JP5437603B2 - Manufacturing method of fiber reinforced composite resin linear material - Google Patents

Manufacturing method of fiber reinforced composite resin linear material Download PDF

Info

Publication number
JP5437603B2
JP5437603B2 JP2008196894A JP2008196894A JP5437603B2 JP 5437603 B2 JP5437603 B2 JP 5437603B2 JP 2008196894 A JP2008196894 A JP 2008196894A JP 2008196894 A JP2008196894 A JP 2008196894A JP 5437603 B2 JP5437603 B2 JP 5437603B2
Authority
JP
Japan
Prior art keywords
linear
duct
fiber
thickener
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008196894A
Other languages
Japanese (ja)
Other versions
JP2010030227A (en
Inventor
英之 蛭田
尚之 近藤
良樹 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2008196894A priority Critical patent/JP5437603B2/en
Publication of JP2010030227A publication Critical patent/JP2010030227A/en
Application granted granted Critical
Publication of JP5437603B2 publication Critical patent/JP5437603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、繊維強化複合樹脂線状物の製造方法に関する。より詳しくは、大型のダクト(風管又は通気管)の形状保持用の芯材として利用されるスパイラル状又はリング状の繊維強化複合樹脂線状物の製造方法に関する。 The present invention relates to a method for producing a fiber-reinforced composite resin linear product. More specifically, the present invention relates to a method for producing a spiral or ring-shaped fiber-reinforced composite resin linear material used as a core material for maintaining the shape of a large duct (wind pipe or vent pipe).

現在、合成繊維は、繊維材と種々の合成樹脂を複合化することによって、機械強度や耐熱性等の物性を向上させることができるため、その用途が一層拡大している状況にある。   At present, synthetic fibers can be improved in physical properties such as mechanical strength and heat resistance by compounding fiber materials with various synthetic resins, and therefore, their uses are further expanding.

例えば、本件特許出願人は、先に、長繊維状の補強繊維と、この補強繊維に含浸させられた未硬化状熱硬化性樹脂と、この熱硬化性樹脂の外周を被覆する固化した熱可塑性樹脂被覆とからなり、前記熱硬化性樹脂を事後に硬化させることでケーブルの鎧装線、FRPロープのストランドなどとして用いられる長尺状の繊維強化合成樹脂製線状物の中間体を見出した(特許文献1)。   For example, the applicant of the present application previously described a long-fiber-shaped reinforcing fiber, an uncured thermosetting resin impregnated in the reinforcing fiber, and a solidified thermoplastic coating the outer periphery of the thermosetting resin. An intermediate of a long fiber-reinforced synthetic resin wire used as a cable armor wire, a strand of FRP rope, etc., comprising a resin coating and subsequently curing the thermosetting resin. (Patent Document 1).

また、同出願人らは、未硬化状熱硬化樹脂が含浸された長繊維の外周を固化した熱可塑性樹脂によって被覆した状態の合成樹脂線状物の中間体を編網した後、縮結(いせ)可能に熱硬化処理した網状体を提案し、さらに、この網状体を締結して生簀として利用することを提案している(特許文献2)。   In addition, the applicants knitted an intermediate of a synthetic resin linear material in a state where the outer periphery of a long fiber impregnated with an uncured thermosetting resin is coated with a solidified thermoplastic resin, and then ligated ( In other words, it proposes a reticulated body that has been heat-cured, and further proposes that the reticulated body be fastened and used as a ginger (Patent Document 2).

さらに、同出願人らは、上記同様の中間体を用いて、任意の目合いを有するメッシュ体を作製し、さらに、このメッシュ体を加熱硬化させたものを多面の立体的形状に形成してなる土木工事用の篭マットを提案している(特許文献3)。このように、繊維強化合成樹脂製の線状物あるいは棒材は、高い剛性や柔軟性や軽量さが求められる用途等に広く用いられている。   Further, the applicants made a mesh body having an arbitrary scale using the same intermediate as described above, and further formed a heat-cured mesh body into a multi-faceted three-dimensional shape. Has been proposed (Patent Document 3). Thus, the linear object or rod made of fiber reinforced synthetic resin is widely used for applications that require high rigidity, flexibility and light weight.

ここで、トンネル工事などの際には、工事現場で発生する塵(あるいは埃)を吸引して排出するための大口径(例えば、φ1,500mm以上)の集塵用ダクトが使用されている。このような集塵用ダクトに代表されるような大型のダクトは、一般に、外筒部分を構成する布材と該布材の内壁面を支持してダクトの形状を保持するための芯材などの部材から構成されている。   Here, in tunnel construction, a dust collection duct having a large diameter (for example, φ1,500 mm or more) for sucking and discharging dust (or dust) generated at a construction site is used. A large-sized duct represented by such a duct for collecting dust is generally a cloth material that constitutes an outer cylinder portion and a core material for supporting the inner wall surface of the cloth material to maintain the shape of the duct. It is comprised from the member of.

現在、前記芯材には、硬鋼線が広く一般に使用されている。例えば、硬鋼線B種のリング状芯材を10cm間隔に配置した口径1,500mmの集塵ダクト100mを想定した場合、前記リング状芯材は、φ8.0mm・510本、φ10mm・510本の合計1,020本使用される。このリング状芯材1本の重量は、φ8.0mmが1.87kg、φ10mmが2.9kgであるので、リング状芯材の総重量だけでも2,433kgにも達する。他に、布材他の材料の重量を合わせれば、当該集塵ダクト100mあたりの総重量は8,700kgにも及ぶ。このように、大型の(大口径の)菅体の総重量は大きく、また、該総重量に占める芯材の重量比率は高い。
特許第2772795号公報。 特開2005−237247号公報。 特開2003−184048号公報。
Currently, hard steel wire is widely used as the core material. For example, assuming a dust collecting duct 100 m with a diameter of 1500 mm in which hard steel wire type B ring-shaped core materials are arranged at intervals of 10 cm, the ring-shaped core materials are φ8.0 mm · 510 pieces, φ10 mm · 510 pieces. A total of 1,020 are used. Since the weight of one ring-shaped core material is 1.87 kg at φ8.0 mm and 2.9 kg at φ10 mm, the total weight of the ring-shaped core material reaches 2,433 kg. In addition, the total weight per 100 m of the dust collecting duct reaches 8,700 kg if the weights of the cloth material and other materials are combined. Thus, the total weight of the large (large-diameter) housing is large, and the weight ratio of the core to the total weight is high.
Japanese Patent No. 2772795. Japanese Patent Application Laid-Open No. 2005-237247. Japanese Patent Application Laid-Open No. 2003-184048.

集塵ダクトに代表されるような大口径ダクト、とりわけ、口径1,500mm以上の大口径ダクトとなると、芯材に硬鋼線を使用して重量が増えた場合、該芯材の自重の影響によって該芯材が鉛直方向に撓んでしまう為、ダクト口径が楕円となってしまう現象が発生し、吸引性能が低下するといった問題があった。また、ダクトの総重量が嵩むと、現場でのダクトの運搬及び設置に係わる作業が重労働となり、生産・運搬・設置等の場面でダクトを伸縮させたり、吊るしたりするときの動力エネルギーも大きくなるという問題もあった。さらには、従来のように芯材が硬鋼線で形成されていると、腐食による材料劣化や錆による布材の汚れも発生するという問題もあった。   When a large-diameter duct such as a dust collection duct, especially a large-diameter duct with a diameter of 1,500 mm or more, is used when the weight increases due to the use of a hard steel wire as the core material, the influence of the weight of the core material This causes the core material to bend in the vertical direction, causing a phenomenon that the duct diameter becomes an ellipse and the suction performance is reduced. In addition, if the total weight of the duct increases, the work involved in the transportation and installation of the duct at the site becomes heavy labor, and the power energy when the duct is expanded and contracted and hung in the scene of production, transportation, installation, etc. also increases. There was also a problem. In addition, when the core material is formed of a hard steel wire as in the prior art, there is a problem that material deterioration due to corrosion and cloth stains due to rust also occur.

そこで、本発明は、上記諸問題を解決するために、軽量で、かつ、耐久性に優れたダクト用芯材に好適な繊維強化複合樹脂線状物を提供することを主な目的とする。   Therefore, in order to solve the above-mentioned problems, the main object of the present invention is to provide a fiber-reinforced composite resin linear material suitable for a duct core material that is lightweight and excellent in durability.

本発明に係る繊維強化複合樹脂線状物の製造方法は、増粘剤及び浸透増粘剤を含有する未硬化状熱硬化性樹脂を長繊維に含浸させる含浸工程と、前記含浸が施された長繊維の外周を溶融状態の熱可塑性樹脂によって被覆した後に、冷却固化を施すことによって線状物中間体を得る工程と、前記線状物中間体を養生する工程と、前記線状物中間体を所定口径の円筒金型に巻き付けた状態で、該線状物中間体の内部の未硬化熱硬化性樹脂に対して熱硬化処理を施し、スパイラル状又はリング状の線状物を得る加熱工程と、を少なくとも行う
本発明の繊維強化複合樹脂線状物の製造方法で得られる線状物は、従来の硬鋼線に比べて軽量であるので、より大口径のダクトの芯材として有用であり、また、腐食による材料劣化の心配もないため、トンネル工事などの野外工事で使用される集塵用ダクトなどの芯材として好適である。さらに、本線状物では、前記未硬化状熱硬化性樹脂に増粘剤と浸透増粘剤を含有させておくことによって、線状物の端面からのいわゆる液ダレ発生を有効に防止できることに加え、増粘することにより、任意の金型に巻き付ける際に断面形状の変形の度合いを抑えることができる。
なお、「増粘剤」とは、未硬化状熱硬化性樹脂の粘度を増加させる機能を発揮する添加剤であり、「浸透増粘剤」とは、熱硬化性樹脂への増粘剤の浸透効果を高める機能を発揮する添加剤である
本発明の繊維強化複合樹脂線状物の製造方法では、前記未硬化状熱硬化性樹脂と前記浸透増粘剤:5〜50重量部との合計量100重量部に対して、前記増粘剤を0.5〜50重量部配合することができる。
また、前記円筒金型の直径は1500mm以上でもよい。
そして、本発明の繊維強化複合樹脂線状物の製造方法は、断面が円形状の繊維強化複合樹脂線状物を得ることができる。
The method for producing a fiber-reinforced composite resin linear material according to the present invention includes an impregnation step of impregnating long fibers with an uncured thermosetting resin containing a thickener and a penetrating thickener, and the impregnation is performed. After the outer periphery of the long fiber is coated with a molten thermoplastic resin, a step of obtaining a linear product intermediate by cooling and solidifying, a step of curing the linear product intermediate , and the linear product intermediate in a state wound around the cylindrical mold having a predetermined diameter, the thermosetting treatment and facilities for internal uncured thermosetting resin of the linear material intermediate to obtain a spiral or annular linear was heated And at least a step .
Since the linear product obtained by the method for producing a fiber-reinforced composite resin linear product of the present invention is lighter than conventional hard steel wires, it is useful as a core material for a larger-diameter duct, and is corrosive. Therefore, it is suitable as a core material for dust collection ducts used in outdoor construction such as tunnel construction. Furthermore, in the present linear object, by adding a thickener and a penetrating thickener to the uncured thermosetting resin, it is possible to effectively prevent so-called dripping from the end surface of the linear object. By increasing the viscosity, the degree of deformation of the cross-sectional shape can be suppressed when it is wound around an arbitrary mold.
The “thickener” is an additive that functions to increase the viscosity of the uncured thermosetting resin, and the “penetration thickener” is a thickener for the thermosetting resin. It is an additive that exhibits the function of enhancing the penetration effect .
In the method for producing a fiber-reinforced composite resin linear product of the present invention, the thickener is used with respect to 100 parts by weight of the total amount of the uncured thermosetting resin and the penetrating thickener: 5 to 50 parts by weight. In an amount of 0.5 to 50 parts by weight.
The diameter of the cylindrical mold may be 1500 mm or more.
And the manufacturing method of the fiber reinforced composite resin linear article of this invention can obtain the fiber reinforced composite resin linear article with a circular cross section.

本発明により製造された繊維強化複合樹脂線状物をダクトの芯材として利用することにより、従来一般に普及している硬鋼線芯材と比較して、ダクトの軽量化とコストダウンを大幅に達成することができ、かつ、芯材部分の腐食による劣化の問題などを一気に解決できる。また、本発明により製造された繊維強化複合樹脂線状物は、軽量であるので、ダクトの製造、運搬、設置等に係わる作業労力を軽減できる。さらに、硬鋼線芯材は、例えば、4mの高さから落下させると塑性変形してしまい、落下後の使用ができなくなるが、本発明により製造された繊維強化複合樹脂線状物を使用したダクトは、一時的な弾性変形を伴うのみで、落下後の使用にも全く支障がない。 By using the fiber reinforced composite resin linear material manufactured according to the present invention as a core material of a duct, the weight of the duct is significantly reduced and the cost is significantly reduced as compared with the conventionally popular hard steel wire core material. It can be achieved, and the problem of deterioration due to corrosion of the core portion can be solved at once. Moreover, since the fiber reinforced composite resin linear material manufactured by this invention is lightweight, the work effort concerning manufacture, conveyance, installation, etc. of a duct can be reduced. Furthermore, the hard steel wire core material, for example, is plastically deformed when dropped from a height of 4 m and cannot be used after dropping, but the fiber-reinforced composite resin wire produced according to the present invention was used. The duct is only accompanied by a temporary elastic deformation, and there is no hindrance to use after dropping.

以下、本発明に係る繊維強化複合樹脂線状物の好適な実施形態について説明する。なお、添付図面は、本発明に係わる実施形態の一例を示すものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, preferred embodiments of the fiber-reinforced composite resin linear material according to the present invention will be described. Note that the attached drawings show an example of embodiments according to the present invention, and the scope of the present invention is not construed narrowly.

まず、図1は、本発明に係る繊維強化複合樹脂線状物(以下、「線状物」と略称する。)の内部構成を示すための断面図であり、図2は、スパイラル状に形成された線状物例の様子を示す図、図3は、リング状に形成された線状物例を示す図である。 First, FIG. 1 is a fiber-reinforced composite resin linear material according to the present onset Ming (hereinafter, abbreviated as "linear object".) Is a sectional view showing the internal structure of FIG. 2, the spiral The figure which shows the mode of the formed linear object example, FIG. 3 is a figure which shows the linear object example formed in ring shape.

図1に示された線状物1は、ダクトの筒形状(以下、円筒形状として説明。)を保持するための芯材として利用される線状物である。なお、芯材は、ダクトの外筒部を構成する布材などに接着テープなどを用いて固定される。   A linear object 1 shown in FIG. 1 is a linear object used as a core material for holding a cylindrical shape of a duct (hereinafter, described as a cylindrical shape). The core material is fixed to a cloth material or the like constituting the outer cylinder portion of the duct using an adhesive tape or the like.

この線状物1は、該線状物1に剛性を付与する長繊維11と、該長繊維に含浸される未硬化状熱硬化性樹脂12と、該未硬化状熱硬化性樹脂12の外周を被覆するように設けられた熱可塑性樹脂13と、から構成される線状物中間体を、熱硬化処理することによって得られる。   The linear object 1 includes a long fiber 11 that gives rigidity to the linear object 1, an uncured thermosetting resin 12 that is impregnated in the long fiber, and an outer periphery of the uncured thermosetting resin 12. It is obtained by subjecting a linear product intermediate composed of a thermoplastic resin 13 provided so as to cover the film to a thermosetting treatment.

より詳細には、ダクト用の芯材製品として提供される線状物1は、例えば、長繊維11を前記未硬化状熱硬化性樹脂12に含浸させる含浸工程と、この含浸状態の長繊維11の外周を溶融状態の熱可塑性樹脂13によって被覆した後に、冷却固化を施すことによって線状物中間体を得る工程と、該線状物中間体の内部の未硬化熱硬化性樹脂12に対して熱硬化処理を施すための加熱工程と、を少なくとも実施することによって得ることができる。なお、より好適には、未硬化状熱硬化性樹脂12に増粘剤と浸透増粘剤とを含有させる工程を前記含浸工程の前に行っておいてもよい(後述)。   More specifically, the linear object 1 provided as a core product for a duct includes, for example, an impregnation step in which the uncured thermosetting resin 12 is impregnated with the long fibers 11 and the long fibers 11 in the impregnated state. The outer periphery of the resin is coated with a molten thermoplastic resin 13 and then cooled and solidified to obtain a linear product intermediate, and the uncured thermosetting resin 12 inside the linear product intermediate. It can be obtained by performing at least a heating step for performing a thermosetting treatment. More preferably, a step of adding a thickener and a penetration thickener to the uncured thermosetting resin 12 may be performed before the impregnation step (described later).

本発明では、この線状物1をダクトの円筒形状を保持する芯材として利用するために、前記加熱工程を、前記線状物中間体を所定口径の円筒金型に巻き付けた状態で実施することによって、スパイラル状をなした線状物1a(図2参照)、あるいはリング状をなした線状物1b(図3参照)を得る。   In the present invention, in order to use the linear object 1 as a core material that maintains the cylindrical shape of the duct, the heating step is performed in a state where the linear object intermediate is wound around a cylindrical mold having a predetermined diameter. Thus, a linear object 1a having a spiral shape (see FIG. 2) or a linear object 1b having a ring shape (see FIG. 3) is obtained.

より好適には、前記線状物中間体を数日間養生することで未硬化状熱硬化性樹脂12を増粘せしめた後に、該線状物中間体を円筒金型に巻付けた状態で加熱工程を実施することが望ましい。このような手法で加熱工程を採用すると、未硬化状の線状物中間体が巻付け張力によって扁平化してしまうことを効果的に防止することができる。   More preferably, after curing the linear product intermediate for several days to thicken the uncured thermosetting resin 12, the linear product intermediate is heated in a state of being wound around a cylindrical mold. It is desirable to carry out the process. If a heating process is employ | adopted by such a method, it can prevent effectively that an unhardened linear intermediate body will flatten by winding tension | tensile_strength.

また、未硬化状態の線状物中間体は、その外周が熱可塑性樹脂によって被覆されている構成であるため、該線状物中間体を連続的に円筒金型に巻付けても、隣接している線状物中間体同士が接着してしまうことがなく、さらには、円筒金型との離型性もよいという特性を有する。仮に、外周に熱可塑性樹脂による被覆がない構成の場合は、加熱硬化が完了するまでの過程で、隣接する線状物中間体の未硬化熱硬化性樹脂が互いに接着した状態で硬化してしまうため、例えば、コイルの如きに伸縮可能なスパイラル状線状物を得ることは困難となる。   Further, since the uncured linear product intermediate body is configured so that the outer periphery thereof is covered with a thermoplastic resin, the linear product intermediate body is adjacent even if the linear product intermediate body is continuously wound around a cylindrical mold. Further, the linear intermediate members are not bonded to each other, and further, the releasability from the cylindrical mold is good. If the outer periphery is not covered with a thermoplastic resin, the uncured thermosetting resins of adjacent linear intermediates are cured in a state where they are adhered to each other until the heat curing is completed. Therefore, for example, it is difficult to obtain a spiral linear object that can expand and contract like a coil.

ここで、線状物1を構成する長繊維11(図1参照)の種類については、特に限定されず、ポリオレフィン繊維、ポリエステル繊維等の合成樹脂繊維、ガラス繊維等の無機繊維、金属繊維等を用いることができるが、好適には、無機繊維であることが望ましく、より好適には、ガラス長繊維であることが望ましい。   Here, about the kind of long fiber 11 (refer FIG. 1) which comprises the linear thing 1, it does not specifically limit, Synthetic resin fibers, such as polyolefin fiber and polyester fiber, Inorganic fibers, such as glass fiber, Metal fiber, etc. Although it can be used, it is preferably an inorganic fiber, and more preferably a long glass fiber.

また、長繊維11の太さについても特に限定されず、使用目的や加工容易性等を考慮して、適宜選択することができる。また、繊維を束ねる本数についても特に限定されず、使用目的や所望の物性を考慮して、自由に選択することができる。   Further, the thickness of the long fiber 11 is not particularly limited, and can be appropriately selected in consideration of the purpose of use and ease of processing. Further, the number of fibers bundled is not particularly limited, and can be freely selected in consideration of the purpose of use and desired physical properties.

次に、未硬化状熱硬化性樹脂12は、加熱により硬化する性質の合成樹脂であればよく、その種類は特に限定されないが、好適には、硬化後の性能安定性に優れた不飽和ポリエステル樹脂、不飽和アルキド樹脂、エポキシ樹脂等が望ましく、より好適には、架橋性物質を含有することが望ましく、更に好適には、不飽和ポリエステル樹脂、不飽和アルキド樹脂、またはエポキシアクリレートの少なくともいずれかと、架橋性モノマー等の架橋性物質と、ジアシルパーオキサイド等の重合開始剤と、を含有することが望ましい。このような配合を採用することで、加熱工程時の熱等によっても重合反応を進行させることができ、また、より架橋を進行させることができる。   Next, the uncured thermosetting resin 12 may be a synthetic resin having a property of being cured by heating, and the type of the uncured thermosetting resin 12 is not particularly limited, but is preferably an unsaturated polyester excellent in performance stability after curing. Resin, unsaturated alkyd resin, epoxy resin, etc. are desirable, more preferably containing a crosslinkable substance, more preferably at least one of unsaturated polyester resin, unsaturated alkyd resin, or epoxy acrylate. It is desirable to contain a crosslinkable substance such as a crosslinkable monomer and a polymerization initiator such as diacyl peroxide. By adopting such a blend, the polymerization reaction can be advanced by heat or the like during the heating step, and the crosslinking can be further advanced.

ここで、上記加熱工程の段階では、熱硬化性樹脂12が未硬化状態であるために、線状物1の端面(例えば、切断面)から前記樹脂12が滲み出してしまう、いわゆる「液ダレ現象」が起こり得る。この液ダレ現象が起こると、べたついて加工作業の弊害になったり、熱硬化が不充分となって物性の経時的安定性に悪影響を及ぼしたりする。そこで、この線状物1を製造する場合は、未硬化状熱硬化性樹脂12に増粘剤と浸透増粘剤を含有させることによって、未硬化状熱硬化性樹脂12の増粘性を増加させてから、上記含浸工程に移行するようにするのが望ましい。   Here, in the stage of the heating step, since the thermosetting resin 12 is in an uncured state, the resin 12 oozes out from the end surface (for example, the cut surface) of the linear object 1. A phenomenon can occur. When this sag phenomenon occurs, it becomes sticky and adversely affects the processing work, or heat curing becomes insufficient, and the stability over time of physical properties is adversely affected. Therefore, when this linear product 1 is manufactured, the thickening of the uncured thermosetting resin 12 is increased by adding the thickener and the penetration thickener to the uncured thermosetting resin 12. After that, it is desirable to shift to the above impregnation step.

「増粘剤」の種類については、特に限定されないが、好適には、アクリル酸エステル系化合物、メタクリル酸エステル系化合物、ビニル化合物の少なくともいずれかを単量体単位とする樹脂を含むことが望ましい。   The type of “thickening agent” is not particularly limited, but preferably includes a resin having a monomer unit of at least one of an acrylic ester compound, a methacrylic ester compound, and a vinyl compound. .

増粘剤に用いる前記アクリル酸エステル系化合物とは、アクリル酸エステル構造を有する化合物とその誘導体をいい、例えば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、sec−ブチルアクリレート、t−ブチルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート等が挙げられる。   The acrylic ester compound used for the thickener refers to a compound having an acrylic ester structure and derivatives thereof, such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate. , Sec-butyl acrylate, t-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate and the like.

増粘剤に用いる上記メタクリル酸エステル化合物とは、メタクリル酸エステル構造を有する化合物とその誘導体をいい、例えば、メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート等が挙げられる。   The methacrylic acid ester compound used for the thickener means a compound having a methacrylic acid ester structure and a derivative thereof, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl. Examples include methacrylate and cyclohexyl methacrylate.

増粘剤に用いる上記ビニル化合物とは、重合可能なビニル構造を有する化合物をいい、例えば、スチレン、α−メチルスチレン、ジビニルベンゼン及びこれらの芳香環にアルキル基やハロゲン原子等の種々の官能基で置換された化合物が挙げられる。   The vinyl compound used for the thickener refers to a compound having a polymerizable vinyl structure, such as styrene, α-methylstyrene, divinylbenzene, and various functional groups such as an alkyl group and a halogen atom in these aromatic rings. And a compound substituted with.

また、増粘剤は、メタクリル酸エステル系化合物、アクリル酸エステル系化合物、ビニル系化合物の1種類あるいは複数種類の重合単位からなる重合体であってもよく、構造の異なる複数種類の樹脂を混合した樹脂であってもよい。更に、(1)アクリル酸エステル系化合物またはメタクリル酸エステル系化合物またはジエン系化合物の少なくともいずれかからなる重合体と、(2)アクリル酸エステル系化合物またはメタクリル酸エステル系化合物とラジカル重合性不飽和カルボン酸とからなる重合体と、に、(3)金属イオンを添加することでイオン架橋させた複合樹脂であってもよい。   Further, the thickener may be a polymer composed of one type or a plurality of types of polymerization units of a methacrylic acid ester compound, an acrylate ester compound, and a vinyl compound, and a plurality of types of resins having different structures are mixed. Resin may be used. Furthermore, (1) a polymer comprising at least one of an acrylate ester compound, a methacrylic ester compound or a diene compound, and (2) a radical polymerizable unsaturated compound with an acrylate ester compound or a methacrylic ester compound. (3) A composite resin that is ion-crosslinked by adding metal ions to a polymer composed of a carboxylic acid.

そして、増粘剤は、粉末樹脂を用いることができる。増粘剤として用いる粉末樹脂の粒径等については特に限定されないが、好適には、0.5μm〜2.0μmであることが望ましい。   And a powder resin can be used for a thickener. The particle size and the like of the powder resin used as the thickening agent are not particularly limited, but preferably 0.5 μm to 2.0 μm.

本発明に係る線状物1を製造する過程において、線状物中間体に加熱工程が施される際には、未硬化状熱硬化性樹脂12は高粘度であるとともに、ゲル化しないことが望ましい。未硬化状硬化性樹脂12がゲル化してしまうことで、時間が経過するにつれて物性が変化し易くなるからである。   In the process of manufacturing the linear object 1 according to the present invention, when the heating process is performed on the linear object intermediate, the uncured thermosetting resin 12 has a high viscosity and may not be gelled. desirable. This is because the physical properties of the uncured curable resin 12 easily change as time passes.

次に、「浸透増粘剤」の種類については、特に限定されないが、好適には、メタクリル酸ベンジルを用いることが望ましい。未硬化状熱硬化性樹脂12は、不飽和ポリエステル等の熱硬化性樹脂が用いられる。この熱硬化性樹脂への増粘剤の浸透効果を高めるために、浸透増粘剤を配合する。特に、メタクリル酸ベンジルは、不飽和ポリエステル等の熱硬化性樹脂への浸透効果が高い点で好適である。   Next, the type of “penetration thickener” is not particularly limited, but it is preferable to use benzyl methacrylate. As the uncured thermosetting resin 12, a thermosetting resin such as unsaturated polyester is used. In order to enhance the penetration effect of the thickener into the thermosetting resin, a penetration thickener is blended. In particular, benzyl methacrylate is suitable because it has a high penetrating effect on a thermosetting resin such as unsaturated polyester.

浸透増粘剤を添加することで、増粘剤を未硬化状熱硬化性樹脂12によく浸透させるとともに、均一に混合させることができる。即ち、増粘剤の分散不良による過剰な増粘を抑制することができ、所望の増粘速度とすることができ液ダレ現象を防止することができる。このように、増粘剤だけでなく浸透増粘剤も用いることで、液ダレ現象を防止できるだけでなく、その増粘効果によって、断面形状の保持性能が向上し、加工時の変形も抑制された、実用に適した線状物1を得ることができる。   By adding the penetrating thickener, the thickener can penetrate well into the uncured thermosetting resin 12 and can be mixed uniformly. That is, excessive thickening due to poor dispersion of the thickening agent can be suppressed, a desired thickening speed can be achieved, and a dripping phenomenon can be prevented. In this way, by using not only a thickener but also a penetration thickener, not only can the dripping phenomenon be prevented, but the thickening effect improves the cross-sectional shape retention performance and suppresses deformation during processing. Moreover, the linear object 1 suitable for practical use can be obtained.

増粘剤と浸透増粘剤の配合量については特に限定されないが、好適には、以下の配合量とすることが望ましい。未硬化状熱硬化性樹脂12と浸透増粘剤5〜50重量部との合計量100重量部に対して、増粘剤を0.5〜50重量部含有させることが望ましい。これにより、未硬化状熱硬化性樹脂12の液ダレ量の抑制効果や増粘効果をより向上させることができる。   The blending amount of the thickener and the penetration thickener is not particularly limited, but preferably the following blending amount is desirable. It is desirable to contain 0.5 to 50 parts by weight of the thickener with respect to 100 parts by weight of the total amount of the uncured thermosetting resin 12 and 5 to 50 parts by weight of the penetration thickener. Thereby, the suppression effect and the thickening effect of the liquid dripping amount of the uncured thermosetting resin 12 can be further improved.

なお、浸透増粘剤の添加量が多すぎると樹脂の増粘速度が早くなり過ぎることや、例えば、長繊維内等に含有されるバインダー成分が浸透増粘剤の影響により含浸樹脂中に溶出し、増粘性を過剰に促進させてしまう場合がある。この場合には、浸透増粘剤の添加量をより少なくしたり、増粘剤の添加量を少なくしたりすることで、増粘速度を調節することもできる。   Note that if the amount of penetrating thickener added is too large, the resin thickening rate will become too fast, for example, the binder component contained in the long fibers will dissolve into the impregnated resin due to the influence of the penetrating thickener. However, the thickening may be promoted excessively. In this case, the thickening speed can be adjusted by reducing the amount of the penetrating thickener added or by reducing the amount of the thickener added.

次に、線状物1の外周部を構成する熱可塑性樹脂13は、耐候性や耐薬品性などの特性を該線状物1に付与するという役割も果たしている。この熱可塑性樹脂13の種類についても、特に限定されないが、柔軟性に優れた物質であることが望ましく、好適には、ポリオレフィン系樹脂等を用いることができる。また、未硬化状熱硬化性樹脂12に架橋性物質を含有させた場合には、該架橋性物質によって侵食され難い性質の熱可塑性樹脂を採用するのが望ましく、更に好適には、磨耗し難い性質の熱可塑性樹脂を用いることにより、耐久性をさらに向上させるようにしてもよい。なお、本発明においては、長繊維11、未硬化状熱可塑性樹脂12、熱可塑性樹脂13の組合せについても、特に限定されない。   Next, the thermoplastic resin 13 constituting the outer periphery of the linear object 1 also plays a role of imparting properties such as weather resistance and chemical resistance to the linear object 1. The type of the thermoplastic resin 13 is not particularly limited, but is preferably a substance having excellent flexibility, and a polyolefin resin or the like can be preferably used. In addition, when the uncured thermosetting resin 12 contains a crosslinkable substance, it is desirable to employ a thermoplastic resin having a property that is not easily eroded by the crosslinkable substance, and more preferably, it is difficult to wear. You may make it improve durability further by using the thermoplastic resin of a property. In the present invention, the combination of the long fibers 11, the uncured thermoplastic resin 12, and the thermoplastic resin 13 is not particularly limited.

ここで、図4は、本発明に係る線状物1の代表例の一つであるスパイラル状の線状物1aが芯材として使用されたダクト2aの状態を示す図、図5は、同線状物1の別の代表例であるリング状の線状物1bが芯材として所定間隔で配置されたダクト2bの状態を示す図である。   Here, FIG. 4 is a diagram showing a state of a duct 2a in which a spiral linear object 1a, which is one of representative examples of the linear object 1 according to the present invention, is used as a core material, and FIG. It is a figure which shows the state of the duct 2b by which the ring-shaped linear object 1b which is another typical example of the linear object 1 is arrange | positioned as a core material at predetermined intervals.

まず、このようなスパイラル状の芯材で支持されたダクト2a、リング状の芯材で支持されたダクト2bは、ともに上記樹脂構成からなる線状物1a、1bがそれぞれ芯材として用いられることによって、従来一般に使用されていきた硬鋼線芯材と比較して、ダクト総重量の軽量化やコストダウンを大幅に達成することができる。   First, in the duct 2a supported by the spiral core material and the duct 2b supported by the ring-shaped core material, the linear objects 1a and 1b having the above resin structure are used as the core materials, respectively. Thus, compared with the hard steel wire core material that has been generally used in the past, it is possible to significantly reduce the total weight of the duct and reduce the cost.

特に、スパイラル状の芯材(図2参照)をダクトに採用する場合は、リング状の芯材と比較して、芯材の総重量が嵩んでダクトの生産性もより低下してしまうが、硬鋼線に代わって軽量のスパイラル状線状物1aを芯材に採用すれば、ダクト総重量の軽量化がより大幅に達成でき、ひいては、ダクトの生産性の向上にもより貢献する。   In particular, when adopting a spiral core material (see FIG. 2) for the duct, the total weight of the core material is increased compared to the ring-shaped core material, and the productivity of the duct is further reduced. If the light spiral wire 1a is used instead of the hard steel wire as the core material, the total weight of the duct can be significantly reduced, which contributes to the improvement of the duct productivity.

また、樹脂によって形成された芯材1a、1bがそれぞれ採用されたダクト2a、2bは、芯材部分の腐食による材料劣化の問題が起こらず、また、芯材が接する布材が該芯材の錆によって汚れてしまうという問題も解決でき、ひいては、ダクトの耐用年数をより長くすることができる。   In addition, the ducts 2a and 2b in which the core materials 1a and 1b formed of resin are respectively employed do not cause a problem of material deterioration due to corrosion of the core material portion, and the cloth material in contact with the core material is the core material. The problem of contamination by rust can also be solved, and as a result, the useful life of the duct can be extended.

また、ダクト2a、2bは、軽量化が図られているため、ダクト製造や現場設置の際に、このダクト2a又はダクト2bを支持するときに使用されるI型鋼、あるいはこれらのダクト2a、2bを伸縮させるときに使用される動力機器を小型化することができるという利点もある。   Further, since the weights of the ducts 2a and 2b are reduced, the I-type steel used to support the duct 2a or the duct 2b at the time of duct manufacture or field installation, or these ducts 2a and 2b. There is also an advantage that the power equipment used when expanding and contracting can be reduced in size.

ダクトの芯材には剛性が要求されるが、本発明に係る線状物1は、軽量でありながら、硬鋼線と同等以上の引張強力を有するものも提供可能であり、また、硬鋼線と同程度の高い剛性を長期間安定して維持することができる。   Although the core material of the duct is required to have rigidity, the linear object 1 according to the present invention can provide a material having a tensile strength equal to or higher than that of a hard steel wire while being lightweight. High rigidity comparable to that of the wire can be stably maintained for a long time.

比重が硬鋼線よりも小さい線状物1を芯材として用いたことで、高い集塵効果を得ることができる。より具体的には、同じ剛性でも、比重の大きい硬鋼線を芯材に用いた場合は、該芯材の自重によって、設置されたダクト2に撓みが発生してダクト断面が円形から楕円形に変形してしまう。この変形によって風の流れが曲がったり、乱れが生じたりして、集塵効果が低減してしまうという問題が起こる。しかし、比重の小さい本発明に係る線状物1を芯材に用いると、ダクト断面形状の変形が起こり難いので、このような問題が発生しない。   By using the linear object 1 whose specific gravity is smaller than a hard steel wire as a core material, a high dust collection effect can be obtained. More specifically, when a hard steel wire having the same rigidity but a large specific gravity is used as the core material, the duct 2 is bent due to the weight of the core material, and the duct cross-section is circular to elliptical. Will be deformed. This deformation causes a problem that the wind flow is bent or turbulent and the dust collection effect is reduced. However, when the linear object 1 according to the present invention having a small specific gravity is used for the core material, such a problem does not occur because the duct cross-sectional shape is hardly deformed.

特に、連続的に繋がっている長尺物であるスパイラル状の線状物1aを芯材として採用した場合は、長手方向に連続的にダクト2aを支持して補強し、該ダクト2aの形状を保持できる。即ち、該ダクト2aの円筒形状の断面形状(円形)を連続的に維持し易くなる。この結果、集塵効果の低減をより確実に防止することができ、さらには、伸縮時のダクトの屈曲又は座屈等の不具合も解消することができる。なお、「伸縮」とは、コイル様に、縮めたり、伸ばしたりすることを意味している。   In particular, when a spiral linear object 1a that is a continuous object is employed as a core material, the duct 2a is continuously supported and reinforced in the longitudinal direction, and the shape of the duct 2a is changed. Can hold. That is, it becomes easy to continuously maintain the cylindrical cross-sectional shape (circular shape) of the duct 2a. As a result, it is possible to more reliably prevent the dust collection effect from being reduced, and to eliminate problems such as bending or buckling of the duct during expansion and contraction. “Extension / contraction” means contraction or extension like a coil.

本発明の効果を検証するために、実施例1〜3のダクト、比較例1,2のダクトを作製し、評価を行った。   In order to verify the effects of the present invention, the ducts of Examples 1 to 3 and the ducts of Comparative Examples 1 and 2 were produced and evaluated.

<実施例1>
44,000dtex/本のガラス繊維40本に、増粘剤としてポリメタクリル酸メチル樹脂粉末(日本ゼオン(株)製、商品名「ゼフィアックF320」、粒子径1μm)と、浸透増粘剤としてメタクリル酸ベンジルと、を含む不飽和ポリエステル樹脂(日本ユピカ(株)製、商品名「ユピカ9001」)を含浸させた後、ポリエチレン系熱可塑性樹脂(日本ユニカー社製、商品名「NUCG5350」)で被覆し、線状物中間体を得た。なお、線状物中間体の外径は15mmであった。
<Example 1>
Polymethylmethacrylate resin powder (manufactured by Nippon Zeon Co., Ltd., trade name “Zefiac F320”, particle diameter 1 μm) as a thickener and methacrylic acid as a penetrating thickener on 44,000 dtex / glass fiber 40 After impregnating an unsaturated polyester resin containing benzyl (Nippon Iupika Co., Ltd., trade name “Yupika 9001”), it is coated with a polyethylene-based thermoplastic resin (Nippon Unicar Corporation, trade name “NUCG5350”). A linear product intermediate was obtained. Note that the outer diameter of the linear intermediate was 15 mm.

この実施例1では、上記線状物中間体を増粘せしめた後、外径1,500mmの円筒金型に連続的に巻付けて、98℃で24時間乾熱加熱硬化した。得られた繊維強化複合樹脂線状物を1,500mmの内径となる位置で切断した。そして、両端からそれぞれ長さ50mmの領域の被覆熱可塑性樹脂を剥き、エポキシ系接着剤を充填させておいたアルミパイプ(内径15mm、全長100mm、R750mm)を用いて繋ぎ、リング状とした。そして、100mmピッチでリング状芯材(図3再参照)をターポリンシートの内側に配置し、外径1,500mmのダクト5mを作製し、さらに、この5m長のダクトをファスナーにて接合して、全長100mの集塵用のダクトを得た。なお、「タ−ポリンシ−ト」とは、高強度ポリエステル織物に塩化ビニールやオレフィン系のフィルムを熱融着したシートである。   In Example 1, after the above-mentioned linear intermediate was thickened, it was continuously wound around a cylindrical mold having an outer diameter of 1,500 mm and cured by heating with dry heat at 98 ° C. for 24 hours. The obtained fiber-reinforced composite resin linear material was cut at a position where the inner diameter was 1,500 mm. Then, the coated thermoplastic resin having a length of 50 mm was peeled from both ends, and connected with an aluminum pipe (inner diameter: 15 mm, total length: 100 mm, R750 mm) filled with an epoxy adhesive to form a ring shape. Then, a ring-shaped core material (refer to FIG. 3) is arranged on the inner side of the tarpaulin sheet at a pitch of 100 mm to produce a duct 5 m having an outer diameter of 1,500 mm, and further, this 5 m long duct is joined with a fastener. A dust collecting duct having a total length of 100 m was obtained. The "tarporin sheet" is a sheet obtained by heat-sealing a vinyl chloride or olefin film on a high-strength polyester fabric.

このダクトの総重量は、2,071kgであった。また、ダクトの伸縮試験を実施したところ、良好な伸縮性を示し、ダクト断面は連続的に円形を保っていた。さらに、負圧試験を実施したところ、1.7kPaの条件でも変形はなく、問題がないレベルであった。未硬化状熱硬化性樹脂に増粘剤等を添加して増粘性を高めておいた結果、金型へ巻付けるときの張力によって線状物に扁平等の変形は発生しておらず、好適であった。また、4mの高さからダクトを落下させてみたが、芯材は一時的な弾性変形を伴うのみで、塑性変形しなかった。   The total weight of this duct was 2,071 kg. Moreover, when the expansion-contraction test of the duct was implemented, the favorable elasticity was shown and the duct cross section kept circular continuously. Furthermore, when a negative pressure test was conducted, there was no deformation even under the condition of 1.7 kPa, and there was no problem. As a result of increasing the viscosity by adding a thickener to the uncured thermosetting resin, no deformation such as flatness occurs in the linear object due to the tension when winding it around the mold, which is suitable Met. Although the duct was dropped from a height of 4 m, the core material was only accompanied by temporary elastic deformation, and was not plastically deformed.

<実施例2>
実施例1と同様の手法で線状物中間体を得て、これを増粘せしめた後、外径1,500mmの金型に連続的に44周巻付けて、98℃で24時間乾熱加熱硬化した。得られたスパイラル状の線状物を芯材として2巻使用し、これを芯材として120mmピッチでターポリンシートの内側に配置し、外径1,500mmのダクト5mを作製し、この5m長のダクトをファスナーにて接合して、全長100mの集塵用ダクトを得た。
<Example 2>
A linear product intermediate was obtained in the same manner as in Example 1, and after thickening this, 44 rounds were continuously wound around a mold having an outer diameter of 1,500 mm and dried at 98 ° C. for 24 hours. Heat cured. The obtained spiral wire is used as a core material in two rolls, and is placed inside the tarpaulin sheet at a pitch of 120 mm as a core material to produce a duct 5 m having an outer diameter of 1,500 mm. The duct was joined with a fastener to obtain a dust collecting duct having a total length of 100 m.

このダクトの総重量は、1,873kgであった。また、このダクトに関して、伸縮試験を実施したところ、良好な伸縮性を示し、ダクト断面も連続的に円形を保っていた。また、負圧試験を実施したところ、2.0kPaでも変形が起こらず、問題がないレベルであった。さらに、未硬化状熱硬化性樹脂に増粘剤等を添加して増粘性を高めておいた結果、金型へ巻付けるときの張力によって線状物に扁平等の変形が発生しておらず、好適であった。また、4mの高さからダクトを落下させてみたが、芯材は一時的な弾性変形を伴うのみで、塑性変形しなかった。   The total weight of this duct was 1,873 kg. Moreover, when the expansion-contraction test was implemented regarding this duct, the favorable stretchability was shown and the duct cross section was maintaining circular continuously. In addition, when a negative pressure test was performed, the deformation did not occur even at 2.0 kPa, and there was no problem. In addition, as a result of adding a thickener to the uncured thermosetting resin to increase the viscosity, no deformation such as flatness has occurred in the linear object due to the tension when wound around the mold. It was preferable. Although the duct was dropped from a height of 4 m, the core material was only accompanied by temporary elastic deformation, and was not plastically deformed.

<実施例3>
実施例1と同様の手法で線状物中間体を得て、これを増粘せしめた後、外径1,650mmの円筒金型に連続的に22周巻付け、98℃で24時間乾熱加熱硬化した。得られたスパイラル状の線状物を芯材として2巻使用し、これを芯材として、120mmピッチでターポリンシートの内側に配置した長さ5mのダクトを作製し、さらに、この5m長のダクトをファスナーにて接合して、全長100mの集塵用ダクトを得た。
<Example 3>
A linear product intermediate was obtained in the same manner as in Example 1, and after thickening this, it was continuously wound around a cylindrical mold having an outer diameter of 1,650 mm for 22 turns and dried at 98 ° C. for 24 hours. Heat cured. Using the obtained spiral wire as a core material, two rolls were used as a core material, and a 5 m long duct arranged inside the tarpaulin sheet at a pitch of 120 mm was prepared. Were joined with a fastener to obtain a dust collection duct having a total length of 100 m.

このダクト総重量は、1,997kgであった。また、伸縮試験を実施したところ、良好な伸縮性を示し、ダクト断面も連続的に円形を保っていた。また、負圧試験を実施したところ、2.0kPaでも変形はなく、問題ないレベルであった。さらに、未硬化状熱硬化性樹脂に増粘剤等を添加して増粘性を高めておいた結果、円筒金型へ巻付けるときの張力によって線状物が扁平化する等の変形が発生しておらず、好適であった。また、4mの高さからダクトを落下させてみたが、芯材は一時的な弾性変形を伴うのみで、塑性変形しなかった。   The total weight of this duct was 1,997 kg. Moreover, when the expansion-contraction test was implemented, the favorable stretchability was shown and the duct cross section was maintaining circular continuously. Moreover, when the negative pressure test was implemented, even if it was 2.0 kPa, there was no deformation | transformation and it was the level which is satisfactory. Furthermore, as a result of adding a thickener to the uncured thermosetting resin to increase the viscosity, deformation such as flattening of the linear object occurs due to the tension when it is wound around the cylindrical mold. It was not suitable. Although the duct was dropped from a height of 4 m, the core material was only accompanied by temporary elastic deformation, and was not plastically deformed.

<参考例>
44,000dtex/本のガラス繊維40本に、増粘剤と浸透増粘剤を含まない不飽和ポリエステル樹脂(日本ユピカ(株)製、商品名「ユピカ9001」)を含浸させた後、ポリエチレン系熱可塑性樹脂(日本ユニカー社製、商品名「NUCG5350」)で被覆し、線状物中間体を得た。なお、線状物中間体の外径は15mmであった。
<Reference example>
After impregnating 40 glass fibers of 44,000 dtex / glass with an unsaturated polyester resin (Nippon Iupika Co., Ltd., trade name “Iupica 9001”) that does not contain a thickener and a penetrating thickener, a polyethylene type The product was coated with a thermoplastic resin (trade name “NUCG5350” manufactured by Nippon Unicar Co., Ltd.) to obtain a linear product intermediate. Note that the outer diameter of the linear intermediate was 15 mm.

この参考例では、上記線状物中間体を、外径1,500mmの円筒金型に連続的に巻付けて、98℃で24時間乾熱加熱硬化した。得られた繊維強化複合樹脂線状物を1,500mmの内径となる位置で切断した。そして、両端からそれぞれ長さ50mmの領域の被覆熱可塑性樹脂を剥き、エポキシ系接着剤を充填させておいたアルミパイプ(内径15mm、全長100mm、R750mm)を用いて繋ぎ、リング状の芯材とした。この場合、円筒金型への巻付け張力によって線状物中間体が扁平化されている傾向が見られた。 In this reference example , the linear intermediate was continuously wound around a cylindrical mold having an outer diameter of 1,500 mm, and was cured by heat and dry heat at 98 ° C. for 24 hours. The obtained fiber-reinforced composite resin linear material was cut at a position where the inner diameter was 1,500 mm. Then, the coated thermoplastic resin having a length of 50 mm is peeled off from both ends and connected using an aluminum pipe (inner diameter 15 mm, total length 100 mm, R750 mm) filled with an epoxy adhesive, and a ring-shaped core material did. In this case, there was a tendency that the linear object intermediate was flattened by the winding tension around the cylindrical mold .

<比較例1>
直径8mmの硬鋼線B種を直径1,500mmのリング状としたものを芯材として、100mmピッチに配置してターポリンシートで長さ5mのダクトを作製し、このダクトをファスナーにて接合して、長さ50mの集塵用ダクトを得た。次に、直径10mmの硬鋼線B種を用いて、直径1,500mmのリング形状の芯材とし、長さ50mのダクトを得た。この2種類の50m長のダクトを繋ぎ、全長100mの集塵用ダクトを得た。
<Comparative Example 1>
Using a hard steel wire type B with a diameter of 1,500 mm in the form of a ring with a diameter of 1,500 mm as a core material, a duct with a length of 5 m is produced with a tarpaulin sheet, and this duct is joined with a fastener. Thus, a dust collection duct having a length of 50 m was obtained. Next, a hard steel wire type B having a diameter of 10 mm was used to obtain a ring-shaped core material having a diameter of 1,500 mm, and a duct having a length of 50 m was obtained. These two types of 50 m long ducts were connected to obtain a dust collecting duct having a total length of 100 m.

このダクトの総重量は、3,333kgであった。なお、伸縮試験を実施したところ、良好な伸縮性を示したが、ダクト断面は、その芯材の自重により撓んで楕円状となっていた。また、4mの高さから落下させてみたところ、その芯材は塑性変形し使用できなくなった。   The total weight of this duct was 3,333 kg. In addition, when the expansion-contraction test was implemented, the favorable elastic property was shown, but the duct cross section was bent by the dead weight of the core material, and became elliptical. When dropped from a height of 4 m, the core material was plastically deformed and could not be used.

<比較例2>
直径8mmの硬鋼線B種を直径1,650mmのリング状としたものを芯材として、100mmピッチに配置して、ターポリンシートで長さ5mのダクトを作製し、この5m長のダクトをファスナーにて接合し、長さ50mの集塵用ダクトを得た。次に、直径10mmの硬鋼線B種を直径1,650mmのリング状としたものを芯材とし用い、100mmピッチにターポリンシートの内側に配置し、長さ5mのダクトを作製し、この5m長のダクトをファスナーにて接合して、長さ50mの集塵ダクトを得た。この2種類の長さ50mのダクトを繋いで、全長100mの集塵ダクトを得た。
<Comparative example 2>
Using a hard steel wire type B with a diameter of 1,650 mm in a ring shape with a diameter of 1,650 mm as a core material, arrange it at a pitch of 100 mm, and make a duct with a length of 5 m with a tarpaulin sheet. To obtain a dust collection duct having a length of 50 m. Next, a hard steel wire type B having a diameter of 10 mm and a ring shape having a diameter of 1,650 mm is used as a core material, and is placed inside a tarpaulin sheet at a pitch of 100 mm to produce a duct having a length of 5 m. The long duct was joined with a fastener to obtain a dust collection duct having a length of 50 m. The two types of ducts having a length of 50 m were connected to obtain a dust collecting duct having a total length of 100 m.

このダクトの総重量は、3,547kgであった。また、伸縮試験を実施したところ、良好な伸縮性を示したが、ダクト断面は、その芯材の自重により撓んで楕円状となっていた。また、4mの高さから落下させてみたところ、その芯材は塑性変形して、使用できなくなった。   The total weight of this duct was 3,547 kg. Moreover, when the expansion-contraction test was implemented, the favorable elastic property was shown, However, The duct cross section bent by the dead weight of the core material, and became elliptical. When dropped from a height of 4 m, the core material was plastically deformed and could not be used.

以上より、ダクト用の芯材として、本発明に係る繊維強化複合樹脂線状物を用いることで、ダクトの大幅な軽量化を達成できる。また、該線状物の比重は、従来一般に芯材として利用されてきた硬鋼線に比べて小さいので、芯材の自重によるダクト形状の撓み変形の発生の心配がないため、大口径、例えば、実施例でも検証されている口径1,500mm以上のダクトを安心して提供することができる。   From the above, by using the fiber reinforced composite resin linear material according to the present invention as the core material for the duct, a significant weight reduction of the duct can be achieved. Moreover, since the specific gravity of the linear object is smaller than that of a hard steel wire that has been conventionally used as a core material in general, there is no concern about the occurrence of duct-shaped bending deformation due to the weight of the core material. In addition, it is possible to provide a duct having a diameter of 1,500 mm or more, which has been verified in the embodiment, with peace of mind.

本発明に係る繊維強化複合樹脂線状物は、樹脂製であるので、所望の形状、例えば、スパイラル状又はリング状に成型し易いという利点もある。また、同線状物を大口径のダクトの芯材として採用すれば、ダクト総重量の軽減やコストダウンンに大きく寄与するとともに、ダクトの生産性向上、運搬又は設置の際の労働生産性の向上、ダクトを扱う周辺機器の小型化、動力エネルギーの低減などにも寄与する。また、芯材の軽量化によって、芯材の自重によるダクトの変形が起こり難くなるので、大口径のダクトであっても、ダクト内に円滑な吸引空気の流れをつくり、所望の集塵効果を発揮させることができる。   Since the fiber-reinforced composite resin linear material according to the present invention is made of resin, there is also an advantage that it can be easily molded into a desired shape, for example, a spiral shape or a ring shape. In addition, if the same wire is used as the core material for large-diameter ducts, it will greatly contribute to reducing the total weight of the duct and reducing costs, while improving duct productivity and improving labor productivity during transportation or installation. Contributes to improvement, downsizing of peripheral equipment handling ducts, and reduction of power energy. In addition, because the weight of the core material makes it difficult for the duct to deform due to the weight of the core material, even if the duct has a large diameter, a smooth suction air flow is created in the duct to achieve the desired dust collection effect. It can be demonstrated.

本発明に係る繊維強化複合樹脂線状物は、ダクトの形状を保持するための芯材として利用できる。特に、軽量化効果が顕著であるので、大型の(大口径の)ダクトの芯材として利用できる。   The fiber reinforced composite resin linear object according to the present invention can be used as a core material for maintaining the shape of the duct. In particular, since the weight reduction effect is remarkable, it can be used as a core material for a large-sized (large-diameter) duct.

本発明に係る繊維強化複合樹脂線状物(1)の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the fiber reinforced composite resin linear material (1) which concerns on this invention. スパイラル状に形成された同線状物(1a)の一形態例の様子を示す図である。It is a figure which shows the mode of the example of 1 form of the same linear object (1a) formed in the spiral form. リング状に形成された同線状物(1b)の一形態例を示す図である。It is a figure which shows one example of the same linear object (1b) formed in the ring shape. 本発明に係る線状物(1)の一代表例であるスパイラル状の線状物(1a)が芯材として使用されたダクト(2a)の状態を示す図である。It is a figure which shows the state of the duct (2a) in which the spiral linear object (1a) which is a representative example of the linear object (1) based on this invention was used as a core material. 同線状物1の別の代表例であるリング状の線状物(1b)が芯材として所定間隔で配置されたダクト(2b)の状態を示す図である。It is a figure which shows the state of the duct (2b) by which the ring-shaped linear object (1b) which is another representative example of the same linear object 1 is arrange | positioned as a core material at predetermined intervals.

符号の説明Explanation of symbols

1 繊維強化複合樹脂線状物(略称、線状物)
1a スパイラル状の線状物(芯材)
1b リング状の線状物(芯材)
2a,2b ダクト
11 長繊維
12 未硬化状熱硬化性樹脂
13 熱可塑性樹脂
1 Fiber reinforced composite resin linear (abbreviation, linear)
1a Spiral wire (core material)
1b Ring-shaped wire (core material)
2a, 2b Duct 11 Long fiber 12 Uncured thermosetting resin 13 Thermoplastic resin

Claims (4)

増粘剤及び浸透増粘剤を含有する未硬化状熱硬化性樹脂を長繊維に含浸させる含浸工程と、
前記含浸が施された長繊維の外周を溶融状態の熱可塑性樹脂によって被覆した後に、冷却固化を施すことによって線状物中間体を得る工程と、
前記線状物中間体を養生する工程と、
前記線状物中間体を所定口径の円筒金型に巻き付けた状態で、該線状物中間体の内部の未硬化熱硬化性樹脂に対して熱硬化処理を施し、スパイラル状又はリング状の線状物を得る加熱工程と、
を少なくとも行う繊維強化複合樹脂線状物の製造方法。
An impregnation step of impregnating long fibers with an uncured thermosetting resin containing a thickener and a penetrating thickener ;
A step of obtaining a linear intermediate by coating the outer periphery of the impregnated long fiber with a molten thermoplastic resin, followed by cooling and solidification;
Curing the linear intermediate; and
The linear material intermediate state wound around the cylindrical mold having a predetermined diameter, the thermosetting treatment and facilities for internal uncured thermosetting resin of the linear material intermediate, spiral or ring-shaped A heating step to obtain a linear object ;
A method for producing a fiber-reinforced composite resin linear material, at least.
前記未硬化状熱硬化性樹脂と前記浸透増粘剤:5〜50重量部との合計量100重量部に対して、前記増粘剤を0.5〜50重量部配合することを特徴とする請求項1に記載の繊維強化複合樹脂線状物の製造方法。0.5 to 50 parts by weight of the thickener is blended with respect to 100 parts by weight of the total amount of the uncured thermosetting resin and the penetrating thickener: 5 to 50 parts by weight. The manufacturing method of the fiber reinforced composite resin linear object of Claim 1. 前記円筒金型の直径が1500mm以上であることを特徴とする請求項1又は2に記載の繊維強化複合樹脂線状物の製造方法。The diameter of the said cylindrical metal mold is 1500 mm or more, The manufacturing method of the fiber reinforced composite resin linear object of Claim 1 or 2 characterized by the above-mentioned. 断面が円形状の繊維強化複合樹脂線状物を得ることを特徴とする請求項1〜3のいずれか1項に記載の繊維強化複合樹脂線状物の製造方法。The method for producing a fiber-reinforced composite resin linear product according to any one of claims 1 to 3, wherein a fiber-reinforced composite resin linear product having a circular cross section is obtained.
JP2008196894A 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced composite resin linear material Active JP5437603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196894A JP5437603B2 (en) 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced composite resin linear material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196894A JP5437603B2 (en) 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced composite resin linear material

Publications (2)

Publication Number Publication Date
JP2010030227A JP2010030227A (en) 2010-02-12
JP5437603B2 true JP5437603B2 (en) 2014-03-12

Family

ID=41735301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196894A Active JP5437603B2 (en) 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced composite resin linear material

Country Status (1)

Country Link
JP (1) JP5437603B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640553C2 (en) * 2016-04-26 2018-01-09 Общество С Ограниченной Ответственностью "Анизопринт" Composite reinforcing yarn, prepreg, tape for 3d printing and installation for their production

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501170A (en) * 1973-05-07 1975-01-08
JPS5192875A (en) * 1975-02-13 1976-08-14
JPS59101333A (en) * 1982-12-01 1984-06-11 Ube Nitto Kasei Kk Method and apparatus for regulating surface of continuous rodlike item of fiber reinforced synthetic resin
JP2772795B2 (en) * 1987-11-25 1998-07-09 宇部日東化成 株式会社 Intermediate of fiber-reinforced synthetic resin linear material
JPH0688311B2 (en) * 1989-06-26 1994-11-09 宇部日東化成株式会社 Method for producing fiber-reinforced composite molded body
JPH08296888A (en) * 1995-04-26 1996-11-12 Toray Monofilament Co Ltd Flexible duct
JP4310411B2 (en) * 2001-12-20 2009-08-12 宇部日東化成株式会社 Firewood mat for civil engineering made of fiber reinforced resin and its manufacturing method
JP2004060406A (en) * 2002-07-31 2004-02-26 Nippon Oil Corp Structural member made of fiber reinforced plastics (frp)
JP5512069B2 (en) * 2006-04-21 2014-06-04 東亜グラウト工業株式会社 Curable resin composition, lining material and tubular lining material
JP5236269B2 (en) * 2007-12-06 2013-07-17 宇部日東化成株式会社 Fiber reinforced synthetic fiber linear material, firewood mat and ginger for civil engineering using the same, and method for producing fiber reinforced synthetic fiber linear material

Also Published As

Publication number Publication date
JP2010030227A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
CN104354436B (en) The manufacture method of high-temperature fibre wound composite housing
US4259991A (en) High pressure hose construction and method of and apparatus for making the same
RU2018113428A (en) HIGH PRESSURE PIPE AND METHOD FOR PRODUCING SUCH PIPE
EP3443254B1 (en) Composite insulation system
SE441383B (en) REINFORCED HANDLING CONSTRUCTION FOR TORQUE TRANSMISSION
JP2014517220A5 (en)
KR20100014418A (en) Electrical conductor and core for an electrical conductor
JP6457330B2 (en) Fiber reinforced resin composite tubular structure and method for producing the same
JP2007518046A5 (en)
RU2015101200A (en) INTERIOR FACING OF PIPELINES PASSING INTO MARINE STRUCTURES
JP5437603B2 (en) Manufacturing method of fiber reinforced composite resin linear material
WO2011072562A1 (en) Reinforcing method for plastic-steel-wound tube and steel-belt-reinforced composite strip
CN103712000A (en) Multi-layer wound composite tube
WO2022017105A1 (en) Self-pressure-bearing continuous linear resin-based fiber reinforced prepreg
JP2019015399A (en) Screw-like molding
EP2650431B1 (en) Corrosion resistant steel strand for prestressed concrete
JP2012215192A (en) Repair machine for repairing deteriorated part of inner periphery of steel pipe, and repairing method using the same
JP2524315B2 (en) FRP coil spring manufacturing method
JP2010032168A (en) Duct for blast or exhaust
KR101056110B1 (en) Method of manufacturing a fishing rod
JP6980365B2 (en) How to reinforce a steel chimney
EP1696530B1 (en) Impact resistant conduit
RU2808014C2 (en) Method for manufacturing curved pipe from composite materials, mandrel and slipway for implementing this method and curved pipe from composite materials
KR20140094176A (en) High strengthen plastic pipe having reinforcement layer
CN102966802A (en) Reinforced-type plastic pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5437603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250