JP5437223B2 - Optical receiver, optical communication system, and coherent detection method - Google Patents

Optical receiver, optical communication system, and coherent detection method Download PDF

Info

Publication number
JP5437223B2
JP5437223B2 JP2010268485A JP2010268485A JP5437223B2 JP 5437223 B2 JP5437223 B2 JP 5437223B2 JP 2010268485 A JP2010268485 A JP 2010268485A JP 2010268485 A JP2010268485 A JP 2010268485A JP 5437223 B2 JP5437223 B2 JP 5437223B2
Authority
JP
Japan
Prior art keywords
light
optical
signal
idler
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010268485A
Other languages
Japanese (ja)
Other versions
JP2012119978A (en
Inventor
學 吉野
準基 三鬼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010268485A priority Critical patent/JP5437223B2/en
Publication of JP2012119978A publication Critical patent/JP2012119978A/en
Application granted granted Critical
Publication of JP5437223B2 publication Critical patent/JP5437223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光信号をコヒーレント同期検波する光受信機、これを含む光通信システム及びそのコヒーレント同期検波方法に関する。   The present invention relates to an optical receiver for coherent synchronous detection of an optical signal, an optical communication system including the optical receiver, and a coherent synchronous detection method thereof.

PON(Passive Optical Network)に代表される光アクセスシステムの普及と共に、より高速な通信に対する要求が増大している。この要求を解決する手段として、高感度かつ帯域外雑音を抑制した受信が可能なことが知られているコヒーレント検波をアクセスシステムに適用したOFDMA (Orthogonal Frequency Division Multiple Access) PON(例えば、非特許文献1を参照。)や光符号分割多重(Code Division Multiple Access;CDMA) PON(例えば、非特許文献2を参照。)が検討されている。   With the spread of optical access systems represented by PON (Passive Optical Network), demands for higher-speed communication are increasing. As a means for solving this requirement, OFDMA (Orthogonal Frequency Division Multiple Access) PON in which coherent detection, which is known to be capable of reception with high sensitivity and suppression of out-of-band noise, is applied to an access system (for example, non-patent literature) 1) and Code Division Multiple Access (CDMA) PON (see, for example, Non-Patent Document 2) are being studied.

N.Cvijetic, D.Qian, J.Hu, and T.Wang,“Orthogonal frequency division multiple access PON (OFDMA−PON) for colorless upstream transmission beyond 10 Gb/s,” IEEE J. Select. Areas Commun., vol.28, no.6, pp.781−790, Aug.2010.N. Cvjetic, D.C. Qian, J.A. Hu, and T.H. Wang, “Orthogonal frequency division multiple access PON (OFDMA-PON) for color upstream transmission bead 10 Gb / s,” IEEE J. Select. Areas Commun. , Vol. 28, no. 6, pp. 781-790, Aug. 2010. M.Yoshino, S.Kaneko, T.Taniguchi, N.Miki, K.Kumozaki, T.Imai, N.Yoshimoto, and M.Tsubokawa, “Beat noise mitigation of spectral amplitude coding OCDMA using heterodyne detection,” J. Lightwave Technol., vol.26, no.8, pp.963−970, Apr.2008.M.M. Yoshino, S .; Kaneko, T .; Taniguchi, N .; Miki, K .; Kumozaki, T .; Imai, N.I. Yoshimoto, and M.K. Tsubokawa, “Beat noise mitigation of spectral amplification coding OCDMA using heterodyne detection,” J. Am. Lightwave Technol. , Vol. 26, no. 8, pp. 963-970, Apr. 2008. K.Kasai, J.Hongo, M.Yoshida, and M.Nakazawa, “Optical phase−locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers”, IEICE Electronics Express, vol.4, no.3, pp.77−81, Feb.2007.K. Kasai, J .; Hongo, M .; Yoshida, and M.K. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers”, IEICE Electronics. 4, no. 3, pp. 77-81, Feb. 2007. S.Ristic, A.Bhardwaj M.J.Rodwell, L.A.Coldren, and L.A.Johansson, “An optical phase−locked loop photonic integrated circuit,” J. Lightwave Technol., vol.28, no.4, pp.526−538, Feb.2010.S. Ristic, A.R. Bhardwaj M.M. J. et al. Rodwell, L.M. A. Coldren, and L.C. A. Johansson, “An optical phase-locked loop photonic integrated circuit,” J. Lightwave Technol. , Vol. 28, no. 4, pp. 526-538, Feb. 2010. M.Fujiwara, J.Kani, H.Suzuki, K.Araya, and M.Teshima, “Flattened optical multi carrier generation of 12.5GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electron. Lett., vol.37, pp.967−968, Jul.2001.M.M. Fujiwara, J. et al. Kani, H .; Suzuki, K .; Araya, and M.M. Teshima, “Flattened optical multi carrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplification and phase hybrid modulation,”. Lett. , Vol. 37, pp. 967-968, Jul. 2001. M.Yoshino, N.Miki, N.Yoshimoto, and K.Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” J. Lightwave Technol. Vol.27, no.20, pp.4524−4529, Oct.2009.M.M. Yoshino, N .; Miki, N .; Yoshimoto, and K.K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” J. Lightwave Technol. Vol. 27, no. 20, pp. 4524-4529, Oct. 2009. 種村 拓夫、加藤 一弘、菊池 和朗、「ねじり光ファイバを用いた偏波無依存型非対称四光波混合」、2005年電子情報通信学会総合大会C−4−9Takuo Tanemura, Kazuhiro Kato, Kazuo Kikuchi, “Polarization-independent asymmetric four-wave mixing using twisted optical fiber”, 2005 IEICE General Conference C-4-9 吉野 學、吉本 直人、坪川 信、「チャープ同期受信による光干渉抑圧」、2008年電子情報通信学会総合大会B−10−53Manabu Yoshino, Naoto Yoshimoto, Makoto Tsubokawa, "Optical interference suppression by chirp synchronous reception", 2008 IEICE General Conference B-10-53 吉野 學、金子 慎、三鬼 準基、坪川 信,「隣接スペクトルチップの漏れ込みに強いSAC−OCDMA用復号器」、2007年電子情報通信学会総合大会B−10−22Manabu Yoshino, Makoto Kaneko, Junki Miki, Makoto Tsubokawa, “Decoder for SAC-OCDMA that is strong against leakage of adjacent spectrum chips”, 2007 IEICE General Conference B-10-22 O.Ishida and T.Okoshi, “Effect of frequency offset in DPSK phase diversity optical receivers”, ECOC, 1988, pp.155−158.O. Ishida and T. Okoshi, “Effect of frequency offset in DPSK phase diversity optical receivers”, ECOC, 1988, pp. 196 155-158.

コヒーレント検波は、信号光と局発光とのビートにより、信号光で搬送する信号を中間周波数(Intermediate Frequency;IF)(2つの光の周波数差に相当する周波数)信号に変換し、信号を復調する。コヒーレント検波には、包絡線検波と同期検波が存在する。この内、コヒーレント同期検波では、局発光の動的な位相同期技術が重要となる。これは、伝送後の信号光と局発光の位相が同期していないと、IF信号の位相が揺らいでしまい正確な復調が出来なくなるためである(例えば、非特許文献3を参照。)。揺らぎは、信号の伝送速度に比べて無視できる程度にする必要があるため、高速の信号を受信するためには、より高速な動的な位相同期が必要となる。   In coherent detection, a signal carried by signal light is converted into an intermediate frequency (IF) (frequency corresponding to the frequency difference between two lights) signal by the beat of signal light and local light, and the signal is demodulated. . Coherent detection includes envelope detection and synchronous detection. Among these, in coherent synchronous detection, a dynamic phase synchronization technique of local light emission is important. This is because if the phase of the signal light after transmission and the phase of local light are not synchronized, the phase of the IF signal fluctuates and accurate demodulation cannot be performed (see Non-Patent Document 3, for example). Fluctuations need to be negligible compared to the signal transmission rate, so that higher-speed dynamic phase synchronization is required to receive high-speed signals.

動的な位相同期は、光位相同期ループ(Optical Phase−Locked Loops;OPLL)により行う。光位相同期ループは通常、2光を光検波器により光検波し、検出した光位相の誤差情報を、電気回路で局発光源にフィードバックする構成になっている。実用的な光位相同期ループを実現するには、2光のフリーランニング時の光周波数差が光位相同期ループの周波数引き込み範囲以内に常に収まり、位相誤差が小さくなるように、光源の線幅を細くし、ループ長を短くし、光位相同期ループの帯域幅を広くする必要がある。例えば、線幅10MHz程度の信号光の場合、GHzの帯域幅が要求される。GHzの帯域幅のためには、ループ遅延時間とループ長は高々0.1マイクロ秒と2〜3cm程度にする必要がある。そのため、狭線幅の光源(例えば、非特許文献3を参照。)を用いることや光検波器と電気回路部品を集積化して光位相同期ループを短くすること(例えば、非特許文献4を参照。)などが提案されている。しかし、更なる高速化は困難である。   Dynamic phase synchronization is performed by an optical phase-locked loop (OPLL). The optical phase-locked loop is usually configured so that two lights are detected by an optical detector, and error information of the detected optical phase is fed back to a local light source by an electric circuit. To realize a practical optical phase-locked loop, the line width of the light source should be set so that the optical frequency difference during free running of the two lights is always within the frequency pull-in range of the optical phase-locked loop and the phase error is reduced. It is necessary to reduce the length, shorten the loop length, and widen the bandwidth of the optical phase-locked loop. For example, in the case of signal light having a line width of about 10 MHz, a bandwidth of GHz is required. For the bandwidth of GHz, the loop delay time and the loop length need to be at most 0.1 microsecond and about 2 to 3 cm. Therefore, use of a light source having a narrow line width (for example, see Non-Patent Document 3) or integrating an optical detector and an electric circuit component to shorten an optical phase-locked loop (for example, see Non-Patent Document 4). Etc.) have been proposed. However, further speeding up is difficult.

また、ポイント−マルチポイント光通信システムにおいて、秘匿性、妨害耐性に優れた占有型光サービスを提供する方式として光符号分割多重が期待されている。特に加入者側装置に簡便なシステムを使用できるスペクトル領域の強度符号を用いた光符号分割多重が期待されている。スペクトル領域の強度符号は、異なる光周波数の複数の光の組み合わせにより符号化する。このスペクトル領域の強度符号を用いた光符号分割多重では、同一のスペクトルを使用する信号光間のビート雑音による伝送特性の劣化が生ずる。このため、異なる光周波数の複数の光からなる局発光を用いたコヒーレント受信方式の適用が提案されている。この光符号分割多重では他送信機からの信号光と位相差のばらつきのために多重アクセス干渉(Multiple Access Interference:MAI)が生ずるため、信号光を構成する複数の光とそれと対応するそれぞれの局発光の位相関係を一定にすることが求められている(例えば、非特許文献2を参照。)。   Further, in a point-multipoint optical communication system, optical code division multiplexing is expected as a method for providing an occupying optical service excellent in secrecy and interference resistance. In particular, optical code division multiplexing using an intensity code in a spectral region that can use a simple system for a subscriber side apparatus is expected. The intensity code in the spectral region is encoded by a combination of a plurality of lights having different optical frequencies. In the optical code division multiplexing using the intensity code in the spectral region, transmission characteristics are deteriorated due to beat noise between signal lights using the same spectrum. For this reason, application of a coherent reception system using local light emission composed of a plurality of lights having different optical frequencies has been proposed. In this optical code division multiplexing, multiple access interference (MAI) occurs due to variations in phase difference with signal light from other transmitters, and therefore, a plurality of lights constituting the signal light and respective stations corresponding thereto There is a demand for making the phase relationship of light emission constant (for example, see Non-Patent Document 2).

上述のコヒーレント同期検波における位相同期の課題を解決するためには、例えば、位相関係が一定の信号光と局発光を時分割多重又は偏波分割多重(但し偏波分割多重は信号光と局発光が異なる光周波数を用いるヘテロダイン検波に限る)して送信機から送る方式とすることで、信号光と局発光の位相関係を一定にすることができる。しかしこの方法は、信号光と共に局発光を同方向に伝搬するので、伝送路の利用効率が劣化し望ましくない。更に、同一光周波数の複数の信号光が同時に到着する可能性のある光符号分割多重の場合、コヒーレントクロストークが発生するために、同じ光周波数の局発光を複数の送信機から同時に伝送することは出来ない。また、光符号分割多重で複数の送信機が存在した場合、異なる送信機から到着する信号光のそれぞれの位相が異なるため、異なる位相の多数の信号光に一つの局発光の位相を同期することは本質的に不可能である。   In order to solve the problem of phase synchronization in the coherent synchronous detection described above, for example, signal light having a constant phase relationship and local light are time-division multiplexed or polarization-division multiplexed (however, polarization division multiplexing is signal light and local light). However, it is possible to make the phase relationship between the signal light and the local light constant by adopting a method of transmitting from the transmitter by limiting to heterodyne detection using different optical frequencies. However, since this method propagates local light along with signal light in the same direction, the utilization efficiency of the transmission path is deteriorated, which is not desirable. Furthermore, in the case of optical code division multiplexing in which multiple signal lights of the same optical frequency may arrive at the same time, local light of the same optical frequency is transmitted simultaneously from multiple transmitters in order to generate coherent crosstalk. I can't. In addition, when there are multiple transmitters in optical code division multiplexing, the phase of signal light arriving from different transmitters is different, so the phase of one local light is synchronized with multiple signal lights of different phases. Is essentially impossible.

そこで、本発明は、上記課題を解決するためになされたもので、信号光と位相関係が一定の局発光を信号光と共に伝送することも、局発光の動的な光位相同期ループを用いることなく、1又は複数の信号光を位相及び光周波数のゆらぎに関わらずコヒーレント同期検波することができる光受信機、光通信システム及びコヒーレント同期検波方法を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and transmits local light having a constant phase relationship with signal light together with signal light, or uses a dynamic optical phase-locked loop of local light. It is another object of the present invention to provide an optical receiver, an optical communication system, and a coherent synchronous detection method capable of coherently detecting one or a plurality of signal lights regardless of phase and optical frequency fluctuations.

上記課題を解決するために、本発明に係る光受信機、光通信システム及びコヒーレント同期検波方法は、初期位相と位相雑音項が等しく所定の周波数差の複数の光を四光波混合部にポンプ光として入力し、信号光とポンプ光との四光混合のアイドラ光を複数出力させ、これらの出力されたアイドラ光同士の生成する中間周波数信号を、ポンプ光を生成する際の電気信号と位相が同期した電気信号で同期検波することとした。   In order to solve the above-described problems, an optical receiver, an optical communication system, and a coherent synchronous detection method according to the present invention are configured to pump a plurality of lights having the same initial phase and phase noise term to a four-wave mixing unit. And output a plurality of idler lights that are a four-light mixture of signal light and pump light, and the intermediate frequency signal generated by these output idler lights has an electrical signal and phase when generating the pump light. Synchronous detection was performed using synchronized electrical signals.

具体的には、本発明に係る光受信機は、信号光、及び初期位相と位相雑音項が等しく所定の周波数差の複数のポンプ光が入力され、前記信号光と前記ポンプ光との四光波混合を発生させ、少なくとも一組の光周波数間隔が中間周波数であるアイドラ光を複数出力する四光波混合部と、前記四光波混合部からの前記アイドラ光を光検波し、アイドラ光同士の中間周波数信号を、前記中間周波数であり且つ前記ポンプ光を生成する際の電気信号と位相が同期した電気信号でコヒーレント同期検波する同期検波部と、を備える。   Specifically, in the optical receiver according to the present invention, the signal light and a plurality of pump lights having the same initial phase and phase noise terms and having a predetermined frequency difference are input, and the four light waves of the signal light and the pump light are input. A four-wave mixing unit that generates mixing and outputs at least one set of idler light whose optical frequency interval is an intermediate frequency, and optically detects the idler light from the four-wave mixing unit, and intermediate frequency between idler lights And a synchronous detection unit that performs coherent synchronous detection on the signal with an electric signal having the intermediate frequency and the phase synchronized with the electric signal when generating the pump light.

本発明に係る光受信機は、信号光、及び初期位相と位相雑音項が等しく所定の周波数差の複数のポンプ光から、前記信号光と前記ポンプ光との四光波混合を発生させ、少なくとも一組の光周波数間隔が中間周波数であるアイドラ光を複数出力し、前記アイドラ光を光検波し、アイドラ光同士の中間周波数信号を、前記中間周波数であり且つ前記ポンプ光を生成する際の電気信号と位相が同期した電気信号でコヒーレント同期検波するコヒーレント同期検波方法を採用する。   The optical receiver according to the present invention generates four-wave mixing of the signal light and the pump light from the signal light and a plurality of pump lights having the same initial phase and phase noise terms and a predetermined frequency difference, and at least one A plurality of idler light whose intermediate optical frequency intervals are intermediate frequencies are output, the idler light is optically detected, an intermediate frequency signal between idler lights is the intermediate frequency and an electric signal for generating the pump light A coherent synchronous detection method is adopted, in which coherent synchronous detection is performed with an electrical signal whose phase is synchronized with the signal.

また、本発明に係る光通信システムは、前記光受信機と、前記光受信機に前記信号光を送信する光送信機と、を含む。   An optical communication system according to the present invention includes the optical receiver and an optical transmitter that transmits the signal light to the optical receiver.

四光波混合部は、それぞれ初期位相と位相雑音項が等しいアイドラ光を出力する。さらに、同期検波の際の電気信号の位相を、このアイドラ光同士の中間周波数信号の位相差としている。初期位相と位相雑音項が等しいアイドラ光同士の中間周波数信号の位相は、信号光の位相及び光周波数揺らぎによらずに一定となる。このため、本発明に係る光受信機、コヒーレント同期検波方法及び光通信システムは、一つのアイドラ光を信号光、もう一つのアイドラ光を局発光としてコヒーレント同期検波することができる。   The four-wave mixing unit outputs idler light having the same initial phase and phase noise term. Further, the phase of the electrical signal at the time of synchronous detection is set as the phase difference of the intermediate frequency signal between the idler lights. The phase of the intermediate frequency signal between idler lights having the same initial phase and phase noise term is constant regardless of the phase of the signal light and the optical frequency fluctuation. Therefore, the optical receiver, coherent synchronous detection method and optical communication system according to the present invention can perform coherent synchronous detection using one idler light as signal light and another idler light as local light.

従って、本発明は、信号光と位相関係が一定の局発光を信号光と共に伝送することも、局発光の動的な光位相同期ループを用いることなく、1又は複数の信号光を位相及び光周波数のゆらぎに関わらずコヒーレント同期検波することができる光受信機、光通信システム及びコヒーレント同期検波方法を提供することができる。   Therefore, the present invention can transmit local light having a constant phase relationship with signal light together with the signal light, and can also transmit one or more signal lights to the phase and light without using a dynamic optical phase-locked loop of local light. It is possible to provide an optical receiver, an optical communication system, and a coherent synchronous detection method capable of performing coherent synchronous detection regardless of frequency fluctuations.

本発明において前記信号光は、複数の互いに光周波数が異なる光から構成され、前記信号光と前記ポンプ光は、前記同期検波部でのコヒーレント同期検波の対象となる前記アイドラ光の内、前記信号光を構成する異なる光周波数の光に基づく前記アイドラ光同士の光周波数間隔が前記伝送帯域の倍以上かつ前記中間周波数の4倍以上になる光周波数であることが好ましい。   In the present invention, the signal light is composed of a plurality of lights having different optical frequencies, and the signal light and the pump light are the signals among the idler lights to be subjected to coherent synchronous detection in the synchronous detection unit. It is preferable that the optical frequency interval between the idler lights based on the light of different optical frequencies constituting the light is an optical frequency that is not less than twice the transmission band and not less than four times the intermediate frequency.

本発明に係る光受信機及び光通信システムは、信号光を構成する複数の光のそれぞれに対応して互いに同期したアイドラ光の組がそれぞれ独立して発生するため、それぞれ混信することなくコヒーレント同期検波を行うことができる。   In the optical receiver and the optical communication system according to the present invention, a set of idler lights synchronized with each other corresponding to each of a plurality of lights constituting the signal light is independently generated, so that coherent synchronization can be performed without any interference. Detection can be performed.

本発明において前記信号光は、複数の互いに光周波数が異なる光から構成され、前記信号光と前記ポンプ光は、前記同期検波部でのコヒーレント同期検波の対象となる前記アイドラ光の内、前記信号光を構成する異なる光周波数の光に基づく前記アイドラ光同士の光周波数間隔が前記伝送帯域以上かつ前記中間周波数の倍以上になる光周波数であり、前記四光波混合部は、前記信号光毎に前記アイドラ光を出力し、前記同期検波部は、前記信号光毎に前記アイドラ光をコヒーレント同期検波することとしてもよい。   In the present invention, the signal light is composed of a plurality of lights having different optical frequencies, and the signal light and the pump light are the signals among the idler lights to be subjected to coherent synchronous detection in the synchronous detection unit. The optical frequency interval between the idler lights based on the light of different optical frequencies constituting the light is an optical frequency that is not less than the transmission band and not less than twice the intermediate frequency, and the four-wave mixing unit is provided for each signal light. The idler light may be output, and the synchronous detection unit may perform coherent synchronous detection of the idler light for each signal light.

本発明に係る光受信機及び光通信システムは、光符号分割多重の信号を受信することができる。また、本発明に係る光受信機及び光通信システムは、信号光を構成する複数の光のそれぞれに対応して互いに同期したアイドラ光の組がそれぞれ独立して発生するため、それぞれ混信することなくコヒーレント同期検波を行うことができる。   The optical receiver and the optical communication system according to the present invention can receive an optical code division multiplexed signal. Further, the optical receiver and the optical communication system according to the present invention each generate a pair of idler lights that are synchronized with each other corresponding to each of the plurality of lights constituting the signal light, so that they do not interfere with each other. Coherent synchronous detection can be performed.

本発明において前記信号光は、複数の光周波数の光で光符号分割多重されており、前記四光波混合部は、復号する符号に応じて分岐した信号光の前記アイドラ光をそれぞれ出力又は前記アイドラ光を復号する符号に応じて分岐して出力し、前記同期検波部は、前記四光波混合部からの符号に応じて出力された前記アイドラ光をそれぞれ同期検波し、同期検波する信号を符号に応じて加減算することが好ましい。   In the present invention, the signal light is optical code division multiplexed with light of a plurality of optical frequencies, and the four-wave mixing unit outputs or idles the idler light of the signal light branched according to the code to be decoded. The light is branched and output according to the code for decoding the light, and the synchronous detection unit synchronously detects the idler light output according to the code from the four-wave mixing unit, and uses the signal for synchronous detection as the code. It is preferable to add or subtract accordingly.

本発明に係る光受信機及び光通信システムは、すべての複数の光符号多重の信号光をそれぞれ構成する複数の光(スペクトルチップ)に対応してそれぞれ、初期位相と位相雑音項が等しい信号光と局発光の組を生成してコヒーレント同期検波を行うことができる。本発明に係る光受信機及び光通信システムは、信号光−局発光間の位相差ばらつきによるMAIの課題を解消することができる。   The optical receiver and the optical communication system according to the present invention correspond to a plurality of lights (spectrum chips) constituting all of a plurality of optical code multiplexed signal lights, respectively, and signal lights having the same initial phase and phase noise terms. And local light can be generated to perform coherent synchronous detection. The optical receiver and the optical communication system according to the present invention can solve the problem of MAI due to variation in phase difference between signal light and local light.

本発明において前記信号光は、時間に対して光周波数が変化し、前記ポンプ光は、前記信号光の光周波数変化に同期して光周波数が変化することとしてもよい。   In the present invention, the optical frequency of the signal light may change with time, and the optical frequency of the pump light may change in synchronization with the optical frequency change of the signal light.

本発明に係る光受信機及び光通信システムは、スペクトルチップの光周波数変動とポンプ光の光周波数変動とを同期させており、信号光−局発光間の位相差ばらつきによるMAIの課題を解消することができる。   The optical receiver and the optical communication system according to the present invention synchronize the optical frequency fluctuation of the spectrum chip and the optical frequency fluctuation of the pump light, and eliminate the problem of MAI due to the phase difference variation between the signal light and the local light. be able to.

本発明において前記ポンプ光は、互いに同一の円偏波状態であり、前記四光波混合部は、円偏波ねじり光ファイバで前記アイドラ光を生成することが好ましい。   In the present invention, it is preferable that the pump lights are in the same circular polarization state, and the four-wave mixing unit generates the idler light with a circular polarization twisted optical fiber.

コヒーレント同期検波をするためには局発光と信号光の偏波を一致させ、偏波依存性を解消する必要がある。本発明に係る光受信機及び光通信システムは、四光波混合部を非特許文献7に記載される偏波無依存型四光波混合としている。すなわち、四光波混合部にポンプ光を入力する際に同一の円偏波状態とし、四光波混合部を円偏波ねじり光ファイバとすることで、四光波混合における偏波依存性を解消することができる。従って、本発明に係る光受信機及び光通信システムは、コヒーレント同期検波の偏波依存性を解消することができる。   In order to perform coherent synchronous detection, it is necessary to make the polarization of the local light and the signal light coincide with each other to eliminate the polarization dependency. In the optical receiver and the optical communication system according to the present invention, the four-wave mixing unit is a polarization-independent four-wave mixing described in Non-Patent Document 7. That is, when the pump light is input to the four-wave mixing unit, the same circular polarization state is set, and the four-wave mixing unit is a circularly polarized torsion optical fiber, thereby eliminating the polarization dependency in the four-wave mixing. Can do. Therefore, the optical receiver and the optical communication system according to the present invention can eliminate the polarization dependency of coherent synchronous detection.

本発明において前記四光波混合部は、非線形媒質部と偏波ビームコンバイナ(PBC)とからなるループで前記アイドラ光を生成してもよい。   In the present invention, the four-wave mixing unit may generate the idler light in a loop including a nonlinear medium unit and a polarization beam combiner (PBC).

非線形媒質とPBCとを組み合わせることで直交するいずれの偏波成分に対しても同様の四光波混合を発生させることができる。この結果、それぞれのコヒーレント同期検波の出力の総和は偏波に拠らず一定となる。従って、本発明に係る光受信機及び光通信システムは、四光波混合における偏波依存性を解消でき、コヒーレント同期検波の偏波依存性を解消できる。   By combining a nonlinear medium and PBC, similar four-wave mixing can be generated for any orthogonal polarization component. As a result, the sum of the outputs of the respective coherent synchronous detections is constant regardless of the polarization. Therefore, the optical receiver and the optical communication system according to the present invention can eliminate the polarization dependence in the four-wave mixing, and can eliminate the polarization dependence in the coherent synchronous detection.

本発明において前記ポンプ光は、それぞれ互いの偏波が直交し、互いの光強度が等しい2つの光からなることでもよい。   In the present invention, the pump light may be composed of two lights whose polarizations are orthogonal to each other and have the same light intensity.

互いに直交する偏波のポンプ光に対応するアイドラ光の偏波が保持される場合、互いに直交する偏波のアイドラ光同士のビート成分は発生しない。従って、本発明に係る光受信機及び光通信システムは、四光波混合における偏波依存性を解消でき、コヒーレント同期検波の偏波依存性を解消できる。   When the polarization of idler light corresponding to the orthogonally polarized pump light is maintained, no beat component is generated between the orthogonally polarized idler lights. Therefore, the optical receiver and the optical communication system according to the present invention can eliminate the polarization dependence in the four-wave mixing, and can eliminate the polarization dependence in the coherent synchronous detection.

本発明は、信号光と位相関係が一定の局発光を信号光と共に伝送することも、局発光の動的な光位相同期ループを用いることなく、1又は複数の信号光を位相及び光周波数のゆらぎに関わらずコヒーレント同期検波することができる光受信機、光通信システム及びコヒーレント同期検波方法を提供することができる。   The present invention transmits local light having a constant phase relationship with signal light together with the signal light, and does not use a dynamic optical phase-locked loop of local light. It is possible to provide an optical receiver, an optical communication system, and a coherent synchronous detection method capable of performing coherent synchronous detection regardless of fluctuations.

本発明に係る光通信システムの概略構成図である。1 is a schematic configuration diagram of an optical communication system according to the present invention. 本発明に係る光通信システムの概略構成図である。1 is a schematic configuration diagram of an optical communication system according to the present invention. 本発明に係る光通信システムの概略構成図である。1 is a schematic configuration diagram of an optical communication system according to the present invention. 本発明に係る光通信システムの概略構成図である。1 is a schematic configuration diagram of an optical communication system according to the present invention. 本発明に係る光通信システムの概略構成図である。1 is a schematic configuration diagram of an optical communication system according to the present invention. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention. 図6の場合に本発明に係る光通信システムの光検波器が出力する電気スペクトルの模式図である。FIG. 7 is a schematic diagram of an electric spectrum output by the optical detector of the optical communication system according to the present invention in the case of FIG. 6. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention. 図8の場合に本発明に係る光通信システムの光検波器が出力する電気スペクトルの模式図である。FIG. 9 is a schematic diagram of an electrical spectrum output by the optical detector of the optical communication system according to the present invention in the case of FIG. 8. 本発明に係る光通信システムが備える非線形媒質部を説明する図である。It is a figure explaining the nonlinear medium part with which the optical communication system which concerns on this invention is provided. 本発明に係る光通信システムが備える非線形媒質部を説明する図である。It is a figure explaining the nonlinear medium part with which the optical communication system which concerns on this invention is provided. 本発明に係る光受信機の非線形媒質部が出力する光スペクトルの模式図である。It is a schematic diagram of the optical spectrum which the nonlinear medium part of the optical receiver which concerns on this invention outputs. (a)本発明に係る光受信機の非線形媒質部が出力する光スペクトルの模式図である。(b)信号光Lsとポンプ光Lp1との光周波数間隔D及び信号光Lsとポンプ光Lp3との光周波数間隔Hの関係を説明する図である。(A) It is a schematic diagram of the optical spectrum which the nonlinear medium part of the optical receiver which concerns on this invention outputs. (B) It is a figure explaining the relationship of the optical frequency space | interval D of signal light Ls and pump light Lp1, and the optical frequency space | interval H of signal light Ls and pump light Lp3. 本発明に係る光受信機の非線形媒質部が出力する光スペクトルの模式図である。It is a schematic diagram of the optical spectrum which the nonlinear medium part of the optical receiver which concerns on this invention outputs. 本発明に係る光受信機の非線形媒質部が出力する光スペクトルの模式図である。It is a schematic diagram of the optical spectrum which the nonlinear medium part of the optical receiver which concerns on this invention outputs. 本発明に係る光通信システムが備える四光波混合部を説明する図である。It is a figure explaining the four-wave mixing part with which the optical communication system which concerns on this invention is provided. 本発明に係る光通信システムの実施例の効果を検証した実験系を説明する図である。It is a figure explaining the experimental system which verified the effect of the Example of the optical communication system which concerns on this invention. 本発明に係る光通信システムの実施例の効果を検証した実験系での光濾波器後の(A)光のスペクトルと(B)電気のスペクトルを説明する図である。It is a figure explaining the spectrum of (A) light and (B) electricity after the optical filter in the experiment system which verified the effect of the Example of the optical communication system which concerns on this invention. 信号光の位相揺らぎを摸擬した位相変調器での位相シフトに対する信号振幅の変化を説明する図である。It is a figure explaining the change of the signal amplitude with respect to the phase shift in the phase modulator which simulated the phase fluctuation of signal light. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention. 本発明に係る光通信システムが伝送する信号光の光スペクトルの模式図である。It is a schematic diagram of the optical spectrum of the signal light transmitted by the optical communication system according to the present invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(第1の実施形態)
図1は、本実施形態の光通信システム501の概略構成図である。光通信システム501は、光受信機301と、光受信機301に信号光を送信する光送信機401と、光受信機301にポンプ光を供給するポンプ光源402と、を含む。光送信機401は光周波数(図中fs)の信号光を出力する。ここで、ポンプ光源402は、信号光に対して動的な光位相同期ループをかける必要がないため、動的な光位相同期ループを用いる光受信機とは異なり、当該光源で用いる電気信号を光受信機に供給可能であれば、図1に示すように光受信機301の外部に設置することが可能であり、複数の光受信機301でポンプ光源402を共用することも可能である。ポンプ光源402は光受信機301とは独立ではなく、光受信機301内部に内蔵される構成であってもよい。ここでは、後述の同期検波部での同期検波の際に用いる電気信号を、ポンプ光を生成する際の電気信号を用いることを前提に説明しているが、例えばパルス光源のパルス光を光検波してパルスの位相を検出すること等で、ポンプ光と位相が同期した電気信号を生成することが出来れば、ポンプ光を生成する際の電気信号に限らなくともよいし、電気信号にて一対のポンプ光を生成しなくともよい。これは以降の説明でも同様である。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an optical communication system 501 of the present embodiment. The optical communication system 501 includes an optical receiver 301, an optical transmitter 401 that transmits signal light to the optical receiver 301, and a pump light source 402 that supplies pump light to the optical receiver 301. The optical transmitter 401 outputs signal light having an optical frequency (fs in the figure). Here, since the pump light source 402 does not need to apply a dynamic optical phase locked loop to the signal light, unlike the optical receiver using the dynamic optical phase locked loop, the electric signal used in the light source is If it can be supplied to the optical receiver, it can be installed outside the optical receiver 301 as shown in FIG. 1, and the pump light source 402 can be shared by a plurality of optical receivers 301. The pump light source 402 is not independent of the optical receiver 301, and may be configured to be built in the optical receiver 301. Here, the description has been made on the assumption that the electrical signal used for synchronous detection in the synchronous detection unit described later is the electrical signal used to generate pump light. As long as the electric signal whose phase is synchronized with the pump light can be generated by detecting the phase of the pulse, etc., the electric signal is not limited to the electric signal used to generate the pump light. It is not necessary to generate the pump light. This is the same in the following description.

以下、ポンプ光が2で、縮退四光波混合を利用する場合で説明するが、後述するようにポンプ光は3以上でもよく、縮退以外の四光波混合を用いても良い。ポンプ光源402が出力するポンプ光は、初期位相と位相雑音項が等しく所定の周波数差になっている。このようなポンプ光を出力するポンプ光源402は、例えば、連続光(Continuous Wave:CW)光源101、正弦波信号発生器102及び強度変調器103を有する。正弦波信号発生器102は、例えば発信器である。強度変調器103はCW光源101からの光周波数fpの連続光を正弦波信号発生器102からの正弦波信号で変調する。ここで、強度変調器103は、CW光源101の出力であるキャリア成分を抑圧し、二つの変調サイドバンドのみ出力する状態に調整し、ポンプ光として出力する。ポンプ光は強度変調の二つの変調サイドバンドであるため、互いの位相は等しい。このような変調サイドバンドを用いた光源として非特許文献5及び6に示されるものなどがある。   Hereinafter, the case where the pump light is 2 and degenerate four-wave mixing is used will be described. However, as described later, the pump light may be three or more, and four-wave mixing other than degeneration may be used. The pump light output from the pump light source 402 has the same initial phase and phase noise term and a predetermined frequency difference. The pump light source 402 that outputs such pump light includes, for example, a continuous light (CW) light source 101, a sine wave signal generator 102, and an intensity modulator 103. The sine wave signal generator 102 is, for example, a transmitter. The intensity modulator 103 modulates the continuous light having the optical frequency fp from the CW light source 101 with the sine wave signal from the sine wave signal generator 102. Here, the intensity modulator 103 suppresses the carrier component that is the output of the CW light source 101, adjusts it to a state in which only two modulation sidebands are output, and outputs it as pump light. Since the pump light is two modulation sidebands of intensity modulation, their phases are equal. Non-patent documents 5 and 6 show light sources using such modulation sidebands.

また、以下、中間周波数信号の位相が零の場合を例に説明を行うが、ポンプ光の互いの初期位相と位相雑音項が等しくなっており、それらの初期位相と位相雑音項が等しい場合、アイドラ光の初期位相と位相雑音項も一定となり、同期検波する電気信号の位相との差が90度以外であれば、コヒーレント同期検波の出力は零以外の一定の値となる。そのため、90度以外の場合も、出力強度の絶対値は減少するが位相が零の場合と同様である。また、光源として変調サイドバンドを用いる例で示したが、初期位相と位相雑音項が等しければ、モードロックレーザや光周波数コム等の他の光源を用いても良い。   In addition, hereinafter, the case where the phase of the intermediate frequency signal is zero will be described as an example, but the initial phase and the phase noise term of the pump light are equal, and the initial phase and the phase noise term are equal, The initial phase of the idler light and the phase noise term are also constant, and if the difference between the phase of the electrical signal to be synchronously detected is other than 90 degrees, the output of coherent synchronous detection becomes a constant value other than zero. For this reason, the absolute value of the output intensity is also reduced in cases other than 90 degrees, but it is the same as when the phase is zero. Further, although an example in which a modulation sideband is used as a light source has been described, other light sources such as a mode-locked laser and an optical frequency comb may be used as long as the initial phase and the phase noise term are equal.

光受信機301は、四光波混合部31と同期検波部21とを備える。具体的には、光受信機301は、信号光と、初期位相と位相雑音項が等しく所定の周波数差の複数のポンプ光と、が入力され、信号光とポンプ光との四光波混合のアイドラ光を複数出力する四光波混合部31と、四光波混合部31からのアイドラ光を光検波し、アイドラ光同士の中間周波数信号を前記中間周波数でポンプ光を生成する際の電気信号と位相が同期した電気信号で同期検波する同期検波部21と、を備える。ここで、アイドラ光の少なくとも一組の光周波数間隔を中間周波数とするためには、ポンプ光の光周波数間隔で調整することができる。また、同期検波部で同期検波する際に用いる電気の信号を調整し、同期検波部での検波対象となるアイドラ光を少なくとも一組出力するようにしてもよい。   The optical receiver 301 includes a four-wave mixing unit 31 and a synchronous detection unit 21. Specifically, the optical receiver 301 receives signal light and a plurality of pump lights having the same initial phase and phase noise terms and having a predetermined frequency difference, and is an idler for four-wave mixing of the signal light and the pump light. The four-wave mixing unit 31 that outputs a plurality of lights, and the idler light from the four-wave mixing unit 31 is optically detected, and the phase of the electrical signal and the phase when generating the pump light at the intermediate frequency of the intermediate frequency signal between the idler lights And a synchronous detection unit 21 that performs synchronous detection with a synchronized electrical signal. Here, in order to set at least one set of optical frequency intervals of idler light as an intermediate frequency, the frequency can be adjusted by the optical frequency interval of pump light. Further, an electrical signal used when synchronous detection is performed by the synchronous detection unit may be adjusted, and at least one set of idler light to be detected by the synchronous detection unit may be output.

光受信機301は、信号光と、初期位相と位相雑音項が等しく所定の周波数差の複数のポンプ光と、から、信号光とポンプ光との四光波混合のアイドラ光を複数生成し、アイドラ光同士を前記中間周波数でポンプ光を生成する際の電気信号と位相が同期した電気信号で同期検波する。ここで、複数のポンプ光の光周波数は、アイドラ光の少なくとも一組の光周波数間隔が中間周波数となる周波数である。   The optical receiver 301 generates a plurality of idler lights of four-wave mixing of the signal light and the pump light from the signal light and the plurality of pump lights having the same initial phase and phase noise term and a predetermined frequency difference. The lights are synchronously detected with an electric signal whose phase is synchronized with the electric signal when generating the pump light at the intermediate frequency. Here, the optical frequency of the plurality of pump lights is a frequency at which at least one set of optical frequency intervals of idler light is an intermediate frequency.

四光波混合部31は、信号光とポンプ光を入力して四光波混合を発生する非線形媒質部11、非線形媒質部11の出力する四光波混合のアイドラ光を抜き出す光濾波器12とを有する。非線形媒質部11は、例えば、半導体光増幅器(Semiconductor Optical Amplifier:SOA)、高非線形ファイバ (High Nonlinear Fiber:HNLF)、ゼロ分散シフトファイバ(Dispersion−shifted Fiber:DSF)等を用いることができる。非線形媒質部11は、信号光及びポンプ光の波長分散等を考慮しても十分な相互作用長が取れるものとする。   The four-wave mixing unit 31 includes a nonlinear medium unit 11 that receives signal light and pump light and generates four-wave mixing, and an optical filter 12 that extracts idler light of the four-wave mixing output from the nonlinear medium unit 11. For example, a semiconductor optical amplifier (Semiconductor Optical Amplifier: SOA), a highly nonlinear fiber (High Nonlinear Fiber: HNLF), a zero dispersion-shifted fiber (DSF), or the like can be used as the nonlinear medium unit 11. It is assumed that the nonlinear medium section 11 can have a sufficient interaction length even when wavelength dispersion of signal light and pump light is taken into consideration.

四光波混合部31は、信号光及び初期位相と位相雑音項が等しいポンプ光が入力されると、一方のポンプ光の縮退四光波混合のアイドラ光、他方のポンプ光の縮退四光波混合のアイドラ光、及び両ポンプ光の四光波混合のアイドラ光を出力する。これらのアイドラ光の初期位相と位相雑音項は等しい。   When the signal light and pump light having the same phase noise term as the initial phase are input, the four-wave mixing unit 31 receives a degenerate four-wave mixing idler light of one pump light and a degenerate four-wave mixing idler of the other pump light. Outputs four-wave mixing idler light of light and both pump lights. The initial phase and phase noise terms of these idler lights are equal.

ここで、信号光、ポンプ光及びアイドラ光に、信号光Ls、一方のポンプ光Lp1、他方のポンプ光Lp2、ポンプ光Lp1の縮退四光波混合のアイドラ光La1、ポンプ光Lp2の縮退四光波混合のアイドラ光La2、ポンプ光Lp1及びポンプ光Lp2の四光波混合のアイドラ光La3と名づけて説明する。信号光Ls、一方のポンプ光Lp1、他方のポンプ光Lp2、ポンプ光Lp1の縮退四光波混合のアイドラ光La1、ポンプ光Lp2の縮退四光波混合のアイドラ光La2、ポンプ光Lp1及びポンプ光Lp2の四光波混合のアイドラ光La3の位相をそれぞれφ1,φp1,φp2,φ1’,φ1’’,φ1’’’とする。また、信号光Ls、一方のポンプ光Lp1、他方のポンプ光Lp2、ポンプ光Lp1の縮退四光波混合のアイドラ光La1、ポンプ光Lp2の縮退四光波混合のアイドラ光La2、ポンプ光Lp1及びポンプ光Lp2の四光波混合のアイドラ光La3の光周波数をそれぞれf1,fp1,fp2,f1’,f1’’,f1’’’、とする。さらにポンプ光同士の光周波数間隔をdfとすると次式が成り立つ。
f1’=2fp1−f1
f1’’=2fp2−f1=2fp1+2df−f1
f1’’’=fp1+fp2−f1=2fp1+df−f1
φ1’=2φp1−φ1
φ1’’=2φp2−φ1=2φp1−φ1
φ1’’’=φp1+φp2−φ1=2φp1−φ1
ここで、アイドラ光(La1、La2、La3)は全て初期位相と位相雑音項が等しい。
Here, the signal light, the pump light, and the idler light are combined with the signal light Ls, one pump light Lp1, the other pump light Lp2, the degenerate four-wave mixing idler light La1, and the degenerate four-wave mixing of the pump light Lp2. The idler light La 2, the pump light Lp 1, and the pump light Lp 2 are named and described as four-wave mixing idler light La 3. The signal light Ls, one pump light Lp1, the other pump light Lp2, the degenerate four-wave mixing idler light La1 of the pump light Lp1, the degenerate four-wave mixing idler light La2 of the pump light Lp2, the pump light Lp1 and the pump light Lp2 The phases of the four-wave mixing idler light La3 are assumed to be φ1, φp1, φp2, φ1 ′, φ1 ″, and φ1 ′ ″, respectively. The signal light Ls, one pump light Lp1, the other pump light Lp2, the degenerate four-wave mixing idler light La1 of the pump light Lp1, the degenerate four-wave mixing idler light La2 of the pump light Lp2, the pump light Lp1, and the pump light The optical frequencies of the four-wave mixing idler light La3 of Lp2 are f1, fp1, fp2, f1 ′, f1 ″, and f1 ′ ″, respectively. Further, when the optical frequency interval between the pump lights is df, the following equation is established.
f1 ′ = 2fp1-f1
f1 '' = 2fp2-f1 = 2fp1 + 2df-f1
f1 ′ ″ = fp1 + fp2−f1 = 2fp1 + df−f1
φ1 ′ = 2φp1-φ1
φ1 ″ = 2φp2-φ1 = 2φp1-φ1
φ1 ′ ″ = φp1 + φp2-φ1 = 2φp1-φ1
Here, all of the idler light (La1, La2, La3) have the same initial phase and phase noise term.

なお、ポンプ光と信号光の光周波数関係について示していないが、ポンプ光、信号光、アイドラ光は、その変調による光周波数拡がりを考慮して、それぞれ重ならないことが望ましい。ポンプ光と信号光またはポンプ光とアイドラ光が重なった場合、信号光やアイドラ光もポンプ光の一部となり、その変調成分が、不必要にそのポンプ光から生成されるアイドラ光に重畳される恐れがある。但し、信号光やアイドラ光とポンプ光とが重なる影響は、信号光やアイドラ光とポンプ光の強度比によるので、ポンプ光の強度が信号光やアイドラ光の強度に対して、例えば30dBのように十分に大きい場合、無視することができる。後述の同期検波の対象となるアイドラ光と他の光が重なった時は、後述のように光濾波器12で、アイドラ光のみを取り出すことができないので、光濾波器12で取り除けない成分が雑音となる。特に、重なる光がアイドラ光に対して強度が大きいポンプ光の場合は、その影響が大きくなる。   Although the optical frequency relationship between the pump light and the signal light is not shown, it is desirable that the pump light, the signal light, and the idler light do not overlap each other in consideration of the optical frequency spread due to the modulation. When pump light and signal light or pump light and idler light overlap, signal light and idler light also become part of the pump light, and the modulation component is unnecessarily superimposed on idler light generated from the pump light. There is a fear. However, the influence of the overlap of the signal light, idler light and pump light depends on the intensity ratio of the signal light, idler light and pump light, so that the intensity of the pump light is, for example, 30 dB relative to the intensity of the signal light or idler light. If it is large enough, it can be ignored. When idler light to be subjected to synchronous detection described later overlaps with other light, since the idler light alone cannot be extracted by the optical filter 12 as described later, components that cannot be removed by the optical filter 12 are noise. It becomes. In particular, when the overlapped light is pump light having a higher intensity than the idler light, the influence becomes large.

図12は、信号光が1つ、ポンプ光が2つの場合でポンプ光、信号光、アイドラ光が互いに光周波数が重ならない例である。図12では、光周波数の低いほうから順に、信号光Ls、ポンプ光Lp1、ポンプ光Lp2、アイドラ光La1、アイドラ光La3、アイドラ光La2の順で並んでいる。ここで光周波数の高低を反転してもよく、この高低の反転は以降の説明でも同様に可能である。
信号光Lsの光周波数f1=fs、
ポンプ光Lp1の光周波数fp1=fs+D、
ポンプ光Lp2の光周波数fp2=fp1+df=fs+D+df、
アイドラ光La1の光周波数f1’
=2fp1−fs=2fs+2D−fs=fs+2D、
アイドラ光La3の光周波数f1’’’
=fp1+fp2−fs=2fp1+df−fs=fs+2D+df、
アイドラ光La2の光周波数f1’’
=2fp2−fs=2fp1+2df−fs=fs+2D+2df
と表せる。ここで、信号光Lsとポンプ光Lp1との光周波数間隔をD、ポンプ光間の光周波数間隔dfを同期検波する中間周波数とし、信号光の伝送帯域Bを中間周波数の半分とした。
FIG. 12 is an example in which there is one signal light and two pump lights, and the optical frequencies of the pump light, signal light, and idler light do not overlap each other. In FIG. 12, the signal light Ls, the pump light Lp1, the pump light Lp2, the idler light La1, the idler light La3, and the idler light La2 are arranged in order from the lowest optical frequency. Here, the level of the optical frequency may be inverted, and this level inversion can be similarly performed in the following description.
Optical frequency f1 = fs of the signal light Ls,
Optical frequency fp1 = ps + D of pump light Lp1
Optical frequency fp2 = fp1 + df = fs + D + df of the pump light Lp2
Optical frequency f1 ′ of idler light La1
= 2fp1-fs = 2fs + 2D-fs = fs + 2D,
Optical frequency f1 ′ ″ of idler light La3
= Fp1 + fp2-fs = 2fp1 + df-fs = fs + 2D + df,
Optical frequency f1 '' of idler light La2
= 2fp2-fs = 2fp1 + 2df-fs = fs + 2D + 2df
It can be expressed. Here, the optical frequency interval between the signal light Ls and the pump light Lp1 is D, the optical frequency interval df between the pump lights is an intermediate frequency for synchronous detection, and the transmission band B of the signal light is half the intermediate frequency.

ここで、光送信機401の伝送信号による変調は、伝送帯域に制限しており、変調メインローブ以外の変調成分は無視できる前提で、中間周波数は伝送帯域の2倍とした。このような変調は、光送信機401において光変調器または直接変調レーザを変調する信号自体を3dB帯域が変調帯域の0.5−0.8倍の電気の低域濾波器等を通過させる等によって帯域制限した変調により実現できる。メインローブより高周波の変調成分が無視できない場合、中間周波数は、伝送帯域にメインローブより高周波成分で無視できない変調成分の周波数幅を加えた周波数とすればよい。逆に無視できる場合は無視できる変調成分の周波数幅を現じた周波数とすればよい。これらは以降の説明でも同様である。   Here, the modulation by the transmission signal of the optical transmitter 401 is limited to the transmission band, and the intermediate frequency is set to twice the transmission band on the premise that the modulation components other than the modulation main lobe can be ignored. In such modulation, the signal itself that modulates the optical modulator or the direct modulation laser in the optical transmitter 401 is passed through an electrical low-pass filter or the like whose 3 dB band is 0.5 to 0.8 times the modulation band. Can be realized by band-limited modulation. When the modulation component having a frequency higher than that of the main lobe cannot be ignored, the intermediate frequency may be set to a frequency obtained by adding the frequency width of the modulation component that cannot be ignored with the higher frequency component than the main lobe to the transmission band. On the other hand, if it can be ignored, the frequency width of the modulation component that can be ignored may be used as the frequency. The same applies to the following description.

この時、変調を考慮して信号光とポンプ光が重ならないためには、
{fp1}−{fs+B}={fs+D}−{fs+B}
=D−B≧0、即ちD≧Bが成立すればよい。
また、変調を考慮してアイドラ光とポンプ光が重ならないためには、
{2fp1−fs−B}−{fp2}
={fs+2D−B}−{fs+D+df}=D−B−df≧0、
即ちD≧B+dfが成立すればよい。
従って、信号光Lsとポンプ光Lp1との光周波数間隔Dは、伝送帯域Bとポンプ光間隔dfの和以上であればこの条件を満たす。伝送帯域Bがポンプ光間隔dfの半分の場合、信号光Lsとポンプ光Lp1との光周波数間隔Dは、ポンプ光間隔dfの1.5倍以上であればこの条件を満たす。
At this time, in order for the signal light and the pump light not to overlap in consideration of the modulation,
{Fp1}-{fs + B} = {fs + D}-{fs + B}
= D−B ≧ 0, that is, D ≧ B may be satisfied.
In addition, in consideration of modulation, idler light and pump light do not overlap.
{2fp1-fs-B}-{fp2}
= {Fs + 2D-B}-{fs + D + df} = D−B−df ≧ 0,
That is, D ≧ B + df may be satisfied.
Accordingly, this condition is satisfied if the optical frequency interval D between the signal light Ls and the pump light Lp1 is equal to or greater than the sum of the transmission band B and the pump light interval df. When the transmission band B is half the pump light interval df, this condition is satisfied if the optical frequency interval D between the signal light Ls and the pump light Lp1 is 1.5 times the pump light interval df or more.

ここで、後述する光濾波器12の透過光周波数と遮断光周波数は光周波数軸上でステップ上に切り替わることを前提としている。透過光周波数と遮断光周波数の切替わりがなだらかな場合は、アイドラ光とポンプ光の間隔は、伝送帯域Bに相当するポンプ光間隔の半分の0.5df以上の代わりに、ポンプ光が十分遮断できる間隔とすればよい。この光濾波器の特性の考慮は以降の説明においても同様に考慮すればよい。また、伝送帯域Bと中間周波数の関係は2倍としたが、後述する電気濾波器で中間周波数成分を抜き出すに必要な関係であれば良く2倍以上であっても良い。この電気濾波器の特性の考慮は以降の説明においても同様に考慮すればよい。逆に、SSB(Single SideBand)変調し、変調サイドバンドの抑圧が十分に小さい場合は、信号光の伝送帯域Bを中間周波数とすることもできる。   Here, it is assumed that the transmitted light frequency and the cut-off light frequency of the optical filter 12, which will be described later, are switched on the step on the optical frequency axis. When the switching between the transmitted light frequency and the cut-off light frequency is gentle, the interval between the idler light and the pump light is not less than 0.5 df, which is half the pump light interval corresponding to the transmission band B, and the pump light is sufficiently cut off. What is necessary is just to make it a possible interval. The consideration of the characteristics of the optical filter may be similarly considered in the following description. In addition, although the relationship between the transmission band B and the intermediate frequency is doubled, it may be a relationship necessary for extracting an intermediate frequency component by an electric filter described later, and may be double or more. The consideration of the characteristics of the electric filter may be similarly considered in the following description. On the contrary, when SSB (Single Side Band) modulation is performed and the suppression of the modulation sideband is sufficiently small, the transmission band B of the signal light can be set to an intermediate frequency.

更に、伝送帯域よりも小さい中間周波数であってもよい。そのような中間周波数は、例えば、ホモダイン検波でパワーペナルティが無視できる中間周波数である。例えば、非特許化文献10に示されるように、ホモダイン検波でパワーペナルティ1dB以下が期待される値である伝送帯域の2%以下の値とすればよい。但し、この非特許化文献の値は、2つの光のビートによる間の中間周波数信号であるが、本願では3つの光が関与するため、非特許化文献の値よりも厳しい、例えば1%等の値とすればよい。
この時、変調を考慮して信号光とポンプ光が重ならないためには、
{fp1}−{fs+B}={fs+D}−{fs+B}
=D−B≧0、即ちD≧Bが成立すればよい。
また、変調を考慮してアイドラ光とポンプ光が重ならないためには、
{2fp1−fs−B}−{fp2}
={fs+2D−B}−{fs+D+df}=D−B−df≧0、
即ちD≧B+dfが成立すればよい。
従って、信号光Lsとポンプ光Lp1との光周波数間隔Dは、伝送帯域Bにポンプ光間隔dfを加えた周波数以上であればこの条件を満たす。これらは以降の説明でも同様である。
Furthermore, an intermediate frequency smaller than the transmission band may be used. Such an intermediate frequency is, for example, an intermediate frequency at which the power penalty can be ignored by homodyne detection. For example, as shown in Non-Patent Document 10, a value that is 2% or less of the transmission band, which is a value at which a power penalty of 1 dB or less is expected in homodyne detection, may be used. However, the value of this non-patent document is an intermediate frequency signal between two light beats, but in the present application, since three lights are involved, it is stricter than the value of the non-patent document, for example, 1%, etc. The value of
At this time, in order for the signal light and the pump light not to overlap in consideration of the modulation,
{Fp1}-{fs + B} = {fs + D}-{fs + B}
= D−B ≧ 0, that is, D ≧ B may be satisfied.
In addition, in consideration of modulation, idler light and pump light do not overlap.
{2fp1-fs-B}-{fp2}
= {Fs + 2D-B}-{fs + D + df} = D−B−df ≧ 0,
That is, D ≧ B + df may be satisfied.
Therefore, this condition is satisfied if the optical frequency interval D between the signal light Ls and the pump light Lp1 is equal to or greater than the frequency obtained by adding the pump light interval df to the transmission band B. The same applies to the following description.

なお、以降の説明で、特記なき場合は、中間周波数が伝送帯域よりも大きい場合に関して説明している。   In the following description, the case where the intermediate frequency is larger than the transmission band is described unless otherwise specified.

以下、図1の説明に戻る。光濾波器12は、アイドラ光(La1、La2、La3)のみを抜き出し、光検波器13に入力する。ここで、信号光及びポンプ光の強度が中間周波数信号の同期検波の際に無視できる程度であれば、光濾波器12はなくともよい。無視できる程度とは、受信時に要求される信号対雑音比(SN)の要求条件による。例えば、この箇所での信号光及びポンプ光の強度に伴うSN劣化が信号の1/1000以下まで許容できるのであれば、1/1000以下に相当する程度である。これは以降の実施形態でも同様である。   Returning to the description of FIG. The optical filter 12 extracts only idler light (La1, La2, La3) and inputs it to the optical detector 13. Here, if the intensity of the signal light and the pump light is negligible at the time of synchronous detection of the intermediate frequency signal, the optical filter 12 may be omitted. The negligible degree depends on the requirement of the signal-to-noise ratio (SN) required at the time of reception. For example, if the SN degradation accompanying the intensity of the signal light and pump light at this location can be tolerated to 1/1000 or less of the signal, it corresponds to 1/1000 or less. The same applies to the following embodiments.

同期検波部21は、光検波器13と、光検波器13の出力から中間周波数信号を抜き出す電気濾波器14と電気濾波器14の抜き出した中間周波数信号とポンプ光を生成する際の電気信号を乗じて同期検波するミキサー18とを有する。ここで、アイドラ光(La1、La2、La3)は全て初期位相と位相雑音項が等しいため、光検波器13は一のアイドラ光を信号光、他のアイドラ光を局発光とみなすことでコヒーレント同期検波が可能となる。ここで、中間周波数信号の同期検波の際に所望の中間周波数成分以外が無視できる程度であれば、電気濾波器14もなくともよい。これも以降の実施形態でも同様である。   The synchronous detector 21 includes an optical detector 13, an electric filter 14 for extracting an intermediate frequency signal from the output of the optical detector 13, an intermediate frequency signal extracted by the electric filter 14, and an electric signal for generating pump light. And a mixer 18 for performing synchronous detection by multiplication. Here, since all of the idler light (La1, La2, La3) have the same initial phase and phase noise terms, the optical detector 13 regards one idler light as signal light and other idler light as local light, thereby coherent synchronization. Detection is possible. Here, the electric filter 14 may be omitted as long as the components other than the desired intermediate frequency component can be ignored in the synchronous detection of the intermediate frequency signal. The same applies to the following embodiments.

図1に示すように、光濾波器12が、アイドラ光(La1、La2、La3)を全て導通する場合、光検波器13にて、アイドラ光La1−アイドラ光La3、アイドラ光La2−アイドラ光La3によりポンプ光間隔df(図中fIF1)の中間周波数信号が発生し、アイドラ光La1−アイドラ光La2によりポンプ光間隔の倍の2df(図中fIF2)の中間周波数信号が発生する。電気濾波器14は、例えば、中間周波数2dfの中間周波数信号を十分に抑圧し、中間周波数dfの中間周波数信号を抜き出すことにより、アイドラ光La1−アイドラ光La3とアイドラ光La2−アイドラ光La3の中間周波数信号のコヒーレント同期を容易にする。この構成は信号強度的にはもっとも望ましい。 As shown in FIG. 1, when the optical filter 12 conducts all idler light (La1, La2, La3), the optical detector 13 causes the idler light La1 to idler light La3, idler light La2 to idler light La3. As a result, an intermediate frequency signal having a pump light interval df (f IF 1 in the drawing) is generated, and an intermediate frequency signal having 2 df (f IF 2 in the drawing) twice the pump light interval is generated by the idler light La1 to the idler light La2. For example, the electric filter 14 sufficiently suppresses the intermediate frequency signal of the intermediate frequency 2df and extracts the intermediate frequency signal of the intermediate frequency df, so that the intermediate between the idler light La1-idler light La3 and idler light La2-idler light La3 is obtained. Facilitates coherent synchronization of frequency signals. This configuration is most desirable in terms of signal strength.

電気濾波器14は、アイドラ光La1−アイドラ光La2の中間周波数信号である2dfの中間周波数信号を抜き出してもよい。また、光濾波器12がアイドラ光(La1、La2、La3)の内の任意の二つを抜き出してもよい。例えば、アイドラ光La1−アイドラ光La3とアイドラ光La2−アイドラ光La3のいずれかを抜き出してもよい。この場合、抜き出したアイドラ光同士の中間周波数信号しか光検波器13で発生しないこととなる。なお、アイドラ光La1−アイドラ光La2のみを抜き出すと、電気濾波器14の低周波側の減衰要求が緩和される効果もある。即ち光周波数2dfの中間周波数信号を抜き出す電気濾波器14が光周波数dfの中間周波数信号を完全に抑圧できなくとも、光受信機301はコヒーレント同期検波が可能である。   The electric filter 14 may extract an intermediate frequency signal of 2 df that is an intermediate frequency signal of the idler light La1 to the idler light La2. Further, the optical filter 12 may extract any two of idler lights (La1, La2, La3). For example, any one of the idler light La1-the idler light La3 and the idler light La2-the idler light La3 may be extracted. In this case, only the intermediate frequency signal between the extracted idler lights is generated by the optical detector 13. If only the idler light La1 and the idler light La2 are extracted, there is also an effect that the attenuation requirement on the low frequency side of the electric filter 14 is relaxed. That is, the optical receiver 301 can perform coherent synchronous detection even if the electrofilter 14 that extracts the intermediate frequency signal of the optical frequency 2df cannot completely suppress the intermediate frequency signal of the optical frequency df.

同期検波に用いる電気信号はポンプ光を生成する際の電気信号と位相が同期した電気信号である。電気信号は、ポンプ光を生成する際の電気信号の周波数を逓倍し、伝搬による位相回転分を考慮して、アイドラ光の位相差と同じ位相にてミキサーにおける同期検波する電気信号であることが望ましい。この場合、同一の電気信号源を用いるため、電気の信号源の位相揺らぎの効果も相殺される。図では、電気信号の周波数を逓倍する逓倍器104を光源402中に具備しているが、他の箇所、例えば同期検波部25などに具備していてもよい。また、ポンプ光源402と同期検波部25とで異なる電気の信号源を互いに同期して用いてもよい。この場合電気の信号源同士の位相同期が必要となるが、光位相同期ループを構成する場合と比べて、帯域積等の制限は実用上無視できる。アイドラ光同士の初期位相と位相雑音項が等しく所定の周波数差であるために、中間周波数信号の位相も一定である。このため、同期検波に用いる電気信号の位相は、ポンプ光を生成する際の電気信号自体に同期することも可能であるし、局発光源で用いる電気信号源と同一の外部クロックに同期した電気信号源を用いることも可能であるし、中間周波数信号に同期してもよい。このように、安定性が10−6などであり、光源と比べて、安定な電気信号源からの電気信号で同期検波を行うために、光信号から生成した中間周波数信号自身の包絡線検波と比べて、雑音の少ない信号が得られる。また包絡線検波と異なり、乗ずる電気信号での選択性が高いため電気濾波器で取りきれない雑音成分を除去する効果も高い。 The electric signal used for synchronous detection is an electric signal whose phase is synchronized with that of the electric signal when generating the pump light. The electrical signal is an electrical signal that is synchronously detected by the mixer at the same phase as the phase difference of the idler light in consideration of the phase rotation due to propagation by multiplying the frequency of the electrical signal when generating the pump light. desirable. In this case, since the same electric signal source is used, the effect of phase fluctuation of the electric signal source is also canceled. In the figure, the multiplier 104 that multiplies the frequency of the electric signal is provided in the light source 402, but may be provided in another location, for example, the synchronous detection unit 25 or the like. Further, different electrical signal sources may be used in synchronization with each other in the pump light source 402 and the synchronous detection unit 25. In this case, phase synchronization between the electrical signal sources is required, but the limitation on the band product and the like can be ignored in practice as compared with the case where the optical phase locked loop is configured. The phase of the intermediate frequency signal is also constant because the initial phase and phase noise terms of idler light are equal and have a predetermined frequency difference. For this reason, the phase of the electrical signal used for synchronous detection can be synchronized with the electrical signal itself when generating the pump light, or the electrical signal synchronized with the same external clock as the electrical signal source used in the local light source. It is possible to use a signal source or to synchronize with an intermediate frequency signal. Thus, in order to perform synchronous detection with an electric signal from a stable electric signal source having a stability of 10 −6 or the like, the envelope detection of the intermediate frequency signal itself generated from the optical signal and In comparison, a signal with less noise can be obtained. Also, unlike envelope detection, the selectivity of the multiplied electric signal is high, and the effect of removing noise components that cannot be removed by the electric filter is also high.

上記説明では、信号光Ls1の中心光周波数は一定であることを前提としたが、非特許文献8に記載されるように時間に対して光周波数が変化する光であってもよい。光フィルタ12を用いる場合、アイドラ光が光フィルタ12を導通するように、ポンプ光(Lp1、Lp2)の光周波数が信号光Ls1の時間に対する光周波数変化に同期して変化すればよい。   In the above description, it is assumed that the center optical frequency of the signal light Ls1 is constant. However, as described in Non-Patent Document 8, it may be light whose optical frequency changes with time. When the optical filter 12 is used, the optical frequency of the pump light (Lp1, Lp2) may be changed in synchronization with the optical frequency change with respect to the time of the signal light Ls1 so that idler light is conducted through the optical filter 12.

本実施形態では、光増幅器を示していないが適宜使用することとしてもよい。   In the present embodiment, an optical amplifier is not shown, but may be used as appropriate.

本実施形態では、ポンプ光を2つ用いた縮退四光波混合を例として説明を加えたが、3以上のポンプ光を用いてもよい。例えば、光周波数軸上で信号光の低周波数側に1ポンプ光、高周波数側に2ポンプ光が配置される3ポンプ光を用いるとする。ここで、低周波数側のポンプ光の光周波数をfp1とし、高周波数側のポンプ光の光周波数をfp2とfp2+dfとする。このときfp2よりも高周波数側の光周波数f1の信号光に対する光周波数がfp1とfp2のポンプ光に対するアイドラ光の光周波数をf&、光周液数がfp1とfp2+dfのポンプ光に対するアイドラ光の光周波数をf&&とする。このときアイドラ光の光周波数f1&とf1&&について次式が成り立つ。
f1&=fp2+f1−fp1=(fp2−fp1)+f1
f1&&=fp2+df+f1−fp1=(fp2−fp1)+f1+df
In the present embodiment, the degenerate four-wave mixing using two pump lights has been described as an example, but three or more pump lights may be used. For example, it is assumed that 3 pump light in which 1 pump light is arranged on the low frequency side of the signal light and 2 pump light is arranged on the high frequency side on the optical frequency axis is used. Here, the optical frequency of the pump light on the low frequency side is fp1, and the optical frequencies of the pump light on the high frequency side are fp2 and fp2 + df. At this time, the optical frequency of the idler light with respect to the pump light whose optical frequency is fp1 and fp2 with respect to the signal light with the optical frequency f1 higher than fp2 is f &, and the idler light with respect to the pump light with the optical frequency of fp1 and fp2 + df. Let f && be the frequency. At this time, the following equations hold for the optical frequencies f1 & and f1 && of the idler light.
f1 & = fp2 + f1-fp1 = (fp2-fp1) + f1
f1 && = fp2 + df + f1-fp1 = (fp2-fp1) + f1 + df

この場合、周波数間隔がdfだけ離れた光周波数f1&とf1&&の2つのアイドラ光が生成する。この2つのアイドラ光を光検波することにより、中間周波数dfでの同期検波が可能となる。なお、ここで、高周波側に2つのポンプ光を配したが、低周波数側に2つのポンプ光を配するとしても同様である。両ポンプ光は、信号光とアイドラ光がその両ポンプ光の間に収まる間隔であればよい。収まる間隔とは、変調による光周波数拡がりを考慮して、それぞれ重ならない、又は重なっても場合、信号に対する影響が例えば30dBのように十分に小さくなる間隔である。   In this case, two idler lights having optical frequencies f1 & and f1 && separated by a frequency interval df are generated. By detecting these two idler lights, synchronous detection at the intermediate frequency df is possible. Here, although two pump lights are arranged on the high frequency side, the same applies even if two pump lights are arranged on the low frequency side. The two pump lights only need to have an interval in which the signal light and the idler light fall between the two pump lights. The interval that falls within the range is an interval in which the influence on the signal is sufficiently small, for example, 30 dB if they do not overlap or overlap each other, taking into account the optical frequency spread due to modulation.

光周波数f1&とf1&&のアイドラ光の光周波数は、f1&とf1&&のアイドラ光を、信号光、ポンプ光、光周波数f1&とf1&&以外のアイドラ光から光濾波器12で十分遮断できる光周波数であるか、電気濾波器14で遮断できる光周波数であるか、同期検波で抑圧できる光周波数、例えばdf以上異なるとする。   Is the optical frequency of the idler light of the optical frequencies f1 & and f1 && sufficient to block the idler light of f1 & and f1 && from the signal light, pump light, idler light other than the optical frequencies f1 & and f1 && by the optical filter 12? It is assumed that the optical frequency can be cut off by the electric filter 14 or the optical frequency that can be suppressed by synchronous detection, for example, df or more.

ここで、ポンプ光の間に信号光が入る例で示したが、信号光の高周波側又は、低周波側にポンプ光が位置していても良い。図13は、信号光が1つ、ポンプ光が3つの場合で互いに光周波数が重ならない例である。図13では、光周波数の低いほうから順に、信号光Ls、ポンプ光Lp1、ポンプ光Lp2、第3のポンプ光Lp3、アイドラ光La1、La3、アイドラ光La2、ポンプ光Lp3とポンプ光Lp1又はポンプ光Lp2とのアイドラ光(La4、La5とする)、ポンプ光Lp3の縮退四光波混合のアイドラ光Lp6の順で並んでいるが、光周波数の高低を反転してもよい。また図13では、アイドラ光La4とLa5の中間周波数信号を同期検波の対象としているが、アイドラ光La1、La3、La2の中間周波数信号を用いて同期検波をしても良い。
信号光の光周波数f1=fs、
ポンプ光Lp1の光周波数fp1=fs+D、
ポンプ光Lp2の光周波数fp2=fp1+df=fs+D+df、
ポンプ光Lp3の光周波数fp3=fs+H、
アイドラ光La1、La3、La2、La4、La5、La6の光周波数をそれぞれ
f1’=2fp1−fs=2fs+2D−fs=fs+2D、
f1’’’=fp1+fp2−fs=2fp1+df−fs=fs+2D+df、
f1’’=2fp2−fs=2fp1+2df−fs=fs+2D+2df、
f1’’’’=fp1+fp3−fs=fs+D+H、
f1’’’’’=fp2+fp3−fs=fs+D+H+df、
f1’’’’’’=2fp3−fs=2fs+2H−fs=fs+2H
と表せる。ここで、信号光Lsとポンプ光Lp1との光周波数間隔をD、信号光Lsとポンプ光Lp3との光周波数間隔をH、ポンプ光Lp1とポンプ光Lp2との間の光周波数間隔dfを同期検波する中間周波数、信号光の伝送帯城Bを、中間周波数の半分とした。
Here, although an example in which signal light enters between pump light is shown, the pump light may be located on the high frequency side or low frequency side of the signal light. FIG. 13 shows an example in which the optical frequencies do not overlap each other when there is one signal light and three pump lights. In FIG. 13, in order from the lowest optical frequency, the signal light Ls, the pump light Lp1, the pump light Lp2, the third pump light Lp3, the idler light La1, La3, the idler light La2, the pump light Lp3 and the pump light Lp1 or the pump. The idler light (referred to as La4 and La5) with the light Lp2 and the idler light Lp6 of the degenerate four-wave mixing of the pump light Lp3 are arranged in this order, but the optical frequency may be reversed. In FIG. 13, the intermediate frequency signals of the idler lights La4 and La5 are targeted for synchronous detection, but the synchronous detection may be performed using the intermediate frequency signals of the idler lights La1, La3, and La2.
Optical frequency of signal light f1 = fs,
Optical frequency fp1 = ps + D of pump light Lp1
Optical frequency fp2 = fp1 + df = fs + D + df of the pump light Lp2
The optical frequency fp3 = fs + H of the pump light Lp3,
The optical frequencies of idler light La1, La3, La2, La4, La5, La6 are respectively f1 ′ = 2fp1-fs = 2fs + 2D−fs = fs + 2D,
f1 ′ ″ = fp1 + fp2−fs = 2fp1 + df−fs = fs + 2D + df,
f1 ″ = 2fp2-fs = 2fp1 + 2df−fs = fs + 2D + 2df,
f1 '''' = fp1 + fp3-fs = fs + D + H,
f1 ′ ″ ″ = fp2 + fp3-fs = fs + D + H + df,
f1 '''''' = 2fp3-fs = 2fs + 2H-fs = fs + 2H
It can be expressed. Here, the optical frequency interval between the signal light Ls and the pump light Lp1 is D, the optical frequency interval between the signal light Ls and the pump light Lp3 is H, and the optical frequency interval df between the pump light Lp1 and the pump light Lp2 is synchronized. The intermediate frequency to be detected and the transmission band B of the signal light are set to half of the intermediate frequency.

この時、変調を考慮して、信号光とポンプ光が重ならないためには、変調サイドバンドが伝送帯域Bとすると
{fp1}−{fs+B}={fs+D}−{fs+B}
=D−B≧0、即ちD≧Bが成立すればよい。
変調を考慮してアイドラ光とポンプ光が重ならないためには、
{2fp1−fs−B}−{fp3}
={fs+2D−B}−{fs+H}=2D−H−B≧0、
即ちH≦2D−Bが成立すればよい。
それぞれの変調を考慮して同期検波対象とするアイドラ光La4と同期検波対象としないアイドラ光La2が重ならないためには、
{fp1+fp3−fs−B}−{2fp2−fs+B}
={fs+D+H−B}−{fs+2D+2df+B}=H−D−2df−2B≧0、
即ちH≧D+2df+2Bが成立すればよい。
それぞれの変調を考慮して同期検波対象とするアイドラ光La5と同期検波対象としないアイドラ光La6が重ならないためには、
{2fp3−fs−B}−{fp2+fp3−fs+B}
={fs+2H−B}−{fs+D+H+df+B}
=H−D−df−2B≧0、
即ちH≧D+df+2Bが成立すればよい。
At this time, in consideration of modulation, the signal light and the pump light do not overlap. If the modulation sideband is the transmission band B, {fp1} − {fs + B} = {fs + D} − {fs + B}
= D−B ≧ 0, that is, D ≧ B may be satisfied.
In order to prevent the idler light and the pump light from overlapping,
{2fp1-fs-B}-{fp3}
= {Fs + 2D−B} − {fs + H} = 2D−H−B ≧ 0,
That is, H ≦ 2D-B may be satisfied.
In order not to overlap the idler light La4 that is subject to synchronous detection and the idler light La2 that is not subject to synchronous detection in consideration of each modulation,
{Fp1 + fp3-fs-B}-{2fp2-fs + B}
= {Fs + D + H−B} − {fs + 2D + 2df + B} = HD−2df−2B ≧ 0,
That is, H ≧ D + 2df + 2B may be satisfied.
In order not to overlap the idler light La5 that is subject to synchronous detection and the idler light La6 that is not subject to synchronous detection in consideration of the respective modulations,
{2fp3-fs-B}-{fp2 + fp3-fs + B}
= {Fs + 2H-B}-{fs + D + H + df + B}
= HD-df-2B ≧ 0,
That is, H ≧ D + df + 2B may be satisfied.

従って、信号光Lsとポンプ光Lp1との光周波数間隔D及び信号光Lsとポンプ光Lp3との光周波数間隔Hは、図13(b)の斜線に示す領域の関係にあれば、この条件を満たす。ポンプ光Lp3がポンプ光Lp1よりも低周波数の場合も、同様である。   Therefore, if the optical frequency interval D between the signal light Ls and the pump light Lp1 and the optical frequency interval H between the signal light Ls and the pump light Lp3 are in the relationship shown by the hatched area in FIG. Fulfill. The same applies when the pump light Lp3 has a lower frequency than the pump light Lp1.

また例えば、周波数間隔がdfの互いに初期位相と位相雑音項が等しい4ポンプ光を用いる場合、縮退四光波混合以外の6つのアイドラ光の光周波数をそれぞれfa、fb、fc、fd、fe、ffとすると次式が成り立つ。
fa=fp1+fp2−f1=2fp1+df−f1
fb=fp1+fp3−f1=2fp1+2df−f1
fc=fp1+fp4−f1=2fp1+3df−f1
fd=fp2+fp3−f1=2fp1+3df−f1
fe=fp2+fp4−f1=2fp1+4df−f1
ff=fp3+fp4−f1=2fp1+5df−f1
なお、縮退四光波混合の4つのアイドラ光の光周波数はf1’=2fp1−f1、f1’’=fb、fe、2fp1+6df−f1である。この場合、df、2df、3df、4df、5df、6dfの中間周波数信号が発生するので、任意の中間周波数信号を選択して同期検波すればよい。
Further, for example, when four-pump light having an initial phase and phase noise term equal to each other with a frequency interval of df is used, the optical frequencies of six idler lights other than degenerate four-wave mixing are set to fa, fb, fc, fd, fe, ff, respectively. Then the following equation holds.
fa = fp1 + fp2-f1 = 2fp1 + df-f1
fb = fp1 + fp3-f1 = 2fp1 + 2df-f1
fc = fp1 + fp4-f1 = 2fp1 + 3df-f1
fd = fp2 + fp3-f1 = 2fp1 + 3df-f1
fe = fp2 + fp4-f1 = 2fp1 + 4df-f1
ff = fp3 + fp4-f1 = 2fp1 + 5df-f1
The optical frequencies of the four idler lights in the degenerate four-wave mixing are f1 ′ = 2fp1-f1, f1 ″ = fb, fe, 2fp1 + 6df−f1. In this case, since intermediate frequency signals of df, 2df, 3df, 4df, 5df, and 6df are generated, any intermediate frequency signal may be selected and synchronously detected.

次に、本実施形態では、信号光の位相揺らぎ及び周波数揺らぎをアイドラ光同士の中間周波数信号では相殺できるために、光位相同期ループによる動的な光位相同期が不要で、静的な位相同期が可能であることを説明する。   Next, in this embodiment, since the phase fluctuation and frequency fluctuation of the signal light can be canceled by the intermediate frequency signal between idler lights, dynamic optical phase synchronization by an optical phase locked loop is unnecessary, and static phase synchronization is achieved. Explain that is possible.

まず、本願は初期位相と位相雑音項が等しく所定の周波数差のポンプ光による四光波混合を利用している。受信した信号光は、初期位相と位相雑音項が等しく所定の周波数差のポンプ光と共に非線形媒質に入力される。非線形媒質中で信号光とポンプ光の四光波混合によりアイドラ光が生成される。アイドラ光は光検波器に入力され、1又は複数の組のアイドラ光が、コヒーレント検波の信号光と局発光として作用する。光検波器の出力信号はミキサーにて電気の正弦波信号と乗ずる。ここで電気の正弦波信号の周波数はアイドラ光同士のビート信号(中間周波数信号)の内で同期検波対象の中間周波数の信号と同じ周波数である。位相は中間周波数信号と同位相である。このような正弦波信号は、例えばポンプ光を生成する光源に供給する電気の正弦波信号を、その周波数を逓倍した信号とすれば得ることが出来る。信号光一つに中間周波数だけ離れた一組の初期位相と位相雑音項が等しく所定の周波数差のポンプ光を用いる場合を想定する。更に信号光とそれぞれのポンプ光の縮退四光波混合で生ずるアイドラ光同士即ち3つのアイドラ光のうちの外側の二つから生ずる中間周波数信号を用いる場合は、光源を駆動する電気の正弦波信号の4倍の周波数の正弦波信号で同期検波すればよい。ここで、中間周波数信号と電気の正弦波の位相は一致するように線路長を調整する。   First, the present application uses four-wave mixing by pump light having the same initial phase and phase noise term and a predetermined frequency difference. The received signal light is input to the nonlinear medium together with pump light having the same initial phase and phase noise term and a predetermined frequency difference. Idler light is generated by four-wave mixing of signal light and pump light in a nonlinear medium. The idler light is input to the optical detector, and one or more sets of idler light act as coherent detection signal light and local light. The output signal of the optical detector is multiplied with an electric sine wave signal by a mixer. Here, the frequency of the electric sine wave signal is the same frequency as the signal of the intermediate frequency to be synchronously detected among the beat signals (intermediate frequency signals) between the idler lights. The phase is in phase with the intermediate frequency signal. Such a sine wave signal can be obtained, for example, by converting an electric sine wave signal supplied to a light source that generates pump light into a signal obtained by multiplying the frequency. Assume that a set of initial phases and phase noise terms that are separated by an intermediate frequency are used for one signal light and pump light having a predetermined frequency difference is used. Furthermore, in the case of using an intermediate frequency signal generated from idler lights generated by degenerate four-wave mixing of the signal light and the respective pump lights, that is, two of the three idler lights, an electric sine wave signal for driving the light source is used. What is necessary is just to perform synchronous detection with a sine wave signal of four times the frequency. Here, the line length is adjusted so that the phases of the intermediate frequency signal and the electric sine wave coincide.

この時二つの外側のアイドラ光の間の中間周波数と初期位相は次式のように示せる。
fIF={2fp2−fa}−{2fp1−fa}
={2(fp1+fD)−fa}−{2fp1−fa}=2fD
OIF={2Op2−Oa}−{2Op1−Oa}=2{Op2−Op1}
ここで、fIFとOIFは中間周波数と中間周波数信号の初期位相、faとfp1とfp2は信号光とポンプ光の周波数、fDは二つのポンプ光間の周波数差、OaとOpj(j=1、2)は信号光とポンプ光の初期位相を意味する。上記の式に示されるように、信号光の周波数変動と位相変動の成分は中間周波数信号では相殺される。ポンプ光は単一の光を変調して生成したとすると、Op1−Op2は一定となり、ポンプ光の間の周波数差のみが影響することがわかる。このようにして、信号光の周波数揺らぎと位相揺らぎに関係なく、中間周波数信号の位相は常時一定となることがわかる。
At this time, the intermediate frequency and the initial phase between the two outer idler lights can be expressed as follows.
fIF = {2fp2-fa}-{2fp1-fa}
= {2 (fp1 + fD) -fa}-{2fp1-fa} = 2fD
OIF = {2Op2-Oa}-{2Op1-Oa} = 2 {Op2-Op1}
Here, fIF and OIF are the intermediate frequency and the initial phase of the intermediate frequency signal, fa and fp1 and fp2 are the frequencies of the signal light and the pump light, fD is the frequency difference between the two pump lights, and Oa and Opj (j = 1, 2) means the initial phase of signal light and pump light. As shown in the above equation, the frequency fluctuation and phase fluctuation components of the signal light are canceled by the intermediate frequency signal. If the pump light is generated by modulating a single light, Op1-Op2 is constant, and it can be seen that only the frequency difference between the pump lights is affected. Thus, it can be seen that the phase of the intermediate frequency signal is always constant regardless of the frequency fluctuation and phase fluctuation of the signal light.

図17は本実施例の効果を検証した実験系である。非線形媒質として、シングルモードファイバとの接続損が少なく、フェムト秒オーダーの応答時間であるHNLFを用いた。応答時間が早いため、応答時間に起因するアイドラ光の波形歪みは無視でき、かつ応答時間に起因する位相同期までの遅延も無視できる。初期位相と位相雑音項が等しく所定の周波数差のポンプ光源は、DFB LD(Distributed Feedback Laser Diode;LD)と強度変調器(Intensity Modulator;IM)と強度変調器を駆動する625MHzの正弦波信号を出力する発振器で構成した。発振器の出力と強度変調器はキャリアを抑圧し、1.25GHz間隔のデュアルサイドバンドを生成するように調整した。信号光は強度変調器によりPPG(Pulse Pattern Generator)からの100Mbit/sの“10”交番パターンで変調した。信号光の位相は、位相揺らぎによる効果を検証するために位相変調器(Phase Modulator;PM)で位相を2π以上シフトした。信号光とポンプ光を光カプラ(Optical Coupler;OC)で合波し、光増幅器で増幅した後にHNLFに入力した。HNLFの出力はアイドラ光以外の強度を抑圧するために透過幅1nmの光濾波器で濾波した。濾波後の光のスペクトルと電気のスペクトルを図18に示す。図の18Aに示されるように、信号光とポンプ光、ポンプ光とアイドラ光の波長間隔は約1.2nmである。図18Bに示されるように、隣接するアイドラ光の周波数差は1.25GHzである。濾波後の光を光検波器で検波した信号から外側二つのアイドラ光の中間周波数信号を抜き出すために透過周波数1.5GHz〜3.5GHzの電気濾波器(Bandpass Filter;BPF)で濾波した。濾波した電気信号は、光源で用いた発信器と同一の10MHzの外部参照クロックに同期した別の発信器からの2.5GHzの正弦波信号でミキサーにて同期検波した。図19に、信号光の位相揺らぎを摸擬した位相変調器での位相シフトに対する信号振幅の変化を示す。黒丸が実測値であり、実線が位相同期されていない場合の振幅変化の例の計算値を示した。計算は位相シフト量0で位相が合致している場合の例である。図19に示されるように、位相シフトの影響は無視できることが分かる。   FIG. 17 shows an experimental system for verifying the effect of this example. As the nonlinear medium, HNLF having a small connection loss with a single mode fiber and a response time in the femtosecond order was used. Since the response time is fast, the waveform distortion of the idler light due to the response time can be ignored, and the delay until phase synchronization due to the response time can also be ignored. A pump light source having the same initial phase and phase noise term and a predetermined frequency difference includes a DFB LD (Distributed Feedback Laser Diode), an intensity modulator (IM), and a 625 MHz sine wave signal that drives the intensity modulator. Consists of an output oscillator. The output of the oscillator and the intensity modulator were adjusted to suppress the carrier and generate a dual sideband with 1.25 GHz spacing. The signal light was modulated with a 100 Mbit / s “10” alternating pattern from a PPG (Pulse Pattern Generator) by an intensity modulator. The phase of the signal light was shifted by 2π or more with a phase modulator (PM) in order to verify the effect of phase fluctuation. The signal light and the pump light were combined by an optical coupler (OC), amplified by an optical amplifier, and then input to the HNLF. The output of HNLF was filtered with an optical filter having a transmission width of 1 nm in order to suppress the intensity other than idler light. The spectrum of light after filtering and the spectrum of electricity are shown in FIG. As shown in FIG. 18A, the wavelength interval between the signal light and the pump light, and between the pump light and the idler light is about 1.2 nm. As shown in FIG. 18B, the frequency difference between adjacent idler lights is 1.25 GHz. The filtered light was filtered with an electric filter (Bandpass Filter; BPF) having a transmission frequency of 1.5 GHz to 3.5 GHz in order to extract an intermediate frequency signal of the two outer idler lights from the signal detected by the optical detector. The filtered electrical signal was synchronously detected by a mixer with a 2.5 GHz sine wave signal from another transmitter synchronized with the same 10 MHz external reference clock as the transmitter used in the light source. FIG. 19 shows a change in signal amplitude with respect to a phase shift in a phase modulator simulating the phase fluctuation of signal light. The black circle is the actual measurement value, and the calculation value of the example of the amplitude change when the solid line is not phase-synchronized is shown. The calculation is an example when the phase is matched with the phase shift amount being zero. As shown in FIG. 19, it can be seen that the influence of the phase shift is negligible.

以上示したように、本実施形態の光受信機301及び光通信システム501は、信号光と初期位相と位相雑音項が等しく所定の周波数差の局発光を信号光と同じ伝送路で伝送せずに、局発光の動的な位相同期を行う光位相同期ループを用いずにコヒーレント同期検波を実現することができる。   As described above, the optical receiver 301 and the optical communication system 501 of the present embodiment do not transmit the local light having the same frequency as the signal light, the initial phase, and the phase noise term through the same transmission path as the signal light. In addition, coherent synchronous detection can be realized without using an optical phase locked loop that performs dynamic phase synchronization of local light.

(第2の実施形態)
図2は、信号光に複数の光周波数が含まれる場合の光通信システム502を説明する概略図である。図1の光通信システム501と図2の光通信システム502の違いは信号光のみである。本光通信システム502が伝送する信号光は、異なる光周波数の複数の光からなる。
(Second Embodiment)
FIG. 2 is a schematic diagram illustrating an optical communication system 502 in the case where signal light includes a plurality of optical frequencies. The difference between the optical communication system 501 in FIG. 1 and the optical communication system 502 in FIG. 2 is only the signal light. The signal light transmitted by the optical communication system 502 includes a plurality of lights having different optical frequencies.

図6は、信号光を構成する異なる光周波数の光の数が2、その周波数間隔が中間周波数の4倍、伝送帯域の8倍とした場合の光スペクトルの模式図である。図7は、この場合に光検波器13が出力する電気スペクトルの模式図である。図6の横軸は光周波数で、縦の矢印は光スペクトルの中心周波数で、実線の台形は変調成分を意味する。図7の横軸は周波数で、実線の台形は変調成分を意味し、台形内の縦線は電気スペクトルの中心周波数を意味し、破線の台形は電気濾波器14の透過帯域を意味する。図6に示すように、信号光を構成する異なる光周波数の二つの光の間隔が4df以上であれば、信号光を構成する異なる光周波数の二つの光に対応するアイドラ光は光周波数でポンプ光間隔の倍の2df以上離れる。このため、中間周波数dfの中間周波数信号を抜き出す電気濾波器14は、図7に示すように中間周波数の倍の2dfの中間周波数信号を十分抑圧可能であり、光検波器13の出力から中間周波数dfの中間周波数成分のみを抜き出すことが可能である。従って、図2の光受信機301は、信号光を構成する異なる光周波数の複数の光間でのビートによる雑音を抑圧でき、信号光を構成する異なる光周波数の複数の光の内の光濾波器12で選択した任意の光に対応するアイドラ光をコヒーレント同期検波が可能となる。なお、図2、図6、図7では光濾波器12で異なる光周波数の複数の光に対応するアイドラ光を同時にコヒーレント同期検波するとしているが信号光を構成する異なる光周波数の複数の光のいずれかに対応するアイドラ光を光濾波器13で選択するとしてよい。この場合は、信号光を構成する異なる光周波数の光に対応するアイドラ光同士が重ならなければ良いので、図8に示すように信号光を構成する異なる光周波数の二つの光の間隔が3df以上であればよい。更に、コヒーレント同期検波するアイドラ光のみを選択する場合は、図20に示すように信号光を構成する異なる光周波数の二つの光の間隔が2df以上であればよい。   FIG. 6 is a schematic diagram of an optical spectrum when the number of lights of different optical frequencies constituting the signal light is 2, the frequency interval is 4 times the intermediate frequency, and 8 times the transmission band. FIG. 7 is a schematic diagram of an electric spectrum output from the optical detector 13 in this case. The horizontal axis in FIG. 6 is the optical frequency, the vertical arrow is the center frequency of the optical spectrum, and the solid line trapezoid means the modulation component. The horizontal axis in FIG. 7 is frequency, the solid line trapezoid means the modulation component, the vertical line in the trapezoid means the center frequency of the electric spectrum, and the broken line trapezoid means the transmission band of the electric filter 14. As shown in FIG. 6, if the interval between two lights having different optical frequencies constituting the signal light is 4 df or more, idler light corresponding to the two lights having different optical frequencies constituting the signal light is pumped at the optical frequency. The distance is 2 df, which is twice the light interval. Therefore, the electrofilter 14 that extracts the intermediate frequency signal of the intermediate frequency df can sufficiently suppress the 2 df intermediate frequency signal that is twice the intermediate frequency as shown in FIG. It is possible to extract only the intermediate frequency component of df. Therefore, the optical receiver 301 in FIG. 2 can suppress noise due to beats between a plurality of lights having different optical frequencies constituting the signal light, and optical filtering among a plurality of lights having different optical frequencies constituting the signal light. Coherent synchronous detection can be performed on idler light corresponding to any light selected by the unit 12. 2, 6, and 7, it is assumed that idler light corresponding to a plurality of lights having different optical frequencies is simultaneously coherently detected by the optical filter 12, but a plurality of lights having different optical frequencies constituting the signal light are simultaneously detected. The idler light corresponding to either one may be selected by the optical filter 13. In this case, since idler light corresponding to light of different optical frequencies constituting the signal light does not have to overlap with each other, the interval between the two lights having different optical frequencies constituting the signal light is 3 df as shown in FIG. That is all you need. Furthermore, when only idler light for coherent synchronous detection is selected, the interval between two lights having different optical frequencies constituting the signal light may be 2 df or more as shown in FIG.

ここで、光送信機401の伝送信号による変調は、伝送帯域に制限しており、変調メインローブ以外の変調成分は無視できる前提で、中間周波数は伝送帯域の2倍とした。このような変調は、光送信機401において光変調器または直接変調レーザを変調する信号自体を3dB帯域が変調帯域の0.5−0.8倍の電気の低域濾波器等を通過させる等によって帯域制限した変調により実現できる。メインローブより高周波の変調成分が無視できない場合、中間周波数は、伝送帯域にメインローブより高周波成分で無視できない変調成分の周波数幅を加えた周波数の2倍以上とすればよい。逆にSSB変調の場合は、中間周波数は、伝送帯域であってもよい。図6に対応するSSB変調の場合の例を図21に示す。   Here, the modulation by the transmission signal of the optical transmitter 401 is limited to the transmission band, and the intermediate frequency is set to twice the transmission band on the premise that the modulation components other than the modulation main lobe can be ignored. In such modulation, the signal itself that modulates the optical modulator or the direct modulation laser in the optical transmitter 401 is passed through an electrical low-pass filter or the like whose 3 dB band is 0.5 to 0.8 times the modulation band. Can be realized by band-limited modulation. When a modulation component having a frequency higher than that of the main lobe cannot be ignored, the intermediate frequency may be set to at least twice the frequency obtained by adding the frequency width of the modulation component that cannot be ignored with the higher frequency component than the main lobe to the transmission band. Conversely, in the case of SSB modulation, the intermediate frequency may be a transmission band. An example in the case of SSB modulation corresponding to FIG. 6 is shown in FIG.

なお、ポンプ光間隔が伝送帯域の倍で、ポンプ光間隔の倍の2dfの中間周波数信号を、電気濾波器14で取り出して同期検波するためには、信号光を構成する異なる光周波数の光の周波数間隔をポンプ光間隔の5倍以上離せばよい。この場合、信号光を構成する異なる光周波数の光に対応するアイドラ光はポンプ光間隔の3倍の3df以上離れる。   In order to extract an intermediate frequency signal of 2 df, which is twice the transmission band and the pump light interval is twice that of the pump light interval, and to detect synchronously by the electric filter 14, the light of different optical frequencies constituting the signal light is used. The frequency interval may be separated by 5 times or more of the pump light interval. In this case, idler light corresponding to light of different optical frequencies constituting the signal light is separated by 3 df or more, which is three times the pump light interval.

なお、上記の例ではポンプ光と信号光の光周波数関係について示していないが、同期検波の対象となるアイドラ光同士の光周波数間隔に加えて、ポンプ光、信号光、アイドラ光は、その変調による光周波数拡がりを考慮して、それぞれ重ならないことが望ましい。例えば、コヒーレント同期検波の対象となるアイドラ光の組同士は2df間隔以上はなれることが望ましい。また、コヒーレント同期検波の対象とならないアイドラ光は光濾波器12によって遮断することを前提とすると、コヒーレント同期検波の対象のアイドラ光と対象でないアイドラ光同士が重ならないことが望ましい。   Although the optical frequency relationship between the pump light and the signal light is not shown in the above example, the pump light, the signal light, and the idler light are modulated in addition to the optical frequency interval between the idler lights to be subjected to the synchronous detection. It is desirable that they do not overlap each other in consideration of the optical frequency spread due to. For example, it is desirable that a pair of idler lights to be subjected to coherent synchronous detection can be separated by 2 df or more. Also, assuming that idler light that is not subject to coherent synchronous detection is blocked by the optical filter 12, it is desirable that idler light that is subject to coherent synchronous detection and idler light that is not subject to overlap do not overlap.

図14は、信号光が2つ、ポンプ光が2つの場合でポンプ光、信号光、アイドラ光および異なる信号光のアイドラ光が互いに光周波数が重ならない例である。図14では、光周波数の低いほうから順に、信号光Ls1、Ls2、ポンプ光Lp1、Lp2、信号光Ls1のアイドラ光、信号光Ls2のアイドラ光の順で並んでいる。ここで、光周波数の配置の高低は反転してもよい。
信号光Ls1の光周波数f1=fs、
信号光Ls2の光周波数f2=fs+S、
ポンプ光Lp1の光周波数fp1=fs+D、
ポンプ光Lp2の光周波数fp2=fp1+df=fs+D+df、
信号光Ls1とポンプ光Lp1及びLp2とのアイドラ光の光周波数をそれぞれ
f1’=2fp1−fs=2fs+2D−fs=fs+2D、
f1’’’=fp1+fp2−fs=2fp1+df−fs=fs+2D+df、
f1’’=2fp2−fs=2fp1+2df−fs=fs+2D+2df、
信号光Ls2とポンプ光Lp1及びLp2のアイドラ光の光周波数をそれぞれ
f2’=2fp1−f2=fs+2D−S、
f2’’’=fp1+fp2−f2=fs+2D+df−S、
f2’’=2fp2−f2=fs+2D+2df−S
と表せる。ここで、信号光間の光周波数間隔をS、信号光Lsとポンプ光Lp1との光周波数間隔をD、ポンプ光間の光周波数間隔dfを同期検波する中間周波数、信号光の伝送帯域Bを、中間周波数の半分とした。
FIG. 14 is an example in which there are two signal lights and two pump lights, and the pump light, signal light, idler light, and idler light of different signal lights do not overlap in optical frequency. In FIG. 14, the signal lights Ls1 and Ls2, the pump lights Lp1 and Lp2, the idler light of the signal light Ls1, and the idler light of the signal light Ls2 are arranged in order from the lowest optical frequency. Here, the arrangement of the optical frequency may be reversed.
Optical frequency f1 = fs of the signal light Ls1;
Optical frequency f2 = fs + S of the signal light Ls2;
Optical frequency fp1 = ps + D of pump light Lp1
Optical frequency fp2 = fp1 + df = fs + D + df of the pump light Lp2
The optical frequencies of the idler light of the signal light Ls1 and the pump light Lp1 and Lp2 are respectively f1 ′ = 2fp1-fs = 2fs + 2D−fs = fs + 2D,
f1 ′ ″ = fp1 + fp2−fs = 2fp1 + df−fs = fs + 2D + df,
f1 ″ = 2fp2-fs = 2fp1 + 2df−fs = fs + 2D + 2df,
The optical frequencies of the signal light Ls2 and the idler light of the pump light Lp1 and Lp2 are f2 ′ = 2fp1-f2 = fs + 2D−S, respectively.
f2 '''= fp1 + fp2-f2 = fs + 2D + df-S,
f2 '' = 2fp2-f2 = fs + 2D + 2df-S
It can be expressed. Here, the optical frequency interval between the signal lights is S, the optical frequency interval between the signal light Ls and the pump light Lp1, the intermediate frequency for synchronously detecting the optical frequency interval df between the pump lights, and the transmission band B of the signal light. The half of the intermediate frequency.

ここで、光送信機401の伝送信号による変調は、伝送帯域に制限しており、変調メインローブ以外の変調成分は無視できる前提で、中間周波数は伝送帯域の2倍とした。このような変調は、光送信機401において光変調器または直接変調レーザを変調する信号自体を3dB帯域が変調帯域の0.5−0.8倍の電気の低域濾波器等を通過させる等によって帯域制限した変調により実現できる。メインローブより高周波の変調成分が無視できない場合、中間周波数は、伝送帯域にメインローブより高周波成分で無視できない変調成分の周波数幅を加えた周波数とすればよい。   Here, the modulation by the transmission signal of the optical transmitter 401 is limited to the transmission band, and the intermediate frequency is set to twice the transmission band on the premise that the modulation components other than the modulation main lobe can be ignored. In such modulation, the signal itself that modulates the optical modulator or the direct modulation laser in the optical transmitter 401 is passed through an electrical low-pass filter or the like whose 3 dB band is 0.5 to 0.8 times the modulation band. Can be realized by band-limited modulation. When the modulation component having a frequency higher than that of the main lobe cannot be ignored, the intermediate frequency may be set to a frequency obtained by adding the frequency width of the modulation component that cannot be ignored with the higher frequency component than the main lobe to the transmission band.

この時、コヒーレント同期検波対象とするアイドラ光と、信号光を構成する異なる光周波数の光に対応するアイドラ光が重ならないためには、信号光を構成する異なる光周波数の光に対応するアイドラ光同士が2df以上離れればよい。従って、
f1’−f2’’−2df={2fp1−f1}−{2fp2−f2}−2df
={fs+2D}−{fs+2D+2df−S}−2df=S−4df≧0、
即ち、S≧4dfを満たせばよい。
変調を考慮して信号光とポンプ光が重ならないためには、
{fp1}−{f2+B}={fs+D}−{fs+S+B}
=D−S−B≧0、
即ちD≧S+Bが成立すればよい。
変調を考慮してアイドラ光とポンプ光が重ならないためには、
{2fp1−f2−B}−{fp2}
={fs+2D−S−B}−{fs+D+df}
=D−S−df−B≧0、
即ちD≧S+df+Bが成立すればよい。
従って、伝送帯域Bがdfの半分の場合、信号光間の光周波数間隔Sは4df、信号光Lsとポンプ光Lp1との光周波数間隔Dは、ポンプ光間隔dfの5.5倍以上であればこの条件を満たす。
At this time, the idler light corresponding to the light of the different optical frequencies constituting the signal light is not overlapped with the idler light corresponding to the light of the different optical frequencies constituting the signal light. It suffices if they are separated by 2 df or more. Therefore,
f1'-f2 ''-2df = {2fp1-f1}-{2fp2-f2} -2df
= {Fs + 2D} − {fs + 2D + 2df−S} −2df = S−4df ≧ 0,
That is, it is only necessary to satisfy S ≧ 4df.
In order not to overlap the signal light and the pump light in consideration of the modulation,
{Fp1}-{f2 + B} = {fs + D}-{fs + S + B}
= DSB ≧ 0,
That is, D ≧ S + B may be satisfied.
In order to prevent the idler light and the pump light from overlapping,
{2fp1-f2-B}-{fp2}
= {Fs + 2D-SB}-{fs + D + df}
= DS-df-B ≧ 0,
That is, D ≧ S + df + B may be satisfied.
Accordingly, when the transmission band B is half of df, the optical frequency interval S between the signal lights is 4 df, and the optical frequency interval D between the signal light Ls and the pump light Lp1 is not less than 5.5 times the pump light interval df. This condition is met.

ここで、後述する光濾波器12の透過光周波数と遮断光周波数は光周波数軸上でステップ上の切り替わることを前提としている。透過光周波数と遮断光周波数の切替わりがなだらかな場合は、アイドラ光とボンプ光の間隔は、伝送帯域Bに相当するポンプ光間隔の半分の0.5dfの代わりに,ポンプ光が十分遮断できる間隔とすればよい。また。伝送帯域Bと中間周波数の関係は2倍としたが、後述する電気濾波器及び同期検波によりで中間周波数成分を抜き出すに必要な関係であれば良く、2倍以上であっでも良い。   Here, it is assumed that the transmitted light frequency and the cut-off light frequency of the optical filter 12, which will be described later, are switched on the step on the optical frequency axis. When the switching between the transmitted light frequency and the cut-off light frequency is gentle, the interval between the idler light and the bump light can be sufficiently blocked in place of 0.5 df, which is half the pump light interval corresponding to the transmission band B. An interval may be used. Also. Although the relationship between the transmission band B and the intermediate frequency is doubled, it may be a relationship necessary for extracting an intermediate frequency component by an electric filter and synchronous detection described later, and may be twice or more.

また、伝送帯域よりも小さい中間周波数である場合、コヒーレント同期検波対象とするアイドラ光と、信号光を構成する異なる光周波数の光に対応するアイドラ光が重ならないためには、信号光を構成する異なる光周波数の光に対応するアイドラ光同士が2B以上離れればよい。従って、
f1’−f2’’−2B={2fp1−f1}−{2fp2−f2}−2B
={fs+2D}−{fs+2D+2df−S}−2B=S−2B−2df≧0、
即ち、図22に示すように、S≧2B+2dfが成立すればよい。なお、SSB変調である場合は、図23に示すようにS≧B+2dfが成立すればよい。
変調を考慮して信号光とポンプ光が重ならないためには、
{fp1}−{f2+B}={fs+D}−{fs+S+B}
=D−S−B≧0、
即ちD≧S+Bが成立すればよい。
変調を考慮してアイドラ光とポンプ光が重ならないためには、
{2fp1−f2−B}−{fp2}
={fs+2D−S−B}−{fs+D+df}
=D−S−df−B≧0、
即ちD≧S+df+Bが成立すればよい。
従って、信号光間の光周波数間隔Sは2B+2df以上、信号光Lsとポンプ光Lp1との光周波数間隔Dは3B+2df以上であればこの条件を満たす。
In addition, when the intermediate frequency is smaller than the transmission band, the idle light corresponding to the coherent synchronous detection target and the idler light corresponding to light of different optical frequencies constituting the signal light do not overlap with each other. It suffices that idler lights corresponding to lights of different optical frequencies are separated by 2B or more. Therefore,
f1'-f2 "-2B = {2fp1-f1}-{2fp2-f2} -2B
= {Fs + 2D}-{fs + 2D + 2df-S} -2B = S-2B-2df ≧ 0,
That is, as shown in FIG. 22, it is sufficient that S ≧ 2B + 2df. In the case of SSB modulation, S ≧ B + 2df may be satisfied as shown in FIG.
In order not to overlap the signal light and the pump light in consideration of the modulation,
{Fp1}-{f2 + B} = {fs + D}-{fs + S + B}
= DSB ≧ 0,
That is, D ≧ S + B may be satisfied.
In order to prevent the idler light and the pump light from overlapping,
{2fp1-f2-B}-{fp2}
= {Fs + 2D-SB}-{fs + D + df}
= DS-df-B ≧ 0,
That is, D ≧ S + df + B may be satisfied.
Therefore, this condition is satisfied if the optical frequency interval S between the signal lights is 2B + 2df or more and the optical frequency interval D between the signal light Ls and the pump light Lp1 is 3B + 2df or more.

また、中間周波数が伝送帯域より大きく、コヒーレント同期検波対象とするアイドラ光を信号毎に、後述の第3の実施形態と同様に光濾波器でそれぞれ分岐し、それぞれ異なる光検波器でコヒーレント同期検波する場合は、異なる信号光に対応するアイドラ光の変調成分同士が重ならなければよい。即ち伝送帯域の倍であるdf以上離れればよいので、縮退四光波混合のアイドラ光同士でコヒーレント同期検波する場合は信号光間の光周波数間隔SはS≧3df、縮退四光波混合と縮退四光波混合以外のアイドラ光同士でコヒーレント同期検波する場合は信号光間の光周波数間隔SはS≧2dfを満たせばよいのは明らかである。この関係は以降の説明でも同様である。   Also, the idler light that is the intermediate frequency is larger than the transmission band and is subject to coherent synchronous detection, for each signal, is branched by an optical filter as in the third embodiment to be described later, and coherent synchronous detection is performed by different optical detectors. In this case, it is sufficient that the modulation components of idler light corresponding to different signal lights do not overlap each other. That is, since it is only necessary to separate df that is twice the transmission band, when coherent synchronous detection is performed between idler lights of degenerate four-wave mixing, the optical frequency interval S between the signal lights is S ≧ 3 df, degenerate four-wave mixing and degenerate four-wave In the case of coherent synchronous detection between idler lights other than those mixed, it is clear that the optical frequency interval S between the signal lights only needs to satisfy S ≧ 2df. This relationship is the same in the following description.

また、中間周波数が伝送帯域より小さく、コヒーレント同期検波対象とするアイドラ光を信号毎に、後述の第3の実施形態と同様に光濾波器でそれぞれ分岐し、それぞれ異なる光検波器でコヒーレント同期検波する場合は、信号光を構成する異なる光周波数の光に対応するアイドラ光でコヒーレント同期検波対象のアイドラ光の変調成分同士が重ならなければよい。即ちデュアルサイドバンドの場合は図24に示すように伝送帯域の倍にポンプ光間隔の倍を加えた2B+2df以上離れればよいので、ポンプ光の間隔を無視すれば、信号光間の光周波数間隔SはS≧2B+2dfを満たせばよいのは明らかである。なお、SSBの場合は、信号光を構成する異なる光周波数の光に対応するアイドラ光でコヒーレント同期検波対象のアイドラ光の変調成分同士が重ならないためには伝送帯域にポンプ光間隔を加えたB+df以上離れればよい。これらの関係は以降の説明でも同様である。   In addition, the idler light to be subject to coherent synchronous detection is branched for each signal by an optical filter, as in the third embodiment to be described later, and coherent synchronous detection is performed by different optical detectors. In this case, it is sufficient that the modulation components of the idler light that is the target of coherent synchronous detection do not overlap with the idler light that corresponds to the light having different optical frequencies constituting the signal light. That is, in the case of the dual sideband, as shown in FIG. 24, it is sufficient to be 2B + 2df or more obtained by adding the double of the pump light interval to the double of the transmission band, so if the pump light interval is ignored, the optical frequency interval S between the signal lights Obviously, it is sufficient to satisfy S ≧ 2B + 2df. In the case of SSB, in order to prevent the modulation components of the idler light to be coherent synchronously detected from overlapping with the idler light corresponding to the light of different optical frequencies constituting the signal light, B + df obtained by adding the pump light interval to the transmission band. It suffices if it is far away. These relationships are the same in the following description.

また、信号光が3以上の場合は、信号光間の光周波数間隔Sに信号光数から1を引いた数を乗じた光周波数間隔で、信号光とポンプ光の光周波数間隔の関係式を計算すれば同様に求まる。この関係は以降の説明でも同様である。   When the signal light is 3 or more, the relational expression of the optical frequency interval between the signal light and the pump light is obtained by multiplying the optical frequency interval S between the signal lights by the number obtained by subtracting 1 from the number of the signal lights. If it calculates, it will be found similarly. This relationship is the same in the following description.

ポンプ光が3以上の場合も、信号光を構成する異なる光周波数の光に対応するアイドラ光同士が重ならず、信号光を構成する異なる光周波数の光に対応するアイドラ光の内で同一の光検波器で光検波するアイドラ光の間隔が、コヒーレント同期検波する中間周波数から伝送帯域を減じた周波数からコヒーレント同期検波する中間周波数から伝送帯域を加えた周波数に内容にするのは同様である。例えば、信号光を構成する異なる光周波数の光は、伝送帯域の2倍以上かつ電気濾波器14で取り出して同期検波したい中間周波数以上離れることが望ましい。   Even when the pump light is 3 or more, idler lights corresponding to light of different optical frequencies constituting the signal light do not overlap with each other, and the same idler light corresponding to light of different optical frequencies constituting the signal light is the same. It is the same that the interval of idler light detected by the optical detector is set to the frequency obtained by subtracting the transmission band from the frequency obtained by subtracting the transmission band from the intermediate frequency used for coherent synchronous detection and the frequency obtained by adding the transmission band from the intermediate frequency used for coherent synchronous detection. For example, it is desirable that light having different optical frequencies constituting the signal light is more than twice the transmission band and separated by an intermediate frequency to be extracted by the electric filter 14 and subjected to synchronous detection.

例えば、光周波数軸上で信号光の低周波数側に1つのポンプ光、高周波数側に2つのポンプ光が配置される3ポンプ光を用いるとする。ここで、低周波数側のポンプ光の光周波数をfp1とし、高周波数側のポンプ光の光周波数をfp2とfp2+dfとする。このときfp2よりも高周波数側に位置する光周波数f1及びf2の信号光を構成する異なる光周波数の光に対する光周波数がfp1とfp2のポンプ光に対するアイドラ光の光周波数をf1&、f1&&、光周波数f2の信号光に対する光周波数がfp1とfp2+dfのポンプ光に対するアイドラ光の光周波数をf2&、f2&&とする。このときアイドラ光の光周波数f1&、f1&&、f2&、f2&&について次式が成り立つ。
f1&=fp2+f1−fp1=(fp2−fp1)+f1
f1&&=fp2+df+f1−fp1=(fp2−fp1)+f1+df
f2&=fp2+f2−fp1=(fp2−fp1)+f2
f2&&=fp2+df+f2−fp1=(fp2−fp1)+f2+df
For example, it is assumed that three pump lights in which one pump light is arranged on the low frequency side of the signal light on the optical frequency axis and two pump lights are arranged on the high frequency side are used. Here, the optical frequency of the pump light on the low frequency side is fp1, and the optical frequencies of the pump light on the high frequency side are fp2 and fp2 + df. At this time, the optical frequencies of the idler light with respect to the pump light with the optical frequencies fp1 and fp2 constituting the signal light of the optical frequencies f1 and f2 positioned on the higher frequency side than fp2 are f1 &, f1 &&, and the optical frequency. Let f2 & and f2 && be the optical frequencies of idler light for the pump light whose optical frequencies for the signal light of f2 are fp1 and fp2 + df. At this time, the following equations hold for the optical frequencies f1 &, f1 &&, f2 &, f2 && of idler light.
f1 & = fp2 + f1-fp1 = (fp2-fp1) + f1
f1 && = fp2 + df + f1-fp1 = (fp2-fp1) + f1 + df
f2 & = fp2 + f2-fp1 = (fp2-fp1) + f2
f2 && = fp2 + df + f2-fp1 = (fp2-fp1) + f2 + df

この場合、隣接する信号光に対するアイドラ光の間隔が伝送帯域の2倍以上かつ3df以上であれば、それぞれの信号光を独立してコヒーレント同期検波することが可能である。このため、信号光を構成する異なる光周波数の複数の光の光周波数間隔は、|f2−f1|≧3df以上、即ち、ポンプ光間隔の3倍以上とする。ここで、高周波側に2つのポンプ光を配したが、低周波数側に2つのポンプ光を配するとしても同様である。なお、両ポンプ光は、信号光とアイドラ光がその両ポンプ光の間に収まる間隔であればよい。   In this case, if the interval between the idler light and the adjacent signal light is not less than twice the transmission band and not less than 3 df, the respective signal lights can be independently coherently detected. For this reason, the optical frequency interval of the plurality of lights having different optical frequencies constituting the signal light is set to | f2−f1 | ≧ 3df or more, that is, three times or more of the pump light interval. Here, the two pump lights are arranged on the high frequency side, but the same is true if the two pump lights are arranged on the low frequency side. It should be noted that the two pump lights only need to have an interval in which the signal light and the idler light fall between the two pump lights.

光周波数f1&とf1&&のアイドラ光の光周波数は、信号光、ポンプ光、光周波数f1&とf1&&以外のアイドラ光から光濾波器12で十分遮断できる光周波数であるか、電気濾波器14で遮断できる光周波数であるか、同期検波で遮断できる光周波数、例えばdf以上異なるとする。   The optical frequency of the idler light of the optical frequencies f1 & and f1 && is an optical frequency that can be sufficiently blocked by the optical filter 12 from signal light, pump light, idler light other than the optical frequencies f1 & and f1 &&, or can be blocked by the electric filter 14 It is assumed that the optical frequency is different or the optical frequency that can be cut off by synchronous detection, for example, df or more.

ここで、ポンプ光の間に信号光が入る例で示したが、信号光の高周波側又は低周波側にポンプ光が位置していても良い。図15は、信号光が2つ、ポンプ光が3つの場合で互いに光周波数が重ならない例である。図15では、光周波数の低いほうから順に、信号光を構成する異なる光周波数の光Ls1、Ls2、ポンプ光Lp1、Lp2、Lp3、信号光を構成する光Ls2とポンプ光Lp1とLp2に対応するアイドラ光、信号光を構成する光Ls1とポンプ光Lp1とLp2に対応するアイドラ光、信号光を構成する光Ls2とポンプ光Lp3とLp1又は2に対応するアイドラ光、信号光を構成する光Ls1とポンプ光Lp3とLp1 又はLp2に対応するアイドラ光、信号光を構成する光Ls2又はLs1とポンプ光Lp3に対応するアイドラ光の順で並んでいる。光周波数の高低は反転してもよい。また図15では、ポンプ光Lp3とLp1又はLp2に対応するアイドラ光をコヒーレント同期検波の対象としている。   Here, although an example in which signal light enters between pump light is shown, the pump light may be located on the high frequency side or low frequency side of the signal light. FIG. 15 is an example in which there are two signal lights and three pump lights and the optical frequencies do not overlap each other. In FIG. 15, in order from the lowest optical frequency, light Ls1 and Ls2 having different optical frequencies constituting the signal light, pump lights Lp1, Lp2, and Lp3, light Ls2 constituting the signal light, and pump lights Lp1 and Lp2 are corresponded. Idler light, light Ls1 constituting signal light and idler light corresponding to pump light Lp1 and Lp2, light Ls2 constituting signal light, idler light corresponding to pump light Lp3 and Lp1 or 2, and light Ls1 constituting signal light And idler light corresponding to the pump light Lp3 and Lp1 or Lp2, light Ls2 or Ls1 constituting the signal light, and idler light corresponding to the pump light Lp3 are arranged in this order. The optical frequency may be reversed. In FIG. 15, the idler light corresponding to the pump light Lp3 and Lp1 or Lp2 is the target of coherent synchronous detection.

信号光を構成する光の光周波数をそれぞれ
f1=fs、
f2=fs+S、
ポンプ光Lp1、Lp2、Lp3の光周波数をそれぞれ
fp1=fs+D、
fp2=fp1+df=fs+D+df、
fp3=fs+H、
アイドラ光の光周波数をそれぞれ
f2’=2fp1−f2=2fs+2D−fs−S=fs+2D−S、
f2’’’=fp1+fp2−f2=2fp1+df−fs−S=fs+2D+df−S、
f2’’=2fp2−f2=2fp1+2df−fs−S=fs+2D+2df−S、 f2’’’’=fp1+fp3−f2=fs+D+H−S、
f2’’’’’=fp2+fp3−f2=fs+D+H+df−S、
f2’’’’’’=2fp3−f2=2fs+2H−fs−S=fs+2H−S、
f1’=2fp1−fs=2fs+2D−fs=fs+2D、
fl’’’=fp1+fp2−fs=2fp1+df−fs=fs+2D+df、
f1’’=2fp2−fs=2fp1+2df−fs=fs+2D+2df、
f1’’’’=fp1+fp3−fs=fs+1D+H、
f1’’’’’=fp2+fp3−fs=fs+D+H+df、
f1’’’’’’’=2fp3−fs=2fs+2H−fs=fs+2H
と表せる。ここで、信号光を構成する光の間の光周波数間隔をS、信号光を構成する光Ls1とポンプ光Lp1との光周波数間隔をD、信号光を構成する光Ls1とポンプ光Lp3との光周波数間隔をH、ポンプ光Lp1とポンプ光Lp2との間の光周波数間隔dfを同期検波する中間周波数、信号光の伝送帯域Bを、中間周波数の半分とした。
The optical frequencies of the light constituting the signal light are respectively f1 = fs,
f2 = fs + S,
The optical frequencies of the pump lights Lp1, Lp2, and Lp3 are fp1 = fs + D,
fp2 = fp1 + df = fs + D + df,
fp3 = fs + H,
The optical frequencies of idler light are respectively f2 ′ = 2fp1-f2 = 2fs + 2D−fs−S = fs + 2D−S,
f2 ′ ″ = fp1 + fp2−f2 = 2fp1 + df−fs−S = fs + 2D + df−S,
f2 '' = 2fp2-f2 = 2fp1 + 2df-fs-S = fs + 2D + 2df-S, f2 '''' = fp1 + fp3-f2 = fs + D + HS
f2 '''''= fp2 + fp3-f2 = fs + D + H + df-S,
f2 '''''' = 2fp3-f2 = 2fs + 2H-fs-S = fs + 2H-S,
f1 ′ = 2fp1-fs = 2fs + 2D−fs = fs + 2D,
fl ′ ″ = fp1 + fp2−fs = 2fp1 + df−fs = fs + 2D + df,
f1 ″ = 2fp2-fs = 2fp1 + 2df−fs = fs + 2D + 2df,
f1 ″ ″ = fp1 + fp3-fs = fs + 1D + H,
f1 ′ ″ ″ = fp2 + fp3-fs = fs + D + H + df,
f1 '''''''= 2fp3-fs = 2fs + 2H-fs = fs + 2H
It can be expressed. Here, the optical frequency interval between the light constituting the signal light is S, the optical frequency interval between the light Ls1 constituting the signal light and the pump light Lp1, and the light Ls1 constituting the signal light and the pump light Lp3. The optical frequency interval is H, the intermediate frequency for synchronously detecting the optical frequency interval df between the pump light Lp1 and the pump light Lp2, and the transmission band B of the signal light is half of the intermediate frequency.

この時、同期検波対象とするアイドラ光の中で、信号光を構成する異なる光周波数の光に対応するアイドラ光の中間周波数信号がコヒーレント同期検波する中間周波数信号に重ならないためには、信号光を構成する異なる光周波数の光に対応するアイドラ光同士が2df以上離れればよいので、
{fp1+fp3−fs}−{fp2+fp3−f2}−2df
={fs+D+H}−{fs+D+H+df−S}−2df
=S−3df≧0、
即ち、S≧3dfを満たせばよい。
変調を考慮して、信号光とポンプ光が重ならないためには、変調サイドバンドが伝送帯域Bとすると、
{fp1}−{f2+B}={fs+D}−{fs+S+B}
=D−S−B≧0、
即ちD≧S+B、B=0.5dfの場合D≧3.5dfが成立すればよい。
変調を考慮してアイドラ光とポンプ光が重ならないためには、
{2fp1−f2−B}−{fp3}
={fs+2D−S−B}−{fs+H}=2D−H−S−B≧0、
即ちH≦2D−S−Bが成立すればよい。
それぞれの変調を考慮して同期検波対象とするアイドラ光と同期検波対象としないアイドラ光が重ならないためには、
{fp1+fp3−fs2−B}−{2fp2−fs+B}
={fs+D+H−S−B}−{fs+2D+2df+B}=H−D−S−2df=2B≧0、
即ちH≧D+S+2df+2B、B=0.5dfの場合H≧D+6df
及び
{2fp3−fs2−B}−{fp2+fp3−fs+B}
={fs+2H−S−B}−{fs+D+H+df+B}=H−D−S−df−2B≧0、
即ちH≧D+S+df+2B、B=0.5dfの場合H≧D+5dfが成立すればよい。ポンプ光Lp3がポンプ光Lp1よりも低周波数の場合も、同様である。
なお、複数の信号光のうちのいずれか一つの信号光に対応するアイドラ光を光濾波器12で四光波混合部に入力する前に信号光を選択するとしてもよい。本願では、選択する信号光を変更しても、それに応じて同期検波部を調整しなおす必要はない。また四光波混合部からの、各信号光に対応するアイドラ光を後述の第3の実施形態のようにそれぞれ分岐し、分岐した数の同期検波部を持つとしてもよい。
At this time, in the idler light to be synchronously detected, the intermediate frequency signal of the idler light corresponding to the light of different optical frequencies constituting the signal light does not overlap with the intermediate frequency signal to be coherently detected. The idler light corresponding to the light of different optical frequencies constituting the light source should be 2 df or more away,
{Fp1 + fp3-fs}-{fp2 + fp3-f2} -2df
= {Fs + D + H} − {fs + D + H + df−S} −2df
= S-3df ≧ 0,
That is, it is only necessary to satisfy S ≧ 3df.
Considering modulation, signal light and pump light do not overlap so that the modulation sideband is transmission band B.
{Fp1}-{f2 + B} = {fs + D}-{fs + S + B}
= DSB ≧ 0,
That is, when D ≧ S + B and B = 0.5 df, D ≧ 3.5 df may be satisfied.
In order to prevent the idler light and the pump light from overlapping,
{2fp1-f2-B}-{fp3}
= {Fs + 2D−S−B} − {fs + H} = 2D−H−S−B ≧ 0,
That is, it is sufficient that H ≦ 2D−S−B is satisfied.
In order not to overlap idler light that is subject to synchronous detection and idler light that is not subject to synchronous detection in consideration of each modulation,
{Fp1 + fp3-fs2-B}-{2fp2-fs + B}
= {Fs + D + HSB}-{fs + 2D + 2df + B} = HD-S-2df = 2B ≧ 0,
That is, when H ≧ D + S + 2df + 2B and B = 0.5 df, H ≧ D + 6df
And {2fp3-fs2-B}-{fp2 + fp3-fs + B}
= {Fs + 2H−SB} − {fs + D + H + df + B} = HD−S−df−2B ≧ 0,
That is, when H ≧ D + S + df + 2B and B = 0.5 df, H ≧ D + 5df may be satisfied. The same applies when the pump light Lp3 has a lower frequency than the pump light Lp1.
Note that the signal light may be selected before the idler light corresponding to any one of the plurality of signal lights is input to the four-wave mixing unit by the optical filter 12. In the present application, even if the signal light to be selected is changed, it is not necessary to readjust the synchronous detection unit accordingly. Further, idler light corresponding to each signal light from the four-wave mixing unit may be branched as in a third embodiment to be described later, and the number of synchronized detection units may be provided.

以上述べたように、本光通信システム502は、それぞれの信号光に対応して互いに同期したアイドラ光の組が独立して発生するため、それぞれ混信することなくコヒーレント同期検波を行うことができる。更に、従来のシステムでは複数の信号光を受信するためにはそれぞれに対応してPLLの調整が必要となるが、本光通信システム502では、その必要がなく、同時の受信することもできる。   As described above, in the present optical communication system 502, sets of idler lights synchronized with each other corresponding to each signal light are generated independently, so that coherent synchronous detection can be performed without any interference. Furthermore, in order to receive a plurality of signal lights in the conventional system, it is necessary to adjust the PLL correspondingly. However, in the present optical communication system 502, it is not necessary, and simultaneous reception is also possible.

(第3の実施形態)
図3は、第3の実施形態の光通信システム503を説明する概略図である。図2の光通信システム502と光通信システム503との違いは、受信機302の代替として受信機303を有している点である。光受信機303は、信号を構成する異なる光周波数の光毎にアイドラ光を出力する四光波混合部33、及び信号を構成する異なる光周波数の光毎にアイドラ光を、ポンプ光を生成する際の電気信号と位相が同期した電気信号で同期検波する同期検波部23を有する。
(Third embodiment)
FIG. 3 is a schematic diagram illustrating an optical communication system 503 according to the third embodiment. A difference between the optical communication system 502 and the optical communication system 503 in FIG. 2 is that a receiver 303 is provided as an alternative to the receiver 302. The optical receiver 303 generates a four-wave mixing unit 33 that outputs idler light for each light having different optical frequencies constituting a signal, and generates idler light and pump light for each light having different optical frequencies constituting the signal. A synchronous detection unit 23 that performs synchronous detection with an electrical signal that is synchronized in phase with the electrical signal.

四光波混合部33は復号器15を持ち、異なる光周波数の光のアイドラ光毎にアイドラ光を出力する。同期検波部23は、異なる光周波数の光のアイドラ光毎に光検波する光検波器(13a〜13d)を持つ。なお、図では異なる光周波数の光のアイドラ光と1対1対応で光検波器を備えるとしたが、後述のように同一の光検波器で光検波する異なる光周波数の光のアイドラ光同士のビートが影響しないとの前提で、複数の光周波数の光のアイドラ光を同一の光検波器で光検波してもよい。その他の点に関しては、第1の実施形態と同様である。信号光は、互いの光周波数間隔が前記帯域の6倍以上の光周波数、且つ前記中間周波数の3倍以上の光周波数であり、ポンプ光は2波長である場合で説明する。   The four-wave mixing unit 33 includes a decoder 15 and outputs idler light for each idler light having different optical frequencies. The synchronous detection unit 23 includes optical detectors (13a to 13d) that perform optical detection for each idler light of light having different optical frequencies. In the figure, it is assumed that the optical detector is provided in a one-to-one correspondence with the idler light having different optical frequencies. However, the idler light having different optical frequencies that are optically detected by the same optical detector as described later. On the premise that the beat does not affect, idler light of light having a plurality of optical frequencies may be optically detected by the same optical detector. The other points are the same as in the first embodiment. The case where the signal light has an optical frequency interval of 6 times or more of the band and an optical frequency of 3 times or more of the intermediate frequency, and the pump light has two wavelengths will be described.

図8は、信号光を構成する異なる光周波数の光の数が2、その周波数間隔が中間周波数の3倍、伝送帯域の6倍とした場合の光スペクトルの模式図である。図9は、この場合に光検波器(13a〜13d)が出力する電気信号のスペクトルの模式図である。図8の横軸は周波数で、縦の矢印は光スペクトルの場合は中心周波数で、実線の台形は変調成分を、破線の台形は濾波器の透過帯域を意味する。図8に示すように、信号光を構成する異なる光周波数の二つの光に対応するアイドラ光はdf以上離れる。このため、第2の実施形態と異なり、信号光を構成する異なる光周波数の二つの光のアイドラ光同士の周波数間隔がdfとなる。図2の構成で、ポンプ光が中間周波数dfだけ異なる2波長とした場合、光検波した後では、信号光を構成する異なる光周波数の複数の光間でのビートを電気濾波器14で除去できないので、ビートによる雑音が無視できない。しかし、本実施形態の光受信機303は、復号器15で信号光を構成する異なる光周波数の複数の光毎に分離し、それぞれを光検波器(13a〜13d)で光検波するので、異なる光周波数の複数の光間でのビートが発生しない。復号器15は例えば、異なる光周波数の複数の光にそれぞれ対応するアイドラ光を分岐する光分波器である。光検波器(13a〜13d)で光検波した電気信号は、電気濾波器14a〜14dで必要な中間周波数の信号だけ取り出され、電気濾波器14a〜14dの抜き出した中間周波数信号を、それぞれポンプ光を生成する際の電気信号と位相が同期した電気信号をミキサー18で乗じて同期検波する。このため、本光通信システムは、信号光を構成する異なる光周波数の複数の光毎にコヒーレント同期検波が可能となる。   FIG. 8 is a schematic diagram of an optical spectrum when the number of lights of different optical frequencies constituting the signal light is 2, the frequency interval is 3 times the intermediate frequency, and 6 times the transmission band. FIG. 9 is a schematic diagram of the spectrum of the electrical signal output from the optical detectors (13a to 13d) in this case. In FIG. 8, the horizontal axis indicates frequency, the vertical arrow indicates the center frequency in the case of the optical spectrum, the solid trapezoid indicates the modulation component, and the broken trapezoid indicates the transmission band of the filter. As shown in FIG. 8, idler light corresponding to two lights of different optical frequencies constituting the signal light is separated by df or more. For this reason, unlike the second embodiment, the frequency interval between the idler lights of the two lights having different optical frequencies constituting the signal light is df. In the configuration of FIG. 2, when the pump light has two wavelengths that differ by the intermediate frequency df, after optical detection, beats between a plurality of lights having different optical frequencies constituting the signal light cannot be removed by the electric filter 14. Therefore, the noise caused by the beat cannot be ignored. However, the optical receiver 303 of the present embodiment is different because the decoder 15 separates each of a plurality of lights having different optical frequencies constituting the signal light and performs optical detection on each of the optical detectors (13a to 13d). No beat is generated between multiple lights of optical frequency. For example, the decoder 15 is an optical demultiplexer that branches idler light respectively corresponding to a plurality of lights having different optical frequencies. The electrical signals optically detected by the optical detectors (13a to 13d) are extracted only by the intermediate frequency signals required by the electrical filters 14a to 14d, and the intermediate frequency signals extracted by the electrical filters 14a to 14d are respectively pumped. The mixer 18 multiplies the electrical signal whose phase is synchronized with the electrical signal when generating the signal, and performs synchronous detection. Therefore, the present optical communication system can perform coherent synchronous detection for each of a plurality of lights having different optical frequencies constituting the signal light.

光送信機401の伝送信号による変調は、第2の実施形態と同様に伝送帯域に制限しており、変調メインローブ以外の変調成分は無視できる前提で、中間周波数は伝送帯域の2倍とした。メインローブより高周波の変調成分が無視できない場合も同様に、中間周波数は、伝送帯域にメインローブより高周波成分で無視できない変調成分の周波数幅を加えた周波数とすればよい。さらに、信号光を構成する複数の光周波数間隔は、この中間周波数の4倍以上とすればよい。   The modulation by the transmission signal of the optical transmitter 401 is limited to the transmission band as in the second embodiment, and assuming that the modulation components other than the modulation main lobe can be ignored, the intermediate frequency is set to twice the transmission band. . Similarly, when the high-frequency modulation component cannot be ignored from the main lobe, the intermediate frequency may be a frequency obtained by adding the frequency width of the modulation component that cannot be ignored by the high-frequency component from the main lobe to the transmission band. Furthermore, the plurality of optical frequency intervals constituting the signal light may be four times or more of the intermediate frequency.

このようにして、光通信システム503は、非特許文献2に示された構成における信号光を構成する異なる光周波数の光(スペクトルチップ)の光周波数間隔の最小値の3dfである信号光を2ポンプ光の場合に、コヒーレント同期検波することができる。非特許文献2に記載の光符号分割多重の信号光を受信する場合は、その受信対象となる符号に応じて各スペクトルチップの電気信号を加減算器(不図示)で加減算して復号する。さらに、第2の実施形態に示したように、3ポンプ光の場合に、光周波数間隔2dfの信号光をコヒーレント同期検波することも可能である。また、光濾波器12により、アイドラ光を間引くことで、信号光を構成する異なる光周波数の光に対応するアイドラ間のビート成分を削減することも可能である。   In this way, the optical communication system 503 receives 2 signal lights that are the minimum value of 3 df of the optical frequency interval of light of different optical frequencies (spectrum chips) constituting the signal light in the configuration shown in Non-Patent Document 2. In the case of pump light, coherent synchronous detection can be performed. When optical code division multiplexing signal light described in Non-Patent Document 2 is received, the electrical signal of each spectrum chip is added and subtracted by an adder / subtracter (not shown) in accordance with the code to be received. Furthermore, as shown in the second embodiment, in the case of three pump lights, it is possible to perform coherent synchronous detection of signal light having an optical frequency interval of 2 df. Further, it is possible to reduce beat components between idlers corresponding to light of different optical frequencies constituting the signal light by thinning out idler light by the optical filter 12.

以上述べたように、光通信システム503は、それぞれの信号光に対応して互いに同期したアイドラ光の組が独立して発生するため、それぞれ混信することなくコヒーレント同期検波を行うことができる。   As described above, in the optical communication system 503, idler light sets that are synchronized with each other corresponding to each signal light are generated independently, so that coherent synchronous detection can be performed without interference.

(第4の実施形態)
図4及び図5は、第4の実施形態の光通信システム504及び光通信システム505を説明する概略図である。光通信システム(504、505)は、信号光を構成するスペクトルチップを用いた光符号多重の信号光を受信する。このような光符号分割多重の信号光は同一の光周波数の光を複数の信号光で利用する。
(Fourth embodiment)
4 and 5 are schematic diagrams illustrating an optical communication system 504 and an optical communication system 505 according to the fourth embodiment. The optical communication systems (504, 505) receive optical code-multiplexed signal light using spectrum chips constituting signal light. Such optical code division multiplexing signal light uses light of the same optical frequency as a plurality of signal lights.

図2の光通信システム502と光通信システム(504、505)との違いは、送受信機で送受する信号光が光符号多重の信号光であることに加えて、受信機301の代替として受信機304又は受信機305を有している点である。光受信機304又は受信機305は、アイドラ光を復号する符号に応じて分岐して出力する四光波混合部(33、35)と、四光波混合部(33、35)からの分岐されたアイドラ光をコヒーレント同期検波後に復号する符号に応じてそれぞれ加減算する同期検波部24又は同期検波部25を有する。   The difference between the optical communication system 502 and the optical communication system (504, 505) in FIG. 2 is that the signal light transmitted and received by the transceiver is optical code multiplexed signal light, and the receiver 301 is an alternative to the receiver 301. 304 or a receiver 305. The optical receiver 304 or the receiver 305 includes a four-wave mixing unit (33, 35) that branches and outputs according to a code for decoding idler light, and a branched idler from the four-wave mixing unit (33, 35). It has a synchronous detector 24 or a synchronous detector 25 for adding and subtracting light according to codes decoded after coherent synchronous detection.

図4の光受信機304は、光濾波器12の後に、例えば、非特許文献2に記載される信号光を構成するスペクトルチップを復号する符号に応じて分岐する復号器15を四光波混合部33に持ち、復号器15で分岐した出力を差動検波する差動光検波器16を同期検波部25に持つ。差動光検波器16の出力は中間周波数の電気濾波器14へ入力される。図4には記載されないが、同期検波部25は、図3の同期検波部23のように復号器15と各出力を検波する光検波器(13a〜13d)、それぞれの光検波器の出力を中間周波数の電気濾波器(14a〜14d)を通し、符号に合わせて加減算する加減算器を有していてもよい。   The optical receiver 304 in FIG. 4 includes, after the optical filter 12, for example, a four-wave mixing unit that includes a decoder 15 that branches according to a code for decoding a spectrum chip constituting signal light described in Non-Patent Document 2. The synchronous detector 25 has a differential optical detector 16 that differentially detects the output branched by the decoder 15. The output of the differential optical detector 16 is input to the intermediate frequency electric filter 14. Although not shown in FIG. 4, the synchronous detector 25 includes a decoder 15 and optical detectors (13 a to 13 d) that detect each output as in the synchronous detector 23 of FIG. 3, and outputs the outputs of the respective optical detectors. You may have an adder / subtractor which adds / subtracts according to a code | symbol through the electric filter (14a-14d) of intermediate frequency.

なお、アイドラ光と信号光は光周波数の並びが反転することを鑑みて、復号器15の符号は符号器で符号化するときの符号と光周波数軸で反転した並びとなっている。図4では、符号(1100)及びその並びの反転した(0011)に応じた復号器15で説明している。ここで、符号は例であり、他の符号でもよいし、4以外の符号長であってもよい。各スペクトルチップの周波数間隔は、各スペクトルチップの復号対象とするアイドラ光の間隔となっている。   In view of the fact that the arrangement of the optical frequencies of the idler light and the signal light is inverted, the codes of the decoder 15 are arranged in an inverted manner on the optical frequency axis and the code when encoded by the encoder. In FIG. 4, the decoder 15 corresponds to the code (1100) and the inverted (0011) of the arrangement. Here, the code is an example, and may be another code or a code length other than 4. The frequency interval of each spectrum chip is the interval of idler light to be decoded by each spectrum chip.

また、復号器15又は光濾波器12により、アイドラ光を間引くことで、異なるスペクトルチップに対応するアイドラ間のビート成分を削減することも可能である。   In addition, it is possible to reduce beat components between idlers corresponding to different spectrum chips by thinning out idler light by the decoder 15 or the optical filter 12.

また、光濾波器12は、復号器15の後に配置してもよいし、復号器と一体であってもよい。   The optical filter 12 may be disposed after the decoder 15 or may be integrated with the decoder.

図4の光受信機304と図5の光受信機305との違いは、復号器15の配置にある。図5の光受信機305の場合、復号器15は、非線形媒質部11の前に位置し、信号光のみが入力される。また、光受信機305は、少なくとも加算するスペクトルチップと、減算するスペクトルチップとが入力される複数の非線形媒質部11を具備する。それぞれの非線形媒質部11は、復号器15の各出力をそれぞれ四光波混合する。なお、非線形媒質部11はスペクトルチップ毎に具備してもよい。この構成は、光周波数の並びが反転するアイドラ光ではなく、信号光をそのまま復号器15に入力するので、復号器15の符号は光周波数軸で反転した並びではなく、符号器で符号化したときと同じスペクトルチップの並びとなる。また、復号器15の符号の周波数間隔も信号光のスペクトルチップの周波数間隔と等しく、光送信機401に搭載される符号器と同じ構成の復号器をそのまま使用できる。   The difference between the optical receiver 304 in FIG. 4 and the optical receiver 305 in FIG. In the case of the optical receiver 305 in FIG. 5, the decoder 15 is positioned in front of the nonlinear medium unit 11 and receives only signal light. The optical receiver 305 includes a plurality of nonlinear medium units 11 to which at least a spectrum chip to be added and a spectrum chip to be subtracted are input. Each nonlinear medium unit 11 four-wave mixes each output of the decoder 15. Note that the nonlinear medium unit 11 may be provided for each spectrum chip. In this configuration, since the signal light is input to the decoder 15 as it is, not the idler light in which the arrangement of the optical frequencies is inverted, the code of the decoder 15 is encoded by the encoder, not the arrangement inverted by the optical frequency axis. It will be the same array of spectrum chips. Further, the frequency interval of the code of the decoder 15 is also equal to the frequency interval of the spectrum chip of the signal light, and a decoder having the same configuration as the encoder mounted on the optical transmitter 401 can be used as it is.

以上述べたように、光通信システム(504、505)は、すべての複数の光符号多重の信号光を構成する複数のスペクトルチップに対応して初期位相と位相雑音項が等しい信号光と局発光の組をそれぞれ生成してコヒーレント同期検波を行う。このため、光通信システム(504、505)は、信号光−局発光間の位相差ばらつきによるMAIの課題を解消することができる。   As described above, in the optical communication system (504, 505), the signal light and the local light having the same initial phase and phase noise term corresponding to the plurality of spectrum chips constituting all the plurality of optical code multiplexed signal lights. Are generated to perform coherent synchronous detection. For this reason, the optical communication system (504, 505) can solve the problem of MAI due to variation in phase difference between signal light and local light.

(第5の実施形態)
本光通信システムと第4の実施形態の光通信システム(504、505)との違いは、信号光、ポンプ光、復号器が用いる符号にある。その他は第4の実施形態と同様である。本光通信システムの信号光は、信号光を構成するスペクトルチップがそれぞれ時間に対して周波数が同様に変化する。具体的には複数のスペクトルチップのそれぞれが、非特許文献8に示されるように変化する。
(Fifth embodiment)
The difference between the present optical communication system and the optical communication system (504, 505) of the fourth embodiment is in the codes used by the signal light, the pump light, and the decoder. Others are the same as in the fourth embodiment. In the signal light of this optical communication system, the frequency of each of the spectrum chips constituting the signal light similarly changes with time. Specifically, each of the plurality of spectrum chips changes as shown in Non-Patent Document 8.

ポンプ光は所望のアイドラ光の光周波数変動に伴い光濾波器12を導通しない場合に、当該アイドラ光が光濾波器12を導通するように信号光の時間に対する周波数変化に同期して周波数が同様に変化する光である。また、符号は、非特許文献9で提案された隣接スペクトルチップでの漏れ込みで直交化のために不足するスペクトルチップを追加している符号であってもよい。その場合、具体的には、符号の巡回性を用いて、漏れ込みのあるスペクトルチップに対応するチップを符号の反対側に配置した符号を復号する復号器15としている。例えば、元の符号が0010111であり、±1スペクトルチップ漏れ込みの場合、100101110とする。漏れ込みのあるスペクトルチップ数の範囲内でスペクトルチップシフトして同じ符号となる符号による干渉は避けられないので、それらの符号同士は同時には用いない。使用しない符号数は隣接スペクトルチップの漏れ込み以外が無視できる場合、スペクトルチップシフトしたM系列符号では半分、ウオルシュアダマール符号では高々1となる。   The pump light has the same frequency in synchronism with the frequency change with respect to the time of the signal light so that the idler light is conducted through the optical filter 12 when the optical filter 12 is not conducted due to the fluctuation of the optical frequency of the desired idler light. The light changes to. Further, the code may be a code in which a spectrum chip that is insufficient for orthogonalization due to leakage in an adjacent spectrum chip proposed in Non-Patent Document 9 may be added. In that case, specifically, a decoder 15 that decodes a code in which a chip corresponding to a leaky spectrum chip is arranged on the opposite side of the code by using the cyclicity of the code is used. For example, when the original code is 0010111 and ± 1 spectrum chip leaks, it is set to 100101110. Interference due to the code that shifts the spectrum chip within the range of the number of leaky spectrum chips to the same code is unavoidable, so these codes are not used at the same time. When the number of codes not used is negligible except for leakage of adjacent spectrum chips, the number is half for spectrum chip-shifted M-sequence codes and one at most for Walsh Hadamard codes.

本光通信システムは、この符号を用い、且つ図5の構成をとることで、各スペクトルチップの周波数間隔に応じた復号器15であっても、光符号分割多重の信号をコヒーレント同期検波することが可能である。これは、通常、復号器に用いられる光濾波器では、透過強度が減少するところで光の位相が回転するため、信号光と局発光の位相差が変化する。このため、上記のような信号光の場合、一つのシンボル時間内でも位相関係が変動する。そのため、各スペクトルチップの周波数間隔に応じた復号器では、信号光−局発光間の位相差ばらつきによるMAIが発生する。しかし、本光通信システムは、位相差ばらつきが発生しないため信号光−局発光間の位相差ばらつきによるMAIを解消することができる。   The present optical communication system uses this code and adopts the configuration of FIG. 5, so that even the decoder 15 corresponding to the frequency interval of each spectrum chip can perform coherent synchronous detection of the optical code division multiplexed signal. Is possible. This is because, in an optical filter usually used in a decoder, the phase of light rotates when the transmission intensity decreases, so the phase difference between signal light and local light changes. For this reason, in the case of the signal light as described above, the phase relationship fluctuates even within one symbol time. For this reason, the decoder corresponding to the frequency interval of each spectrum chip generates MAI due to the phase difference variation between the signal light and the local light. However, since this optical communication system does not cause phase difference variation, MAI due to phase difference variation between signal light and local light can be eliminated.

(第6の実施形態)
本光通信システムは、互いに同一の円偏波状態であるポンプ光を使用し、円偏波ねじり光ファイバの四光波混合部で前記アイドラ光を生成する。本光通信システムと第1から第5の実施形態との違いは、ポンプ光源402からのポンプ光の偏波と非線形媒質部11にある。即ち、ポンプ光源402はポンプ光を同一の円偏波状態とし、四光波混合部31は円偏波ねじり光ファイバとする。このため、本光通信システムは、四光波混合における偏波依存性を解消でき、コヒーレント周期検波の偏波依存性を解消できる。
(Sixth embodiment)
In this optical communication system, pump light in the same circular polarization state is used, and the idler light is generated by a four-wave mixing unit of a circularly polarized twisted optical fiber. The difference between the present optical communication system and the first to fifth embodiments resides in the polarization of pump light from the pump light source 402 and the nonlinear medium section 11. That is, the pump light source 402 sets the pump light to the same circular polarization state, and the four-wave mixing unit 31 is a circular polarization twisted optical fiber. For this reason, this optical communication system can eliminate the polarization dependence in the four-wave mixing, and can eliminate the polarization dependence of the coherent periodic detection.

(第7の実施形態)
本光通信システムは、非線形媒質71と偏波ビームコンバイナ(Polarization Beam Combiner:PBC)72を含む非線形媒質部11を備える。非線形媒質71は、例えば、非線形媒質ファイバである。非線形媒質部11は、非線形媒質ファイバの両端から信号光及びポンプ光を入力し、アイドラ光を生成する。
(Seventh embodiment)
The present optical communication system includes a nonlinear medium unit 11 including a nonlinear medium 71 and a polarization beam combiner (PBC) 72. The nonlinear medium 71 is, for example, a nonlinear medium fiber. The nonlinear medium unit 11 receives signal light and pump light from both ends of the nonlinear medium fiber, and generates idler light.

非線形媒質部11は、図10に示すように非線形媒質71とPBC72とでループを形成する。PBC72は直交する両偏波で等しい光強度のポンプ光を非線形媒質71の両端から入力する。図10では、入力された光はPBC72で互いに直交する2偏波に分離され、それぞれPBC72の一端から非線形媒質71を経て再びPBC72に戻る。この際、PBC72から出力されたときと再びPBC72に戻ってくる際の偏波は同一である。あるいは、非線形媒質部11は、図11に示すように非線形媒質71とPBC72とのループ及びPBC72への入出力を分離する光サーキュレータ73からなる。図11の非線形媒質部11の構成では、非線形媒質71の中点で偏波が90度回転しているが、ループの別の箇所であってもよい。図11の構成では、途中で偏波が90度回転しているため、PBC72から出力されたときと直交する偏波で再びPBC72に戻ってくる。また図10及び図11の非線形媒質71は分布型でなく、集中型であってもよい。図10及び図11の横矢印αと二重丸βはそれぞれ直交する偏波を意味する。図10及び図11に示すように直交するいずれの偏波成分に対しも同様に四光波混合を発生するので、それぞれのコヒーレント同期検波の出力の総和は偏波に拠らず一定となる。   As shown in FIG. 10, the nonlinear medium unit 11 forms a loop with the nonlinear medium 71 and the PBC 72. The PBC 72 inputs pump light having the same light intensity in both orthogonal polarizations from both ends of the nonlinear medium 71. In FIG. 10, the input light is separated into two polarized waves orthogonal to each other by the PBC 72, and returns to the PBC 72 again from the one end of the PBC 72 through the nonlinear medium 71. At this time, the polarization is the same when it is output from the PBC 72 and when it returns to the PBC 72 again. Alternatively, the nonlinear medium unit 11 includes a loop of the nonlinear medium 71 and the PBC 72 and an optical circulator 73 that separates input and output to the PBC 72 as shown in FIG. In the configuration of the nonlinear medium portion 11 in FIG. 11, the polarization is rotated by 90 degrees at the midpoint of the nonlinear medium 71, but may be another part of the loop. In the configuration of FIG. 11, since the polarization is rotated 90 degrees in the middle, the polarization returns to the PBC 72 again with the polarization orthogonal to that output from the PBC 72. Further, the nonlinear medium 71 of FIGS. 10 and 11 may be a concentrated type instead of a distributed type. The horizontal arrow α and the double circle β in FIGS. 10 and 11 mean orthogonal polarizations. As shown in FIGS. 10 and 11, four-wave mixing is similarly generated for any orthogonal polarization component, so that the sum of the outputs of the respective coherent synchronous detections is constant regardless of the polarization.

このため、本光通信システムは、四光波混合における偏波依存性を解消でき、コヒーレント同期検波の偏波依存性を解消できる。   For this reason, this optical communication system can eliminate the polarization dependence in the four-wave mixing, and can eliminate the polarization dependence of the coherent synchronous detection.

(第8の実施形態)
本光通信システムと第1から第5実施形態との違いは、ポンプ光にある。本光通信システムのポンプ光は第1から第5実施形態に示す一つのポンプ光に対して、直交する異なる偏波の等強度の二つのポンプ光から構成される。アイドラ光の偏波がポンプ光の偏波と同一偏波に保持される場合、異なる偏波のアイドラ光同士のビート成分は発生しない。
(Eighth embodiment)
The difference between the present optical communication system and the first to fifth embodiments resides in pump light. The pump light of the present optical communication system is composed of two pump lights having equal intensities with different polarizations orthogonal to one pump light shown in the first to fifth embodiments. When the polarization of idler light is kept the same as that of pump light, beat components between idler lights of different polarizations are not generated.

一つのポンプ光に対応する互いに直交する偏波の二つのポンプ光の光周波数差は、それぞれの偏波のアイドラ光同士から発生する中心周波数信号が電気濾波器14の導通帯域に入る程度の範囲内であり、且つ異なる偏波の二つのポンプ光が単一の偏波の一つのポンプ光とならない程度の光周波数差であれば好ましい。光検波の前に偏波毎に分離してそれぞれ光検波後に電気信号を合流する必要がない。   The optical frequency difference between the two pump lights having orthogonal polarizations corresponding to one pump light is such that the center frequency signal generated from the idler lights of the respective polarizations enters the conduction band of the electric filter 14. Preferably, the optical frequency difference is such that two pump lights with different polarizations do not become one pump light with a single polarization. There is no need to separate each polarization before optical detection and to merge electrical signals after optical detection.

一方、光検波の前に偏波毎に分離してそれぞれ光検波後に電気信号を合流する場合は、異なる偏波の二つのポンプ光が単一の偏波の一つのポンプ光とならない程度の光周波数差であればよい。   On the other hand, when splitting each polarization before optical detection and combining the electrical signals after optical detection, the light is such that two pump lights with different polarizations do not become one pump light with a single polarization. Any frequency difference may be used.

異なる偏波の二つのポンプ光が合波すると単一の偏波の一つのポンプ光となる場合、四光波混合部は、信号光を直交する二つの偏波に分離し、分離した信号光と同一偏波のポンプ光との四光波混合のアイドラ光をそれぞれ出力する四光波混合部とする。偏波が直交するポンプ光に加えて直交する偏波のそれぞれに対応する四光波混合部を備えることで、直交するいずれの偏波成分に対しても同様の四光波混合を発生させることができる。このような四光波混合部の例を図16に示す。図16ではPBCで直交する偏波に分離し、偏波毎に非線形媒質を経由してPBCで再合波するとしているが、再合波せずにそれぞれ別の同期検波部で同期検波しても良い。いずれの場合も偏波分離した信号光又はその同期検波の出力を合流するまでの経路長差は、シンボル長に比べて十分短い長さ、例えばシンボル長の数十分の1程度に抑える。この結果、それぞれの同期検波の出力の総和は信号光の偏波によらず一定となる。なお、同期検波部は偏波毎にそれぞれ備えてもよいが、直交する偏波の信号光とポンプ光に対応するアイドラ光の偏波が保持される場合、直交する偏波のアイドラ光同士のビート成分は発生しないので、単一の同期検波部に入力しても良い。   When two pump lights with different polarizations are combined into one pump light with a single polarization, the four-wave mixing unit separates the signal light into two orthogonal polarizations, and the separated signal light and A four-wave mixing unit is provided that outputs four-wave mixing idler light with pump light of the same polarization. By providing a four-wave mixing unit corresponding to each of the orthogonal polarizations in addition to the pump light having the orthogonal polarizations, the same four-wave mixing can be generated for any orthogonal polarization component. . An example of such a four-wave mixing unit is shown in FIG. In FIG. 16, the polarization is separated into orthogonal polarizations by PBC, and each polarization is recombined by PBC via a nonlinear medium. Also good. In either case, the path length difference until the polarization-separated signal light or its synchronous detection output is merged is suppressed to a length that is sufficiently shorter than the symbol length, for example, about one tenth of the symbol length. As a result, the sum of the outputs of the respective synchronous detections is constant regardless of the polarization of the signal light. The synchronous detection unit may be provided for each polarization. However, when the polarization of the orthogonally polarized signal light and the idler light corresponding to the pump light is maintained, between the orthogonally polarized idler lights Since no beat component is generated, it may be input to a single synchronous detection unit.

このため、本光通信システムは、四光波混合における偏波依存性を解消でき、コヒーレント同期検波の偏波依存性を解消できる。   For this reason, this optical communication system can eliminate the polarization dependence in the four-wave mixing, and can eliminate the polarization dependence of the coherent synchronous detection.

11:非線形媒質部
12:光濾波器
13、13a、13b、13c、13d:光検波器
14、14a、14b、14c、14d:電気濾波器
15:復号器
16:差動光検波器
18、18a、18b、18c、18d:ミキサー
21、23、24、25:同期検波部
31、33、35:四光波混合部
71:非線形媒質
72:偏波ビームコンバイナ(PBC)
73:サーキュレータ
101:CW光源
102:正弦波信号発生器
103:強度変調器
104:逓倍器
301、303、304、305:光受信機
401:光送信機
402:ポンプ光源
501〜505:光通信システム
11: Non-linear medium section 12: Optical filters 13, 13a, 13b, 13c, 13d: Optical detectors 14, 14a, 14b, 14c, 14d: Electric filter 15: Decoder 16: Differential optical detectors 18, 18a 18b, 18c, 18d: mixers 21, 23, 24, 25: synchronous detection units 31, 33, 35: four-wave mixing unit 71: nonlinear medium 72: polarization beam combiner (PBC)
73: Circulator 101: CW light source 102: Sine wave signal generator 103: Intensity modulator 104: Multiplier 301, 303, 304, 305: Optical receiver 401: Optical transmitter 402: Pump light sources 501 to 505: Optical communication system

Claims (10)

信号光、及び初期位相と位相雑音項が等しく所定の周波数差の複数のポンプ光が入力され、前記信号光と前記ポンプ光との四光波混合を発生させ、少なくとも一組の光周波数間隔が中間周波数であるアイドラ光を複数出力する四光波混合部と、
前記四光波混合部からの前記アイドラ光を光検波し、アイドラ光同士の中間周波数信号を、前記中間周波数であり且つ前記ポンプ光を生成する際の電気信号と位相が同期した電気信号でコヒーレント同期検波する同期検波部と、
を備える光受信機。
The signal light and a plurality of pump lights having the same initial phase and phase noise terms and having a predetermined frequency difference are input to generate four-wave mixing of the signal light and the pump light, and at least one set of optical frequency intervals is intermediate A four-wave mixing unit that outputs a plurality of idler lights as frequencies;
The idler light from the four-wave mixing unit is optically detected, and an intermediate frequency signal between the idler lights is coherently synchronized with an electric signal that is the intermediate frequency and is in phase with the electric signal when generating the pump light. A synchronous detector for detecting,
An optical receiver.
前記信号光は、複数の互いに光周波数が異なる光から構成され、
前記信号光と前記ポンプ光は、前記同期検波部でのコヒーレント同期検波の対象となる前記アイドラ光の内、前記信号光を構成する異なる光周波数の光に基づく前記アイドラ光同士の光周波数間隔が前記伝送帯域の倍以上かつ前記中間周波数の4倍以上になる光周波数であることを特徴とする請求項1に記載の光受信機。
The signal light is composed of a plurality of lights having different optical frequencies,
The signal light and the pump light have an optical frequency interval between the idler lights based on light of different optical frequencies constituting the signal light among the idler lights to be subjected to coherent synchronous detection in the synchronous detection unit. The optical receiver according to claim 1, wherein the optical frequency is an optical frequency that is at least twice the transmission band and at least four times the intermediate frequency.
前記信号光は、複数の互いに光周波数が異なる光から構成され、
前記信号光と前記ポンプ光は、前記同期検波部でのコヒーレント同期検波の対象となる前記アイドラ光の内、前記信号光を構成する異なる光周波数の光に基づく前記アイドラ光同士の光周波数間隔が前記伝送帯域以上かつ前記中間周波数の倍以上になる光周波数であり、
前記四光波混合部は、前記信号光毎に前記アイドラ光を出力し、
前記同期検波部は、前記信号光毎に前記アイドラ光をコヒーレント同期検波する
ことを特徴とする請求項1に記載の光受信機。
The signal light is composed of a plurality of lights having different optical frequencies,
The signal light and the pump light have an optical frequency interval between the idler lights based on light of different optical frequencies constituting the signal light among the idler lights to be subjected to coherent synchronous detection in the synchronous detection unit. It is an optical frequency that is equal to or higher than the transmission band and double the intermediate frequency,
The four-wave mixing unit outputs the idler light for each signal light,
The optical receiver according to claim 1, wherein the synchronous detection unit performs coherent synchronous detection of the idler light for each signal light.
前記信号光は、複数の光周波数の光で光符号分割多重されており、
前記四光波混合部は、復号する符号に応じて分岐した信号光の前記アイドラ光をそれぞれ出力又は前記アイドラ光を復号する符号に応じて分岐して出力し、
前記同期検波部は、前記四光波混合部からの符号に応じて出力された前記アイドラ光をそれぞれ同期検波し、同期検波する信号を符号に応じて加減算
することを特徴とする請求項1から3のいずれかに記載の光受信機。
The signal light is optical code division multiplexed with light of a plurality of optical frequencies,
The four-wave mixing unit outputs or outputs the idler light of the signal light branched according to the code to be decoded or branches according to the code to decode the idler light,
The synchronous detection unit synchronously detects the idler light output according to the code from the four-wave mixing unit, and adds or subtracts a signal to be synchronously detected according to the code. The optical receiver in any one of.
前記信号光は、時間に対して光周波数が変化し、
前記ポンプ光は、前記アイドラ光が光濾波器で遮断されないように前記信号光の光周波数変化に同期して光周波数が変化することを特徴とする請求項1から4のいずれかに記載の光受信機。
The signal light has an optical frequency that changes with time,
5. The light according to claim 1, wherein an optical frequency of the pump light changes in synchronization with an optical frequency change of the signal light so that the idler light is not blocked by an optical filter. Receiving machine.
前記ポンプ光は、互いに同一の円偏波状態であり、
前記四光波混合部は、円偏波ねじり光ファイバで前記アイドラ光を生成することを特徴とする請求項1から5のいずれかに記載の光受信機。
The pump lights are in the same circular polarization state,
The optical receiver according to claim 1, wherein the four-wave mixing unit generates the idler light by a circularly polarized twisted optical fiber.
前記四光波混合部は、非線形媒質部と偏波ビームコンバイナとからなるループで前記アイドラ光を生成することを特徴とする請求項1から5のいずれかに記載の光受信機。   6. The optical receiver according to claim 1, wherein the four-wave mixing unit generates the idler light in a loop including a nonlinear medium unit and a polarization beam combiner. 前記ポンプ光は、それぞれ互いの偏波が直交し、互いの光強度が等しい2つの光からなることを特徴とする請求項1から5のいずれかに記載の光受信機。   6. The optical receiver according to claim 1, wherein the pump light includes two lights whose polarizations are orthogonal to each other and have the same light intensity. 請求項1から8のいずれかに記載の光受信機と、
前記光受信機に前記信号光を送信する光送信機と、
を含む光通信システム。
An optical receiver according to any one of claims 1 to 8,
An optical transmitter for transmitting the signal light to the optical receiver;
An optical communication system including:
信号光、及び初期位相と位相雑音項が等しく所定の周波数差の複数のポンプ光から、前記信号光と前記ポンプ光との四光波混合を発生させ、少なくとも一組の光周波数間隔が中間周波数であるアイドラ光を複数出力し、
前記アイドラ光を光検波し、アイドラ光同士の中間周波数信号を、前記中間周波数であり且つ前記ポンプ光を生成する際の電気信号と位相が同期した電気信号でコヒーレント同期検波するコヒーレント同期検波方法。
Four-wave mixing of the signal light and the pump light is generated from the signal light and a plurality of pump lights having the same initial phase and phase noise terms and a predetermined frequency difference, and at least one set of optical frequency intervals is an intermediate frequency. Output multiple idler lights,
A coherent synchronous detection method in which the idler light is optically detected, and an intermediate frequency signal between the idler lights is coherently detected with an electrical signal having the intermediate frequency and having a phase synchronized with the electrical signal when generating the pump light.
JP2010268485A 2010-12-01 2010-12-01 Optical receiver, optical communication system, and coherent detection method Active JP5437223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010268485A JP5437223B2 (en) 2010-12-01 2010-12-01 Optical receiver, optical communication system, and coherent detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268485A JP5437223B2 (en) 2010-12-01 2010-12-01 Optical receiver, optical communication system, and coherent detection method

Publications (2)

Publication Number Publication Date
JP2012119978A JP2012119978A (en) 2012-06-21
JP5437223B2 true JP5437223B2 (en) 2014-03-12

Family

ID=46502325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268485A Active JP5437223B2 (en) 2010-12-01 2010-12-01 Optical receiver, optical communication system, and coherent detection method

Country Status (1)

Country Link
JP (1) JP5437223B2 (en)

Also Published As

Publication number Publication date
JP2012119978A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
CN101455017B (en) Optical code communication system
US11082131B2 (en) Optical signal transmission system and optical signal transmission method
JP5601205B2 (en) Optical receiver and optical communication system
CN102439876B (en) Signal transmitting method, signal receving method, passive optical network(pon)device and system
US20060291868A1 (en) Optical communications using multiplexed single sideband transmission and heterodyne detection
Zhai et al. An ultraefficient broadband photonic channelizer based on polarization-division multiplexing and integrated dual-polarization coherent detection receiver
TWI442718B (en) Optical communication system and method thereof and refelective optical network device thereof
JP5116619B2 (en) Optical communication system
US7187871B1 (en) Interferometric communication system and method
JP2020109887A (en) Optical transmission method and optical transmission device
JP5334718B2 (en) Optical code division multiplexing transmission circuit and optical code division multiplexing reception circuit
JP5090382B2 (en) Optical receiver, optical communication system, and heterodyne detection method
JP5334747B2 (en) Optical code division multiplexing transmission system and optical code division multiplexing transmission method
JP5437223B2 (en) Optical receiver, optical communication system, and coherent detection method
CN215956390U (en) Microwave photon single optical frequency comb injection locking channelized receiving device
CN113612543B (en) Channelized receiving device and method for injection locking of microwave photon single-optical-frequency comb
EP2614603B1 (en) Multi-carrier system and method for use in an optical network
JP4498953B2 (en) Coherent optical communication device and coherent optical communication system
JP6363933B2 (en) Optical transmitter / receiver, optical receiver, and optical transmitter / receiver method
Xiao et al. Four-user/spl sim/3-GHz-spaced subcarrier multiplexing (SCM) using optical direct-detection via hyperfine WDM
JP5414354B2 (en) Optical data communication system, communication apparatus and communication method
Wang et al. Microwave photonics‐based channelized receiving and reconstruction for broadband RF signal
JP2011250079A (en) Optical-code-division-multiplex transmitting circuit and optical-code-division-multiplex receiving circuit
WO2002061986A2 (en) Fiber optic communications using optical single side band transmission and direct detection
Bhattacharya et al. Influence of adjacent channel interference on the frequency-modulated WDM optical communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350