JP5436373B2 - 秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末 - Google Patents

秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末 Download PDF

Info

Publication number
JP5436373B2
JP5436373B2 JP2010189199A JP2010189199A JP5436373B2 JP 5436373 B2 JP5436373 B2 JP 5436373B2 JP 2010189199 A JP2010189199 A JP 2010189199A JP 2010189199 A JP2010189199 A JP 2010189199A JP 5436373 B2 JP5436373 B2 JP 5436373B2
Authority
JP
Japan
Prior art keywords
bit
key
diag
random number
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010189199A
Other languages
English (en)
Other versions
JP2012049765A (ja
Inventor
健志 浅井
豊広 鶴丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010189199A priority Critical patent/JP5436373B2/ja
Publication of JP2012049765A publication Critical patent/JP2012049765A/ja
Application granted granted Critical
Publication of JP5436373B2 publication Critical patent/JP5436373B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、送信者と受信者の二者間で、量子暗号により共有した秘密鍵を用いた通信を行う量子暗号通信システム、特に鍵の盗聴者に漏れた情報を無効化する秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末に関する。
量子暗号を行うと、通信を行う二者間で秘密鍵を共有することができる。通信を行う二者は、予め通信により送られてくるふるい(篩)鍵を誤り訂正処理して訂正鍵(reconciled key)を生成し、さらにこの訂正鍵に秘匿性増強処理を施して秘密鍵を生成する。しかし秘密鍵の元になるふるい鍵が通信を行う二者へ供給される際の通信途中で第三者による盗聴が行われると、共有する鍵には部分的に盗聴者に漏れた情報が含まれるので安全ではない。そこで、この部分的に漏れた情報を無効化する処理(秘匿性増強処理)が必要である。
従来の秘匿性増強処理は、共有した訂正鍵にランダムな行列を掛け、さらに鍵の一部を削除することによって、上記効果を実現していた。また、ランダムな行列の他に、ランダムなテプリッツ(Toeplitz)行列(左から右の各下降対角線に沿って要素が一定であるような行列)を用いることで、同様の安全性が保たれることが示されている(下記非特許文献1,2参照)。この秘匿性増強処理アルゴリズムにかかる計算量はO(n)である。ここで、nは始めに共有した訂正鍵の長さである。
国際公開第2008/013008号パンフレット
しかしながら従来技術では、量子暗号において鍵の有限長効果という問題が知られている(上記非特許文献1)。これは、長さが有限である秘密鍵の安全性を保障するためには、秘匿性増強の処理単位、即ち、訂正鍵の長さnを十分に大きく取らなければならないというものである。これまでの研究により、訂正鍵の長さを例えば1Mビット以上に取れば問題がないことが分かっている。
しかしながら従来の秘匿性増強処理のアルゴリズムでは、計算量がO(n)であるため、n=1Mビットとすると計算量が非常に大きくなり現実的ではない。
この発明は、上記の課題を解決するためになされたものであり、秘匿性増強処理にかかる計算量を低減した秘匿性増強処理演算装置等を提供することを目的とする。
この発明は、量子暗号通信システムにおいて量子暗号の秘匿性増強処理を行う秘匿性増強処理演算装置であって、入力されたiビットの訂正鍵xとn×iビット(但しi,nは正の整数でi≦n)の第1の疎行列との乗算を行い、nビットの変形訂正鍵yを生成する鍵攪拌部と、n×nビットの循環行列を指定するnビットの乱数vおよび前記nビットの変形訂正鍵yのそれぞれに高速フーリエ変換を施しさらに畳み込み演算を行うことで、前記n×nビットの循環行列を用いることなく前記n×nビットの循環行列による線形演算を行って前記n×nビットの循環行列と前記nビットの変形訂正鍵yとの乗算を行う演算部と、前記演算部で得られた演算結果のnビットのビット列とk×nビット(但しkは正の整数でk<i≦n)の第2の疎行列との乗算を行い、kビットの秘密鍵を生成するビット長短縮部と、を備えたことを特徴とする秘匿性増強処理演算装置にある。
この発明では、秘匿性増強処理にかかる計算量を低減した秘匿性増強処理演算装置等を提供することができる。
この発明による秘匿性増強処理演算装置の構成を示す図である。 図1の演算部の詳細構成を示す図である。 この発明による秘匿性増強処理における線形演算を説明するための図である。 図1の秘匿性増強処理演算装置の動作を示すフローチャートである。 図2の演算部の動作を示す詳細フローチャートである。 この発明による秘匿性増強処理演算装置の構成の変形例を示す図である。 図1の演算部の変形例の詳細構成を示す図である。 この発明による秘匿性増強処理演算装置を設けた量子暗号通信端末の秘匿性増強処理演算装置の周囲の構成を示した概略図である。
以下、この発明による量子暗号通信システムにおける秘匿性増強処理演算装置等を図面を用いて説明する。なお各図において同一もしくは相当部分は同一符号で示す。
実施の形態1.
図1はこの発明による秘匿性増強処理演算装置の構成を示す図である。図1において例えば記憶部等を含むコンピュータで構成される秘匿性増強処理演算装置10は、鍵攪拌部1、演算部2、ビット長短縮部3、記憶部4、入力部5等を含む。入力部5は、後述する訂正鍵x(iビット)、乱数v(nビット)等を入力して記憶部4に格納する(i≦n)。鍵攪拌部1は、iビットの訂正鍵xを線形演算によりnビットの変形訂正鍵yにする機能を有する。ビット長短縮部3は、演算部2より得られる計算結果(nビット)から線形演算により(n−k)ビットの値を削除する機能を有する(k<i≦n)。記憶部4は訂正鍵x(iビット)や乱数v、さらには途中の計算結果等を格納する。
図2は図1の演算部2の詳細構成を示す図である。図2において演算部2は、Fy計算部2−1、Fv計算部2−2、diag(Fv)Fy計算部2−3、およびF−1diag(Fv)Fy計算部2−4を含む。また図3は、この発明による秘匿性増強処理における線形演算を説明するための図である。
以下、動作を図を参照して説明する。秘密鍵を生成するためのビット列が通信により送信側、受信側に送られると、双方でそれぞれに、量子暗号装置(図8参照)で上記ビット列からふるい(篩)鍵が生成され、さらにふるい鍵から訂正鍵が生成される。秘匿性増強処理演算装置は訂正鍵から秘密鍵を生成するものであり、送信側、受信側双方に設けられ得る。
図4は図1の秘匿性増強処理演算装置の動作を示すフローチャートである。秘匿性増強処理演算装置では、入力部5が量子暗号装置で生成された訂正鍵(iビット)、および後述する乱数vを入力すると記憶部4に格納する。最初に、鍵攪拌部1は、記憶部4から訂正鍵x(iビット)を読み出し、疎行列S1(n×iビット)との乗算を行う(ステップs1)。nビットとなったこのビット列を変形訂正鍵y(nビット)とする(i<nの場合はビット長の拡大となる)。なお疎行列S1(n×iビット)はその場で生成しても、あるいは予め記憶部4に格納しておき、それを使用してもよい。
次に、演算部2は図3に示すように、循環行列C(v)と鍵攪拌部1で得られた変形訂正鍵y(nビット)との乗算を行う(ステップs2)。ここでC(v)は循環行列(n×nビット:n行n列)の第一列ベクトルを乱数vで指定することを意味する。C(v)yの具体的な計算手順の説明は、後述するステップs2の詳細フローチャートの説明にて行う。最後に、ビット長短縮部3は、ステップs2にて得られた計算結果(nビット)と疎行列S2(k×nビット)と乗算を行う(ステップs3)。なお疎行列S2(k×nビット)はその場で生成しても、あるいは予め記憶部4に格納しておき、それを使用してもよい。乗算後、ビット長が短縮された残ったビット列(kビット)を最終的な秘密鍵x’として出力する(k<i≦n)。
なお、上述の鍵攪拌部1およびビット長短縮部3で行われる線形演算で使用される疎行列S1,S2は、例えば上記乱数vとは異なるそれぞれの乱数(例えば乱数v1,v2)に従って(指定されたものを)生成するようにしてもよく、これらの乱数v1,v2は乱数vと同様に入力部5で入力され記憶部4に格納されたものを使用しも、また入力部5で入力されたものを直接使用してもよい。
図5は図2の演算部2すなわち図4のステップs2の動作を示す詳細フローチャートである。この発明では、訂正鍵x(iビット)と乱数v(nビット)とを入力とし、秘密鍵x’(kビット)を出力とする。ここで、k<i≦nである。任意の循環行列は図3および下記の式(1)で表すように固有分解できるので、変形訂正鍵y(nビット)と循環行列との乗算を、下記式(2)のように表し「Fy」、「Fv」、「diag(Fv)Fy」、「F−1diag(Fv)Fy」の値を順次計算することでC(v)yを計算する。ここで(F−1)、Fは(逆)離散フーリエ変換行列を表す。
C(v)=F−1ΛF
=F−1diag(Fv)F (1)
C(v)y=F−1diag(Fv)Fy (2)
但し
C(v) :乱数v(nビット)で定まる循環行列(n×nビット)
y :変形訂正鍵(nビット)
F :離散フーリエ変換行列
−1 :逆離散フーリエ変換行列
diag(Fv)Fy:Fv、Fyの畳み込み演算
Λ :C(v)の固有値を対角項にもつ対角行列
以下にその手順を示す。
先ず、図2のFy計算部2−1は、離散フーリエ変換行列Fとステップs1にて得た変形訂正鍵y(nビット)との乗算を、高速フーリエ変換アルゴリズムにより計算する(ステップs2−1)。
次に、Fv計算部2−2は、離散フーリエ変換行列Fと例えば記憶部4から読み出した乱数v(nビット)との乗算を、高速フーリエ変換アルゴリズムにより計算する(ステップs2−2)。
次に、diag(Fv)Fy計算部2−3は、上記ステップs2−1,s2−2にて得たFy,Fvの畳み込み演算、即ち、各ベクトルの要素毎の乗算を計算する(ステップs2−3)。
最後に、F−1diag(Fv)Fy計算部2−4は、逆離散フーリエ変換行列F−1とdiag(Fv)Fy (Fy,Fvの畳み込み結果)との乗算を、逆高速フーリエ変換アルゴリズムにより計算(逆高速フーリエ変換)する(ステップs2−4)。
なお演算部2では、各計算部2−1〜2−4において計算結果をそれぞれ記憶部4に記憶し、後段の計算部は前段の計算部の計算結果を記憶部4から読み出して使用するようにしてもよい。
また、訂正鍵x(iビット)や乱数vは記憶部4に格納されず、直接、鍵攪拌部1や演算部2に入力されて処理されてもよい。
以上のようにこの発明では、訂正鍵xと乱数vとを入力とし、訂正鍵xと疎行列S1との乗算を計算するステップと、循環行列C(v)と変形訂正鍵y(nビット)との乗算を計算するステップと、循環行列C(v)と変形訂正鍵y(nビット)との乗算後に得られるビット列と疎行列S2との乗算を計算するステップとを実行することで秘匿性増強処理を行う。訂正鍵xと疎行列S1との乗算を計算するステップでは、疎行列S1内の非0要素に関する乗算のみを行う。循環行列C(v)と変形訂正鍵y(nビット)との乗算を行うステップでは、3回の高速フーリエ変換と1回の畳み込み演算を行う。循環行列C(v)と変形訂正鍵y(nビット)との乗算後に得られるビット列と疎行列S2との乗算を計算するステップでは、疎行列S2内の非0要素に関する演算のみを行う。ここで、疎行列S1、S2のサイズがそれぞれn×iビット、k×nビット、各行ベクトル(または各列ベクトル)内に現れる非0要素の最大数がそれぞれl、mであり、循環行列C(v)と変形訂正鍵yのサイズがそれぞれn×nビット、n×1ビットであるとすると、演算にかかる計算量はO(nlogn)(但しl, m,nは正の整数でl, mはnより十分小さいとする)である。
従来のアルゴリズムでは、訂正鍵x(nビット)とランダム行列(もしくはランダムなテプリッツ行列(n×nビット))とを単純に掛け合わせるため、計算量はO(n)である。一方この発明では、ランダム行列の代わりにランダムな循環行列を用いているので、計算量はフーリエ変換に要する計算量と等しくなる(式(2)参照)。さらに、フーリエ変換として高速フーリエ変換を用いているので、結局計算量はO(nlogn)にまで低減される。
なお循環行列は、テプリッツ行列の特殊なものであり、各行ベクトルが1つ前の行ベクトルの要素を1つずらして配置した形になっているものである。数値解析において、循環行列は離散フーリエ変換によって対角化されるため、それを含む線型方程式系は高速フーリエ変換で高速に解くことができる。
疎行列は、各要素のほとんど0である行列である。非0要素とそのインデックスを記憶しておくことで、非0要素に関する演算を省略し計算量を低減させることができる。
また、上記図1に示す秘匿性増強処理演算装置では乱数v(nビット)を訂正鍵x(iビット)等と共に入力して記憶部4に格納して使用していたが、図6に示す秘匿性増強処理演算装置10aのように内部に乱数生成器6を設け、乱数生成器6で発生させた乱数v(nビット)を演算部2で使用するようにしてもよい。なお乱数生成器6は演算部2内に設けるようにしてもよい。
また、上述の鍵攪拌部1およびビット長短縮部3で使用される疎行列S1,S2を生成するための上記乱数v1,v2も、乱数生成器6で発生させるようにしてもよい。
また、上記図2に示す演算部2では、Fy計算部2−1、Fv計算部2−2、diag(Fv)Fy計算部2−3、およびF−1diag(Fv)Fy計算部2−4でそれぞれの演算を行っていたが、図7に示す演算部2aのように高速フーリエ変換器2−5、逆高速フーリエ変換器2−6および畳み込み演算器2−7を設けた構成にしてもよい。
図7の演算部2aでは、先ずFy計算部2−1aは、鍵攪拌部1で得られた変形訂正鍵y(nビット)を高速フーリエ変換器2−5に入力する。これにより高速フーリエ変換器2−5は変形訂正鍵yの高速フーリエ変換を行い、離散フーリエ変換行列Fと変形訂正鍵y(nビット)との乗算を求めてFy計算部2−1aに返す。
Fv計算部2−2aは、記憶部4に格納されたあるいは乱数生成器6で発生させた乱数v(nビット)を高速フーリエ変換器2−5に入力する。これにより高速フーリエ変換器2−5は乱数v(nビット)の高速フーリエ変換を行い、離散フーリエ変換行列Fと乱数v(nビット)との乗算を求めてFv計算部2−2aに返す。
次に、diag(Fv)Fy計算部2−3aは、上記にて得たFy,Fvを畳み込み演算器2−7に入力する。畳み込み演算器2−7はFy,Fvの畳み込み演算、即ち、各ベクトルの要素毎の乗算(diag(Fv)Fy)を行いdiag(Fv)Fy計算部2−3aに返す。
最後に、F−1diag(Fv)Fy計算部2−4aは、diag(Fv)Fy (Fy,Fvの畳み込み結果)を逆高速フーリエ変換器2−6に入力する。逆高速フーリエ変換器2−6はdiag(Fv)Fyの逆高速フーリエ変換を行い、逆離散フーリエ変換行列F−1とdiag(Fv)Fyとの乗算を求めてF−1diag(Fv)Fy計算部2−4aに返す。
なお、乱数生成器6、高速フーリエ変換器2−5、逆高速フーリエ変換器2−6および畳み込み演算器2−7は専用機能部としてハードウェアで構成可能である。
また、図8にこの発明による秘匿性増強処理演算装置10,10aが量子暗号通信端末等に設けられた場合の周囲の構成を示した概略図を示す。図8の(a)は送信側の量子暗号通信端末に設けられた場合を示し、秘匿性増強処理演算装置10,10aの入力側には、上述の秘密鍵を生成するためのビット列を受信する受信機11、受信されたビット列からふるい鍵、さらには訂正鍵を生成する上述の量子暗号装置12が設けられ、反対の出力側には、送信情報を入力する入力装置14、入力された送信情報を秘匿性増強処理演算装置10,10aで得られた秘密鍵で暗号化する暗号化装置13、暗号化された情報を送信する送信機15が設けられる。
また図8の(b)は受信側の量子暗号通信端末に設けられた場合を示し、秘匿性増強処理演算装置10,10aの入力側には、同様に受信機11、量子暗号装置12が設けられ、反対の出力側には、暗号化された受信情報を受信する受信機16(受信機11が兼ねる場合もある)、受信機16から入力された暗号化された受信情報を秘匿性増強処理演算装置10,10aで得られた秘密鍵で復号化する復号化装置17、復号化された情報を出力する出力装置18が設けられる。
なお、暗号化装置13、入力装置14、送信機15、受信機16、復号化装置17、出力装置18が暗号化/復号化手段を構成する。
1 鍵攪拌部、2,2a 演算部、2−1,2−1a Fy計算部、2−2,2−2a Fv計算部、2−3,2−3a diag(Fv)Fy計算部、2−4,2−4a F−1diag(Fv)Fy計算部、2−5 高速フーリエ変換器、2−6 逆高速フーリエ変換器、2−7 畳み込み演算器、3 ビット長短縮部、4 記憶部、5 入力部、6 乱数生成器、10,10a 秘匿性増強処理演算装置、11 受信機、12 量子暗号装置、13 暗号化装置、14 入力装置、15 送信機、16 受信機、17 復号化装置、18 出力装置。

Claims (8)

  1. 量子暗号通信システムにおいて量子暗号の秘匿性増強処理を行う秘匿性増強処理演算装置であって、
    入力されたiビットの訂正鍵xとn×iビット(但しi,nは正の整数でi≦n)の第1の疎行列との乗算を行い、nビットの変形訂正鍵yを生成する鍵攪拌部と、
    n×nビットの循環行列を指定するnビットの乱数vおよび前記nビットの変形訂正鍵yのそれぞれに高速フーリエ変換を施しさらに畳み込み演算を行うことで、前記n×nビットの循環行列を用いることなく前記n×nビットの循環行列による線形演算を行って前記n×nビットの循環行列と前記nビットの変形訂正鍵yとの乗算を行う演算部と、
    前記演算部で得られた演算結果のnビットのビット列とk×nビット(但しkは正の整数でk<i≦n)の第2の疎行列との乗算を行い、kビットの秘密鍵を生成するビット長短縮部と、
    を備えたことを特徴とする秘匿性増強処理演算装置。
  2. 演算部において、nビットの乱数vで定まるn×nビットの循環行列とnビットの変形訂正鍵yとの乗算を、下記式により行う
    C(v)y=F−1diag(Fv)Fy
    但し
    C(v) :乱数v(nビット)で定まる循環行列(n×nビット)
    y :変形訂正鍵(nビット)
    F :離散フーリエ変換行列
    −1 :逆離散フーリエ変換行列
    diag(Fv)Fy:Fv、Fyの畳み込み演算
    ことを特徴とする請求項1に記載の秘匿性増強処理演算装置。
  3. 演算部において、Fy、Fv、diag(Fv)Fy、F−1diag(Fv)Fyの値を順次計算し、Fy、Fv、F−1diag(Fv)Fyの値は高速フーリエ変換アルゴリズムおよび逆高速フーリエ変換アルゴリズムに従って計算することを特徴とする請求項2に記載の秘匿性増強処理演算装置。
  4. 少なくとも演算部がコンピュータで構成されることを特徴とする請求項1から3までのいずれか1項に記載の秘匿性増強処理演算装置。
  5. 演算部が、
    高速フーリエ変換器と、
    逆高速フーリエ変換器と、
    畳み込み演算器と、
    nビットの変形訂正鍵yを前記高速フーリエ変換器に入力して前記nビットの変形訂正鍵yの高速フーリエ変換を行わせ、離散フーリエ変換行列Fと前記nビットの変形訂正鍵yとの乗算を行いFyを求めるFy計算部と、
    nビットの乱数vを前記高速フーリエ変換器に入力して前記nビットの乱数vの高速フーリエ変換を行わせ、離散フーリエ変換行列Fと前記nビットの乱数vとの乗算を行いFvを求めるFv計算部と、
    乗算結果Fy,Fvを前記畳み込み演算器に入力してFy,Fvの畳み込み演算(diag)を行わせ、diag(Fv)Fyを求めるdiag(Fv)Fy計算部(2−3a)と、
    畳み込み演算結果diag(Fv)Fyを前記逆高速フーリエ変換器に入力してdiag(Fv)Fyの逆高速フーリエ変換を行わせ、逆離散フーリエ変換行列F−1とdiag(Fv)Fyとの乗算を行いF−1diag(Fv)Fyを求めるF−1diag(Fv)Fy計算部と、
    を備えたことを特徴とする請求項1に記載の秘匿性増強処理演算装置。
  6. nビットの乱数vを発生する乱数発生器を備えたことを特徴とする請求項1から5までのいずれか1項に記載の秘匿性増強処理演算装置。
  7. iビットの訂正鍵およびnビットの乱数vを入力する入力部と、
    前記iビットの訂正鍵およびnビットの乱数vを格納する記憶部と、
    をさらに備え、
    鍵攪拌部および演算部により前記記憶部からそれぞれ前記iビットの訂正鍵、nビットの乱数vが読み出されることを特徴とする請求項1から6までのいずれか1項に記載の秘匿性増強処理演算装置。
  8. 秘密鍵を生成するためのビット列を受信する受信機と、
    受信された前記ビット列からふるい鍵、さらに前記ふるい鍵から訂正鍵を生成する量子暗号装置と、
    前記訂正鍵から秘匿性増強処理が施された秘密鍵を生成する請求項1から7までのいずれか1項に記載の秘匿性増強処理演算装置と、
    前記秘密鍵により送信情報を暗号化して送信機から送信する、又は受信機で受信された受信情報の復号化を行う暗号化/復号化手段と、
    を備えたことを特徴とする量子暗号通信端末。
JP2010189199A 2010-08-26 2010-08-26 秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末 Expired - Fee Related JP5436373B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189199A JP5436373B2 (ja) 2010-08-26 2010-08-26 秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189199A JP5436373B2 (ja) 2010-08-26 2010-08-26 秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末

Publications (2)

Publication Number Publication Date
JP2012049765A JP2012049765A (ja) 2012-03-08
JP5436373B2 true JP5436373B2 (ja) 2014-03-05

Family

ID=45904149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189199A Expired - Fee Related JP5436373B2 (ja) 2010-08-26 2010-08-26 秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末

Country Status (1)

Country Link
JP (1) JP5436373B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049589B2 (ja) * 2013-11-20 2016-12-21 三菱電機株式会社 秘匿性増強装置および秘匿性増強データ処理方法
CN107493170B (zh) * 2017-10-18 2020-05-05 浙江工商大学 基于量子傅里叶变换的安全多方量子求和方法
CN107508677B (zh) * 2017-10-18 2020-05-05 浙江工商大学 基于量子傅里叶变换的安全多方量子求和协商方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914851A (zh) * 2004-02-10 2007-02-14 三菱电机株式会社 量子密钥分发方法以及通信装置
WO2006078033A1 (ja) * 2005-01-24 2006-07-27 Inter-University Research Institute Corporation / Research Organization of Information and Systems 量子鍵配送方法、通信システムおよび通信装置
JP2007086170A (ja) * 2005-09-20 2007-04-05 Nec Corp 汎用ハッシュ関数族計算装置、方法、プログラム、および共有鍵生成システム
GB2479288B (en) * 2006-07-26 2012-03-28 Japan Science & Tech Agency Secret communication method and secret communication device thereof
US20100011041A1 (en) * 2008-07-11 2010-01-14 James Vannucci Device and method for determining signals
EP2144170A3 (en) * 2008-07-11 2013-01-23 James Vannucci A device and method for calculating a desired signal

Also Published As

Publication number Publication date
JP2012049765A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
Wang et al. A novel color image encryption scheme using DNA permutation based on the Lorenz system
CN108463968B (zh) 可变长度数据的快速格式保留加密
Li et al. Breaking a novel image encryption scheme based on improved hyperchaotic sequences
Hermassi et al. Security analysis of an image encryption algorithm based on a DNA addition combining with chaotic maps
KR101861089B1 (ko) 근사 복소수 연산을 지원하는 복수 개의 메시지의 동형 암호화 방법
Aboytes-González et al. Design of a strong S-box based on a matrix approach
JP5911654B2 (ja) 乱数生成器及びストリーム暗号
Zhang et al. Cryptanalyzing a chaos-based image encryption algorithm using alternate structure
Zapateiro De la Hoz et al. An Experimental Realization of a Chaos‐Based Secure Communication Using Arduino Microcontrollers
KR101971215B1 (ko) 유효 숫자 연산을 지원하는 동형 암호문의 생성 방법 및 그러한 방법에 의해서 생성된 동형 암호문에 대한 유효 숫자 연산 방법
Ur Rehman et al. Block mode image encryption technique using two-fold operations based on chaos, MD5 and DNA rules
JP6575532B2 (ja) 暗号化装置、復号装置、暗号処理システム、暗号化方法、復号方法、暗号化プログラム、及び復号プログラム
CN113904808B (zh) 一种私钥分发、解密方法、装置、设备及介质
Hanchinamani et al. An efficient image encryption scheme based on a Peter De Jong chaotic map and a RC4 stream cipher
CN110505054B (zh) 一种基于动态白盒的数据处理方法、装置及设备
US11101981B2 (en) Generating a pseudorandom number based on a portion of shares used in a cryptographic operation
Abdul Hussien et al. [Retracted] A Secure Environment Using a New Lightweight AES Encryption Algorithm for E‐Commerce Websites
Zhdanov et al. Block symmetric cryptographic algorithm based on principles of variable block length and many-valued logic
Bouslehi et al. Innovative image encryption scheme based on a new rapid hyperchaotic system and random iterative permutation
Kahla et al. Asymmetric image encryption based on twin message fusion
Manikandan et al. On dual encryption with RC6 and combined logistic tent map for grayscale and DICOM
JP5436373B2 (ja) 秘匿性増強処理演算装置およびこれを備えた量子暗号通信端末
EP0996250A2 (en) Efficient block cipher method
Kumar et al. A novel exponent–sine–cosine chaos map-based multiple-image encryption technique
Ramírez-Torres et al. Fpga implementation of a reconfigurable image encryption system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5436373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees