the gas state in the evaporator 56 and contributed to cooling is introduced into the low-pressure liquid receiver 55 from above through the refrigerant pipe 57b.

したがって、この冷凍システムでは、必要に応じて上記動作を繰り返すことにより、前記蒸発器56と前記凝縮器52とで被空調室内を所要の温度、例えば−50℃〜50℃の範囲であれば冷却あるいは加温することができる。すなわち、−50℃〜50℃の範囲の温度制御であれば1液冷媒で行うことができる。   Therefore, in this refrigeration system, the above operation is repeated as necessary to cool the air-conditioned room in the evaporator 56 and the condenser 52 at a required temperature, for example, in the range of −50 ° C. to 50 ° C. Or it can heat. That is, if the temperature control is in the range of −50 ° C. to 50 ° C., it can be performed with one liquid refrigerant.

特開2001−235237号公報。Japanese Patent Application Laid-Open No. 2001-235237.

ところで、一般の冷凍システムにおけるR404A冷媒圧縮機51の最大吐出圧力は、通常、50℃相当で2.21MPaである。そして、前記被空調室内の温度を60℃とした場合での前記低圧受液器55内の圧力は2.78MPa、65℃とした場合での前記低圧受液器55内の圧力は3.11MPaである。したがって、前記被空調室内の温度が50℃以上となる温度制御を行う場合には、前記高圧受液器53側から前記低圧受液器55に冷媒液を送り込めない状態となる。そこで、従来、前記被空調室内の温度を50℃以上に調整する場合は、温水またはブラインシステムを併用して対応するようにしていた。このため、システム全体の構造が複雑となり、装置コストが嵩み、またランニングコストも嵩むという問題点があった。   Incidentally, the maximum discharge pressure of the R404A refrigerant compressor 51 in a general refrigeration system is normally 2.21 MPa corresponding to 50 ° C. The pressure in the low-pressure receiver 55 when the temperature in the air-conditioned room is 60 ° C. is 2.78 MPa, and the pressure in the low-pressure receiver 55 when the temperature is 65 ° C. is 3.11 MPa. It is. Accordingly, when temperature control is performed so that the temperature of the air-conditioned room becomes 50 ° C. or higher, the refrigerant liquid cannot be sent from the high pressure receiver 53 side to the low pressure receiver 55. Therefore, conventionally, when the temperature in the air-conditioned room is adjusted to 50 ° C. or higher, a hot water or brine system is used together. For this reason, there has been a problem that the structure of the entire system becomes complicated, the device cost increases, and the running cost also increases.

また、特許文献1で知られる環境試験装置では、システムが乾式直接膨張式のため、運転が不安定になる問題点があった。   Further, the environmental test apparatus known from Patent Document 1 has a problem that the operation becomes unstable because the system is a dry direct expansion system.

そこで、システム全体の構造を大きく変えることなく、1液媒体で低温(例えば−50℃)から高温(例えば65℃)に至るまで広い温度範囲に亘って制御することができるようにして装置コストの低減とランニングコストの低減を図るために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, the apparatus cost can be controlled in a single liquid medium over a wide temperature range from a low temperature (eg, −50 ° C.) to a high temperature (eg, 65 ° C.) without greatly changing the structure of the entire system. The technical problem which should be solved in order to aim at reduction and reduction of running cost arises, and this invention aims at solving this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、冷媒圧縮機、凝縮器、高圧受液器、膨張弁、低圧受液器、冷媒液ポンプ及び蒸発器が順次接続された循環冷媒回路を備え、冷凍若しくはヒートポンプサイクルを構成した冷凍システムにおいて、前記高圧受液器と前記低圧受液器の間に、前記高圧受液器側の圧力が前記低圧受液器内の圧力よりも低下した場合に、前記高圧受液器側の冷媒液を昇圧して前記低圧受液器側へ強制的に送り込むブースターポンプを設け、前記凝縮器または前記高圧受液器と前記低圧受液器の間に、調整弁を有し前記高圧受液器からの冷媒液を該凝縮器または該高圧受液器側に戻す冷媒リターン回路を設け、前記低圧受液器内の冷媒液の量を検出する液面センサーからの信号に基づき前記調整弁を制御することにより、前記低圧受液器内の液量に応じて、前記高圧受液器からの冷媒液を該凝縮器または該高圧受液器側に戻す冷凍システムを提供する。 The present invention has been proposed in order to achieve the above object, and the invention according to claim 1 includes a refrigerant compressor, a condenser, a high-pressure receiver, an expansion valve, a low-pressure receiver, a refrigerant pump, and evaporation. In a refrigeration system comprising a circulating refrigerant circuit to which a vessel is sequentially connected and constituting a refrigeration or heat pump cycle, the pressure on the high pressure receiver side is between the high pressure receiver and the low pressure receiver. A booster pump is provided for boosting the refrigerant liquid on the high-pressure receiver side and forcibly sending the refrigerant liquid to the low-pressure receiver side when the pressure in the condenser is lower than the pressure inside the condenser, and the condenser or the high-pressure receiver A refrigerant return circuit is provided between the low-pressure receiver and a regulating valve that returns the refrigerant liquid from the high-pressure receiver to the condenser or the high-pressure receiver. Based on the signal from the liquid level sensor that detects the amount of refrigerant liquid. Wherein by controlling the control valve, depending on the amount of liquid in the low pressure receiver, the refrigerant liquid from the high pressure receiver to provide a refrigeration system back to the condenser or the high pressure receiving liquid-side.

この構成によれば、被空調室内の調整温度が例えば50℃以上となって低圧受液器側の圧力が上昇し、高圧受液器側から低圧受液器側に冷媒液を送り込めないようになったら、ブースターポンプを駆動して高圧受液器側から低圧受液器側へ冷媒液を強制的に送り込むことができる。これにより、従来のシステムで使用していた、ブラインコイルを用いるブライン系統が不要になり、低圧受液器がクッションとなることで、一液媒体で従来のシステムでは行うことが出来なかった、例えば−50℃〜65℃以上の空気調和を、従来構造を大きく変えることなく簡単に安定して行うことができる。   According to this configuration, the regulated temperature in the air-conditioned room is, for example, 50 ° C. or higher, the pressure on the low-pressure receiver side increases, and refrigerant liquid cannot be sent from the high-pressure receiver side to the low-pressure receiver side. Then, the booster pump can be driven to forcibly feed the refrigerant liquid from the high-pressure receiver side to the low-pressure receiver side. This eliminates the need for the brine system using the brine coil, which was used in the conventional system, and the low-pressure receiver is a cushion, which could not be performed in the conventional system with a single liquid medium. Air conditioning at −50 ° C. to 65 ° C. or higher can be easily and stably performed without greatly changing the conventional structure.

さらに、前記低圧受液器内の冷媒液の量を検出する液面センサーからの信号に基づき、冷媒リターン回路の調整弁を制御することにより、低圧受液器内の冷媒液量が所定量以上となった場合に、高圧受液器からブースターポンプで送り出されて来る冷媒液を冷媒リターン回路を通して高圧受液器内へ戻し、低圧受液器内の冷媒液が所定以上の量になるのを防ぐ。 Further , by controlling the adjustment valve of the refrigerant return circuit based on a signal from a liquid level sensor that detects the amount of refrigerant liquid in the low-pressure receiver, the amount of refrigerant liquid in the low-pressure receiver is greater than or equal to a predetermined amount. In this case, the refrigerant liquid sent out from the high pressure receiver by the booster pump is returned to the high pressure receiver through the refrigerant return circuit, and the refrigerant liquid in the low pressure receiver prevent.

請求項1記載の発明は、低圧受液器をクッションとすることで安定した運転となり、従来のシステムで使用していた、ブラインコイルを用いるブライン系統を使用することなく、1液媒体で例えば−50〜65℃の範囲の被空調室内の温度調整を行うことが可能になるので、設備の簡略化が図れる。また、ブラインコイルが不要となり、送風機動力が低減する。さらに、冷媒方式とブライン方式の切替が不要になる。これにより、イニシャルコスト、ランニングコスト、メンテナンスコスト等の低減を図ることができる。   The invention according to claim 1 makes stable operation by using a low-pressure liquid receiver as a cushion, and without using a brine system using a brine coil, which is used in a conventional system, for example, in a one-liquid medium. Since it becomes possible to adjust the temperature in the air-conditioned room in the range of 50 to 65 ° C., the facility can be simplified. Moreover, a brine coil becomes unnecessary and fan power is reduced. Furthermore, switching between the refrigerant method and the brine method is not necessary. Thereby, reduction of initial cost, running cost, maintenance cost, etc. can be aimed at.

請求項2記載の発明は、低圧受液器内の冷媒液量が所定量以上となったときに、高圧受液器からブースターポンプで送り出されて来る冷媒液を、冷媒リターン回路を通して高圧受液器内に戻し、低圧受液器内の冷媒液の量が所定以上になるのを防ぐことができるので、請求項1記載の発明の効果に加えて、装置を安全に運転することができる。   According to the second aspect of the present invention, when the amount of the refrigerant liquid in the low-pressure receiver becomes a predetermined amount or more, the refrigerant liquid sent from the high-pressure receiver by the booster pump is passed through the refrigerant return circuit. Since the amount of the refrigerant liquid in the low-pressure receiver can be prevented from exceeding a predetermined level, the apparatus can be operated safely in addition to the effect of the first aspect of the invention.

本発明に係る冷凍システムの実施例を示す構成図。The block diagram which shows the Example of the refrigeration system which concerns on this invention. 従来の冷凍システムの一例を示す構成図。The block diagram which shows an example of the conventional freezing system.

本発明は構造を大きく変えることなく、1液媒体で低温(例えば−50℃)から高温(例えば65℃)に至るまで広い温度範囲に亘って制御することができるようにして装置コストの低減とランニングコストの低減を図るという目的を達成するために、冷媒圧縮機、凝縮器、高圧受液器、膨張弁、低圧受液器、冷媒液ポンプ及び蒸発器が順次接続された循環冷媒回路を備え、冷凍若しくはヒートポンプサイクルを構成した冷凍システムにおいて、前記高圧受液器と前記低圧受液器の間に、前記高圧受液器側の圧力が前記低圧受液器内の圧力よりも低下した場合に、前記高圧受液器側の冷媒液を昇圧して前記低圧受液器側へ強制的に送り込むブースターポンプを設け、前記凝縮器または前記高圧受液器と前記低圧受液器の間に、調整弁を有し前記高圧受液器からの冷媒液を該凝縮器または該高圧受液器側に戻す冷媒リターン回路を設け、前記低圧受液器内の冷媒液の量を検出する液面センサーからの信号に基づき前記調整弁を制御することにより、前記低圧受液器内の液量に応じて、前記高圧受液器からの冷媒液を該凝縮器または該高圧受液器側に戻すことにより実現した。 The present invention can control the apparatus cost over a wide temperature range from a low temperature (for example, −50 ° C.) to a high temperature (for example, 65 ° C.) with one liquid medium without greatly changing the structure. In order to achieve the purpose of reducing running costs, a refrigerant compressor, a condenser, a high-pressure receiver, an expansion valve, a low-pressure receiver, a refrigerant liquid pump, and an evaporator are sequentially connected. In the refrigeration system constituting the refrigeration or heat pump cycle, when the pressure on the high pressure receiver side is lower than the pressure in the low pressure receiver between the high pressure receiver and the low pressure receiver A booster pump that boosts the refrigerant liquid on the high-pressure receiver side and forcibly sends it to the low-pressure receiver side , and adjusts between the condenser or the high-pressure receiver and the low-pressure receiver. Said high pressure having a valve A refrigerant return circuit that returns the refrigerant liquid from the liquid receiver to the condenser or the high-pressure receiver side is provided, and the adjustment is performed based on a signal from a liquid level sensor that detects the amount of the refrigerant liquid in the low-pressure receiver. By controlling the valve, the refrigerant liquid from the high-pressure receiver is returned to the condenser or the high-pressure receiver side according to the amount of liquid in the low-pressure receiver .

以下、本発明の実施形態による冷凍システムを図面を参照しながら好適な実施例について詳細に説明する。   Hereinafter, a preferred embodiment of a refrigeration system according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る冷凍システムの実施例を示す構成図である。本実施例では、環境試験装置における被空調室内を空気調和する冷凍システムを一例として説明するが、本発明はこれに限定されるものではない。   FIG. 1 is a configuration diagram showing an embodiment of a refrigeration system according to the present invention. In this embodiment, a refrigeration system for air conditioning the air-conditioned room in the environmental test apparatus will be described as an example, but the present invention is not limited to this.

同図において、該冷凍システム10は、冷媒圧縮機11、凝縮器12、高圧受液器13、膨張弁14、低圧受液器15、蒸発器16及びブースターポンプ17等により構成された循環冷媒回路を有している。   In the figure, the refrigeration system 10 includes a circulating refrigerant circuit including a refrigerant compressor 11, a condenser 12, a high pressure receiver 13, an expansion valve 14, a low pressure receiver 15, an evaporator 16, a booster pump 17, and the like. have.

さらに詳述すると、前記蒸発器16と前記低圧受液器15を接続している冷媒配管18aには、該低圧受液器15内の冷媒液を該蒸発器16内の冷却コイル16aに分流器(ディストリビュータ)19を介して供給する冷媒液ポンプ20が設けられ、前記低圧受液器15と前記冷媒圧縮機11を接続している冷媒配管18cには、調整弁21が設けられている。   More specifically, in the refrigerant pipe 18a connecting the evaporator 16 and the low pressure receiver 15, the refrigerant liquid in the low pressure receiver 15 is shunted to the cooling coil 16a in the evaporator 16. (Distributor) A refrigerant liquid pump 20 that is supplied via a distributor 19 is provided, and an adjustment valve 21 is provided in the refrigerant pipe 18 c that connects the low-pressure receiver 15 and the refrigerant compressor 11.

前記高圧受液器13から冷媒液を供給する冷媒配管18fは、途中で冷媒配管18gと冷媒配管18hに分岐され、該冷媒配管18gは逆止弁22をブースターポンプ17の出口に接続されている。一方、冷媒配管18hは、逆止弁23を設けて前記ブースターポンプ17の入口に接続されている。また、該ブースターポンプ17の出口側には、途中に調整弁24、逆止弁31を設けて前記凝縮器12の上部に接続されている冷媒配管18iと、途中に止弁26を設けて前記高圧受液器13の上部に接続されている冷媒配管18jと、冷媒配管18gを介して前記膨張弁14と接続されている冷媒配管18kの、それぞれ各一端部が連結されている。   A refrigerant pipe 18f for supplying a refrigerant liquid from the high-pressure receiver 13 is branched into a refrigerant pipe 18g and a refrigerant pipe 18h, and the refrigerant pipe 18g connects the check valve 22 to the outlet of the booster pump 17. . On the other hand, the refrigerant pipe 18 h is provided with a check valve 23 and connected to the inlet of the booster pump 17. Further, on the outlet side of the booster pump 17, a regulating valve 24 and a check valve 31 are provided in the middle and a refrigerant pipe 18i connected to the upper portion of the condenser 12, and a stop valve 26 is provided in the middle. One end of each of a refrigerant pipe 18j connected to the upper portion of the high-pressure receiver 13 and a refrigerant pipe 18k connected to the expansion valve 14 via a refrigerant pipe 18g is connected.

さらに、前記冷媒配管18gには、前記膨張弁14と前記逆止弁22間の圧力を検出する圧力センサー25が設けられ、前記低圧受液器15と前記高圧受液器13には該低圧受液器15内と該記高圧受液器13内の冷媒液の量をそれぞれ検出する液面センサー27,28が設けられている。
液面センサー28からの信号に基づき、冷媒配管(リターン配管) 18iに設けた調整弁24を制御することにより、低圧受液器15内の冷媒液量が所定量以上となった場合に、高圧受液器13からブースターポンプ17で送り出されて来る冷媒液を冷媒配管18iを通して高圧受液器13内へ戻し、低圧受液器15内の冷媒液が所定以上の量になるのを防ぐ。また、低圧受液器15と冷媒液ポンプ20の間に圧力センサー30が設けられている。そして、図示しない制御部が圧力センサー25と圧力センサー30で検出される冷媒圧力に応じて、前記ブースターポンプ17の駆動と停止の制御を行うようにしている。
Further, the refrigerant pipe 18g is provided with a pressure sensor 25 for detecting the pressure between the expansion valve 14 and the check valve 22, and the low pressure receiver 15 and the high pressure receiver 13 are provided with the low pressure receiver. Liquid level sensors 27 and 28 for detecting the amount of refrigerant liquid in the liquid container 15 and the high pressure liquid receiver 13 are provided.
Based on the signal from the liquid level sensor 28, the control valve 24 provided in the refrigerant pipe (return pipe) 18i is controlled so that when the refrigerant liquid amount in the low-pressure receiver 15 exceeds a predetermined level, the high pressure The refrigerant liquid sent out from the liquid receiver 13 by the booster pump 17 is returned into the high-pressure liquid receiver 13 through the refrigerant pipe 18i to prevent the refrigerant liquid in the low-pressure liquid receiver 15 from reaching a predetermined amount or more. A pressure sensor 30 is provided between the low pressure receiver 15 and the refrigerant liquid pump 20. A control unit (not shown) controls driving and stopping of the booster pump 17 according to the refrigerant pressure detected by the pressure sensor 25 and the pressure sensor 30.

このように構成された冷凍システムの動作を次に説明する。この冷凍システムでは、冷媒配管18g及び低圧受液器15内の圧力を圧力センサー25と30が常に検出している。そして、該冷媒配管18g内の圧力が前記低圧受液器15内の圧力より大きい場合は、ブースターポンプ17を停止状態に保持する。この場合、前記高圧受液器13から前記冷媒配管18fに排出された冷媒液は、前記逆止弁22を通って前記膨張弁14に送られ、該膨張弁14で減圧気化させて前記低圧受液器15内に導入される。   Next, the operation of the refrigeration system configured as described above will be described. In this refrigeration system, the pressure sensors 25 and 30 always detect the pressure in the refrigerant pipe 18g and the low-pressure receiver 15. When the pressure in the refrigerant pipe 18g is higher than the pressure in the low-pressure receiver 15, the booster pump 17 is held in a stopped state. In this case, the refrigerant liquid discharged from the high-pressure liquid receiver 13 to the refrigerant pipe 18 f is sent to the expansion valve 14 through the check valve 22, and is decompressed and vaporized by the expansion valve 14, thereby receiving the low-pressure receiver. It is introduced into the liquid vessel 15.

また、前記低圧受液器15内の気化冷媒は、前記調整弁21を介して前記圧縮機11内に吸入され、かつ、圧縮される。そして、その圧縮ガスは、冷媒配管18dを通って前記凝縮器12に送られ、該凝縮器12内で冷却水29と熱交換が行われて凝縮液化し、ガス状態から液状態に変化をする。また、前記凝縮器12内で液化された冷媒液は、冷媒配管18eを介して前記高圧受液器13に導入される。   Further, the vaporized refrigerant in the low-pressure receiver 15 is sucked into the compressor 11 via the regulating valve 21 and compressed. Then, the compressed gas is sent to the condenser 12 through the refrigerant pipe 18d, and heat is exchanged with the cooling water 29 in the condenser 12 to be condensed and liquefied to change from a gas state to a liquid state. . The refrigerant liquid liquefied in the condenser 12 is introduced into the high-pressure liquid receiver 13 through the refrigerant pipe 18e.

一方、前記蒸発器16は、冷媒液ポンプ20が駆動されると、前記低圧受液器15から冷媒配管18aを介して低圧の冷媒液が送られて来て、この冷媒液が分流器19を介して内部の冷却コイル16aに供給される。そして、前記低圧受液器15から送られて来た冷媒液は、前記蒸発器16内の冷却コイル16aを通過するときに蒸発され、その気化熱で前記蒸発器16を通って被空調室内に流される空気を冷却する。また、該蒸発器16内で液状態からガス状態に変化をして冷却に寄与した冷媒ガスは、冷媒配管18bを介して前記低圧受液器15内に上部から導入される。   On the other hand, when the refrigerant liquid pump 20 is driven, the evaporator 16 is supplied with a low-pressure refrigerant liquid from the low-pressure receiver 15 via the refrigerant pipe 18a. To the internal cooling coil 16a. The refrigerant liquid sent from the low-pressure receiver 15 is evaporated when passing through the cooling coil 16a in the evaporator 16, and the heat of vaporization passes through the evaporator 16 into the air-conditioned room. Cool the flowing air. The refrigerant gas that has changed from the liquid state to the gas state in the evaporator 16 and contributed to cooling is introduced into the low-pressure liquid receiver 15 from above through the refrigerant pipe 18b.

ところで、この冷凍システムでは、低圧受液器15において50℃以上に昇温させようとした場合、前記高圧受液器13側の圧力が前記低圧受液器15内の圧力よりも低下する場合があり、この場合では該高圧受液器13側から該低圧受液器15側に冷却液媒体が送り込めなくなることがある。そこで、この冷凍システムでは、圧力センサー30で検出された圧力が例えば圧力2.21MPaよりも上昇した場合、前記ブースターポンプ17を駆動して、前記ブースターポンプ17から吐出される冷媒液の圧力を、圧力2.21MPaよりも高い例えば65℃に相当する圧力3.2MPaまで高め、該高圧受液器13側から該低圧受液器15側に冷却液媒体を強制的に送り込むようにする。   By the way, in this refrigeration system, when the temperature is increased to 50 ° C. or higher in the low-pressure receiver 15, the pressure on the high-pressure receiver 13 side may be lower than the pressure in the low-pressure receiver 15. In this case, the coolant medium may not be sent from the high-pressure receiver 13 side to the low-pressure receiver 15 side. Therefore, in this refrigeration system, when the pressure detected by the pressure sensor 30 rises above, for example, the pressure 2.21 MPa, the booster pump 17 is driven, and the pressure of the refrigerant liquid discharged from the booster pump 17 is The pressure is increased to a pressure higher than 2.21 MPa, for example, a pressure of 3.2 MPa corresponding to 65 ° C., and the coolant medium is forcibly fed from the high-pressure receiver 13 side to the low-pressure receiver 15 side.

したがって、この冷凍システムでは、必要に応じて上記動作を繰り返すことにより、前記蒸発器16で被空調室内を所要の温度(例えば−50℃〜65℃)に冷却あるいは加温することができる。これにより、従来のシステムで使用していた、ブラインコイルを用いるブライン系統等を必要とすることなく、従来システムでは行うことが出来なかった−50℃〜65℃の範囲の温度制御を1液冷媒で安定して行うことが可能になる。   Therefore, in this refrigeration system, by repeating the above operation as necessary, the air-conditioned room can be cooled or heated to a required temperature (for example, −50 ° C. to 65 ° C.) by the evaporator 16. This makes it possible to control the temperature in the range of −50 ° C. to 65 ° C., which was not possible with the conventional system, without requiring the brine system using the brine coil, etc., which has been used in the conventional system. Can be performed stably.

なお、本発明は、本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be variously modified without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

以上説明したように、本発明は環境試験装置における試験室等の被空調室の空気調和に限ることなく、広く一般の冷凍システムにも応用できる。   As described above, the present invention is not limited to air conditioning in an air-conditioned room such as a test room in an environmental test apparatus, and can be widely applied to general refrigeration systems.

10 冷凍システム
11 冷媒圧縮機
12 凝縮器
13 高圧受液器
14 膨張弁
15 低圧受液器
16 蒸発器
16a 冷却コイル
17 ブースターポンプ
18i 冷媒配管(リターン配管)
19 分流器(ディストリビュータ)
20 冷媒液ポンプ
22 逆止弁
23 逆止弁
24 調整弁
25 圧力計
26 止弁
29 冷却水
30 圧力センサー
31 逆止弁
DESCRIPTION OF SYMBOLS 10 Refrigeration system 11 Refrigerant compressor 12 Condenser 13 High pressure receiver 14 Expansion valve 15 Low pressure receiver 16 Evaporator 16a Cooling coil 17 Booster pump 18i Refrigerant piping (return piping)
19 Shunt (distributor)
20 Refrigerant liquid pump 22 Check valve 23 Check valve 24 Adjustment valve 25 Pressure gauge 26 Stop valve 29 Cooling water 30 Pressure sensor 31 Check valve

Claims (1)

冷媒圧縮機、凝縮器、高圧受液器、膨張弁、低圧受液器、冷媒液ポンプ及び蒸発器が順次接続された循環冷媒回路を備え、冷凍若しくはヒートポンプサイクルを構成した冷凍システムにおいて、
前記高圧受液器と前記低圧受液器の間に、前記高圧受液器側の圧力が前記低圧受液器内の圧力よりも低下した場合に、前記高圧受液器側の冷媒液を昇圧して前記低圧受液器側へ強制的に送り込むブースターポンプを設け
前記凝縮器または前記高圧受液器と前記低圧受液器の間に、調整弁を有し前記高圧受液器からの冷媒液を該凝縮器または該高圧受液器側に戻す冷媒リターン回路を設け、
前記低圧受液器内の冷媒液の量を検出する液面センサーからの信号に基づき前記調整弁を制御することにより、前記低圧受液器内の液量に応じて、前記高圧受液器からの冷媒液を該凝縮器または該高圧受液器側に戻すことを特徴とする冷凍システム。
In a refrigeration system comprising a refrigerant circuit, a refrigerant compressor, a condenser, a high-pressure receiver, an expansion valve, a low-pressure receiver, a refrigerant pump and an evaporator connected in sequence, and constituting a refrigeration or heat pump cycle,
When the pressure on the high-pressure receiver is lower than the pressure in the low-pressure receiver between the high-pressure receiver and the low-pressure receiver, the refrigerant liquid on the high-pressure receiver is boosted And a booster pump that forcibly feeds to the low-pressure receiver side ,
A refrigerant return circuit having a regulating valve between the condenser or the high-pressure receiver and the low-pressure receiver to return the refrigerant liquid from the high-pressure receiver to the condenser or the high-pressure receiver side; Provided,
By controlling the adjustment valve based on a signal from a liquid level sensor that detects the amount of refrigerant liquid in the low-pressure receiver, the high-pressure receiver receives the liquid according to the amount of liquid in the low-pressure receiver. The refrigerant liquid is returned to the condenser or the high-pressure receiver side .
JP2011005301A 2011-01-13 2011-01-13 Refrigeration system Active JP5445472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005301A JP5445472B2 (en) 2011-01-13 2011-01-13 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005301A JP5445472B2 (en) 2011-01-13 2011-01-13 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2012145296A JP2012145296A (en) 2012-08-02
JP5445472B2 true JP5445472B2 (en) 2014-03-19

Family

ID=46789027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005301A Active JP5445472B2 (en) 2011-01-13 2011-01-13 Refrigeration system

Country Status (1)

Country Link
JP (1) JP5445472B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553422B1 (en) * 2018-04-11 2023-11-08 Rolls-Royce North American Technologies, Inc. Mechanically pumped system for direct control of two-phase isothermal evaporation
US11022360B2 (en) 2019-04-10 2021-06-01 Rolls-Royce North American Technologies Inc. Method for reducing condenser size and power on a heat rejection system
US10921042B2 (en) 2019-04-10 2021-02-16 Rolls-Royce North American Technologies Inc. Method for reducing condenser size and power on a heat rejection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142658U (en) * 1982-10-25 1983-09-26 株式会社 東洋製作所 Refrigeration equipment
JPS61295467A (en) * 1985-06-21 1986-12-26 株式会社 パテイネ商会 Refrigerator
JP4084915B2 (en) * 2000-02-18 2008-04-30 株式会社東洋製作所 Refrigeration system
JP4279002B2 (en) * 2003-02-13 2009-06-17 関西電力株式会社 Liquid pump vapor compression refrigeration equipment

Also Published As

Publication number Publication date
JP2012145296A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
CN104204697B (en) Method for detection of loss of refrigerant
JP5100416B2 (en) Reheat dehumidifier and air conditioner
CA2868441C (en) A multi-evaporator refrigeration circuit
JP6657613B2 (en) Air conditioner
US8683817B2 (en) Low ambient operating procedure for cooling systems with high efficiency condensers
US10197307B2 (en) Air conditioner with oil level control for both gas and electric heat pump cycles
KR101429070B1 (en) Freezing cycle of freezing device
US20100180629A1 (en) Turbo chiller, heat source system, and method for controlling the same
KR20080096751A (en) Flow control of refrigerant
JP5707621B2 (en) Constant temperature liquid circulation device and operation method thereof
JP2017044454A (en) Refrigeration cycle device and control method for the same
JP5673738B2 (en) Air conditioner
WO2013004233A1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
JP5445472B2 (en) Refrigeration system
EP2824398B1 (en) Method of controlling a heat pump hot water supply system
US20190299132A1 (en) A method for controlling a vapour compression system during gas bypass valve malfunction
CN102725596A (en) Heat pump system
WO2010047420A1 (en) Gas injection refrigeration system
US11274868B2 (en) Expansion unit for installation in a refrigerant circuit
WO2022163793A1 (en) Refrigeration device, control method for refrigeration device, and temperature control system
JP4786599B2 (en) Cooling system
KR101829909B1 (en) Control system for a semiconductor wafer chuck
JP4928357B2 (en) Cooling system
EP2357431A1 (en) Variable capacity refrigeration system
JPH11118227A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5445472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250