JP5442237B2 - Separation membrane module - Google Patents

Separation membrane module Download PDF

Info

Publication number
JP5442237B2
JP5442237B2 JP2008294289A JP2008294289A JP5442237B2 JP 5442237 B2 JP5442237 B2 JP 5442237B2 JP 2008294289 A JP2008294289 A JP 2008294289A JP 2008294289 A JP2008294289 A JP 2008294289A JP 5442237 B2 JP5442237 B2 JP 5442237B2
Authority
JP
Japan
Prior art keywords
specific component
concentration
separation membrane
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008294289A
Other languages
Japanese (ja)
Other versions
JP2010119933A (en
Inventor
正孝 鈴木
貴士 末藤
昭夫 村石
勝彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2008294289A priority Critical patent/JP5442237B2/en
Priority to US12/588,781 priority patent/US8388743B2/en
Publication of JP2010119933A publication Critical patent/JP2010119933A/en
Priority to US13/743,496 priority patent/US8900350B2/en
Application granted granted Critical
Publication of JP5442237B2 publication Critical patent/JP5442237B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特定成分を含有するガスを、高濃度で特定成分を含有する高濃度ガスと低濃度で特定成分を含有する低濃度ガスとに分離する分離膜を備える分離膜モジュールに関する。   The present invention relates to a separation membrane module including a separation membrane that separates a gas containing a specific component into a high concentration gas containing the specific component at a high concentration and a low concentration gas containing the specific component at a low concentration.

従来から、高分子膜に対する溶解拡散係数等の相違を利用して、気体混合物から特定成分を分離濃縮できる分離膜が各種産業分野で適用されている。例えば、空気から酸素と窒素を分離、プラットフォーミング法のオフガスからの水素の分離回収、アンモニア合成時の水素の分離回収、火力発電やゴミ焼却の排ガスからの二酸化炭素の回収及び窒素酸化物や硫黄酸化物の除去、油田のオフガスからの二酸化炭素の分離回収、メタンを主成分とする天然ガスからの硫化水素や二酸化炭素などの酸性ガスの除去やヘリウムの分離回収、精密機械用やオゾン発生機用の空気除湿、有機溶剤からの脱水、及びガソリン燃料から発生した蒸発燃料含有ガスからの蒸発燃料の分離回収など、多くの分野に適用される。分離膜の形態の1としては、特許文献1〜3のような中空糸膜がある。これらは、分離対象こそ異なるが、多孔質な中空糸状支持体の表面に、非多孔質な高分子膜からなる機能層を積層した基本構造となっている。これをモジュール化する場合、給気ポートと排気ポートとを有するガス透過性の無い中空ケース内に、中空糸膜を内設することになる。   Conventionally, separation membranes that can separate and concentrate a specific component from a gas mixture by utilizing a difference in dissolution diffusion coefficient with respect to a polymer membrane have been applied in various industrial fields. For example, separation of oxygen and nitrogen from air, separation and recovery of hydrogen from off-gas of the platform method, separation and recovery of hydrogen during ammonia synthesis, recovery of carbon dioxide from exhaust gas from thermal power generation and garbage incineration, and nitrogen oxides and sulfur Removal of oxides, separation and recovery of carbon dioxide from off-gas of oil fields, removal of acidic gases such as hydrogen sulfide and carbon dioxide from natural gas mainly composed of methane, separation and recovery of helium, precision machinery and ozone generator This is applied to many fields such as air dehumidification, dehydration from organic solvents, and separation / recovery of evaporated fuel from evaporated fuel-containing gas generated from gasoline fuel. As one of the forms of the separation membrane, there are hollow fiber membranes as described in Patent Documents 1 to 3. These differ in the object of separation, but have a basic structure in which a functional layer made of a non-porous polymer membrane is laminated on the surface of a porous hollow fiber-like support. When this is modularized, a hollow fiber membrane is provided in a hollow case having an air supply port and an exhaust port and having no gas permeability.

また、ナフサ軽質留分などの、石油由来の蒸発成分を3成分以上含有する混合ガスから、イソプレンガスなどの特定成分とその他の成分とを分離回収するに際して、膜に対する特定成分の透過係数が高い特定成分濃縮膜と、膜に対する特性成分の透過係数が低い特定成分希釈膜との、2種類の分離膜を直列に設けて多段分離するガス分離方法が、特許文献4に開示されている。   In addition, when a specific component such as isoprene gas and other components are separated and recovered from a mixed gas containing three or more petroleum-derived evaporating components such as naphtha light fraction, the permeability coefficient of the specific component to the membrane is high. Patent Document 4 discloses a gas separation method in which two types of separation membranes, that is, a specific component concentration membrane and a specific component dilution membrane having a low permeation coefficient of a characteristic component with respect to the membrane are provided in series to perform multistage separation.

特開昭63−315104号公報JP-A-63-315104 特開平9−66224号公報JP-A-9-66224 特開2008−173573号公報JP 2008-173573 A 特開平9−66217号公報JP-A-9-66217

特許文献1〜3の中空糸膜は、特定成分のみを透過させることで濃縮分離することを目的としており、中空糸(支持体)の表面には1種類の機能層が積層されているのみである。すなわち、1つの中空糸膜には1つの成分に対する分離機能しか有していない。したがって、複数の成分を含有する混合ガスから各成分を分離回収するには、それぞれ分離対象が異なる複数の分離膜を用意してこれらを順次透過させるしかない。特許文献4でも、複数の特定成分分離膜モジュール若しくは特定成分分離膜モジュールと特定成分分離膜モジュールとを組み合わせてこれらを連通管を介して直列に配し、蒸発燃料含有ガスないし混合ガスを順次複数の分離膜モジュールへ供給することで、複数段階で分離している。   The hollow fiber membranes of Patent Documents 1 to 3 are intended to concentrate and separate by allowing only specific components to pass through, and only one type of functional layer is laminated on the surface of the hollow fiber (support). is there. That is, one hollow fiber membrane has only a separation function for one component. Therefore, in order to separate and recover each component from a mixed gas containing a plurality of components, there is no choice but to prepare a plurality of separation membranes with different separation targets and sequentially permeate them. Also in Patent Document 4, a plurality of specific component separation membrane modules or a combination of a specific component separation membrane module and a specific component separation membrane module are arranged in series via a communication pipe, and a plurality of evaporated fuel-containing gas or mixed gas are sequentially provided. By supplying to the separation membrane module, separation is performed in a plurality of stages.

しかし、これでは装置が大型化する、装置の組み付け工数や部品点数が多い、装置の軽量化が困難、配管継手部分が多く当該継手部分からのガス漏れの可能性が高くなる、及びコストが嵩むなど、種々の問題を有する。   However, this increases the size of the device, increases the number of assembling steps and the number of parts of the device, makes it difficult to reduce the weight of the device, increases the number of pipe joint portions, increases the possibility of gas leakage from the joint portions, and increases the cost. Etc. have various problems.

そこで、本発明は上記課題を解決するものであって、特定成分含有ガスを複数段階で分離濃縮して特定成分を回収する場合でも、大型化することなどがない分離膜モジュールを提供することを目的とする。   Therefore, the present invention solves the above-described problem, and provides a separation membrane module that does not increase in size even when a specific component-containing gas is separated and concentrated in multiple stages to recover a specific component Objective.

本発明は、給気ポートと排気ポートとを有するガス透過性の無い中空ケース内に、特定成分含有ガスを高濃度で特定成分を含有する高濃度ガスと低濃度で特定成分を含有する低濃度ガスとに分離する分離膜が配設された分離膜モジュールであって、前記中空ケース内には、前記分離膜を透過することで特定成分を高濃度にする特定成分濃縮室と、前記分離膜を透過しないことで特定成分を高濃度にする特定成分希釈室とが直列に設けられており、前記特定成分濃縮室と特定成分希釈室とは、上流側(給気ポート側)の室において前記分離膜を透過したガス又は前記分離膜を透過しなかったガスのうち、いずれか一方のみが流動可能に連通されており、前記排気ポートは、前記特定成分濃縮室及び特定成分希釈室において分離精製されたガスがそれぞれ別個に排気されるように、分離精製されるガスの種類に応じた数だけ設けられていることを特徴とする。   The present invention provides a high concentration gas containing a specific component at a high concentration and a low concentration containing a specific component at a low concentration in a hollow case without gas permeability having an air supply port and an exhaust port. A separation membrane module in which a separation membrane that separates into gas is disposed, and a specific component concentration chamber that allows a specific component to have a high concentration by passing through the separation membrane in the hollow case, and the separation membrane A specific component dilution chamber that does not permeate the specific component so that the specific component has a high concentration is provided in series, and the specific component concentration chamber and the specific component dilution chamber are the upstream side (supply port side) of the chamber. Only one of the gas that has permeated through the separation membrane or the gas that has not permeated through the separation membrane is in fluid communication, and the exhaust port is separated and purified in the specific component concentration chamber and the specific component dilution chamber. Gas As it will be evacuated to respectively separate, and being provided by the number corresponding to the type of gas to be separated and purified.

上記分離膜モジュールの形態として、前記特定成分濃縮室と特定成分希釈室とを区画する区画壁を前記分離膜と交差する方向に設け、前記分離膜としては、多孔質な中空糸状支持体の内面又は外面に、非多孔質な高分子膜からなる機能層を積層した中空糸膜とする。そのうえで、1本の前記支持体に対して、前記特定成分濃縮室内では膜を透過することで特定成分を高濃度にする濃縮機能層を積層し、前記特定成分希釈室内では膜を透過しないことで特定成分を高濃度にする希釈機能層を積層し、前記特定成分濃縮室と特定成分希釈室とは、前記中空糸膜の空洞を通して連通させることができる。   As a form of the separation membrane module, a partition wall that partitions the specific component concentration chamber and the specific component dilution chamber is provided in a direction intersecting the separation membrane, and the separation membrane includes an inner surface of a porous hollow fiber-like support. Or it is set as the hollow fiber membrane which laminated | stacked the functional layer which consists of a non-porous polymer membrane on the outer surface. In addition, a concentration functional layer that increases the concentration of the specific component by passing through the membrane in the specific component concentration chamber is stacked on one support, and the membrane does not pass through the specific component dilution chamber. A dilution functional layer for increasing the concentration of the specific component is laminated, and the specific component concentration chamber and the specific component dilution chamber can be communicated with each other through a cavity of the hollow fiber membrane.

本発明の分離膜モジュールによれば、1つの中空ケース内に特定成分濃縮室と特定成分希釈室とを直列に設けて、複数の分離膜が1つのモジュールに一体化されている。これによれば、特定成分含有ガスを複数段階で分離して回収する場合でも、1つの分離膜モジュールを用いればよいので、装置の小型化、装置の組み付け工数や部品点数の削減、装置の軽量化、コスト削減などが可能であり、さらに配管継手部分が少なくなるので継手部分からのガス漏れの可能性も低くなる。特定成分濃縮室と特定成分希釈室とが、上流側の室において分離膜を透過したガス又は透過しなかったガスのうちいずれか一方のみが流動可能に連通されていれば、分離後のガスが混合されることはなく、複数の分離膜を1つのモジュールに一体化しても、確実な複数段階の分離が可能である。排気ポートが、分離精製されたガスがそれぞれ別個に排気されるように、分離精製されるガスの種類に応じた数だけ設けられていれば、分離後の各ガスを所望される供給先へ確実に供給させることが出来るので、当該分離膜モジュールを備えた処理装置の設計自由度が高くなる。   According to the separation membrane module of the present invention, the specific component concentration chamber and the specific component dilution chamber are provided in series in one hollow case, and a plurality of separation membranes are integrated into one module. According to this, even when the specific component-containing gas is separated and recovered in a plurality of stages, it is sufficient to use one separation membrane module. In addition, the number of pipe joints is reduced, and the possibility of gas leakage from the joints is also reduced. If the specific component concentrating chamber and the specific component diluting chamber are in fluid communication with only one of the gas that has permeated the separation membrane or the gas that has not permeated in the upstream chamber, the gas after separation will be Even if a plurality of separation membranes are integrated into one module without being mixed, reliable multi-stage separation is possible. If the exhaust ports are provided in a number corresponding to the type of gas to be separated and purified so that the separated and purified gas is exhausted separately, it is ensured that each separated gas is supplied to a desired supply destination. Therefore, the degree of freedom in designing the processing apparatus including the separation membrane module is increased.

また、分離膜を中空糸膜として、特定成分濃縮室と特定成分希釈室とを区画する区画壁を分離膜と交差する方向に設けたうえで、特定成分濃縮室と特定成分希釈室とが、中空糸膜の空洞を通して連通される構成としても、機能の異なる複数の分離膜を、それぞれの分離膜の機能を損なうことなく1つのモジュールとして確実に一体化できる。このとき、1本の支持体(中空糸)に対して、濃縮機能層と希釈機能層とを場所に応じて積層していれば、例えば中空ケースを内外二重構造にする場合などと比べてさらに小型化が可能となる。   In addition, the separation membrane is a hollow fiber membrane, and a partition wall that partitions the specific component concentration chamber and the specific component dilution chamber is provided in a direction intersecting the separation membrane. Even in the configuration in which the hollow fiber membranes communicate with each other, a plurality of separation membranes having different functions can be reliably integrated as one module without impairing the function of each separation membrane. At this time, if the concentration functional layer and the dilution functional layer are laminated on one support (hollow fiber) depending on the location, for example, compared to the case where the hollow case has an inner / outer double structure, etc. Further downsizing is possible.

以下、適宜図面を参照しながら本発明の実施の形態について説明するが、これに限られず本発明の要旨を逸脱しない範囲で種々の変更が可能である。本発明の分離膜モジュールは、空気から酸素と窒素を分離、プラットフォーミング法のオフガスからの水素の分離回収、アンモニア合成時の水素の分離回収、火力発電やゴミ焼却の排ガスからの二酸化炭素の回収及び窒素酸化物や硫黄酸化物の除去、油田のオフガスからの二酸化炭素の分離回収、メタンを主成分とする天然ガスからの硫化水素や二酸化炭素などの酸性ガスの除去やヘリウムの分離回収、精密機械用やオゾン発生機用の空気除湿、有機溶剤からの脱水、及びガソリン燃料から発生した蒸発燃料含有ガスからの蒸発燃料の分離回収などのガス処理装置に適用できる。以下には、蒸発燃料含有ガスから蒸発燃料を分離回収する蒸発燃料処理装置へ適用した場合を例に挙げて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited thereto, and various modifications can be made without departing from the scope of the present invention. The separation membrane module of the present invention separates oxygen and nitrogen from air, separates and recovers hydrogen from off-gas of the platform method, separates and recovers hydrogen during ammonia synthesis, and recovers carbon dioxide from exhaust gas from thermal power generation and garbage incineration. And removal of nitrogen oxides and sulfur oxides, separation and recovery of carbon dioxide from off-gas of oil fields, removal of acidic gases such as hydrogen sulfide and carbon dioxide from natural gas mainly composed of methane, and separation and recovery of helium, precision The present invention can be applied to gas processing devices such as air dehumidification for machines and ozone generators, dehydration from organic solvents, and separation and recovery of evaporated fuel from evaporated fuel-containing gas generated from gasoline fuel. Hereinafter, a case where the present invention is applied to an evaporative fuel processing apparatus that separates and recovers evaporative fuel from an evaporative fuel containing gas will be described as an example.

当該蒸発燃料処理装置は、キャニスタに吸着された蒸発燃料(ベーパ)を、エンジン駆動時の吸気管負圧を利用して脱離(パージ)させる方法とは異なり、ポンプによってパージさせて分離膜に加圧供給し、当該分離膜によって分離された蒸発燃料を高濃度で回収するパージレスエバポシステムとして構成されており、アイドリング停止システム、ハイブリッドシステム、又は直噴式エンジンなどを採用した車両に搭載される。   Unlike the method in which the evaporated fuel (vapor) adsorbed by the canister is desorbed (purged) using the negative pressure of the intake pipe when the engine is driven, the evaporated fuel processing device is purged by a pump to form a separation membrane. It is configured as a purgeless evaporation system that supplies pressurized fuel and collects the evaporated fuel separated by the separation membrane at a high concentration, and is installed in vehicles that employ an idling stop system, a hybrid system, or a direct injection engine. .

1に、本発明の実施例1に係る分離膜モジュールを有する蒸発燃料処理装置の概略構成図を示す。蒸発燃料処理装置は、燃料タンク1から発生する蒸発燃料を吸着捕集するキャニスタ2と、キャニスタ2から脱離された蒸発燃料を含む蒸発燃料含有ガスを、蒸発燃料を高濃度で含む高濃度ガスと蒸発燃料を低濃度で含む低濃度ガスとに分離する分離膜を備える分離膜モジュールと、キャニスタ2から分離膜モジュールへ蒸発燃料含有ガスを圧送するポンプ3とを有する。キャニスタ2内には、当該キャニスタ2の内部空間を2つに区画する区画壁2aが一体形成されている。 In FIG. 1, the schematic block diagram of the evaporative fuel processing apparatus which has a separation membrane module which concerns on Example 1 of this invention is shown. The evaporative fuel processing apparatus includes a canister 2 that adsorbs and collects evaporative fuel generated from the fuel tank 1, and an evaporative fuel-containing gas that includes the evaporative fuel desorbed from the canister 2, and a high-concentration gas that includes the evaporative fuel in a high concentration. And a separation membrane module that includes a separation membrane that separates the fuel into a low-concentration gas containing a low concentration of vaporized fuel, and a pump 3 that pumps the vaporized fuel-containing gas from the canister 2 to the separation membrane module. In the canister 2, a partition wall 2 a that divides the internal space of the canister 2 into two is integrally formed.

燃料タンク1とキャニスタ2とは、エバポライン10を介して連通されている。パージライン11上に、ポンプ3が配されている。キャニスタ2には、その先端が大気に連通する大気ライン16も連接されている。   The fuel tank 1 and the canister 2 are communicated with each other via an evaporation line 10. A pump 3 is disposed on the purge line 11. The canister 2 is also connected to an atmospheric line 16 whose tip communicates with the atmosphere.

キャニスタ2内には、燃料タンク1内で発生した蒸発燃料が吸着捕集され、燃料成分より分子径の小さい空気は吸着されずに透過する多孔体からなる吸着材が内蔵されている。吸着材として活性炭を使用できる。キャニスタ2内には、当該キャニスタ2内を加熱する,ピエゾ素子などの加熱素子デバイスにより構成されたヒータを設けておくことも好ましい。ポンプ3は電動式であり、キャニスタ2内に吸着された蒸発燃料を脱離させ、当該脱離された蒸発燃料と空気とを含む蒸発燃料含有ガスを、分離膜モジュール側へ圧送する。なお、ポンプ3は、図示していない電子制御装置(ECU)によって制御されている。ECUは、中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)などを有する。ROMに所定の制御プログラムが予め記憶されており、CPUが、制御プログラムに基づいてポンプ3などを所定のタイミングで制御操作する。   In the canister 2, an adsorbent made of a porous body that contains the vaporized fuel generated in the fuel tank 1 is adsorbed and collected and air that has a molecular diameter smaller than that of the fuel component is permeated without being adsorbed. Activated carbon can be used as the adsorbent. It is also preferable to provide a heater constituted by a heating element device such as a piezo element that heats the inside of the canister 2. The pump 3 is electrically driven and desorbs the evaporated fuel adsorbed in the canister 2 and pumps the evaporated fuel-containing gas containing the desorbed evaporated fuel and air to the separation membrane module side. The pump 3 is controlled by an electronic control unit (ECU) (not shown). The ECU includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like. A predetermined control program is stored in advance in the ROM, and the CPU controls the pump 3 and the like at a predetermined timing based on the control program.

燃料タンク1から蒸発燃料が発生すると、当該蒸発燃料はエバポライン10を通してキャニスタ2内に吸着捕集され、余分な空気成分はキャニスタ2を通って大気ライン16から排出される。そして、イグニッションスイッチ(IGスイッチ)やスタータなどの内燃機関始動用のスイッチを入れると、ポンプ3が駆動されて、キャニスタ2から分離膜モジュール側へ至る気流が発生する。すると、大気ライン16から空気(外気)が導入されることでキャニスタ2内に吸着された蒸発燃料が脱離(パージ)される。キャニスタ2からパージされた蒸発燃料は、大気ライン16から吸入された空気成分と共に蒸発燃料含有ガスとして、ポンプ3によってパージライン11を通して分離膜モジュールへ圧送供給される。すると、蒸発燃料含有ガス中から燃料成分が優先的に透過分離されて、蒸発燃料を高濃度で含有する濃縮ガスが精製される。濃縮ガスは、回収ライン12を通して燃料タンク1へ回収される。   When evaporated fuel is generated from the fuel tank 1, the evaporated fuel is adsorbed and collected in the canister 2 through the evaporation line 10, and excess air components are discharged from the atmospheric line 16 through the canister 2. When an internal combustion engine start switch such as an ignition switch (IG switch) or a starter is turned on, the pump 3 is driven to generate an air flow from the canister 2 to the separation membrane module side. Then, by introducing air (outside air) from the atmospheric line 16, the evaporated fuel adsorbed in the canister 2 is desorbed (purged). The evaporated fuel purged from the canister 2 is pumped and supplied to the separation membrane module through the purge line 11 by the pump 3 as an evaporated fuel-containing gas together with the air component sucked from the atmospheric line 16. Then, the fuel component is preferentially permeated and separated from the evaporated fuel-containing gas, and the concentrated gas containing the evaporated fuel at a high concentration is purified. The concentrated gas is recovered to the fuel tank 1 through the recovery line 12.

(実施例1)
図1に、本発明の実施例1に係る分離膜モジュール60を有する蒸発燃料処理装置の概略構成図を示す。実施例1の分離膜モジュール60では、1つの中空ケース61しか使用しておらず、1つの中空糸膜23が濃縮機能と希釈機能の双方を有する点に特徴を有する。キャニスタ2からの蒸発燃料含有ガスGは、直接本発明の分離膜モジュール60へ供給されるようになっている。
Example 1
In FIG. 1, the schematic block diagram of the evaporative fuel processing apparatus which has the separation membrane module 60 which concerns on Example 1 of this invention is shown. The separation membrane module 60 of Example 1 is characterized in that only one hollow case 61 is used, and one hollow fiber membrane 23 has both a concentration function and a dilution function. The fuel vapor containing gas G 0 from the canister 2, are supplied to the separation membrane module 60 directly present invention.

図1に示されるように、分離膜モジュール60は、ガス透過性を有しない中空ケース61の内部に、複数本の中空糸膜23が、中空ケース61の左右両端近傍に亘って配されている。各中空糸膜23は、ガス透過性を有しない仕切板62〜65に挿通された状態で支持されている。これにより、中空ケース61内は、仕切板62〜65によって中空糸膜23の長手方向に沿って複数の部屋に区画されており、各部屋は中空糸膜23の空洞を通して連通されていることになる。仕切板62〜65が、本発明の区画壁に相当し、区画壁62〜65は各中空糸膜23と交差するように設けられている。各中空糸膜23は、1本の中空糸状多孔質支持体23aに対して、膜を透過することで蒸発燃料を高濃度にする濃縮機能層23bと、膜を透過しないことで蒸発燃料を高濃度にする希釈機能層23cとが、仕切板64を挟んで長手方向に区分けされた状態で、それぞれ支持体23aの外面に積層されている。これにより、上流側(給気ポート70側)から仕切板62と仕切板63との間が一次濃縮室66となり、仕切板63と仕切板64との間が二次濃縮室67となり、仕切板64と仕切板65との間が希釈室68となる。   As shown in FIG. 1, in the separation membrane module 60, a plurality of hollow fiber membranes 23 are arranged in the vicinity of the left and right ends of the hollow case 61 in a hollow case 61 that does not have gas permeability. . Each hollow fiber membrane 23 is supported in a state of being inserted through partition plates 62 to 65 having no gas permeability. Thereby, the inside of the hollow case 61 is partitioned into a plurality of chambers along the longitudinal direction of the hollow fiber membrane 23 by the partition plates 62 to 65, and each chamber communicates through the cavity of the hollow fiber membrane 23. Become. The partition plates 62 to 65 correspond to the partition walls of the present invention, and the partition walls 62 to 65 are provided so as to intersect with the respective hollow fiber membranes 23. Each hollow fiber membrane 23 has a concentrated functional layer 23b that increases the concentration of evaporated fuel by permeating the membrane with respect to one hollow fiber-like porous support 23a, and evaporating fuel by increasing the concentration of evaporated fuel by not permeating the membrane. Dilution function layers 23c for concentration are laminated on the outer surface of the support 23a in a state of being divided in the longitudinal direction with the partition plate 64 interposed therebetween. Thereby, the space between the partition plate 62 and the partition plate 63 from the upstream side (the air supply port 70 side) becomes the primary concentration chamber 66, and the space between the partition plate 63 and the partition plate 64 becomes the secondary concentration chamber 67. A dilution chamber 68 is formed between 64 and the partition plate 65.

給気ポート70は、各中空糸膜23の始端に臨むように中空ケース61の一端壁に設けられている。第1の排気ポート71は、第1の濃縮室66に望む中空ケース61の周壁に設けられている。分離膜モジュール60の給気ポートにパージライン11が連接され、第1の排気ポート71に回収ライン12が連接されている。第2の排気ポート72は、第2の濃縮室67に望む中空ケース61の周壁に設けられており、当該第2の排気ポート72に第1の循環ライン14が連接されている。第3の排気ポート73は、希釈室68に望む中空ケース61の周壁に設けられており、当該第3の排気ポート73に第2の循環ライン14が連接されている。第4の排気ポート74は、各中空糸膜23の終端に臨むように、中空ケース61の他端壁に設けられており、当該第4の排気ポート74に返流ライン15が連接されている。   The air supply port 70 is provided on one end wall of the hollow case 61 so as to face the start end of each hollow fiber membrane 23. The first exhaust port 71 is provided on the peripheral wall of the hollow case 61 that is desired for the first concentration chamber 66. The purge line 11 is connected to the air supply port of the separation membrane module 60, and the recovery line 12 is connected to the first exhaust port 71. The second exhaust port 72 is provided on the peripheral wall of the hollow case 61 desired in the second concentration chamber 67, and the first circulation line 14 is connected to the second exhaust port 72. The third exhaust port 73 is provided on the peripheral wall of the hollow case 61 desired for the dilution chamber 68, and the second circulation line 14 is connected to the third exhaust port 73. The fourth exhaust port 74 is provided on the other end wall of the hollow case 61 so as to face the end of each hollow fiber membrane 23, and the return line 15 is connected to the fourth exhaust port 74. .

次に、蒸発燃料処理装置の作用について説明する。ポンプ3によってキャニスタ2から脱離された蒸発燃料を含む供給される蒸発燃料含有ガスGは、直接分離膜モジュール60へ供給される。実施例1の分離膜モジュール60は内圧分離方式であり、給気ポート70から給気された蒸発燃料含有ガスGは、各中空糸膜23の空洞内へ流入していく。すると、分離膜モジュール60の内部における最上流にある第1の濃縮室66においては、中空糸膜23の濃縮機能層23bによって蒸発燃料含有ガスG中から燃料成分Pが優先的に透過分離され、第1の濃縮室66内には供給された蒸発燃料含有ガスGよりも蒸発燃料濃度が高められた一次濃縮ガスが精製される。当該一次濃縮ガスは、第1の排気ポート71から回収ライン12を通して燃料タンク1内へ回収される。一方、中空糸膜23の空洞内部には、中空糸膜23の濃縮機能層23bで分離されなかった空気と、濃縮機能層23bで分離されずに残った蒸発燃料とが混在する中濃度ガスGが残存し、そのまま中空糸膜23の空洞を通って第2の濃縮室67方向へ流動していく。すると、第1の濃縮室66と同様に、第2の濃縮室67においても、中空糸膜23の濃縮機能層23bによって中濃度ガスG中から燃料成分Pが優先的に透過分離され、第2の濃縮室67内には供給された中濃度ガスGよりも蒸発燃料濃度が高められた二次濃縮ガスが精製される。当該二次濃縮ガスは、第2の排気ポート72から循環ライン14を通してポンプ3の上流に還流される。一方、中空糸膜23の空洞内部には、中空糸膜23の濃縮機能層23bで分離されなかった空気と、濃縮機能層23bで分離されずに残った僅かな蒸発燃料とが混在する低濃度ガスGが残存し、そのまま中空糸膜23の空洞を通って希釈室68方向へ流動していく。すると、希釈室68においては、中空糸膜23の希釈機能層23cによって低濃度ガスG中から空気成分Pが優先的に透過分離され、希釈室68内には供給された低濃度ガスGよりもさらに蒸発燃料濃度が下げられた(空気濃度が高められた)希釈ガスが精製される。当該希釈ガスは、第3の排気ポート73から返流ライン15を通してキャニスタ2へ返流される。一方、中空糸膜23の空洞内部には、中空糸膜23の希釈機能層23cで分離されなかった蒸発燃料を含む三次濃縮ガスGが残存し、そのまま中空糸膜23の他端へ抜けて第4の排気ポート74から第2の循環ライン14を通ってポンプ3の上流に還流される。なお、ガス分離膜による分離効率(透過ガス中の特定成分濃度)は、供給されるガス中の特定成分濃度が高いほど高くなる傾向を有する。したがって、本実施例1では、第1の濃縮室66において分離精製された一次濃縮ガスの蒸発燃料濃度は、第2の濃縮室67において分離精製された二次濃縮ガスの蒸発燃料濃度よりも高い。 Next, the operation of the evaporated fuel processing apparatus will be described. The supplied evaporated fuel-containing gas G 0 including the evaporated fuel desorbed from the canister 2 by the pump 3 is directly supplied to the separation membrane module 60. The separation membrane module 60 of Example 1 is an internal pressure separation system, and the evaporated fuel-containing gas G 0 supplied from the supply port 70 flows into the cavities of the hollow fiber membranes 23. Then, in the first concentrating compartment 66 in the most upstream in the interior of the separation membrane module 60, the fuel vapor containing gas G 0 in the fuel component P 1 is preferentially transmitted separated from the concentrated functional layer 23b of the hollow fiber membranes 23 Then, the primary concentrated gas having a higher evaporated fuel concentration than the supplied evaporated fuel-containing gas G 0 is purified in the first concentration chamber 66. The primary concentrated gas is recovered from the first exhaust port 71 into the fuel tank 1 through the recovery line 12. On the other hand, inside the hollow of the hollow fiber membrane 23, medium concentration gas G in which air that has not been separated by the enrichment functional layer 23b of the hollow fiber membrane 23 and evaporative fuel that remains without being separated by the enrichment functional layer 23b coexists. 1 remains and flows as it is through the hollow of the hollow fiber membrane 23 toward the second concentration chamber 67. Then, similarly to the first concentration chamber 66, also in the second concentration chamber 67, the fuel component P 1 is preferentially permeated and separated from the medium concentration gas G 1 by the concentration functional layer 23b of the hollow fiber membrane 23, secondary enrichment gas fuel vapor concentration than the gas G 1 into which is fed to the second concentrating chamber 67 elevated is purified. The secondary concentrated gas is returned to the upstream of the pump 3 through the circulation line 14 from the second exhaust port 72. On the other hand, in the hollow of the hollow fiber membrane 23, a low concentration in which air that has not been separated by the concentration functional layer 23b of the hollow fiber membrane 23 and a small amount of evaporated fuel that remains without being separated by the concentration functional layer 23b coexists. gas G 3 remains and continue to flow into the dilution chamber 68 direction as it passes through the cavity of the hollow fiber membrane 23. Then, in the dilution chamber 68, the air component P 2 is preferentially permeated and separated from the low-concentration gas G 3 by the dilution functional layer 23 c of the hollow fiber membrane 23, and the low-concentration gas G supplied to the dilution chamber 68 is supplied. The diluted gas whose vaporized fuel concentration is further lowered than 3 (the air concentration is increased) is purified. The dilution gas is returned from the third exhaust port 73 to the canister 2 through the return line 15. On the other hand, the hollow interior of the hollow fiber membrane 23, tertiary concentrated gas G 4 is left containing the evaporated fuel that has not been separated in the diluted functional layer 23c of the hollow fiber membrane 23, exits as it is to the other end of the hollow fiber membranes 23 The refrigerant is refluxed from the fourth exhaust port 74 through the second circulation line 14 and upstream of the pump 3. The separation efficiency (specific component concentration in the permeated gas) by the gas separation membrane tends to increase as the specific component concentration in the supplied gas increases. Therefore, in the first embodiment, the evaporated fuel concentration of the primary concentrated gas separated and purified in the first concentration chamber 66 is higher than the evaporated fuel concentration of the secondary concentrated gas separated and purified in the second concentration chamber 67. .

(その他の変形例) (Other variations)

実施例1において、本願発明の区画壁に相当する仕切板の枚数を変更することで、濃縮回数(複数回分離の数)を設計できる。この場合、濃縮機能層と希釈機能層とは2つに区分けする以外にも、濃縮機能層の間に希釈機能層を設けたり、複数の濃縮機能層及び希釈機能層を交互に区分けした状態で設けたりしてもよい。中空ケースは円筒形に限られない。 Oite to Example 1, by changing the number of the partition plate that corresponds to the partition wall of the present invention can be designed to count concentrated (the number of multiple separation). In this case, in addition to dividing the concentration functional layer and the dilution functional layer into two, a dilution functional layer is provided between the concentration functional layers, or a plurality of concentration functional layers and dilution functional layers are alternately divided. It may be provided. The hollow case is not limited to a cylindrical shape.

これらの各変形例においても、排気ポートは、濃縮室及び希釈室において分離精製されたガスがそれぞれ別個に排気されるように、分離精製されるガスの種類に応じた数だけ適所に設けておく。このとき、各排気ポートには、分離されるガスの種類に応じて循環ラインや返流ラインを適宜連接すればよい。また、第1の分離膜によって分離された中濃度ガスが給気される構成とすることもできる。   Also in each of these modified examples, the exhaust ports are provided at appropriate positions corresponding to the types of gases to be separated and purified so that the gases separated and purified in the concentration chamber and the dilution chamber are separately exhausted. . At this time, a circulation line or a return line may be appropriately connected to each exhaust port according to the type of gas to be separated. In addition, the medium concentration gas separated by the first separation membrane may be supplied.

本発明の分離膜モジュールは、蒸発燃料含有ガス中から蒸発燃料を分離回収する場合の他、先述の各種混合ガスから特性成分を分離回収する場合にも使用可能である。この場合、機能層の材料を、例えば特許文献1ないし特許文献3に記載の機能層材料のように、適宜特定成分に対する透過係数の高い材料に変更するだけでよい。   The separation membrane module of the present invention can be used not only when the evaporated fuel is separated and recovered from the evaporated fuel-containing gas, but also when the characteristic components are separated and recovered from the various mixed gases described above. In this case, it is only necessary to change the material of the functional layer to a material having a high transmission coefficient for a specific component as appropriate, such as the functional layer material described in Patent Documents 1 to 3.

施例では、ポンプ3を各分離膜モジュールより上流のパージライン11上に設けて、キャにスタ2から分離膜へ蒸発燃料含有ガスを加圧供給させているが、他にも、例えばポンプ3を返流ライン15上に設けるなどして、各分離膜モジュールより下流に設けたポンプ3によってキャニスタ2から分離膜へ蒸発燃料含有ガスを減圧供給させることもできる。 In actual Example 1, the pump 3 is provided on the purge line 11 upstream of the separation membrane module, but by pressure supplied to the fuel vapor containing gas to the separation membrane from Staphylococcus 2 to calibration, among others, for example, By providing the pump 3 on the return line 15 or the like, the vaporized fuel-containing gas can be supplied from the canister 2 to the separation membrane under reduced pressure by the pump 3 provided downstream from each separation membrane module.

蒸発燃料処理装置の作動は、IGスイッチやスタータなどの内燃機関の始動用スイッチを入れるとポンプの駆動により作動することとしたが、IGスイッチオフの内燃機関の停止中に作動させてもよい。   The evaporative fuel processing device is operated by driving the pump when an internal combustion engine starting switch such as an IG switch or a starter is turned on. However, the evaporative fuel processing device may be operated while the internal combustion engine is stopped.

実施例1の蒸発燃料処理装置の概略構成図である。1 is a schematic configuration diagram of a fuel vapor processing apparatus according to Embodiment 1. FIG.

1 燃料タンク
2 キャニスタ
3 ポンプ
10 エバポライン
11 パージライン
12 回収ライン
13・14 循環ライン
15 返流ライン
中空糸膜
23濃縮機能層
23希釈機能層
分離膜モジュール
中空ケース
62〜6仕切板
濃縮室
濃縮室
給気ポート
71〜7排気ポート
蒸発燃料含有ガス
中濃度ガ
低濃度ガス
三次濃縮ガ
燃料成分
空気成分
1 Fuel tank 2 Canister 3 Pump 10 Evaporation line 11 Purge line 12 Recovery line 13/14 Circulation line 15 Return line
2 3 Hollow fiber membrane 23 b Concentrated functional layer 23 c Diluted functional layer
6 0 separation membrane module 6 1 hollow casing 62-6 5 partition plate 6 6 concentration chamber 6 7 concentrating chamber 7 0 supply port 71-7 fourth exhaust port G 0 evaporative fuel-containing gas G 1 concentration gas
G 3 low concentration gas G 4 tertiary concentrated gas
P 1 Fuel component P 2 Air component

Claims (1)

給気ポートと排気ポートとを有するガス透過性の無い中空ケース内に、特定成分含有ガスを高濃度で特定成分を含有する高濃度ガスと低濃度で特定成分を含有する低濃度ガスとに分離する分離膜が配設された分離膜モジュールであって、
前記中空ケース内には、前記分離膜を透過することで特定成分を高濃度にする特定成分濃縮室と、前記分離膜を透過しないことで特定成分を高濃度にする特定成分希釈室とが直列に設けられており、
前記特定成分濃縮室と特定成分希釈室とは、上流側の室において前記分離膜を透過したガス又は前記分離膜を透過しなかったガスのうち、いずれか一方のみが流動可能に連通されており、
前記排気ポートは、前記特定成分濃縮室及び特定成分希釈室において分離精製されたガスがそれぞれ別個に排気されるように、分離精製されるガスの種類に応じた数だけ設けられており、
前記特定成分濃縮室と特定成分希釈室とを区画する区画壁が、前記分離膜と交差する方向に設けられており、
前記分離膜は、多孔質な中空糸状支持体の内面又は外面に、非多孔質な高分子膜からなる機能層を積層した中空糸膜であり、
1本の前記支持体に対して、前記特定成分濃縮室内では膜を透過することで特定成分を高濃度にする濃縮機能層を積層し、前記特定成分希釈室内では膜を透過しないことで特定成分を高濃度にする希釈機能層を積層しており、
前記特定成分濃縮室と特定成分希釈室とは、前記中空糸膜の空洞を通して連通されていることを特徴とする分離膜モジュール。
The gas containing a specific component is separated into a high-concentration gas containing a specific component at a high concentration and a low-concentration gas containing a specific component at a low concentration in a non-gas permeable hollow case having an air supply port and an exhaust port. A separation membrane module in which a separation membrane is disposed,
In the hollow case, a specific component concentration chamber that increases the concentration of the specific component by passing through the separation membrane and a specific component dilution chamber that increases the concentration of the specific component by not passing through the separation membrane are connected in series. It is provided in
The specific component concentration chamber and the specific component dilution chamber are in fluid communication with only one of the gas that has permeated the separation membrane or the gas that has not permeated the separation membrane in the upstream chamber. ,
The exhaust ports are provided in a number corresponding to the types of gases to be separated and purified so that the gases separated and purified in the specific component concentration chamber and the specific component dilution chamber are separately exhausted.
A partition wall that partitions the specific component concentration chamber and the specific component dilution chamber is provided in a direction intersecting the separation membrane,
The separation membrane is a hollow fiber membrane in which a functional layer made of a non-porous polymer membrane is laminated on the inner surface or outer surface of a porous hollow fiber support.
Concentrated functional layers that make the specific component highly concentrated by permeating the membrane in the specific component concentration chamber are stacked on one support, and the specific component is not transmitted through the membrane in the specific component dilution chamber. Is layered with a dilution function layer that increases the concentration of
The separation membrane module, wherein the specific component concentration chamber and the specific component dilution chamber communicate with each other through a cavity of the hollow fiber membrane.
JP2008294289A 2008-10-30 2008-11-18 Separation membrane module Expired - Fee Related JP5442237B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008294289A JP5442237B2 (en) 2008-11-18 2008-11-18 Separation membrane module
US12/588,781 US8388743B2 (en) 2008-10-30 2009-10-28 Separation membrane module and fuel vapor processing apparatus incorporating the same
US13/743,496 US8900350B2 (en) 2008-10-30 2013-01-17 Separation membrane module and fuel vapor processing apparatus incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294289A JP5442237B2 (en) 2008-11-18 2008-11-18 Separation membrane module

Publications (2)

Publication Number Publication Date
JP2010119933A JP2010119933A (en) 2010-06-03
JP5442237B2 true JP5442237B2 (en) 2014-03-12

Family

ID=42321753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294289A Expired - Fee Related JP5442237B2 (en) 2008-10-30 2008-11-18 Separation membrane module

Country Status (1)

Country Link
JP (1) JP5442237B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994580A (en) * 1973-01-17 1974-09-07
JPS52156777A (en) * 1976-06-24 1977-12-27 Toshiba Corp Equipment for separating gas
JPS6373193U (en) * 1986-11-04 1988-05-16
JPH08155243A (en) * 1994-12-09 1996-06-18 Koganei Corp Air cleaning and drying apparatus
JP4204377B2 (en) * 2003-05-12 2009-01-07 トヨタ自動車株式会社 Evaporative fuel processing equipment
JP4904543B2 (en) * 2007-01-17 2012-03-28 独立行政法人産業技術総合研究所 Organic vapor recovery system and organic vapor recovery method

Also Published As

Publication number Publication date
JP2010119933A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US8900350B2 (en) Separation membrane module and fuel vapor processing apparatus incorporating the same
JP5378180B2 (en) Separation membrane module and evaporative fuel processing apparatus having the same
JP2011021505A (en) Evaporated fuel processing device
US7261092B1 (en) Fuel-vapor processing system
KR102032534B1 (en) Apparatus and method for oxy-combustion of fuels in internal combustion engines
WO2009090792A1 (en) Evaporated fuel treatment device for vehicle
JP3659482B2 (en) Fuel vapor treatment equipment
JP2012002138A (en) Device for checking leak from fuel vapor treating apparatus
JP5524018B2 (en) Evaporative fuel processing equipment
JP5442237B2 (en) Separation membrane module
JP2009216078A (en) Evaporated fuel processing device
JP5020921B2 (en) Evaporative fuel processing equipment
JP4937986B2 (en) Evaporative fuel processing equipment
JP3666645B2 (en) Fuel vapor recovery device
JP5121655B2 (en) Gasoline-alcohol separation method
CN116669833A (en) Carbon dioxide capturing system and method for capturing carbon dioxide
JP2002122046A (en) Fuel evaporation recovering apparatus
CN215109214U (en) Evaporative emission mitigation system
JP2009197598A (en) Evaporated fuel treatment device
US10941732B1 (en) Membrane structures for the control of fuel vapor emissions
JP5620962B2 (en) Separation membrane module and evaporative fuel processing apparatus having the same
JP2004050042A (en) Gasoline separating membrane module and vaporized fuel treating apparatus
JPH06147037A (en) Vaporized fuel exhaust preventer of engine
JP2008095666A (en) Fuel component separation device for internal combustion engine
US20210172391A1 (en) Evaporative emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5442237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees