JP5439799B2 - Rapid analysis method for acid-soluble aluminum in steel - Google Patents

Rapid analysis method for acid-soluble aluminum in steel Download PDF

Info

Publication number
JP5439799B2
JP5439799B2 JP2008303357A JP2008303357A JP5439799B2 JP 5439799 B2 JP5439799 B2 JP 5439799B2 JP 2008303357 A JP2008303357 A JP 2008303357A JP 2008303357 A JP2008303357 A JP 2008303357A JP 5439799 B2 JP5439799 B2 JP 5439799B2
Authority
JP
Japan
Prior art keywords
steel
sol
electrolyte
chelating agent
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008303357A
Other languages
Japanese (ja)
Other versions
JP2010127792A (en
Inventor
哲史 城代
智治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008303357A priority Critical patent/JP5439799B2/en
Publication of JP2010127792A publication Critical patent/JP2010127792A/en
Application granted granted Critical
Publication of JP5439799B2 publication Critical patent/JP5439799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

この発明は、鋼中酸可溶性アルミニウム(Al)の分析方法、特に、簡便かつ正確に迅速分析できる方法に関する。   The present invention relates to a method for analyzing acid-soluble aluminum (Al) in steel, and more particularly, to a method that allows simple, accurate and rapid analysis.

鋼中のAlは、固溶Al、窒化Al、酸化Alの状態で存在する。鋼を酸で溶解する際に、一緒に酸に溶解する固溶Alと窒化Al 中のAlは酸可溶性Al(sol.Al)と呼ばれ、酸に溶解しない酸化Al中のAlは酸不溶性Al(insol.Al)と呼ばれ、鋼の酸溶解により両者は分離される。sol.Alは、自動車用薄鋼板、造船用厚鋼板、電磁鋼板などの特性向上に利用されているが、insol.Alは、微量なため特性への影響が少ないため、多くの場合、鋼中sol.Alの分析が行われている。   Al in steel exists in the state of solid solution Al, nitrided Al, and oxidized Al. When the steel is dissolved with acid, the solid solution Al dissolved in the acid together with Al in the nitrided Al is called acid-soluble Al (sol.Al), and the Al in the oxidized Al not dissolved in the acid is acid-insoluble Al. It is called (insol.Al) and both are separated by acid dissolution of steel. sol.Al is used to improve the properties of thin steel plates for automobiles, thick steel plates for shipbuilding, electromagnetic steel plates, etc., but insol.Al has little effect on properties due to its small amount, so in many cases sol.Al is being analyzed.

鋼中sol.Alの分析方法には、非特許文献1にあるJIS G1257(1994)に準じた原子吸光分析方法が基準法として知られている。しかし、この方法では、鋼試料からの切粉の採取や秤量、あるいはろ過分離などの操作が煩雑であるとともに、分析結果を得るまでに長時間を必要とすることもある。   As a method for analyzing sol.Al in steel, an atomic absorption analysis method according to JIS G1257 (1994) in Non-Patent Document 1 is known as a standard method. However, in this method, operations such as collection of chips from a steel sample, weighing, and filtration and separation are complicated, and it may take a long time to obtain an analysis result.

そこで、簡便で迅速な鋼中sol.Alの分析方法として、例えば特許文献1などには、鋼試料のままで分析可能な発光分析方法が提案されている。この分析方法では、繰り返し放電によって鋼試料を発光させ、各放電ごとにAlの発光スペクトル強度を測定し、発光スペクトル強度の出現度数分布を求めて、その度数分布からsol.Alとinsol.Alを形態別に定量している。
日本規格協会「JISハンドブック金属分析鉄鋼編」(2007) 特公昭55-15657号公報
Therefore, as a simple and rapid method for analyzing sol.Al in steel, for example, Patent Document 1 proposes an emission analysis method that can analyze a steel sample as it is. In this analysis method, a steel sample is caused to emit light by repeated discharge, the emission spectrum intensity of Al is measured for each discharge, the frequency distribution of the emission spectrum intensity is obtained, and sol.Al and insol.Al are determined from the frequency distribution. Quantified by form.
Japanese Standards Association "JIS Handbook Metal Analysis Steel" (2007) Japanese Patent Publication No.55-15657

しかしながら、特許文献1に記載の発光分析方法では、一回の放電痕は数十ミクロンの大きさとなるので、当該部分に微細なinsol.Alがsol.Alと共存する場合には、得られるAlの発光スペクトルも両者の合計値となるため、度数分布においてsol.Alとinsol.Alを明確に識別できず、十分な分析精度が得られない。   However, in the emission analysis method described in Patent Document 1, since a single discharge mark has a size of several tens of microns, when fine insol.Al coexists with sol.Al in the part, the obtained Al Since the emission spectrum of the same is also the sum of the two, sol.Al and insol.Al cannot be clearly distinguished in the frequency distribution, and sufficient analysis accuracy cannot be obtained.

本発明は、かかる事情を鑑みてなされたもので、鋼中sol.Alを、簡便かつ正確に迅速分析可能な方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method that can quickly and accurately analyze sol.Al in steel.

発明者らは、鋼中sol.Alを簡便かつ正確に迅速分析する方法について鋭意検討したところ、以下のことを見出した。   The inventors have conducted intensive studies on a method for simply and accurately analyzing sol.Al in steel, and have found the following.

1) 例えば、溶鋼を急速凝固したような鋼試料のように、窒化Alが未析出で、固溶Alと酸化Alのみしか存在しない試料を電解液中で電解すれば、電解液中に固溶Al、すなわち鋼中sol.Alを溶出させることができる。   1) For example, if a sample in which Al nitride is not precipitated and only solute Al and oxidized Al are present in an electrolyte solution, such as a steel sample that rapidly solidifies molten steel, is dissolved in the electrolyte solution. Al, that is, sol.Al in steel can be eluted.

2) そして、電解液中に溶出したAlそのものの濃度ではなく、比較元素に対するAlの濃度比を求め、別の方法で求めた鋼試料中の比較元素の含有率で補正すれば、簡便で迅速に鋼中sol.Alの含有率を求めることができる。ここで、比較元素とは、Al以外の添加金属元素あるいはFeで、鋼試料中で固溶状態で存在している金属元素のことである。   2) If the concentration ratio of Al to the comparative element is determined instead of the concentration of Al eluted in the electrolyte, and corrected by the content of the comparative element in the steel sample obtained by another method, it is simple and quick. In addition, the content of sol.Al in steel can be determined. Here, the comparative element is an additive metal element other than Al or Fe, which is a metal element existing in a solid solution state in a steel sample.

本発明は、以上の知見に基づきなされたもので、窒化Alが未析出の鋼試料を電解液中で電解後、前記電解液を分析し、該分析の結果を基に、前記電解液中における比較元素に対するAlの濃度比を算出し、前記算出されたAlの濃度比に、前記鋼試料中の比較元素の含有率を乗じることを特徴とする鋼中酸可溶性Al(sol.Al)の迅速分析方法を提供する。   The present invention has been made based on the above knowledge, and after electrolyzing a steel sample in which Al nitride is not precipitated in an electrolytic solution, the electrolytic solution is analyzed, and based on the result of the analysis, Calculate the concentration ratio of Al to the comparative element, and multiply the calculated concentration ratio of Al by the content of the comparative element in the steel sample. Provide analytical methods.

本発明の分析方法では、電解後の電解液にキレート剤水溶液を添加し、比較元素およびAlを水溶性キレートとした後、分析することが好ましい。このとき、キレート剤水溶液としては、例えば、エチレンジアミン四酢酸塩水溶液を用いることができる。   In the analysis method of the present invention, it is preferable to analyze after adding an aqueous chelating agent solution to the electrolytic solution after electrolysis to make the comparative element and Al a water-soluble chelate. At this time, as the chelating agent aqueous solution, for example, an ethylenediaminetetraacetate aqueous solution can be used.

本発明の分析方法によれば、鋼中sol.Alを、簡便かつ正確に迅速分析できるようになった。また、本発明の方法では、作業に熟練性を必要としないため、経験の浅い分析技術者でも実施可能であるというメリットもある。   According to the analysis method of the present invention, sol.Al in steel can be quickly and easily analyzed accurately and accurately. In addition, the method of the present invention does not require skill in the work, and therefore has an advantage that even an inexperienced analysis engineer can implement it.

上述したように、鋼中のAlは、固溶Alと、窒化Alや酸化Alのような析出物や介在物として存在する析出Alとに分けられる。こうしたのAlの存在する鋼試料を、通常用いられている非水溶媒系電解液を用いて電解すると、固溶Alは他の元素、例えばFe、Cr、Niなどとともに電解液中に溶出し、窒化Alや酸化Alとして存在する析出Alは未溶解残渣として、試料表面に付着している。このとき、残渣が試料表面に付着されるのは電気的引力によるためと考えられる。したがって、窒化Alの未析出の鋼試料を電解すれば、電解液中には固溶Al、すなわちsol.Alを溶出させることができ、その電解液中に溶出したAlの含有量を測定すれば、試料の電解量から鋼中sol.Alの正確な含有率を知ることができることになる。   As described above, Al in steel is divided into solid solution Al and precipitated Al such as precipitates and inclusions such as Al nitride and Al oxide. When such a steel sample in which Al is present is electrolyzed using a commonly used non-aqueous solvent electrolyte, the solid solution Al elutes together with other elements such as Fe, Cr, Ni, etc. in the electrolyte, Precipitated Al present as Al nitride or Al oxide adheres to the sample surface as an undissolved residue. At this time, it is considered that the residue is attached to the surface of the sample because of electrical attraction. Therefore, by electrolyzing an unprecipitated steel sample of Al nitride, solid solution Al, that is, sol.Al, can be eluted in the electrolytic solution, and if the content of Al eluted in the electrolytic solution is measured Therefore, the exact content of sol.Al in the steel can be known from the amount of electrolysis of the sample.

しかし、非水溶媒系電解液はメタノールを主体とした有機溶媒で、揮発性が高い上、数100mlもの容量となることから、電解液中のAlの含有量を測定することは容易ではない。そこで、電解液中に溶出した他の比較元素に対するAlの濃度比を算出し、この濃度比に他の方法で測定した鋼試料中の比較元素の含有率を乗じてsol.Alの含有率を求めれば、適量の電解液で済むので、簡便で迅速な分析が可能となる。   However, the non-aqueous solvent-based electrolyte is an organic solvent mainly composed of methanol, has high volatility, and has a capacity of several hundred ml. Therefore, it is not easy to measure the Al content in the electrolyte. Therefore, the concentration ratio of Al to other comparative elements eluted in the electrolyte is calculated, and the content ratio of sol.Al is calculated by multiplying this concentration ratio by the content ratio of the comparative element in the steel sample measured by other methods. If required, an appropriate amount of electrolytic solution is sufficient, so that simple and rapid analysis is possible.

電解液中のAlや比較元素を分析するには、非水溶媒系電解液を乾燥し、水溶液で置換することが好ましい。これは、非水溶媒を直接分析装置に導入して金属成分を測定することが、一般的に非常に困難であるためである。   In order to analyze Al and comparative elements in the electrolytic solution, it is preferable to dry the nonaqueous solvent electrolytic solution and replace it with an aqueous solution. This is because it is generally very difficult to measure a metal component by directly introducing a non-aqueous solvent into the analyzer.

しかし、電解後の非水溶媒系電解液には、溶出したAlが非水溶媒溶解性錯体として存在しており、この状態のまま水溶液化すると、沈殿を形成する場合があり、分析時に様々な問題(例えば、沈殿となることで分析装置からの出力が安定し測定可能となるまでに時間がかかるなど)が生じることがある。そこで、非水溶媒系電解液を乾燥する前に、Alの非水溶媒可溶性錯体を水溶性錯体に変化させておくことが望ましい。具体的には、電解液を乾燥する前に、電解液にキレート剤水溶液を添加して、電解液中のAlや比較元素を水溶性キレートとして錯体化させてから、非水溶媒系電解液を水溶液で置換し、分析する。このようにAlや比較元素を錯体化させることで、水溶液化による沈殿の発生やそれに伴う分析装置の溶液導入管の詰まりを防ぐことができ、迅速で正確な分析を確実に行うことが可能となる。錯体化のためのキレート剤としては、金属元素との親和力の強いエチレンジアミン四酢酸塩(EDTA)が最も好適であるが、この他、1、2-シクロヘキサンジアミン四酢酸(CyDTA)や1、2-ジヒドロキシ-3、5-ベンゼンジスルホン酸、二ナトリウム塩(Tiron)なども用いることができる。   However, in the non-aqueous solvent electrolyte after electrolysis, the eluted Al exists as a non-aqueous solvent-soluble complex, and if it is made into an aqueous solution in this state, a precipitate may be formed. There may be a problem (for example, it takes time until the output from the analyzer becomes stable and becomes measurable due to precipitation). Therefore, it is desirable to change the nonaqueous solvent-soluble complex of Al to a water-soluble complex before drying the nonaqueous solvent electrolyte. Specifically, before drying the electrolytic solution, an aqueous solution of a chelating agent is added to the electrolytic solution, and Al or a comparative element in the electrolytic solution is complexed as a water-soluble chelate. Replace with aqueous solution and analyze. By complexing Al and comparative elements in this way, it is possible to prevent the occurrence of precipitation due to aqueous solution and clogging of the solution introduction tube of the analyzer, which can be performed quickly and accurately. Become. As a chelating agent for complexing, ethylenediaminetetraacetate (EDTA) having a strong affinity for metal elements is most suitable. In addition, 1,2-cyclohexanediaminetetraacetic acid (CyDTA), 1,2- Dihydroxy-3,5-benzenedisulfonic acid, disodium salt (Tiron) and the like can also be used.

上述したように、電解液には非水溶媒系電解液が使用されるが、この電解液は非水溶性キレート剤と支持電解質と有機溶媒(メタノール)からなり、電解液中に溶出したAlなどの金属元素はこのキレート剤と錯体を形成する。この非水溶性キレート錯体(上述の非水溶媒溶解性錯体と同一物)を含む電解液に錯形成能の高い水溶性キレート剤を含むキレート剤水溶液を混合すると、金属元素は水溶性金属錯体へと置換される。この状態で、溶媒であるメタノールを蒸発させると、後に残った物質は容易に水溶液化が可能となるという利点がある。非水溶媒系電解液に用いる非水溶性キレート剤としては、アセチルアセトン、無水マレイン酸、トリエタノールアミン、サリチル酸メチルおよびサリチル酸が挙げられる。また、支持電解質としては、テトラメチルアンモニウムクロライドや塩化リチウムなどが好適である。   As described above, a non-aqueous solvent-based electrolyte is used as the electrolyte, and this electrolyte is composed of a water-insoluble chelating agent, a supporting electrolyte, and an organic solvent (methanol), such as Al eluted in the electrolyte. These metal elements form a complex with this chelating agent. When an aqueous solution of a chelating agent containing a water-soluble chelating agent having a high complex-forming ability is mixed with an electrolytic solution containing this non-water-soluble chelating complex (the same as the above-mentioned non-aqueous solvent-soluble complex), the metal element becomes a water-soluble metal complex. Is replaced by When methanol as a solvent is evaporated in this state, there is an advantage that the substance remaining later can be easily converted into an aqueous solution. Examples of the water-insoluble chelating agent used in the non-aqueous solvent electrolyte include acetylacetone, maleic anhydride, triethanolamine, methyl salicylate, and salicylic acid. Further, as the supporting electrolyte, tetramethylammonium chloride, lithium chloride and the like are suitable.

なお、電解を行う際の諸条件については、特に限定されず、非水溶性キレート剤の着目元素に対する錯形成能や酸化Alの安定性などによって、適宜設計される。また、上述したように、電解液の分析には、適量の電解液があれば十分であるが、常温乾燥する場合などを考量して、5ml以下の量が好ましく、1ml以下の量がより好ましい。さらに、鋼試料に酸化Alが付着している状態で電解液を採取する際、採取のタイミングは、鋼の種類や電解条件などにより適宜設定される。特に、電気的に酸化Alが鋼試料へ付着する引力の強さの点から、通電中に電解液を採取するのが好ましい。通電後に電解液を採取する際には、鋼試料の残部は電解液中に浸漬してある状態でもよいが、一般に電解液上層は溶解した金属の濃度が低いため、最終的な元素分析装置の感度などを考慮すると、鋼試料の残部を電解液から取り除いた後、攪拌して、あるいは下層から電解液を採取することが好ましい。   Various conditions for electrolysis are not particularly limited, and are appropriately designed depending on the complex forming ability of the water-insoluble chelating agent with respect to the element of interest and the stability of Al oxide. In addition, as described above, it is sufficient for the analysis of the electrolytic solution to have an appropriate amount of the electrolytic solution, but considering the case of drying at room temperature, the amount is preferably 5 ml or less, more preferably 1 ml or less. . Furthermore, when collecting the electrolytic solution in a state where Al oxide is adhered to the steel sample, the timing of collection is appropriately set depending on the type of steel, the electrolysis conditions, and the like. In particular, it is preferable to collect the electrolyte during energization from the viewpoint of the strength of the attractive force at which Al oxide is electrically attached to the steel sample. When collecting the electrolyte after energization, the rest of the steel sample may be immersed in the electrolyte, but generally the upper layer of the electrolyte has a low concentration of dissolved metal, so the final elemental analyzer In consideration of sensitivity and the like, it is preferable to remove the remainder of the steel sample from the electrolytic solution and then stir or collect the electrolytic solution from the lower layer.

電解後の電解液を分析する方法は、特に限定はしないが、誘導結合プラズマ発光分光分析法(ICP-AES)、誘導結合プラズマ質量分析法(ICP-MS)および原子吸光分析法が好適である。   The method for analyzing the electrolytic solution after electrolysis is not particularly limited, but inductively coupled plasma emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry are suitable. .

電解液中に溶出した比較元素としては、炭素鋼の場合はFe、ステンレス鋼の場合はFe、CrもしくはNiのように、鋼試料中の主たる成分でかつ固溶状態で存在している、すなわち析出物や介在物を形成しない、または形成したとしてもその割合が極僅かである金属元素を選択することが望ましい。なお、上記の例に限られず、ある程度以上の量が添加された金属元素であれば、比較元素として利用できる。また、複数の金属元素を比較元素としても良い。例えば、ステンレス鋼の場合、Fe、CrおよびNiの内2種以上の元素を選択し、比較元素の電解液中の濃度をそれらの元素の合計濃度とし、別の方法で求める鋼試料中の比較元素の含有率をそれらの元素の合計含有率とすれば、本発明を適用できる。   As a comparative element eluted in the electrolytic solution, it is a main component in a steel sample and exists in a solid solution state, such as Fe in the case of carbon steel and Fe, Cr or Ni in the case of stainless steel. It is desirable to select a metal element that does not form precipitates or inclusions, or has a very small proportion even if formed. In addition, it is not restricted to said example, If it is a metallic element to which the amount more than a certain amount was added, it can utilize as a comparative element. A plurality of metal elements may be used as comparative elements. For example, in the case of stainless steel, select two or more elements of Fe, Cr and Ni, and make the concentration of the comparative elements in the electrolyte solution the total concentration of those elements, then compare in the steel sample obtained by another method The present invention can be applied if the content of elements is the total content of these elements.

そして、電解液中におけるAlの濃度KAlと比較元素Mの濃度KMを測定して、濃度比(KAl/KM)を算出し、この濃度比に、他の方法で求めた鋼試料中の比較元素Mの含有率CMを乗じれば、鋼中sol.Alの含有率CAl[=(KAl/KM)×CM]が求まることになる。このとき、鋼試料中の比較元素の含有率を求める方法としては、スパーク放電発光分光分析方法[JIS G1253(2002)]、蛍光X線分析方法[JIS G1256(1997)]、および上記のICP-AESやICP-MSなどにより得られた比較元素以外の元素の合計含有率を100質量%から減算する方法が適当である。 Then, the concentration K Al of the Al in the electrolytic solution and the concentration K M of the comparative element M are measured, and the concentration ratio (K Al / K M ) is calculated. By multiplying the content C M of the comparative element M in the steel, the content C Al [= (K Al / K M ) × C M ] of sol.Al in the steel is obtained. At this time, as a method for obtaining the content of the comparative element in the steel sample, a spark discharge emission spectroscopic analysis method [JIS G1253 (2002)], a fluorescent X-ray analysis method [JIS G1256 (1997)], and the above ICP- A method of subtracting the total content of elements other than comparative elements obtained by AES or ICP-MS from 100% by mass is appropriate.

製鋼工程の脱酸後の鋳込み段階において、浸漬プローブを用いてJIS G0417(1999)の付属書1図2a)に示されたディスクおよびピン一体型鋼試料を採取した。なお、この鋼試料は急冷凝固されているため、窒化Alは析出していない。この一体型鋼試料のピン部分(以下、ピン試料と呼ぶ)を本発明例、ディスク部分を比較例の分析に供した。また、ディスク部分については、別途JIS G1253(2002)の方法により分析し、100質量%からFe以外の元素の合計含有率を減算してFeの含有率CFeを計算した。
(本発明例)
まず、ベルト研磨装置を用いて、ピン試料の表面を軽く研磨する。続いて、図1に模式的に示した電解装置6を用いて、ビーカ3内の約40mlの10%AA系電解液5(10体積%アセチルアセトン-1質量%塩化テトラメチルアンモニウム-メタノール)中で、ピン試料1を定電流電源4の陽極に、電極2を定電流電源4の陰極に接続して、ピン試料1の約0.03gを定電流電解し、通電完了直前に、予め用意した錯体化のためのキレート剤水溶液として0.1mol/lEDTA水溶液0.4mlを入れた別のビーカに、ピン試料1の浸漬された電解液5を約1ml投入する。次いで、このビーカ内に、さらに約20mlの純水を加え、十分に攪拌後、Alの濃度KAlとFeの濃度KFeをICP-MSにより測定し、(KAl/KFe)を算出した。そして、この濃度比(KAl/KFe)に上記のFeの含有率CFeを乗じて、鋼試料中のsol.Alの含有率を求めた。
(比較例)
まず、ディスク部分の表面を研磨して酸化層を取り除いた後、ボール盤でディスク表面から裏面方向へ穿孔し、生成した切粉を用いて、JIS G1257(1994)の付属書15に準じて、sol.Alの含有量を求めた。ただし、試料の秤量は0.5gとした。
At the casting stage after deoxidation in the steel making process, a disk and pin integrated steel sample shown in Appendix 1 Fig. 2a) of JIS G0417 (1999) was collected using an immersion probe. Since this steel sample was rapidly solidified, no Al nitride was precipitated. The pin portion (hereinafter referred to as pin sample) of this integrated steel sample was subjected to the analysis of the present invention example, and the disk portion was subjected to the analysis of the comparative example. Further, the disc portion was separately analyzed by the method of JIS G1253 (2002), and the total content of elements other than Fe was subtracted from 100% by mass to calculate the Fe content C Fe .
(Example of the present invention)
First, the surface of the pin sample is lightly polished using a belt polishing apparatus. Subsequently, using the electrolytic device 6 schematically shown in FIG. 1, in a beaker 3 in about 40 ml of 10% AA-based electrolyte 5 (10% by volume acetylacetone-1% by mass tetramethylammonium chloride-methanol). The pin sample 1 is connected to the anode of the constant current power source 4 and the electrode 2 is connected to the cathode of the constant current power source 4, and about 0.03 g of the pin sample 1 is subjected to constant current electrolysis. About 1 ml of the electrolyte solution 5 in which the pin sample 1 is immersed is put into another beaker containing 0.4 ml of a 0.1 mol / l EDTA aqueous solution as an aqueous chelating agent solution. Next, about 20 ml of pure water was further added to the beaker, and after sufficient stirring, the Al concentration K Al and the Fe concentration K Fe were measured by ICP-MS to calculate (K Al / K Fe ). . The concentration ratio (K Al / K Fe ) was multiplied by the Fe content C Fe described above to obtain the content of sol.Al in the steel sample.
(Comparative example)
First, the surface of the disk part is polished to remove the oxide layer, then drilled from the disk surface to the back surface with a drilling machine, and using the generated chips, sol according to Annex 15 of JIS G1257 (1994) The content of .Al was determined. However, the sample weighed 0.5 g.

図2に、本発明例によるsol.Alの含有量と比較例によるsol.Alの含有量との関係を示したが、本発明例によるsol.Alの含有量は基準法である比較例によるsol.Alの含有量と良く一致していることがわかる。   FIG. 2 shows the relationship between the sol.Al content according to the present invention example and the sol.Al content according to the comparative example. It can be seen that the content of sol.Al is in good agreement.

また、図3に本発明例と比較例における分析時間を示したが、本発明例は、試料秤量、ろ過、残渣分解などの煩雑な工程や定容・冷却工程のような時間のかかる工程がないので、比較例に比べて分析時間が短く、簡便かつ迅速な方法であることがわかる。   Further, FIG. 3 shows the analysis time in the present invention example and the comparative example, but the present invention example is a complicated process such as sample weighing, filtration, residue decomposition, and a time-consuming process such as a constant volume / cooling process. Therefore, it can be seen that the analysis time is shorter than that of the comparative example, and the method is simple and quick.

本発明の分析方法に用いる電解装置の一例を模式的に示す図である。It is a figure which shows typically an example of the electrolyzer used for the analysis method of this invention. 本発明例によるsol.Alの含有量と比較例によるsol.Alの含有量との関係を示す図である。It is a figure which shows the relationship between content of sol.Al by the example of this invention, and content of sol.Al by a comparative example. 本発明例と比較例における分析時間を示す図である。It is a figure which shows the analysis time in this invention example and a comparative example.

符号の説明Explanation of symbols

1 ピン試料
2 電極
3 ビーカ
4 定電流電源
5 電解液
6 電解装置
1-pin sample
2 electrodes
3 beakers
4 Constant current power supply
5 Electrolyte
6 Electrolyzer

Claims (2)

窒化Alが未析出の鋼試料を非水溶性キレート剤を含む非水溶媒系電解液中で電解後、前記非水溶媒系電解液に水溶性キレート剤を含むキレート剤水溶液を添加し、比較元素およびAlを水溶性キレートとした後、それぞれの濃度を分析し、該分析の結果を基に、前記非水溶媒系電解液中における比較元素に対するAlの濃度比を算出し、前記算出されたAlの濃度比に、スパーク放電発光分光分析方法、蛍光X線分析方法、誘導結合プラズマ発光分光分析法および誘導結合プラズマ質量分析法のいずれかを用いて求めた前記鋼試料中の比較元素の含有率を乗じることを特徴とする鋼中酸可溶性Al(sol.Al)の迅速分析方法;ここで、比較元素とは、Al以外の添加金属元素あるいはFeで、鋼試料中で固溶状態で存在している金属元素のことである。 After electrolysis of a steel sample in which Al nitride is not precipitated in a non-aqueous solvent electrolyte containing a non-water-soluble chelating agent, a chelating agent aqueous solution containing a water-soluble chelating agent is added to the non-aqueous solvent-based electrolyte , and a comparative element And Al as a water-soluble chelate, each concentration was analyzed, and based on the result of the analysis, the concentration ratio of Al to the comparative element in the non-aqueous solvent electrolyte was calculated, and the calculated Al The content ratio of the comparative element in the steel sample obtained by using any one of the spark discharge emission spectrometry method, the fluorescent X-ray analysis method, the inductively coupled plasma emission spectrometry method, and the inductively coupled plasma mass spectrometry method. A rapid analysis method for acid-soluble Al (sol.Al) in steel characterized by multiplying by; the comparative element is an additive metal element other than Al or Fe, and exists in a solid solution state in a steel sample. It is a metallic element. キレート剤水溶液が、エチレンジアミン四酢酸塩水溶液であることを特徴とする請求項1に記載の鋼中sol.Alの迅速分析方法。 2. The rapid analysis method for sol.Al in steel according to claim 1 , wherein the chelating agent aqueous solution is an ethylenediaminetetraacetate aqueous solution.
JP2008303357A 2008-11-28 2008-11-28 Rapid analysis method for acid-soluble aluminum in steel Expired - Fee Related JP5439799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303357A JP5439799B2 (en) 2008-11-28 2008-11-28 Rapid analysis method for acid-soluble aluminum in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303357A JP5439799B2 (en) 2008-11-28 2008-11-28 Rapid analysis method for acid-soluble aluminum in steel

Publications (2)

Publication Number Publication Date
JP2010127792A JP2010127792A (en) 2010-06-10
JP5439799B2 true JP5439799B2 (en) 2014-03-12

Family

ID=42328297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303357A Expired - Fee Related JP5439799B2 (en) 2008-11-28 2008-11-28 Rapid analysis method for acid-soluble aluminum in steel

Country Status (1)

Country Link
JP (1) JP5439799B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963326B2 (en) 2010-06-03 2012-06-27 朝日インテック株式会社 Guide wire
JP2016194101A (en) * 2015-03-31 2016-11-17 フタバ産業株式会社 Steel material for laser weldment and laser weldment conjugate
TWI632944B (en) * 2016-02-18 2018-08-21 新日鐵住金股份有限公司 Method for extracting metal compound particles, method for analyzing metal compound particles, and electrolytic solution applicable thereto

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284259A (en) * 1986-06-02 1987-12-10 Nippon Kokan Kk <Nkk> Automatic analyzing device for metal component in steel
JP2003021646A (en) * 2001-07-05 2003-01-24 Mitsui Mining & Smelting Co Ltd Zinc analytical method and analytical device for zinc electrolytic solution

Also Published As

Publication number Publication date
JP2010127792A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
JP5439799B2 (en) Rapid analysis method for acid-soluble aluminum in steel
CN103543133A (en) Method for determining content of bismuth in iron ores by hydride generation-atomic fluorescence spectrometry method
Yildiz et al. Electrochemical characterization of luminol and its determination in real samples
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
Phukphatthanachai et al. SI-traceable quantification of sulphur in copper metal and its alloys by ICP-IDMS
Mushahida-Al-Noor et al. Micro-organic ion-associate phase extraction/micro-volume back-extraction for the preconcentration and GF-AAS Determination of cadmium, nickel and lead in environmental water
JP3964594B2 (en) Analytical method for non-metallic inclusion composition and / or particle size in metal samples
Müller et al. Fast steel-cleanness characterization by means of laser-assisted plasma spectrometric methods
CN104155267A (en) Method for chemically analyzing content of boron nitride in nickel-based powder material
JP2019039710A (en) Extraction method of carbide and/or nitride in metal material, analysis method of the carbide and/or nitride, analysis method of quantity of solid solution carbon and/or quantity of solid solution nitrogen in the metal material, and electrolytic solution used therefor
JP2008128992A (en) Apparatus and method for analyzing silicon containing solid metallic material
JP2018130670A (en) Dispersant, dispersant for field flow fractionation, fractionation method of fine particle in steel material and analysis method of fine particle in steel material
JP5324141B2 (en) Method for analyzing inclusions containing CaO in steel
JP2009008586A (en) Method of obtaining solid solution content rate of target element in metal sample
Bánhidi Determination of Phosporous, Sulphur and Silicon Content of Low-alloyed and Unalloyed Steel by ICP-AES After a Unified Wet Chemical Sample Preparation Procedure
Cruz et al. Multi-energy calibration for determining critical metals in nickel-metal hydride battery residues by microwave-induced plasma atomic emission spectrometry
CN103675074A (en) Method for continuously determining content of zinc and cadmium in zinc sulfate procedure
JP7375622B2 (en) Selenium analysis method
Barabas et al. Application of Anodic Dissolution Technique to Automated Analysis of Metals. Determination of Phosphorus in Copper.
RU2465585C1 (en) Method of detecting rhenium in molybdenum-containing materials via inductively coupled plasma atomic emission spectrometry
Perämäki et al. Preliminary studies of iron speciation (Fe2+ and Fe3+) in peat samples using polarography
JP6493379B2 (en) Metal slab cleanliness evaluation method and metal slab cleanliness evaluation apparatus
KR101873242B1 (en) METHOD FOR ANALYZING COMPONENT RATIO OF ELECTROFORMED Fe-Ni ALLOY FILM
RU2302628C1 (en) Electrochemical mode of determination of selenium and arsenic in natural objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees