JP5435856B2 - Catalytic decomposition method - Google Patents

Catalytic decomposition method Download PDF

Info

Publication number
JP5435856B2
JP5435856B2 JP2007288952A JP2007288952A JP5435856B2 JP 5435856 B2 JP5435856 B2 JP 5435856B2 JP 2007288952 A JP2007288952 A JP 2007288952A JP 2007288952 A JP2007288952 A JP 2007288952A JP 5435856 B2 JP5435856 B2 JP 5435856B2
Authority
JP
Japan
Prior art keywords
oil
catalytic cracking
petroleum
hydrocarbon
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007288952A
Other languages
Japanese (ja)
Other versions
JP2008138188A (en
Inventor
英輝 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2007288952A priority Critical patent/JP5435856B2/en
Publication of JP2008138188A publication Critical patent/JP2008138188A/en
Application granted granted Critical
Publication of JP5435856B2 publication Critical patent/JP5435856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Description

本発明は、接触分解方法、特に石油由来の炭化水素油と有機含酸素化合物とを含む原料油を接触分解する方法に関するものである。   The present invention relates to a catalytic cracking method, and more particularly to a method for catalytic cracking of a feedstock oil containing a petroleum-derived hydrocarbon oil and an organic oxygen-containing compound.

近年、環境対応型のガソリン基材として、高オクタン価のガソリン基材が求められている。従来のガソリン基材を製造する方法の中でも、流動接触分解装置を採用する方法は低コストで経済性に優れるという利点を有する。しかしながら、流動接触分解装置を用いた場合、生成するガソリン基材のオクタン価が91程度であり、ガソリン基材のオクタン価を更に向上させる必要がある。   In recent years, a gasoline substrate having a high octane number has been demanded as an environment-friendly gasoline substrate. Among conventional methods for producing a gasoline base material, a method employing a fluid catalytic cracking apparatus has the advantage of being low in cost and excellent in economic efficiency. However, when a fluid catalytic cracking apparatus is used, the octane number of the gasoline base material to be produced is about 91, and it is necessary to further improve the octane number of the gasoline base material.

また、石油化学製品の原料となる液化石油ガス中の不飽和炭化水素化合物(プロピレン、ブテン等)の製造にも上記流動接触分解装置が採用されているが、生成する接触分解油中の不飽和炭化水素化合物の割合を高めることが求められている。   The fluidized catalytic cracking unit is also used for the production of unsaturated hydrocarbon compounds (propylene, butene, etc.) in liquefied petroleum gas, which is a raw material for petrochemical products. There is a need to increase the proportion of hydrocarbon compounds.

従来法としては、減圧軽油留分、重質原油、常圧残渣油等の重質炭化水素油を、ホージャサイト構造のゼオライト含有触媒と接触させて分解し、ガソリン基材や分解ガス等を製造する方法が広く行われているが、上記の要求に対しては、特殊なゼオライトあるいはこれを含む接触分解用触媒を用いて、プロピレンやブテン等の軽質オレフィンの増産を図る方法が各種提案されている。例えば、接触分解触媒として、特定のゼオライトβ含有触媒とホージャサイト型ゼオライト含有触媒との混合物を用いて、ガソリン基材の得率を低下させることなく、軽質オレフィンの増産を可能とする方法が提案されている(特許文献1参照)。   Conventionally, heavy hydrocarbon oils such as vacuum gas oil fractions, heavy crude oils, and atmospheric residue oils are contacted with faujasite-structured zeolite-containing catalysts to produce gasoline bases, cracked gases, etc. However, various methods have been proposed for increasing the production of light olefins such as propylene and butene using a special zeolite or a catalytic cracking catalyst containing the same. Yes. For example, using a mixture of a specific zeolite β-containing catalyst and a faujasite-type zeolite-containing catalyst as a catalytic cracking catalyst, a method that can increase the production of light olefins without reducing the yield of gasoline base materials is proposed. (See Patent Document 1).

特開平8−269464号公報JP-A-8-269464

上述のように、流動接触分解装置を用いて製造した従来のガソリン基材は、オクタン価が91程度であり、オクタン価を更に向上させる必要がある。また、従来の接触分解反応の原料油としては、上述のように、減圧軽油留分、重質原油、常圧残渣油等の石油由来の重質炭化水素油が主に用いられてきたが、昨今、二酸化炭素削減の必要性から、石油由来でない再生可能な油脂等を用いて原料油を多様化することが求められている。しかしながら、既存の接触分解装置を用いて、ガソリン基材の得率を大幅に変化させることなく、石油由来の炭化水素油以外の原料油を接触分解することは非常に難しかった。   As described above, the conventional gasoline base produced using the fluid catalytic cracking apparatus has an octane number of about 91, and it is necessary to further improve the octane number. In addition, as described above, as a feedstock for conventional catalytic cracking reaction, heavy hydrocarbon oils derived from petroleum such as vacuum gas oil fraction, heavy crude oil, atmospheric residue oil, etc. have been mainly used. Recently, due to the need for carbon dioxide reduction, it is required to diversify raw material oils using renewable oils and the like that are not derived from petroleum. However, it has been very difficult to catalytically crack raw material oils other than petroleum-derived hydrocarbon oils without significantly changing the yield of gasoline base materials using an existing catalytic cracking apparatus.

そこで、本発明の目的は、既存の接触分解装置を用いて、ガソリン基材の得率を大幅に変化させることなく、原料油の多様化が可能で、更にはガソリン基材のオクタン価を向上させ、また液化石油ガス(LPG)中の不飽和炭化水素を増産させることが可能な接触分解方法を提供することにある。   Therefore, an object of the present invention is to diversify the feedstock without using the existing catalytic cracking apparatus, and to improve the octane number of the gasoline base material without greatly changing the yield of the gasoline base material. Another object of the present invention is to provide a catalytic cracking method capable of increasing the production of unsaturated hydrocarbons in liquefied petroleum gas (LPG).

本発明者は、上記目的を達成するために鋭意検討した結果、石油由来の炭化水素油と有機含酸素化合物とを混合してヨウ素価及び酸素含有量が特定の範囲にある原料油を調製し、該原料油を接触分解処理することで、ガソリン基材の得率を大幅に変化させることなく、原料油の多様化を達成することができ、更には、ガソリン基材のオクタン価を向上させることもできることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor prepared a feedstock oil having an iodine value and an oxygen content within a specific range by mixing petroleum-derived hydrocarbon oil and an organic oxygenated compound. By catalytically cracking the raw material oil, diversification of the raw material oil can be achieved without significantly changing the yield of the gasoline base material, and further, the octane number of the gasoline base material can be improved. And found out that the present invention can be completed.

即ち、本発明の接触分解方法は、石油由来の炭化水素油と有機含酸素化合物とを含み、ヨウ素価が15〜45gI/100gで且つ酸素含有量が6質量%以下である原料油を、添加水素ガスの不存在下で、接触分解触媒と接触させて接触分解油を製造することを特徴とする。 That is, the catalytic cracking process of the invention comprises a hydrocarbon oil and an organic oxygen-containing compound derived from petroleum, the feedstock oxygen content and at 15~45gI 2 / 100g iodine number is less than 6 wt%, A catalytic cracking oil is produced by contacting with a catalytic cracking catalyst in the absence of added hydrogen gas.

本発明の接触分解方法の好適例においては、前記接触分解油が不飽和脂肪族炭化水素を含有する。   In a preferred embodiment of the catalytic cracking method of the present invention, the catalytic cracking oil contains an unsaturated aliphatic hydrocarbon.

本発明の接触分解方法の他の好適例においては、前記原料油中の有機含酸素化合物の含有量が1〜50質量%である。この場合、コークの生成を抑制しつつ、接触分解油中の不飽和炭化水素の割合を確実に増加させることができる。   In another preferred embodiment of the catalytic cracking method of the present invention, the content of the organic oxygen-containing compound in the raw material oil is 1 to 50% by mass. In this case, it is possible to reliably increase the proportion of unsaturated hydrocarbons in the catalytic cracking oil while suppressing the production of coke.

本発明の接触分解方法の他の好適例においては、前記有機含酸素化合物が動植物を起源とする天然油脂由来の化合物である。この場合、製品である燃料油を消費した場合の二酸化炭素の発生量を削減することができる。   In another preferred embodiment of the catalytic cracking method of the present invention, the organic oxygen-containing compound is a compound derived from natural fats and oils originating from animals and plants. In this case, the amount of carbon dioxide generated when the fuel oil that is the product is consumed can be reduced.

また、上記の接触分解方法により得られる接触分解油を、例えば、蒸留分離することで、炭素数3〜4の炭化水素(好ましくは、プロピレン、ブテン等の液化石油ガス中の不飽和炭化水素化合物)及び/又は接触分解ガソリン基材を製造することができる。   In addition, the catalytic cracked oil obtained by the above catalytic cracking method is separated by distillation, for example, to obtain hydrocarbons having 3 to 4 carbon atoms (preferably unsaturated hydrocarbon compounds in liquefied petroleum gas such as propylene and butene). ) And / or catalytic cracking gasoline bases can be produced.

本発明の方法によれば、既存の接触分解装置において触媒、運転条件を大幅に変更することなく、従来と同等の製品得率、特にはガソリン基材の得率を維持しながら、原料油の多様化が図れ、また、ガソリン基材のオクタン価を向上させることが可能で、更にプロピレンの得率を向上させることができる。   According to the method of the present invention, in the existing catalytic cracking apparatus, the product yield of the same as that of the conventional product, particularly the yield of the gasoline base material is maintained without significantly changing the catalyst and operating conditions, and Diversification can be achieved, the octane number of the gasoline base material can be improved, and the yield of propylene can be further improved.

以下に、本発明を詳細に説明する。本発明の接触分解方法は、石油由来の炭化水素油と有機含酸素化合物とを含み、ヨウ素価が15〜45gI/100gで且つ酸素含有量が6質量%以下である原料油を、添加水素ガスの不存在下で、接触分解触媒と接触させて接触分解油を製造することを特徴とする。本発明の接触分解方法では、原料油の一部として有機含酸素化合物を用いるため、原料油の多様化を達成することができる。また、生成する接触分解油中のガソリン留分における芳香族分及びオレフィン分の割合が向上するため、ガソリン基材のオクタン価を向上させることもできる。なお、本発明の接触分解方法では、水が副生する傾向があり、該水の生成のために原料油から水素が引き抜かれる結果として、生成する接触分解油中のオレフィン分及び芳香族分の割合が向上するものと思われる。 The present invention is described in detail below. Catalytic cracking process of the invention comprises a hydrocarbon oil and an organic oxygen-containing compound derived from petroleum, the feedstock oxygen content and at 15~45gI 2 / 100g iodine number is less than 6 wt%, hydrogenated A catalytic cracking oil is produced by contacting with a catalytic cracking catalyst in the absence of gas. In the catalytic cracking method of the present invention, since an organic oxygen-containing compound is used as part of the feedstock, diversification of the feedstock can be achieved. Moreover, since the ratio of the aromatic content and the olefin content in the gasoline fraction in the produced catalytic cracking oil is improved, the octane number of the gasoline base material can be improved. In the catalytic cracking method of the present invention, water tends to be formed as a by-product, and as a result of hydrogen being extracted from the feedstock for the production of the water, the olefin content and aromatic content in the generated catalytic cracking oil. The rate is expected to improve.

更に、本発明においては、ヨウ素価が15〜45gI/100gで且つ酸素含有量が6質量%以下の原料油を処理することで、ガソリン基材の得率の低下を抑制しつつ、ガソリン基材のオクタン価を向上させる。ここで、使用する原料油のヨウ素価が15gI/100g未満では、ガソリン基材のオクタン価を向上させることができず、一方、ヨウ素価が45gI/100gを超えると、ライトサイクルオイル(LCO)の生成量が増加して、ガソリン基材の得率が大幅に低下してしまう。また、使用する原料油の酸素含有量が6質量%を超えると、水の副生量が増加して、ガソリン基材の得率が大幅に低下してしまう。 Further, in the present invention, by an iodine value of oxygen content and at 2 / 100g 15~45gI handles 6 wt% or less of the feedstock, while suppressing the decrease in the yield ratio of the gasoline components, gasoline Improve the octane number of the material. Here, the iodine value of less than that 15gI 2 / 100g of the feedstock to be used, it is impossible to improve the octane number of the gasoline base material, whereas, an iodine value exceeds 45gI 2 / 100g, light cycle oil of (LCO) A production amount increases and the yield of a gasoline base material will fall significantly. Moreover, when the oxygen content of the raw material oil to use exceeds 6 mass%, the by-product amount of water will increase and the yield of a gasoline base material will fall significantly.

また、ガソリン基材のオクタン価を更に向上させる観点から、原料油のヨウ素価は20gI/100g以上が好ましい。また、ガソリン基材の得率の低下をより確実に抑制する観点から、原料油のヨウ素価は40gI/100g以下が好ましく、酸素含有量は5質量%以下、特には4質量%以下が好ましい。なお、特に限定されるものではないが、プロピレン/LPG比を向上させる観点から、原料油の酸素含有量は、0.2質量%以上、特には0.4質量%以上であることが好ましい。 Further, from the viewpoint of further improving the octane number of the gasoline base material, the iodine value of the raw material oil is preferably 20 gI 2/100 g or more. Also, the more reliably suppressing a decrease in the yield ratio of the gasoline base material, iodine value of the feedstock is preferably at most 40gI 2 / 100g, oxygen content 5 mass% or less, particularly preferably 4 wt% or less . Although not particularly limited, from the viewpoint of improving the propylene / LPG ratio, the oxygen content of the feedstock oil is preferably 0.2% by mass or more, particularly 0.4% by mass or more.

〔接触分解工程〕
接触分解油を製造するプロセスにおいて、接触分解装置、運転条件および用いる触媒は特に限定されず、任意の製造工程を採用することができる。接触分解装置は、接触分解触媒を使用して、軽油から減圧軽油までの石油留分の他、重油間接脱硫装置から得られる間脱軽油、重油直接脱硫装置から得られる直脱重油、常圧残さ油などを接触分解して高オクタン価ガソリン基材等を得る装置である。例えば、流動接触分解法としては、石油学会編「石油精製プロセス」に記載のあるUOP接触分解法、フレキシクラッキング法、ウルトラ・オルソフロー法、テキサコ流動接触分解法などの流動接触分解法、RCC法、HOC法などの残油流動接触分解法などが挙げられる。
[Catalytic decomposition process]
In the process for producing the catalytic cracking oil, the catalytic cracking apparatus, the operating conditions and the catalyst used are not particularly limited, and any production process can be adopted. Catalytic cracking equipment uses catalytic cracking catalyst, oil fraction from light oil to vacuum gas oil, degasified oil obtained from heavy oil indirect desulfurization equipment, direct desulfurized oil obtained from heavy oil direct desulfurization equipment, atmospheric residue It is a device that obtains high octane gasoline base material by catalytic cracking of oil. For example, the fluid catalytic cracking method includes UOP catalytic cracking method, flexi cracking method, ultra-orthoflow method, texaco fluid catalytic cracking method, RCC method, etc. And residual oil fluid catalytic cracking method such as HOC method.

〔接触分解触媒〕
接触分解触媒としては、一般式:Na2O・Al23・nSiO2で示されるホージャサイト型の結晶性アルミノシリケート(ゼオライト)で、nが5のY型ゼオライトやnが9のUSY型ゼオライトを、非晶質シリカアルミナ、クレイ、フィラー、バインダー(シリカゾル、アルミナゾル、アルミナゲル)と混合して、平均粒子径60μm程度の球形に調製した公知の触媒が使用できる。また、ゼオライトとしては、イオン交換サイトをレアアースで置換したREY型、REUSY型も適用できる。さらに、ZSM−5等のMFI型ゼオライトを混合して使用してもよい。なお本発明に使用する接触分解触媒は、特に限定されるものではないが、USY型ゼオライトにアルミナゾルバインダー及びZSM−5を添加した触媒が好ましい。
[Catalytic cracking catalyst]
The catalytic cracking catalyst is a faujasite type crystalline aluminosilicate (zeolite) represented by the general formula: Na 2 O.Al 2 O 3 .nSiO 2 , where Y is a Y-type zeolite and n is a 9-type USY type. A known catalyst prepared by mixing zeolite with amorphous silica alumina, clay, filler, binder (silica sol, alumina sol, alumina gel) and having a spherical shape with an average particle diameter of about 60 μm can be used. Further, as zeolite, REY type and REUSY type in which the ion exchange site is replaced with rare earth can be applied. Further, MFI type zeolite such as ZSM-5 may be mixed and used. The catalytic cracking catalyst used in the present invention is not particularly limited, but a catalyst obtained by adding an alumina sol binder and ZSM-5 to USY zeolite is preferable.

〔接触分解の反応条件〕
接触分解の反応条件としては、反応温度は430〜550℃の範囲が好ましく、490〜520℃の範囲が更に好ましく、重量空間速度は1〜5h-1の範囲が好ましく、再生温度は550〜760℃の範囲が好ましく、575〜720℃の範囲が更に好ましく、触媒/油比(質量比)は2〜10の範囲が好ましく、3〜8の範囲が更に好ましく、接触時間は1〜60秒の範囲が好ましく、1〜20秒の範囲が更に好ましい。
[Reaction conditions for catalytic cracking]
As reaction conditions for catalytic cracking, the reaction temperature is preferably in the range of 430 to 550 ° C., more preferably in the range of 490 to 520 ° C., the weight space velocity is preferably in the range of 1 to 5 h −1 , and the regeneration temperature is 550 to 760. The range of ℃ is preferable, the range of 575 to 720 ° C is more preferable, the catalyst / oil ratio (mass ratio) is preferably in the range of 2 to 10, more preferably in the range of 3 to 8, and the contact time is 1 to 60 seconds. The range is preferable, and the range of 1 to 20 seconds is more preferable.

なお、本発明の接触分解方法は、添加水素ガスの不存在下で行う。外部から添加された水素ガスの存在下で接触分解を行った場合、生成する接触分解油中の不飽和脂肪族炭化水素の含有率が低下してしまう。   The catalytic cracking method of the present invention is carried out in the absence of added hydrogen gas. When catalytic cracking is performed in the presence of hydrogen gas added from the outside, the content of unsaturated aliphatic hydrocarbons in the catalytic cracking oil to be produced decreases.

〔石油由来の炭化水素油〕
石油由来の炭化水素油としては、原油を常圧蒸留して得られる常圧蒸留残油、常圧蒸留残油を減圧蒸留して得られる留出油留分である減圧軽油、原油を常圧蒸留して得られる留出油留分のうちの直留軽油留分、常圧蒸留残渣油を減圧蒸留して得られる減圧蒸留残渣油を熱分解して得られる熱分解重質軽油留分等を水素化精製処理したものが好ましく用いられる。また、接触分解プロセスで得られるガソリン留分より沸点の高いライトサイクルオイル(LCO)や水素化分解プロセスで得られる減圧蒸留残油留分、またはそれらを水素化精製処理したものも好ましく用いられる。上述の留分を水素化精製処理する場合は、別々に水素化精製処理してもよいし、2つ以上を混合して水素化精製処理してもよい。
[Petroleum-derived hydrocarbon oil]
Petroleum-derived hydrocarbon oils include atmospheric distillation residue obtained by atmospheric distillation of crude oil, vacuum gas oil that is a distillate distillate obtained by vacuum distillation of atmospheric distillation residue, and crude oil at atmospheric pressure. Among the distillate oil fractions obtained by distillation, straight distillation gas oil fraction, pyrolysis heavy gas oil fraction obtained by pyrolyzing vacuum distillation residue oil obtained by vacuum distillation of atmospheric distillation residue oil, etc. Those obtained by hydrotreating are preferably used. Moreover, light cycle oil (LCO) having a boiling point higher than that of the gasoline fraction obtained by the catalytic cracking process, a vacuum distillation residue fraction obtained by the hydrocracking process, or those obtained by hydrotreating them are also preferably used. When the above-mentioned fraction is hydrorefined, it may be separately hydrorefined, or two or more may be mixed and hydrorefined.

使用する石油由来の炭化水素油の蒸留性状は、10%留出温度が210℃以上で、95%留出温度が600℃以下であることが好ましく、10%留出温度が220〜410℃で、95%留出温度が410〜590℃であることが更に好ましい。また、使用する石油由来の炭化水素油は、50℃での動粘度が3〜280mm2/sであることが好ましく、100℃での動粘度が1〜40mm2/sであることが好ましい。 The distillation properties of the petroleum-derived hydrocarbon oil used are such that the 10% distillation temperature is 210 ° C or higher and the 95% distillation temperature is preferably 600 ° C or lower, and the 10% distillation temperature is 220 to 410 ° C. More preferably, the 95% distillation temperature is 410 to 590 ° C. The petroleum-derived hydrocarbon oil used preferably has a kinematic viscosity at 50 ° C. of 3 to 280 mm 2 / s, and preferably has a kinematic viscosity at 100 ° C. of 1 to 40 mm 2 / s.

なお、原料油中の石油由来の炭化水素油の含有量は、コークの生成を抑制しつつ、接触分解油中の不飽和炭化水素の割合を増加させる観点から、50〜99質量%の範囲が好ましく、65〜97質量%の範囲が更に好ましく、75〜95質量%の範囲がより一層好ましい。   In addition, the content of petroleum-derived hydrocarbon oil in the raw material oil is in the range of 50 to 99 mass% from the viewpoint of increasing the proportion of unsaturated hydrocarbons in the catalytic cracked oil while suppressing the production of coke. Preferably, the range of 65 to 97% by mass is more preferable, and the range of 75 to 95% by mass is even more preferable.

また、特に限定されるものではないが、使用する石油由来の炭化水素油は、ヨウ素価が10〜30gI/100gであることが好ましく、酸素含有量が0.1質量%未満であることが好ましい。 Although not particularly limited, hydrocarbon oils derived from petroleum used preferably has an iodine value is 10~30gI 2 / 100g, are the oxygen content is less than 0.1 wt% preferable.

〔有機含酸素化合物〕
有機含酸素化合物としては、アルコール、エステル、脂肪酸、エーテル等が挙げられ、各官能基、構造等は化合物内に1つ存在していてもよいし、複数存在していてもよい。例えば、アルコールとしては、一価アルコールでも多価アルコールでもよく、エステルとしては、動植物油脂のようにモノグリセリド、ジグリセリド、トリグリセリドであってもよい。
[Organic oxygenates]
Examples of the organic oxygen-containing compound include alcohols, esters, fatty acids, ethers, and the like, and one or more functional groups and structures may exist in the compound. For example, the alcohol may be a monohydric alcohol or a polyhydric alcohol, and the ester may be a monoglyceride, a diglyceride, or a triglyceride like animal and vegetable oils and fats.

有機含酸素化合物は、動植物を起源とする天然油脂由来の化合物であることが好ましい。特に、バイオマスエネルギーの利用は、カーボンニュートラルの見地からも好ましい。動植物を起源とする天然油脂由来の化合物としては、パーム油、なたね油、大豆油、からし油、綿実油、サフラワー油、ゴマ油、とうもろこし油、落花生油、カポック油、ひまわり油、こめ油、やし油、パーム核油、あまに油、ひまし油、オリーブ油、桐油等の植物油脂や、牛脂、豚脂、羊脂、魚油等の動物油脂が例示される。また、前記動植物油脂から誘導される脂肪酸、脂肪酸エステルを製造する際に副生するグリセリンを使用することもできる。さらに、これらの動植物油脂や動植物油脂誘導体を含む廃油や廃液等の廃天然油脂を原料油として用いてもよい。ここで、廃油、廃液としては、近年その処理法が問題になっている廃食油等が例示される。   The organic oxygen-containing compound is preferably a compound derived from natural fats and oils originating from animals and plants. In particular, the use of biomass energy is preferable from the viewpoint of carbon neutral. Natural oils and fats derived from animals and plants include palm oil, rapeseed oil, soybean oil, mustard oil, cottonseed oil, safflower oil, sesame oil, corn oil, peanut oil, kapok oil, sunflower oil, corn oil, palm Examples thereof include vegetable oils such as oil, palm kernel oil, linseed oil, castor oil, olive oil and tung oil, and animal oils such as beef tallow, pork tallow, sheep tallow and fish oil. Moreover, when manufacturing the fatty acid and fatty acid ester induced | guided | derived from the said animal and vegetable fats and oils, glycerin byproduced can also be used. Furthermore, waste natural fats and oils such as waste oils and waste liquids containing these animal and vegetable oils and fats and oils and vegetable oil derivatives may be used as the raw material oil. Here, examples of the waste oil and waste liquid include waste edible oil and the like whose treatment method has become a problem in recent years.

有機含酸素化合物の存在下で接触分解反応を行うと、上述のように水分が副生し、また、コークが増加する傾向がある。そのため、原料油中の有機含酸素化合物の含有量は、1〜50質量%の範囲が好ましく、3〜35質量%の範囲が更に好ましく、5〜25質量%の範囲がより一層好ましい。原料油中の有機含酸素化合物の含有量が1質量%以上であれば、接触分解油中の不飽和炭化水素の割合が確実に増加し、一方、原料油中の有機含酸素化合物の含有量が50質量%以下であれば、コークの生成を抑制することができる。   When the catalytic cracking reaction is performed in the presence of an organic oxygen-containing compound, water is by-produced as described above, and coke tends to increase. Therefore, the content of the organic oxygen-containing compound in the raw material oil is preferably in the range of 1 to 50% by mass, more preferably in the range of 3 to 35% by mass, and still more preferably in the range of 5 to 25% by mass. If the content of the organic oxygenated compound in the feedstock is 1% by mass or more, the proportion of unsaturated hydrocarbons in the catalytic cracked oil will surely increase, while the content of the organic oxygenated compound in the feedstock oil If it is 50 mass% or less, the production | generation of coke can be suppressed.

また、特に限定されるものではないが、使用する有機含酸素化合物は、ヨウ素価が10〜200gI/100g、特には15〜120gI/100gであることが好ましく、酸素含有量が10〜55質量%であることが好ましい。 Although not particularly limited, an organic oxygen-containing compound to be used is preferably an iodine value 10~200gI 2 / 100g, particularly from 15~120gI 2 / 100g, an oxygen content of 10 to 55 It is preferable that it is mass%.

〔原料油の導入〕
接触分解装置への原料油の導入は、石油由来の炭化水素油と有機含酸素化合物を別々の経路から接触分解装置へ導入しても、石油由来の炭化水素油と有機含酸素化合物を予め混合してから接触分解装置へ導入してもよいが、有機含酸素化合物の比率が前記範囲内となるように接触分解装置へ導入することが好ましい。
[Introduction of raw oil]
The introduction of feedstock oil to the catalytic cracking unit can be done by mixing the petroleum-derived hydrocarbon oil and the organic oxygenated compound in advance even if the petroleum-derived hydrocarbon oil and the organic oxygenated compound are introduced into the catalytic cracking unit through separate routes. Then, it may be introduced into the catalytic cracking apparatus, but it is preferably introduced into the catalytic cracking apparatus so that the ratio of the organic oxygen-containing compound is within the above range.

〔接触分解油〕
本発明の接触分解方法で製造される接触分解油には、飽和脂肪族炭化水素、芳香族炭化水素、不飽和脂肪族炭化水素が含有され、該不飽和脂肪族炭化水素は、接触分解油中に通常1質量%以上、好ましくは5質量%以上、より好ましくは10質量%以上含有される。ここで、不飽和脂肪族炭化水素としては、プロピレン、ブテン、ペンテン、ヘキセン等が挙げられる。
[Catalytic cracked oil]
The catalytic cracking oil produced by the catalytic cracking method of the present invention contains saturated aliphatic hydrocarbons, aromatic hydrocarbons and unsaturated aliphatic hydrocarbons, and the unsaturated aliphatic hydrocarbons are contained in the catalytic cracking oil. The content is usually 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more. Here, examples of the unsaturated aliphatic hydrocarbon include propylene, butene, pentene, hexene and the like.

上記接触分解油を、例えば、蒸留塔で分留することで、炭素数3〜4の炭化水素(LPG)及び/又は接触分解ガソリン基材を得ることができる。ここで、接触分解ガソリン基材は、5容量%留出温度が35〜55℃、好ましくは35〜43℃、95容量%留出温度が150〜210℃、好ましくは150〜180℃となるように分留される。   For example, a hydrocarbon having 3 to 4 carbon atoms (LPG) and / or a catalytic cracking gasoline base material can be obtained by fractionating the catalytic cracking oil in a distillation column, for example. Here, the catalytic cracking gasoline base material has a 5% by volume distillation temperature of 35 to 55 ° C, preferably 35 to 43 ° C, and a 95% by volume distillation temperature of 150 to 210 ° C, preferably 150 to 180 ° C. Is fractionated.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1〜5及び比較例1)
表1に示す性状の、中東系原油の減圧軽油留分を水素化精製処理した脱硫重質減圧軽油1又は2と、精製パーム油[RBDパーム油(マレーシア産),三栄化工株式会社]、グリセリン[関東化学株式会社製試薬(特級), 密度:1.2644g/cm3]、パーム原油[パーム原油(マレーシア産)]、パームオレイン[RBDパームオレイン(マレーシア産)]、パーム核油[RBDパーム核油(マレーシア産)]、オリーブ油[関東化学株式会社製]、大豆油[関東化学株式会社製]、又は亜麻仁油[関東化学株式会社製]とを表2〜4に示す混合比率で混合して原料油を調製した。該原料油に対して、触媒としてGRACE Davison社製のIMPACT触媒(USY型ゼオライトにアルミナバインダー及びZSM−5を添加した触媒)の平衡触媒(比表面積:130m2/g, アルミナ比率:45質量%)を用い、Xytel社製のバッチ式小型流動層接触分解装置:ACE Model−Rによって、反応温度535℃、再生温度720℃、重量空間速度8h-1、接触時間2秒、触媒/油比(重量比)5の反応条件で接触分解反応を行い、分解生成物(接触分解油)を得た。分解生成物の収率及び性状を表2〜4に示す。なお、表1〜4中の密度、残留炭素、動粘度、蒸留性状、ガソリン組成、リサーチ法オクタン価(RON)、酸素含有量、ヨウ素価は、以下のようにして測定した。
(Examples 1-5 and Comparative Example 1)
Desulfurized heavy vacuum gas oil 1 or 2 obtained by hydrorefining a Middle Eastern crude oil vacuum gas fraction with the properties shown in Table 1, refined palm oil [RBD palm oil (produced in Malaysia), Sanei Chemical Co., Ltd.], glycerin [Kanto Chemical Co., Ltd. reagent (special grade), density: 1.2644 g / cm 3 ], palm crude oil [palm crude oil (produced in Malaysia)], palm olein [RBD palm olein (produced in Malaysia)], palm kernel oil [RBD palm] Nuclear oil (from Malaysia)], olive oil [manufactured by Kanto Chemical Co., Ltd.], soybean oil [manufactured by Kanto Chemical Co., Ltd.], or linseed oil [manufactured by Kanto Chemical Co., Ltd.] at a mixing ratio shown in Tables 2 to 4 The raw material oil was prepared. Equivalent catalyst (specific surface area: 130 m 2 / g, alumina ratio: 45% by mass) of IMPACT catalyst (a catalyst obtained by adding an alumina binder and ZSM-5 to USY zeolite) as a catalyst for the raw material oil ), A batch type small fluidized bed catalytic cracking apparatus manufactured by Xytel: ACE Model-R, reaction temperature 535 ° C., regeneration temperature 720 ° C., weight space velocity 8 h −1 , contact time 2 seconds, catalyst / oil ratio ( A catalytic cracking reaction was carried out under a reaction condition of 5 (weight ratio) to obtain a decomposition product (catalytic cracking oil). The yield and properties of the decomposition products are shown in Tables 2-4. In addition, the density, residual carbon, kinematic viscosity, distillation property, gasoline composition, research method octane number (RON), oxygen content, and iodine number in Tables 1 to 4 were measured as follows.

(1)密度:振動式密度試験法(JIS K 2249)
(2)残留炭素:コンラドソン法(JIS K 2270)
(3)動粘度:動粘度試験方法(JIS K 2283)
(4)蒸留性状:蒸留試験方法(JIS K 2254)ガスクロマトグラフ法
(5)ガソリン組成:組成分析方法(JIS K 2536)ガスクロマトグラフ法
(6)リサーチ法オクタン価(RON):ヒューレッドパッカード社製PIONA装置を用いて、ガスクロマトグラフ法によって測定
(7)酸素含有量:Heraeus社製CHN-O-RAPID装置を用いて元素分析
(8)ヨウ素価:英国石油協会(Institute Petroleum) IP84/65 Iodine Value Iodine Monochloride Method)準拠試験法にて測定
(1) Density: Vibration type density test method (JIS K 2249)
(2) Residual carbon: Conradson method (JIS K 2270)
(3) Kinematic viscosity: Kinematic viscosity test method (JIS K 2283)
(4) Distillation properties: Distillation test method (JIS K 2254) Gas chromatographic method (5) Gasoline composition: Composition analysis method (JIS K 2536) Gas chromatographic method (6) Research method Octane number (RON): PIONA manufactured by Hured Packard (7) Oxygen content: Elemental analysis using a CHN-O-RAPID device manufactured by Heraeus (8) Iodine value: Institute Petroleum IP84 / 65 Iodine Value Iodine Monochloride Method)

Figure 0005435856
Figure 0005435856

Figure 0005435856
Figure 0005435856

Figure 0005435856
Figure 0005435856

Figure 0005435856
Figure 0005435856

*1 ガソリン:C5〜沸点205℃の留分
*2 ドライガス:H2, H2S, C1, C2
*3 LPG:C3, C4
*4 LCO:205℃〜343℃の留分
*5 BTM:343℃を超える留分
* 1 Gasoline: C5 to boiling point 205 ° C fraction
* 2 Dry gas: H 2 , H 2 S, C1, C2
* 3 LPG: C3, C4
* 4 LCO: Fraction between 205 ° C and 343 ° C
* 5 BTM: fraction exceeding 343 ° C

表2〜4中の実施例の結果から、石油由来の炭化水素油と有機含酸素化合物とを含み、ヨウ素価が15〜45gI/100gで且つ酸素含有量が6質量%以下の原料油に対して接触分解を行うことで、ガソリン留分の得率を大幅に変化させることなく、ガソリン留分中の芳香族分の割合とオレフィン分の割合が増加してオクタン価を向上させることが分かる。また、プロピレンの収率およびLPG中のプロピレン比率が向上することが確認された。 From the results of examples in Table 2-4, and a hydrocarbon oil and an organic oxygen-containing compound derived from petroleum, an iodine value in the feedstock and the oxygen content is below 6% at 15~45gI 2 / 100g On the other hand, it can be seen that by performing catalytic cracking, the ratio of aromatics and olefins in the gasoline fraction increases and the octane number is improved without significantly changing the yield of the gasoline fraction. It was also confirmed that the propylene yield and the propylene ratio in LPG were improved.

また、比較例3の結果から、石油由来の炭化水素油と有機含酸素化合物とを含むものの、ヨウ素価が15gI/100g未満の原料油を用いた場合、ガソリン留分のオクタン価を向上させられないことが分かる。 Further, from the results of Comparative Example 3, although containing a hydrocarbon oil and an organic oxygen-containing compound derived from petroleum, when the iodine value was used feedstock than 15gI 2 / 100g, is to improve the octane number of the gasoline fraction I understand that there is no.

更に、比較例4,5及び6の結果から、石油由来の炭化水素油と有機含酸素化合物とを含むものの、ヨウ素価が45gI/100gを超える原料油を用いた場合、LCOの生成量が増加して、ガソリン留分の得率が低下することが分かる。 Furthermore, from the results of Comparative Examples 4, 5 and 6, although containing a hydrocarbon oil and an organic oxygen-containing compound derived from petroleum, when the iodine value was used feedstock exceeding 45gI 2 / 100g, the generation amount of LCO It turns out that the yield of gasoline fraction decreases.

Claims (5)

蒸留性状が10%留出温度が210℃以上で95%留出温度が600℃以下である石油由来の炭化水素油と、動植物を起源とする天然油脂由来の有機含酸素化合物とをそれぞれ50〜99質量%、1〜50質量%の含有量で含み、ヨウ素価が15〜45gI/100gで且つ酸素含有量が6質量%以下である原料油を、添加水素ガスの不存在下で、接触分解触媒と接触させて接触分解油を製造することを特徴とする接触分解方法。 A petroleum-derived hydrocarbon oil having a distillation property of 10% distillation temperature of 210 ° C. or more and a 95% distillation temperature of 600 ° C. or less, and an organic oxygen-containing compound derived from natural fats and oils originating from animals and plants, 99 wt%, including at a content of 1 to 50 mass%, the feedstock oxygen content and at 15~45gI 2 / 100g iodine number is less than 6 mass%, in the absence of added hydrogen gas, the contact A catalytic cracking method comprising producing a catalytic cracking oil by contacting with a cracking catalyst. 前記石油由来の炭化水素油の50℃での動粘度が3〜280mm2/sであり、100℃での動粘度が1〜40mm2/sである、請求項1に記載の接触分解方法。 The catalytic cracking method according to claim 1, wherein the petroleum-derived hydrocarbon oil has a kinematic viscosity at 50 ° C. of 3 to 280 mm 2 / s and a kinematic viscosity at 100 ° C. of 1 to 40 mm 2 / s. 前記接触分解油が不飽和脂肪族炭化水素を含有することを特徴とする請求項1に記載の接触分解方法。   The catalytic cracking method according to claim 1, wherein the catalytic cracking oil contains an unsaturated aliphatic hydrocarbon. 請求項1〜3のいずれかに記載の接触分解方法により得られる接触分解油から、炭素数3〜4の炭化水素を製造する方法。 The method to manufacture a C3- C4 hydrocarbon from the catalytic cracking oil obtained by the catalytic cracking method in any one of Claims 1-3 . 請求項1〜3のいずれかに記載の接触分解方法により得られる接触分解油から、接触分解ガソリン基材を製造する方法。 The method to manufacture a catalytic cracking gasoline base material from the catalytic cracking oil obtained by the catalytic cracking method in any one of Claims 1-3 .
JP2007288952A 2006-11-07 2007-11-06 Catalytic decomposition method Active JP5435856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007288952A JP5435856B2 (en) 2006-11-07 2007-11-06 Catalytic decomposition method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006301410 2006-11-07
JP2006301410 2006-11-07
JP2007288952A JP5435856B2 (en) 2006-11-07 2007-11-06 Catalytic decomposition method

Publications (2)

Publication Number Publication Date
JP2008138188A JP2008138188A (en) 2008-06-19
JP5435856B2 true JP5435856B2 (en) 2014-03-05

Family

ID=39599988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288952A Active JP5435856B2 (en) 2006-11-07 2007-11-06 Catalytic decomposition method

Country Status (1)

Country Link
JP (1) JP5435856B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068255A1 (en) * 2008-12-08 2010-06-17 W. R. Grace & Co.-Conn. Process of cracking biofeeds using high zeolite to matrix surface area catalysts
CN102811814B (en) * 2010-01-20 2014-10-15 吉坤日矿日石能源株式会社 Catalyst for use in production of monocyclic aromatic hydrocarbon, and process for production of monocyclic aromatic hydrocarbon
US20110284359A1 (en) 2010-05-20 2011-11-24 Uop Llc Processes for controlling afterburn in a reheater and for controlling loss of entrained solid particles in combustion product flue gas
JP5986203B2 (en) * 2011-07-29 2016-09-06 サウジ アラビアン オイル カンパニー Oxidative desulfurization in fluid catalytic cracking process.
US9109177B2 (en) * 2011-12-12 2015-08-18 Ensyn Renewables, Inc. Systems and methods for renewable fuel
WO2014129585A1 (en) 2013-02-21 2014-08-28 Jx日鉱日石エネルギー株式会社 Method for producing single-ring aromatic hydrocarbons
AR097135A1 (en) 2013-06-26 2016-02-24 Ensyn Renewables Inc SYSTEMS AND METHODS FOR RENEWABLE FUEL
JP6561648B2 (en) * 2015-07-14 2019-08-21 出光興産株式会社 Method for catalytic cracking of feedstock
EP3565664A4 (en) 2016-12-29 2020-08-05 Ensyn Renewables, Inc. Demetallization of liquid biomass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033153B2 (en) * 1982-10-02 1985-08-01 本田技研工業株式会社 gasoline manufacturing method

Also Published As

Publication number Publication date
JP2008138188A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5435856B2 (en) Catalytic decomposition method
US8017819B2 (en) Thermal treatment of triglycerides
CA2638061C (en) Fluid catalytic cracking process
Chew et al. Effect of catalyst additives on the production of biofuels from palm oil cracking in a transport riser reactor
JP5525786B2 (en) Aviation fuel oil base material production method and aviation fuel oil composition production method
JP5317644B2 (en) Method for producing aviation fuel base material
JP6887445B2 (en) Bio-renewable kerosene, jet fuel, jet fuel blend stock, and manufacturing methods
CN109575978B (en) Processing method of biological oil
KR20080071580A (en) Liquefied fuel gas composition
JP2012511078A (en) Biofeed degradation using high zeolite to matrix surface area catalysts
CN108495913A (en) The method that high octane gasoline component is produced by the mixture of VGO and tall oil pitch
CA2631848A1 (en) Process for producing a saturated hydrocarbon component
JP2014511937A (en) Liquid fuel composition
EP2130812B1 (en) Process for producing light olefins from a feed containing triglycerides
JP5142588B2 (en) Method for producing gasoline composition
JP2015506397A (en) Process for producing distillate products and / or C2-C4 olefins
KR20150138693A (en) Method for preparing drilling fluid and lube base oils using biomass-derived fatty acid
JP2013506031A (en) Fuel production from feedstock containing triglycerides and / or fatty acid alkyl esters
JP5022117B2 (en) Method for producing hydrocarbon oil
Doronin et al. Conversion of vegetable oils under conditions of catalytic cracking
JP5137335B2 (en) Method for producing gasoline composition
WO2007132938A1 (en) Gas-oil composition
CN107964419B (en) Processing technology of biological oil
PT2176382E (en) Hydroconversion method in a bubbling bed with biorenewable charges for the production of fuel stocks
JP2009040913A (en) Method for producing lower olefin

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5435856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250