JP5435461B2 - Migration inhibitor for cancer treatment - Google Patents

Migration inhibitor for cancer treatment Download PDF

Info

Publication number
JP5435461B2
JP5435461B2 JP2009135486A JP2009135486A JP5435461B2 JP 5435461 B2 JP5435461 B2 JP 5435461B2 JP 2009135486 A JP2009135486 A JP 2009135486A JP 2009135486 A JP2009135486 A JP 2009135486A JP 5435461 B2 JP5435461 B2 JP 5435461B2
Authority
JP
Japan
Prior art keywords
irradiation
cells
migration
glur1
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009135486A
Other languages
Japanese (ja)
Other versions
JP2010280615A (en
Inventor
勝吾 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2009135486A priority Critical patent/JP5435461B2/en
Publication of JP2010280615A publication Critical patent/JP2010280615A/en
Application granted granted Critical
Publication of JP5435461B2 publication Critical patent/JP5435461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

本発明は、放射線等を用いてのがん治療における腫瘍細胞の遊走性の亢進を抑制、阻害する遊走阻害剤に関するものである。   The present invention relates to a migration inhibitor that suppresses or inhibits the enhancement of tumor cell migration in cancer treatment using radiation or the like.

放射線は固形がんの治療において、重要な治療手段であるが、臨床的には、照射野内外での腫瘍の再発がしばしば認められる。原因としては、照射前にすでに微小転移巣が存在しているという考え、あるいは照射野・照射線量が十分な効果が得られる量に達していないなどの不適切さにあると説明されてきた。   Radiation is an important therapeutic tool in the treatment of solid cancer, but clinically, recurrence of tumors within and outside the field is often observed. It has been explained that the cause is that the micro-metastasis already exists before irradiation, or that the irradiation field and irradiation dose do not reach such a level that a sufficient effect can be obtained.

臨床の現場において、高線量照射を広範囲に行えば、脳壊死を引き起こす可能性が高まり、一方線量を低く抑えれば、照射野内の局所再発が必須である。最近では、腫瘍塊には90Gy相当の照射を施行し、周囲浸潤部位に60Gy、周囲脳に40-50Gyと重み付け可能な強度変調照射法であるトモテラピー(登録商標)などの新しい治療装置を用いたり、従来の外照射にガンマナイフやサイバーナイフを組み合わせ施行されるなどの工夫がなされている。   In clinical settings, high-dose irradiation over a wide area increases the possibility of causing brain necrosis, while if the dose is kept low, local recurrence in the irradiation field is essential. Recently, 90 Gy equivalent irradiation was applied to the tumor mass, and a new treatment device such as Tomotherapy (registered trademark), which is an intensity-modulated irradiation method that can weight 60 Gy to the surrounding infiltration site and 40-50 Gy to the surrounding brain, is used. In addition, the conventional external irradiation is combined with a gamma knife and a cyber knife.

現行の放射線治療は、脳壊死を引き起こさない安全な量を見極め、最大限の治療効果を上げる照射野、照射法の臨床経験から得られた探索の成果といえる。さらに新しい線源として、重粒子線の応用も開始されている。   Current radiation therapy can be said to be the result of exploration obtained from clinical experience of radiation fields and radiation methods that determine the safe amount that does not cause brain necrosis and maximize the therapeutic effect. As a new radiation source, the application of heavy particle beams has been started.

しかしながら、肺、消化器、婦人科臓器、乳房、肝臓など主要臓器に発生する未分化腫瘍、悪性黒色腫、悪性脳腫瘍ことに神経膠芽腫などに対する治療は十分な治療効果を上げているとは言えない状況が続いている。これ等浸潤性増殖を示す固形癌では、手術後の局所再発のみならず、腫瘍臓器への遠隔転移や脳転移も稀ではなく、臨床上大きな問題となっている。   However, treatments for undifferentiated tumors, malignant melanoma, malignant brain tumors, and glioblastomas that occur in major organs such as the lungs, digestive organs, gynecological organs, breasts, liver, etc. have been sufficiently effective. The situation that cannot be said continues. In these solid cancers exhibiting invasive growth, not only local recurrence after surgery, but also remote metastasis to brain organs and brain metastasis are not rare and have become a serious clinical problem.

とりわけ悪性度の高い神経膠芽腫については、様々な試みが施行されているが、長期の生存期間を得るまでにはいたっていない。神経膠芽腫に対して90Gy高線量照射の試みが報告されているが、平均生存中央値は16.2ヶ月、髄液播種の頻度が標準量照射群に比して増加している(非特許文献1)。重粒子線の一種である炭素線単独による22例の神経膠芽腫の治療の現状は、平均生存中央値は10-11ヶ月であり、いまだ安全な照射量、最大限の治療効果を上げられる照射野、照射法(分割回数など)テモゾロマイド併用などを探索中である(第29回中枢神経腫瘍臨床研究班会議 中枢神経系II(0101)班会議報告書 報告年月日:2008年9月8日)。   Various attempts have been made for glioblastoma, which has a particularly high grade of malignancy, but it has not reached a long-term survival period. Attempts at 90 Gy high-dose irradiation have been reported for glioblastoma, but the mean median survival was 16.2 months, and the frequency of cerebrospinal fluid seeding increased compared to the standard-dose irradiation group (Non-Patent Documents) 1). The current status of treatment of 22 cases of glioblastoma with carbon beam alone, a kind of heavy particle beam, has a median average survival of 10-11 months, and it is still possible to achieve safe radiation dose and maximum therapeutic effect. Searching for irradiation field, irradiation method (number of divisions, etc.), temozolomide combination, etc. (29th Central Neurological Tumor Clinical Research Group Meeting Central Nervous System II (0101) Group Meeting Report Date: September 8, 2008 Day).

これ等の経緯から、照射量を上げるのみでは難治性がんは治らず、また新しい治療装置である重粒子線も単独治療では、局所制御が可能となっても照射外転移や遠隔転移の制御は困難であり、有意な生命予後の達成は難しく、結果として浸潤性増殖を示すがんを征圧することはできないことが判明しつつある。   For these reasons, refractory cancer cannot be cured simply by increasing the irradiation dose, and even when a new treatment device, a heavy particle beam, can be locally controlled by single treatment, control of extra-irradiation metastasis and distant metastasis It is difficult to achieve a significant prognosis, and as a result, it is becoming impossible to conquer cancers that show invasive growth.

社会の高齢化が進み、がん人口の増加に伴い難治性のがんの克服は、長い間の解決すべき課題であり、緊急性を有する重大な問題である。放射線による難治性がんの治療不応性は、従来から腫瘍細胞の照射線抵抗性として説明されてきたが、最近では、放射線の生物学的効果の解析が進み、放射線そのものが腫瘍細胞の脱分化を促進する、あるいは遊走性を高めるという報告や(非特許文献2−4)、照射線抵抗性の背景を説明する分子機構の仮説の提示がなされてきた。具体的には、照射により、DNA修復酵素が活性化するとする仮説(非特許文献5)、照射細胞の上皮増殖因子や(非特許文献6)リン酸化イノシトール3燐酸の経路の特異的な活性化などの報告があるが(非特許文献7)、具体的な臨床成果に結びついていない。従来技術を探索し、過去の文献からの類推だけでは、照射による遊走、浸潤の亢進を説明する分子機構の解明は難位であり、未だ解決されていない状態が続いている。   Overcoming refractory cancer has been a problem to be solved for a long time as the aging of society progresses and the cancer population increases, and it is a serious problem with urgency. The refractory treatment of refractory cancer by radiation has been described as radiation resistance of tumor cells, but recently, the biological effects of radiation have been analyzed, and radiation itself is dedifferentiation of tumor cells. There have been reports on the promotion of migration or increased migration (Non-patent Documents 2-4), and the hypothesis of molecular mechanisms explaining the background of irradiation resistance. Specifically, hypothesis that DNA repair enzyme is activated by irradiation (Non-patent document 5), and specific activation of epithelial growth factor of irradiated cells and (Non-patent document 6) phosphorylated inositol triphosphate pathway (Non-Patent Document 7), but it has not been linked to specific clinical results. Searching for prior art and analogy only from past literature, it is difficult to elucidate the molecular mechanism that explains the enhancement of migration and invasion due to irradiation, and it still remains unsolved.

一方、本発明者は、神経膠芽腫細胞にグルタミン酸受容体のうちのカルシウム透過性AMPA受容体が発現し、このチャンネルを介した緩徐な細胞内カルシウム濃度の上昇が腫瘍細胞の増殖と遊走を促進することを見出している(非特許文献8,9)。   On the other hand, the present inventor expressed a calcium permeable AMPA receptor among glutamate receptors in glioblastoma cells, and a slow increase in intracellular calcium concentration through this channel caused proliferation and migration of tumor cells. It has been found to promote (Non-Patent Documents 8 and 9).

そして本発明者は、AMPA受容体についての検討を進め、その拮抗薬が腫瘍細胞の増殖を抑制し神経膠芽腫治療剤となり得ることを、ヌードマウスを用いたin vivoの実験系で証明し、AMPA受容体拮抗薬を「神経膠芽腫治療剤」として提案(特許文献1)している。   Then, the present inventor has proceeded with studies on AMPA receptors and proved in an in vivo experimental system using nude mice that the antagonist can suppress tumor cell growth and be a therapeutic agent for glioblastoma. Have proposed an AMPA receptor antagonist as a “glioblastoma therapeutic agent” (Patent Document 1).

また本発明者は、神経膠芽腫細胞に発現するカルシウム透過性AMPA受容体チャンネルを不透過性に変換するGluR2 DNAが神経膠芽腫細胞の浸潤と増殖を抑制することを見出し、GluR2 DNAを組み込んだアデノウイルスベクターが神経膠芽腫の遺伝子治療剤として有用であることを提案している(特許文献2)。   In addition, the present inventors have found that GluR2 DNA that converts calcium-permeable AMPA receptor channel expressed in glioblastoma cells to impermeability suppresses infiltration and proliferation of glioblastoma cells, and It has been proposed that the incorporated adenovirus vector is useful as a gene therapy agent for glioblastoma (Patent Document 2).

さらに、本発明者は、独自に樹立したヒト神経膠芽腫細胞モデルを用いて照射及び非照射細胞をタイムラプス顕微鏡により長期にわたり観察することにより、グリオーマ細胞において細胞質の分裂増殖と細胞の移動(遊走)が関連した一連の現象であることを見出している。より具体的には、細胞質分裂促進物質の産生抑制活性を有する化合物が重粒子線をはじめとする放射線の照射によるがん治療において、放射線照射にともなう腫瘍細胞の遊走性の亢進を抑制、阻害することができ、放射線増感性の遊走阻害の手段を提供することを見出している(特許文献3)。   Furthermore, the present inventor observed the irradiated and non-irradiated cells with a time-lapse microscope for a long period of time using a human glioblastoma cell model that has been uniquely established, thereby allowing cytoplasmic division and migration (migration) in glioma cells. ) Is a related series of phenomena. More specifically, a compound having a cytokinesis-promoting substance production-suppressing activity suppresses or inhibits the enhancement of migration of tumor cells associated with radiation in cancer treatment by irradiation with radiation such as heavy particle beams. And has been found to provide a means for inhibiting radiosensitization of migration (Patent Document 3).

国際公開WO2003/082332号パンフレットInternational Publication WO2003 / 082332 Pamphlet 特開2004−67627号公報JP 2004-67627 A 特願2007−127361Japanese Patent Application No. 2007-127361

Lancet Oncology 6, 953-960 (2005).Lancet Oncology 6, 953-960 (2005). J. Radiat. Res. (Tokyo) 46, 43-50 (2005).J. Radiat. Res. (Tokyo) 46, 43-50 (2005). Eur. J. Cancer 43, 1214-1224 (2007).Eur. J. Cancer 43, 1214-1224 (2007). Cancer Res. 61, 2744-2750 (2001).Cancer Res. 61, 2744-2750 (2001). Nature 444, 756-760 (2006).Nature 444, 756-760 (2006). Mol. Cancer Res. 6,996-1002 (2008).Mol. Cancer Res. 6,996-1002 (2008). J. Neurooncol 76, 227-237 (2006).J. Neurooncol 76, 227-237 (2006). Nature Med. 8,971-978 (2002).Nature Med. 8,971-978 (2002). J. Neurosci. 27, 7987-8001 (2007).J. Neurosci. 27, 7987-8001 (2007).

本発明者は、このようなイオン型グルタミン酸受容体の一種で速い速度の神経伝達に関与するAMPA型受容体についての検討を進めるとともに、照射グリオーマ細胞における細胞の移動(遊走)性亢進の現象を解析する過程で、腫瘍塊に照射をすると、腫瘍塊から次々と直接照射されていない腫瘍細胞も速い速度で遊走すること、またマイクロビーム照射装置を用いて、腫瘍塊の一部を照射しても腫瘍塊全体の遊走亢進を惹起することから、照射細胞周囲の非照射細胞においても、細胞遊走現象の亢進が認められることを発見した。   The present inventor has proceeded with studies on AMPA type receptors that are involved in fast neurotransmission, a kind of such ionic glutamate receptors, and also promoted the phenomenon of increased cell migration (migration) in irradiated glioma cells. During the analysis process, when the tumor mass is irradiated, tumor cells that are not directly irradiated from the tumor mass one after another migrate at a high speed, and a part of the tumor mass is irradiated using a microbeam irradiation device. In addition, since the migration of the entire tumor mass is induced, it was found that the cell migration phenomenon was also enhanced in non-irradiated cells around the irradiated cells.

この現象は、マイクロビーム照射装置を用いて、培養皿を空打ちした場合は起こらないことから、被照射細胞が何らかのシグナルを出し、このシグナルが腫瘍細胞の遊走促進を誘発する現象であると考えた。一酸化窒素(NO)の蛍光プローブであるdiaminofluorescein-2 diacetate (DAF-2 DA)を用いてNOの細胞内分布をコンフォーカル顕微鏡にて細胞内のNOと反応したDAF-2Tの蛍光を捉えることで解析することにより、NOが遊走性亢進の細胞間シグナルとして働くばかりでなく、NOがAMPA型受容体GluR1サブユニットの細胞膜への移動を促進させ、細胞内カルシウムの上昇を来たし、細胞遊走を促進することを見出した。   This phenomenon does not occur when the culture dish is emptied using a microbeam irradiation device. Therefore, it is thought that the irradiated cells give some signal and this signal induces the promotion of tumor cell migration. It was. Using a diaminofluorescein-2 diacetate (DAF-2 DA), a nitric oxide (NO) fluorescent probe, capture the fluorescence of DAF-2T reacted with NO in the cell using a confocal microscope In addition to NO acting as an intercellular signal for increased migration, NO promoted migration of AMPA-type receptor GluR1 subunit to the cell membrane, leading to an increase in intracellular calcium and cell migration. Found to promote.

つまり、照射細胞からされたNOシグナルがGluR1の局在移動に重要であることが判明した(図1の概念図を参照)。GluR1の細胞外ドメインを認識する抗体で生染色すると、実際、NOにより、GluR1が細胞膜にtraffickingされる。さらにcrosslinker solutionであるBS3(bis[sulfosuccinimidyl]suberate, Pierce Biotechnology, Rockford,IL 61105 USA)を用いて細胞表面蛋白をクロスリンクさせたのち、1Mのグリシンにてクエンチングを行い、細胞表面の受容体と細胞質内受容体を分離して解析すると、照射によりGluR1受容体の細胞膜へのトラフィッキングが促進されることを見出した。 That is, it was found that the NO signal emitted from the irradiated cells is important for the local movement of GluR1 (see the conceptual diagram in FIG. 1). When live staining is performed with an antibody that recognizes the extracellular domain of GluR1, GluR1 is actually trafficked to the cell membrane by NO. In addition, cell surface proteins were cross-linked using BS 3 (bis [sulfosuccinimidyl] suberate, Pierce Biotechnology, Rockford, IL 61105 USA), a crosslinker solution, and then quenched with 1M glycine to receive the cell surface. When the body and cytoplasmic receptors were separated and analyzed, it was found that irradiation promotes trafficking of the GluR1 receptor to the cell membrane.

この所見に応じて照射細胞をカルシウム測光にてAMPAとcyclothiazide(CTZ)に反応する細胞内カルシウム濃度を測定すると非照射細胞の2倍に亢進することを確認した。マイクロビーム装置を用いて厳密に単一細胞に放射線照射を行うと、NOの細胞間伝播を認めることを確認した後、さらにGluR1をRNA干渉させて、その発現を抑えた状態で、放射線照射を行うと、NOの細胞間伝播が消失することから、照射細胞の遊走亢進及び周囲非照射細胞の遊走亢進の背景にはNO-GluR1の双方向的なシグナルが存在することが示唆された。   Based on this finding, it was confirmed that when the intracellular calcium concentration of irradiated cells reacting with AMPA and cyclothiazide (CTZ) was measured by calcium photometry, it was enhanced twice that of non-irradiated cells. When irradiating a single cell strictly with a microbeam device, it was confirmed that NO was propagated between cells, and then GluR1 was further interfered with RNA to reduce the expression. When this was done, the intercellular propagation of NO disappeared, suggesting that there was a bidirectional signal of NO-GluR1 in the background of enhanced migration of irradiated cells and increased migration of surrounding non-irradiated cells.

NO中和剤やNOS阻害剤およびAMPA受容体の拮抗薬を照射と組み合わせることで、NO産生が抑制され、GluR1の膜へのtraffickingは制御され、照射による遊走促進が停止する。この一酸化窒素の産生抑制活性および中和活性を有する化合物の照射との組み合わせによる特異な遊走阻害効果は、従来の知識、そして発明者自身のこれまでの発表知見からは全く予期、予見できなかったことである。   Combining NO neutralizing agents, NOS inhibitors, and AMPA receptor antagonists with irradiation suppresses NO production, controls trafficking of GluR1 to the membrane, and stops migration promotion by irradiation. The specific migration inhibitory effect of this combination with irradiation of a compound having a nitric oxide production-suppressing activity and a neutralizing activity is completely unexpected and unpredictable from conventional knowledge and the inventor's own previous findings. That is.

本発明は、以上の通りの事情に鑑みてなされたものであり、固形がんで解決しなければならない転移、浸潤、播種に対する、放射線増感剤、遊走阻害を兼ねるがん治療剤、がん転移予防剤を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and has to be solved for solid cancers. For metastasis, infiltration, and seeding, a radiosensitizer, a cancer therapeutic agent that also functions as a migration inhibitor, and cancer metastasis. The problem is to provide a preventive agent.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1:一酸化窒素(NO)および一酸化窒素合成酵素(NOS)の産生抑制活性を有する化合物を有効成分として含有することを特徴とする放射線がん治療用の放射線増感性遊走阻害剤。   1: A radiosensitizing migration inhibitor for radiation cancer treatment, comprising as an active ingredient a compound having activity of inhibiting production of nitric oxide (NO) and nitric oxide synthase (NOS).

第2:前記化合物は、少なくともiNOSの産生抑制活性を有することを特徴とする上記第1の放射線がん治療用の放射線増感性遊走阻害剤。   Second: The first radiosensitizing migration inhibitor for radiation cancer treatment according to the first aspect, wherein the compound has at least iNOS production inhibitory activity.

第3:前記化合物は、エブセレン
エダラボン(商品名ラジカット)
プラバスタチンNa(商品名メバロチン)
シンバスタチン(商品名リポバス)
フルバスタチンNa(商品名ローコール)
アトルバスタチンCa水和物(商品名リピトール)
ピタバスタチンCa(商品名リバロ)
から選ばれるいずれかの化合物であることを特徴とする上記第1または第2の放射線がん治療用の放射線増感性遊走阻害剤。
Third: the compound is ebselen edaravone
Pravastatin Na (trade name Mevalotin)
Simvastatin (trade name Lipobas)
Fluvastatin Na (trade name Law Coal)
Atorvastatin Ca hydrate (trade name Lipitor)
Pitavastatin Ca (trade name Rivaro)
The radiosensitizing migration inhibitor for the first or second radiation cancer treatment, which is any compound selected from the group consisting of:

第4:前記化合物は、1400W
[N-(3-Aminomethyl)benzylacetamidine, 2HCl]
1-Amino-2-hydroxyguanidine, p -Toluenesulfonate
Aminoguanidine, Hemisulfate
Angeli’s Salt (AS; Disodium Diazen-1-ium-1,2,2-triolate; Sodium α-Oxyhyponitrite; Sodium Trioxodinitrate)
Bromocriptine Mesylate (BCT; BRC; 2-Bromo-α-ergocryptine, Methanesulfonate)
NG,NG´-Dimethyl-L-arginine, Dihydrochloride (SDMA, 2HCl)
NG,NG-Dimethyl-L-arginine, Dihydrochloride (ADMA, 2HCl)
Diphenyleneiodonium Chloride (DPI)
2-Ethyl-2-thiopseudourea, Hydrobromide (S-Ethyl-ITU, HBr; S-Ethylisothiourea, HBr)
L-Thiocitrulline, Dihydrochloride (2-Thioureido-L-norvaline)
MEG, Hydrochloride (Mercaptoethylguanidine, HCl)
NG-Monomethyl-D-arginine, Monoacetate Salt (NG-Me-D-Arg, AcOH; Nω-Me-D-Arg; D-NMMA)
NG-Monomethyl-L-arginine(L-NMMA)
NG-Monomethyl-L-arginine, Monoacetate (Nω-Me-L-Arg; NG-Me-L-Arg, AcOH; L-NMMA)
L-NIL, Dihydrochloride [L-N6-(1-Iminoethyl)lysine, DiHCl]
7-Nitroindazole, Sodium Salt (7-NiNa)
7-Nitroindazole, 3-Bromo-, Sodium Salt (BrNINa)
{(4S)-N-(4-Amino-5[aminoethyl]aminopentyl)-N´-nitroguanidine, TFA}
L-N5-(1-Iminoethyl)ornithine, HCl
S-Methyl-L thiocitrulline, HCl
NG-Monomethyl-L-arginine Monoacetate Salt
NG-Nitro-L-arginine Methyl Ester, HCl
NG-Nitro-D-arginine Methyl Ester, HCl
7-Nitroindazole
L-Thiocitrulline, HCl
Nα-Tosyl-Phe Chloromethyl Ketone (TPCK)
1,3-PBITU, Dihydrobromide [S,S´-1,3-Phenylene-bis(1,2-ethanediyl)-bis -isothiourea, 2HBr]
NG-Propyl-L-arginine (N-PLA; Nω-Propyl-L-arginine)
PTIO (2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)
SIN-1, Hydrochloride (3-Morpholinosydnonimine, HCl)
S-Methylisothiourea, Sulfate (2-Methyl-2-thiopseudourea, Sulfate; SMT)
L-NMMA
S-Methyl-L-thiocitrulline, Dihydrochloride [Nδ-(S-Methyl)isothioureido-L-ornithine]
Sodium Nitroprusside, Dihydrate [SNP; Sodium Nitroferricyanide(III) Dihydrate]
TRIM [1-(2-Trifluoromethylphenyl)imidazole]
Zinc (II) Protoporphyrin IX (ZnPP-9)
NG-Nitro-L-arginine (L-NNA; NG-NO2-L-Arg)
NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME, HCl; Nω-NO2-L-Arg-OMe; NG-NO2-L-Arg-OMe)
LY 83583 (6-Anilino-5,8-quinolinequinone)
ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one)
S-Methyl-ITU
S-Ethyl-ITU
S-Isopropyl-ITU
S-Aminoethyl-ITU
2-Iminopiperidine
DAHP
7-Nitroindazole
3-Bromo-7- Nitroindazole
APDC
から選ばれるいずれかの化合物であることを特徴とする上記第1または第2の放射線がん治療用の放射線増感性遊走阻害剤。
Fourth: the compound is 1400W
[N- (3-Aminomethyl) benzylacetamidine, 2HCl]
1-Amino-2-hydroxyguanidine, p -Toluenesulfonate
Aminoguanidine, Hemisulfate
Angeli's Salt (AS; Disodium Diazen-1-ium-1,2,2-triolate; Sodium α-Oxyhyponitrite; Sodium Trioxodinitrate)
Bromocriptine Mesylate (BCT; BRC; 2-Bromo-α-ergocryptine, Methanesulfonate)
NG, NG´-Dimethyl-L-arginine, Dihydrochloride (SDMA, 2HCl)
NG, NG-Dimethyl-L-arginine, Dihydrochloride (ADMA, 2HCl)
Diphenyleneiodonium Chloride (DPI)
2-Ethyl-2-thiopseudourea, Hydrobromide (S-Ethyl-ITU, HBr; S-Ethylisothiourea, HBr)
L-Thiocitrulline, Dihydrochloride (2-Thioureido-L-norvaline)
MEG, Hydrochloride (Mercaptoethylguanidine, HCl)
NG-Monomethyl-D-arginine, Monoacetate Salt (NG-Me-D-Arg, AcOH; Nω-Me-D-Arg; D-NMMA)
NG-Monomethyl-L-arginine (L-NMMA)
NG-Monomethyl-L-arginine, Monoacetate (Nω-Me-L-Arg; NG-Me-L-Arg, AcOH; L-NMMA)
L-NIL, Dihydrochloride [LN 6- (1-Iminoethyl) lysine, DiHCl]
7-Nitroindazole, Sodium Salt (7-NiNa)
7-Nitroindazole, 3-Bromo-, Sodium Salt (BrNINa)
{(4S) -N- (4-Amino-5 [aminoethyl] aminopentyl) -N´-nitroguanidine, TFA}
LN 5- (1-Iminoethyl) ornithine, HCl
S-Methyl-L thiocitrulline, HCl
NG-Monomethyl-L-arginine Monoacetate Salt
NG-Nitro-L-arginine Methyl Ester, HCl
NG-Nitro-D-arginine Methyl Ester, HCl
7-Nitroindazole
L-Thiocitrulline, HCl
Nα-Tosyl-Phe Chloromethyl Ketone (TPCK)
1,3-PBITU, Dihydrobromide [S, S´-1,3-Phenylene-bis (1,2-ethanediyl) -bis -isothiourea, 2HBr]
NG-Propyl-L-arginine (N-PLA; Nω-Propyl-L-arginine)
PTIO (2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)
SIN-1, Hydrochloride (3-Morpholinosydnonimine, HCl)
S-Methylisothiourea, Sulfate (2-Methyl-2-thiopseudourea, Sulfate; SMT)
L-NMMA
S-Methyl-L-thiocitrulline, Dihydrochloride [Nδ- (S-Methyl) isothioureido-L-ornithine]
Sodium Nitroprusside, Dihydrate [SNP; Sodium Nitroferricyanide (III) Dihydrate]
TRIM [1- (2-Trifluoromethylphenyl) imidazole]
Zinc (II) Protoporphyrin IX (ZnPP-9)
NG-Nitro-L-arginine (L-NNA; NG-NO 2 -L-Arg)
NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME, HCl; Nω-NO 2 -L-Arg-OMe; NG-NO 2 -L-Arg-OMe)
LY 83583 (6-Anilino-5,8-quinolinequinone)
ODQ (1H- [1,2,4] Oxadiazolo [4,3-a] quinoxalin-1-one)
S-Methyl-ITU
S-Ethyl-ITU
S-Isopropyl-ITU
S-Aminoethyl-ITU
2-Iminopiperidine
DAHP
7-Nitroindazole
3-Bromo-7- Nitroindazole
APDC
The radiosensitizing migration inhibitor for the first or second radiation cancer treatment, which is any compound selected from the group consisting of:

第5:一酸化窒素(NO)および一酸化窒素合成酵素(NOS)の産生抑制活性を有する化合物を有効成分として含有することを特徴とするがん治療用の遊走阻害剤。   Fifth: A migration inhibitor for cancer treatment comprising a compound having activity of inhibiting production of nitric oxide (NO) and nitric oxide synthase (NOS) as an active ingredient.

第6:前記化合物は、少なくともiNOSの産生抑制活性を有することを特徴とする上記第5のがん治療用の遊走阻害剤。   Sixth: The fifth migration inhibitor for cancer treatment, wherein the compound has at least iNOS production inhibitory activity.

第7:前記化合物は、エブセレン
エダラボン(商品名ラジカット)
プラバスタチンNa(商品名メバロチン)
シンバスタチン(商品名リポバス)
フルバスタチンNa(商品名ローコール)
アトルバスタチンCa水和物(商品名リピトール)
ピタバスタチンCa(商品名リバロ)
から選ばれるいずれかの化合物であることを特徴とする上記第5または第6のがん治療用の遊走阻害剤。
Seventh: The compound is ebselen edaravone (trade name Rajcut)
Pravastatin Na (trade name Mevalotin)
Simvastatin (trade name Lipobas)
Fluvastatin Na (trade name Law Coal)
Atorvastatin Ca hydrate (trade name Lipitor)
Pitavastatin Ca (trade name Rivaro)
The migration inhibitor for treating the fifth or sixth cancer, wherein the compound is any compound selected from the group consisting of:

第8:前記化合物は、1400W
[N-(3-Aminomethyl)benzylacetamidine, 2HCl]
1-Amino-2-hydroxyguanidine, p -Toluenesulfonate
Aminoguanidine, Hemisulfate
Angeli’s Salt (AS; Disodium Diazen-1-ium-1,2,2-triolate; Sodium α-Oxyhyponitrite; Sodium Trioxodinitrate)
Bromocriptine Mesylate (BCT; BRC; 2-Bromo-α-ergocryptine, Methanesulfonate)
NG,NG´-Dimethyl-L-arginine, Dihydrochloride (SDMA, 2HCl)
NG,NG-Dimethyl-L-arginine, Dihydrochloride (ADMA, 2HCl)
Diphenyleneiodonium Chloride (DPI)
2-Ethyl-2-thiopseudourea, Hydrobromide (S-Ethyl-ITU, HBr; S-Ethylisothiourea, HBr)
L-Thiocitrulline, Dihydrochloride (2-Thioureido-L-norvaline)
MEG, Hydrochloride (Mercaptoethylguanidine, HCl)
NG-Monomethyl-D-arginine, Monoacetate Salt (NG-Me-D-Arg, AcOH; Nω-Me-D-Arg; D-NMMA)
NG-Monomethyl-L-arginine(L-NMMA)
NG-Monomethyl-L-arginine, Monoacetate (Nω-Me-L-Arg; NG-Me-L-Arg, AcOH; L-NMMA)
L-NIL, Dihydrochloride [L-N6-(1-Iminoethyl)lysine, DiHCl]
7-Nitroindazole, Sodium Salt (7-NiNa)
7-Nitroindazole, 3-Bromo-, Sodium Salt (BrNINa)
{(4S)-N-(4-Amino-5[aminoethyl]aminopentyl)-N´-nitroguanidine, TFA}
L-N5-(1-Iminoethyl)ornithine, HCl
S-Methyl-L thiocitrulline, HCl
NG-Monomethyl-L-arginine Monoacetate Salt
NG-Nitro-L-arginine Methyl Ester, HCl
NG-Nitro-D-arginine Methyl Ester, HCl
7-Nitroindazole
L-Thiocitrulline, HCl
Nα-Tosyl-Phe Chloromethyl Ketone (TPCK)
1,3-PBITU, Dihydrobromide [S,S´-1,3-Phenylene-bis(1,2-ethanediyl)-bis -isothiourea, 2HBr]
NG-Propyl-L-arginine (N-PLA; Nω-Propyl-L-arginine)
PTIO (2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)
SIN-1, Hydrochloride (3-Morpholinosydnonimine, HCl)
S-Methylisothiourea, Sulfate (2-Methyl-2-thiopseudourea, Sulfate; SMT)
L-NMMA
S-Methyl-L-thiocitrulline, Dihydrochloride [Nδ-(S-Methyl)isothioureido-L-ornithine]
Sodium Nitroprusside, Dihydrate [SNP; Sodium Nitroferricyanide(III) Dihydrate]
TRIM [1-(2-Trifluoromethylphenyl)imidazole]
Zinc (II) Protoporphyrin IX (ZnPP-9)
NG-Nitro-L-arginine (L-NNA; NG-NO2-L-Arg)
NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME, HCl; Nω-NO2-L-Arg-OMe; NG-NO2-L-Arg-OMe)
LY 83583 (6-Anilino-5,8-quinolinequinone)
ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one)
S-Methyl-ITU
S-Ethyl-ITU
S-Isopropyl-ITU
S-Aminoethyl-ITU
2-Iminopiperidine
DAHP
7-Nitroindazole
3-Bromo-7- Nitroindazole
APDC
から選ばれるいずれかの化合物であることを特徴とする上記第5または第6のがん治療用の遊走阻害剤。
Eighth: The compound is 1400W
[N- (3-Aminomethyl) benzylacetamidine, 2HCl]
1-Amino-2-hydroxyguanidine, p -Toluenesulfonate
Aminoguanidine, Hemisulfate
Angeli's Salt (AS; Disodium Diazen-1-ium-1,2,2-triolate; Sodium α-Oxyhyponitrite; Sodium Trioxodinitrate)
Bromocriptine Mesylate (BCT; BRC; 2-Bromo-α-ergocryptine, Methanesulfonate)
NG, NG´-Dimethyl-L-arginine, Dihydrochloride (SDMA, 2HCl)
NG, NG-Dimethyl-L-arginine, Dihydrochloride (ADMA, 2HCl)
Diphenyleneiodonium Chloride (DPI)
2-Ethyl-2-thiopseudourea, Hydrobromide (S-Ethyl-ITU, HBr; S-Ethylisothiourea, HBr)
L-Thiocitrulline, Dihydrochloride (2-Thioureido-L-norvaline)
MEG, Hydrochloride (Mercaptoethylguanidine, HCl)
NG-Monomethyl-D-arginine, Monoacetate Salt (NG-Me-D-Arg, AcOH; Nω-Me-D-Arg; D-NMMA)
NG-Monomethyl-L-arginine (L-NMMA)
NG-Monomethyl-L-arginine, Monoacetate (Nω-Me-L-Arg; NG-Me-L-Arg, AcOH; L-NMMA)
L-NIL, Dihydrochloride [LN 6- (1-Iminoethyl) lysine, DiHCl]
7-Nitroindazole, Sodium Salt (7-NiNa)
7-Nitroindazole, 3-Bromo-, Sodium Salt (BrNINa)
{(4S) -N- (4-Amino-5 [aminoethyl] aminopentyl) -N´-nitroguanidine, TFA}
LN 5- (1-Iminoethyl) ornithine, HCl
S-Methyl-L thiocitrulline, HCl
NG-Monomethyl-L-arginine Monoacetate Salt
NG-Nitro-L-arginine Methyl Ester, HCl
NG-Nitro-D-arginine Methyl Ester, HCl
7-Nitroindazole
L-Thiocitrulline, HCl
Nα-Tosyl-Phe Chloromethyl Ketone (TPCK)
1,3-PBITU, Dihydrobromide [S, S´-1,3-Phenylene-bis (1,2-ethanediyl) -bis -isothiourea, 2HBr]
NG-Propyl-L-arginine (N-PLA; Nω-Propyl-L-arginine)
PTIO (2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)
SIN-1, Hydrochloride (3-Morpholinosydnonimine, HCl)
S-Methylisothiourea, Sulfate (2-Methyl-2-thiopseudourea, Sulfate; SMT)
L-NMMA
S-Methyl-L-thiocitrulline, Dihydrochloride [Nδ- (S-Methyl) isothioureido-L-ornithine]
Sodium Nitroprusside, Dihydrate [SNP; Sodium Nitroferricyanide (III) Dihydrate]
TRIM [1- (2-Trifluoromethylphenyl) imidazole]
Zinc (II) Protoporphyrin IX (ZnPP-9)
NG-Nitro-L-arginine (L-NNA; NG-NO 2 -L-Arg)
NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME, HCl; Nω-NO 2 -L-Arg-OMe; NG-NO 2 -L-Arg-OMe)
LY 83583 (6-Anilino-5,8-quinolinequinone)
ODQ (1H- [1,2,4] Oxadiazolo [4,3-a] quinoxalin-1-one)
S-Methyl-ITU
S-Ethyl-ITU
S-Isopropyl-ITU
S-Aminoethyl-ITU
2-Iminopiperidine
DAHP
7-Nitroindazole
3-Bromo-7- Nitroindazole
APDC
The migration inhibitor for treating the fifth or sixth cancer, wherein the compound is any compound selected from the group consisting of:

本発明によれば、重粒子線をはじめとする放射線の照射によるがん治療において、放射線照射にともなう腫瘍細胞の遊走性の亢進を抑制、阻害することのできる、放射線増感性の遊走阻害剤が提供され、さらには、薬剤等によるがん治療一般においても腫瘍細胞の遊走性の亢進を抑制、阻害することも可能となる。   According to the present invention, there is provided a radiosensitizing migration inhibitor capable of suppressing or inhibiting the enhancement of migration of tumor cells associated with radiation in cancer treatment by irradiation with radiation including heavy particle beams. Furthermore, it is also possible to suppress or inhibit the enhancement of tumor cell migration even in general cancer treatment with drugs or the like.

臨床検体を用いた実験から得られた一酸化窒素を介する放射線誘発浸潤性増殖の亢進の分子機構の概念図を示した図である。照射による腫瘍細胞の遊走亢進はAktとiNOS(NOS2)の関与によりNOの発現が惹起され、蓄積されたNOがGluR1サブユニットの細胞膜への移動を促進させ、その結果生じる細胞内カルシウムの上昇の亢進による。It is the figure which showed the conceptual diagram of the molecular mechanism of acceleration | stimulation of the radiation-induced invasive proliferation via nitric oxide obtained from the experiment using a clinical specimen. Increased migration of tumor cells by irradiation is triggered by the expression of NO due to the involvement of Akt and iNOS (NOS2), and the accumulated NO promotes the movement of GluR1 subunits to the cell membrane, resulting in an increase in intracellular calcium. Due to enhancement. 臨床検体を用いた遊走能評価の結果を示した図である。分散培養(凝集化培養)を用いたX-線および粒子線照射の細胞遊走に関する実験結果から、照射されていない細胞も凝集塊より高速で放射状に走行することより、照射細胞が非照射細胞に細胞遊走亢進の信号を出している可能性が示唆された。非構造体ガスであるNitric Oxide (NO)に着目し、凝集塊に高線量照射10Gyを行い、NO検出薬であるDiaminofluorescein-2 Diacetate(DAF-2 DA)とMitotrackerによる染色を照射後4時間、8時間、15時間、24時間、30時間、35時間で試行した(n=3)。またタイムラプス顕微鏡にて照射直後より35時間まで遊走速度を解析した。実験結果はX線および粒子線照射細胞とも同様の結果を示した。つまり、照射4時間で凝集塊周囲の遊走細胞がNO陽性となり、8−15時間後より、腫瘍塊の辺縁の細胞が陽性となり、さらに15−24時間後より腫瘍塊が強く陽性となり、高いNO陽性像は35時間後まで続いた。NO中和剤である2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (cPTIO),20-100μM投与にて、DAF-2 DA付加による染色性は抑制され、同時に照射による細胞遊走亢進は停止し、遊走速度は非照射細胞レベルに低下した。図は炭素線照射10Gy, 15h後のDAF-2T(緑)とMitotracker(赤)にてlive staining後に4%パラフォルムアルデヒドで固定しコンフォーカル顕微鏡で観察した。凝集塊周囲に遊走する紡錘型細胞がDAF-2T陽性(緑)で、NO中和剤cPTIO投与群ではDAF-2T陽性(緑)遊走細胞が著明に減少している。X線10Gy照射, 35h後のDAF-2T(緑)、Mitotracker(赤)およびDAPI(青)染色像では、凝集塊から遊走する紡錘型細胞が棘状にemergeするのとは対照的にNO中和剤cPTIO投与群では凝集塊から出現する遊走細胞を認めない。Bar; 100μm。It is the figure which showed the result of the migration ability evaluation using a clinical sample. From the experimental results on cell migration of X-ray and particle irradiation using dispersion culture (aggregation culture), non-irradiated cells also run radially at higher speed than aggregates. It was suggested that the signal of cell migration enhancement might be issued. Focusing on Nitric Oxide (NO), which is a non-structural gas, high-dose irradiation 10Gy is applied to aggregates, and staining with NO detection agents Diaminofluorescein-2 Diacetate (DAF-2 DA) and Mitotracker is performed for 4 hours after irradiation. Trials were performed at 8, 15, 24, 30 and 35 hours (n = 3). In addition, the migration velocity was analyzed for 35 hours immediately after irradiation with a time-lapse microscope. The experimental results showed similar results for X-ray and particle-irradiated cells. In other words, migratory cells around the agglomerate became NO positive after 4 hours of irradiation, cells around the tumor mass became positive after 8-15 hours, and the tumor mass became strongly positive after 15-24 hours, high The NO positive image continued until 35 hours later. NO (2-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (cPTIO), 20-100μM, the dyeability of DAF-2 DA addition At the same time, enhanced cell migration by irradiation was stopped, and the migration rate was reduced to the level of non-irradiated cells. The figure shows live staining with DAF-2T (green) and Mitotracker (red) 10 Gy and 15 h after carbon beam irradiation, followed by fixation with 4% paraformaldehyde and observation with a confocal microscope. Spindle type cells that migrate around the agglomerate are DAF-2T positive (green), and DAF-2T positive (green) migrating cells are markedly reduced in the NO neutralizer cPTIO administration group. DAF-2T (green), Mitotracker (red), and DAPI (blue) stained images after 35 hours of X-ray irradiation show NO in contrast to the spindle-shaped cells migrating from the aggregates in a spiny manner No migrating cells appearing from the aggregates were observed in the Japanese cPTIO administration group. Bar; 100 μm. 臨床検体を用いたNO中和剤(20 μM cPTIO)による遊走抑制(分散培養)の結果を示した図である。移植片培養に10GyのX線照射を行い同時にNO中和剤(20 μM cPTIOをメディウム中に付加すると遊走速度は非照射群レベルに低下した。同図は照射直後より12時間までの1時間ごとのタイムラプス画像である。NO中和剤を処理した腫瘍細胞の遊走速度は8.5 ± 3.2 μm/h for 12h, 12.5 ± 4.2 μm/h for the next 24h (n=3)、NO中和剤を処理をしない群では21.5 ± 5.7 μm/h during the first 12 h (n=6), 23.5 ± 4.7 μm/h for the next 24h (n=3). *p<0.05, Bar; 100μm。It is the figure which showed the result of the migration suppression (dispersion culture) by NO neutralizer (20 micromol cPTIO) using a clinical specimen. Implantation of 10 Gy X-rays on the graft culture and simultaneous addition of NO neutralizer (20 μM cPTIO in the medium decreased the migration rate to the non-irradiated group level. The figure shows every hour from 12 hours to immediately after irradiation. The time-lapse image of tumor cells treated with NO neutralizer was 8.5 ± 3.2 μm / h for 12h, 12.5 ± 4.2 μm / h for the next 24h (n = 3), treated with NO neutralizer 21.5 ± 5.7 μm / h during the first 12 h (n = 6), 23.5 ± 4.7 μm / h for the next 24h (n = 3). * P <0.05, Bar; 100 μm. 臨床検体を用いた遊走能評価の結果を示した図である。照射によるNOの産生がNOS2により誘導されることを示している。10Gy X-線を照射しクローニングリング内に細胞を播き培養6時間後に照射し、cPTIO, 20μMおよび100μM、L-NAME, 1mM、NOS1, NOS2 ,およびNOS3 のsiRNA をtransfectionしRNA干渉し、さらに12時間培養後にリングをはずし(白色がリングの境界)、さらに24時間培養後にDAF-2DAを投与し(NO発現細胞はDAF-2Tに変わり緑色となる)、固定後、DAPIで核染色(青)した。cPTIO, NOS2のRNA干渉、およびL-NANE群で遊走抑制が認められた。*p<0.01, **p<0.001, Bar; 100μm.It is the figure which showed the result of the migration ability evaluation using a clinical sample. It shows that NO production by irradiation is induced by NOS2. Irradiate 10Gy X-rays, seed cells in cloning ring and irradiate 6 hours after culturing, transfection with siRNA of cPTIO, 20μM and 100μM, L-NAME, 1mM, NOS1, NOS2, and NOS3, and RNA interference. Remove ring after time culture (white is the border of ring), then administer DAF-2DA after further culture for 24 hours (NO expressing cells turn to DAF-2T and turn green), fix, and nuclear staining with DAPI (blue) did. cPTIO and NOS2 RNA interference and migration inhibition were observed in the L-NANE group. * P <0.01, ** p <0.001, Bar; 100 μm. 臨床検体を用いた遊走能評価の結果を示した図である。照射によるNOの産生がAkt1をRNA干渉することにより抑制されることを示している。10Gy X-線を照射しクローニングリング内に細胞を播き培養6時間後に非照射コントロール、10GyX線照射し、cPTIO, 20μM、GYKI52466 100μM照射直前1hのみ投与およびAkt1 siRNA をtransfectionしRNA干渉し、さらに12時間培養後にリングをはずし(白色がリングの境界)、さらに24時間培養後にDAF-2DAを投与し(NO発現細胞はDAF-2Tに変わり緑色となる)、固定後、DAPIで核染色(青)した。10GyX線照射群ではNO産生の上昇と共に遊走細胞の増加およびAkt Ser 473のリン酸化が促進されている。cPTIO, GYKI52466,Akt1のRNA干渉群ではNO産生の低下、遊走抑制、及びAkt Ser473の脱リン酸化が認められた。Bar; 100μm.It is the figure which showed the result of the migration ability evaluation using a clinical sample. It shows that the production of NO by irradiation is suppressed by RNA interference with Akt1. Irradiated with 10 Gy X-rays, seeded cells in cloning ring, non-irradiated control after 6 hours of culture, irradiated with 10 Gy X-ray, administered cPTIO, 20 μM, GYKI52466 only for 1 h just before 100 μM irradiation and transfection with Akt1 siRNA to interfere with RNA, and further 12 Remove ring after time culture (white is the border of ring), then administer DAF-2DA after further culture for 24 hours (NO expressing cells turn to DAF-2T and turn green), fix, and nuclear staining with DAPI (blue) did. In the 10GyX-irradiated group, the increase of NO production and the increase of migratory cells and phosphorylation of Akt Ser 473 are promoted. In the cPTIO, GYKI52466, and Akt1 RNA interference groups, decreased NO production, inhibition of migration, and dephosphorylation of Akt Ser473 were observed. Bar; 100 μm. 臨床検体を用いた照射による細胞内カルシウム濃度の評価を示した図である。Fluo 3-AMを細胞にロードし488 nmで励起し照射細胞と非照射細胞に200 μM AMPA と100 μM CTZを投与しAMPAによって誘発される細胞内カルシウム濃度([Ca2+]i)を測定した。照射により[Ca2+]iは変化し約2倍に上昇した。It is the figure which showed evaluation of intracellular calcium concentration by irradiation using a clinical specimen. Fluo 3-AM is loaded onto cells, excited at 488 nm, and 200 μM AMPA and 100 μM CTZ are administered to irradiated and non-irradiated cells to measure intracellular calcium concentration ([Ca 2+ ] i ) induced by AMPA did. Irradiation changed [Ca 2+ ] i and increased it about twice. 臨床検体を用いた照射によるGluR1の細胞膜への移動がcGMP依存性に誘導されることを示した図である。GluR1のN-terminalを認識する抗体を用いて間接蛍光染色を施行した。細胞は表面のみ4%PFAで1分間固定した。細胞の各種薬剤を投与した。括弧内に投与濃度と暴露時間を記載。NOC-18 (1mM, 24h), NOC18(1mM, 24h)+cPTIO (100 μM, 24h), NOC18(1mM, 24h) + cPTIO (100μM,24h) + 8Br-cGMP (500μM,24h), 8Br-cGMP (500μM,2h), 8Br-cGMP (500μM,2h) + cPTIO (100μM,2h), 8Br-cGMP (500μM,2h) + KT5823 (10μM,2h), RT10Gy, RT10Gy + KT5823 (10μM, 24h), RT10Gy + cPTIO (100 μM, 24h), and RT10Gy + cPTIO (100 μM, 24h) + 8Br-cGMP (500μM,24h)。 GluR1 のsuface expressionを定量化した(mean ± SEM; n=4.)。It is the figure which showed that the movement to the cell membrane of GluR1 by irradiation using a clinical sample is induced in cGMP dependence. Indirect fluorescent staining was performed using an antibody that recognizes the N-terminal of GluR1. Cells were fixed for 1 minute with 4% PFA on the surface only. Various drugs of cells were administered. The administration concentration and exposure time are shown in parentheses. NOC-18 (1mM, 24h), NOC18 (1mM, 24h) + cPTIO (100 μM, 24h), NOC18 (1mM, 24h) + cPTIO (100μM, 24h) + 8Br-cGMP (500μM, 24h), 8Br-cGMP (500μM, 2h), 8Br-cGMP (500μM, 2h) + cPTIO (100μM, 2h), 8Br-cGMP (500μM, 2h) + KT5823 (10μM, 2h), RT10Gy, RT10Gy + KT5823 (10μM, 24h), RT10Gy + cPTIO (100 μM, 24 h), and RT10Gy + cPTIO (100 μM, 24 h) + 8Br-cGMP (500 μM, 24 h). The suface expression of GluR1 was quantified (mean ± SEM; n = 4.). 臨床検体を用いて照射により細胞膜した移動GluR1の局在とcGKIIが共発現していることを示した図である。GluR1 surface expressionとcGKII染色像。上段;X線10Gy 照射細胞。下段;非照射細胞。It is the figure which showed that the localization of the movement GluR1 which carried out the cell membrane by irradiation using a clinical specimen, and cGKII are co-expressing. GluR1 surface expression and cGKII stained image. Upper row: X-ray 10Gy irradiated cells. Bottom: non-irradiated cells. 臨床検体を用いて照射により細胞膜GluR1の局在が増加するのをcrosslinking assayを用いて示した図である。10Gy X線照射および非照射細胞を用いたGluR1 crosslinking assay 。放射線により膜表面の受容体は2倍に増える。非照射細胞では細胞質成分と膜成分が半々であるが、照射細胞では受容体全体の3/4が膜成分であることが判明した。*p<0.01It is the figure which showed cross-linking assay that the localization of cell membrane GluR1 increases by irradiation using a clinical specimen. GluR1 crosslinking assay using 10Gy X-ray irradiated and non-irradiated cells. Radiation doubles the membrane surface receptors. In non-irradiated cells, the cytoplasmic component and the membrane component were halved, but in irradiated cells, 3/4 of the entire receptor was found to be a membrane component. * p <0.01 臨床検体を用いて照射によりGluR1のSer845のリン酸化が惹起され、このリン酸化がNO中和剤cPTIOで抑制されることを示した図である。GluR1のSer845部位のリン酸化を認識する抗体を用いて、10Gy X線照射、10Gy X線照射を100 μM cPTIO処理したものと非照射細胞をインムノブロットした。定量化は、各群のリン酸化シグナルをtotal GluR1で正規化し、得られた値をさらにコントロールに対して正規化した(*p<0.05, n=4)。FIG. 4 shows that Ser845 phosphorylation of GluR1 is induced by irradiation using a clinical sample, and this phosphorylation is suppressed by the NO neutralizer cPTIO. Using an antibody that recognizes phosphorylation at the Ser845 site of GluR1, 10 Gy X-ray irradiation, 10 Gy X-ray irradiation treated with 100 μM cPTIO and non-irradiated cells were immunoblotted. For quantification, the phosphorylation signal of each group was normalized with total GluR1, and the obtained value was further normalized with respect to the control (* p <0.05, n = 4). 臨床検体を用いてカルシウム透過性AMPA型受容体を阻害することでNOの伝播が抑止され、照射により誘発される遊走亢進が停止することを示した図である。図中aは、AMPA型受容体拮抗薬とGRIA1 をsiRNA による干渉で遊走阻害が起こることを示す。Ring -proliferation test による遊走能試験。10Gy X-ray 細胞はflurescently-labelled RNA(red)を処理しtransfectionの指標とした(左図)。GluR1をノックダウンするためにGRIA1 をsiRNA で干渉し同時にflurescently-labelled RNA(red)を処理しtransfectionの指標とした(中央)。100μM GYKI52466は照射1時間前に投与し照射直後には除去しメディウムの置き換えた。NOの分布範囲はDAF-2DAを細胞に付加しNO存在下でDAF-2がDAF-2T変換され緑色の蛍光を発することをコンフォーカル顕微鏡で確認した。白色の線がリングの境界である。図中bは、単一細胞を照射しても照射されていない細胞にNOが伝播することを示す。マイクロビーム照射装置を用いて単一細胞(微分干渉像、右図)に5個ネオンイオン(インセット、右図)を細胞質に照射しDAF-2T fluorescent (緑色)(中央図)によりNO propagation を見たもの。中央及び右図の白矢印は同一細胞を示している。細胞はfluroescently-labelled RNA (赤色、左図)とDAPI によるDNA 染色(not shown)が施してある。Transfection efficiencyは98%以上である。図中cは、GluR1をノックダウンすると単一細胞を照射してもNOが伝播しないことを示す。マイクロビーム照射装置を用いて1細胞(微分干渉像、右図)に5個ネオンイオン(インセット、右図)を細胞質に照射しDAF-2T fluorescent(緑色)(中央図)によりNO propagation を見たもの。中央及び右図の白矢印は同一細胞を示している。細胞はfluroescently-labelled RNAとGRIA1をsiRNAでノックダウンし (赤色、左図)、DAPI によるDNA 染色(not shown)が施してある。Transfection efficiencyは98%以上である。It is the figure which showed that the propagation of NO was suppressed by inhibiting a calcium-permeable AMPA type | mold receptor using a clinical sample, and the migration enhancement induced by irradiation stopped. In the figure, “a” shows that migration inhibition occurs due to interference with an AMPA receptor antagonist and GRIA1 by siRNA. Ability to test for migration by Ring -proliferation test. 10Gy X-ray cells were treated with flurescently-labelled RNA (red) and used as transfection indicators (left figure). In order to knock down GluR1, GRIA1 was interfered with siRNA and simultaneously treated with flurescently-labelled RNA (red), which was used as an index for transfection (center). 100 μM GYKI52466 was administered 1 hour before irradiation, removed immediately after irradiation, and replaced with medium. The distribution range of NO was confirmed with a confocal microscope that DAF-2DA was added to cells and DAF-2 was converted to DAF-2T and emitted green fluorescence in the presence of NO. The white line is the ring boundary. In the figure, b indicates that NO propagates to cells that are not irradiated even when irradiated with a single cell. Using a microbeam irradiation device, a single cell (differential interference image, right figure) is irradiated with 5 neon ions (inset, right figure) on the cytoplasm, and NO propagation is achieved by DAF-2T fluorescent (green) (middle figure). What I saw. The white arrows in the middle and right figures indicate the same cells. Cells are stained with fluroescently-labelled RNA (red, left figure) and DNA stained with DAPI (not shown). Transfection efficiency is over 98%. In the figure, c shows that when GluR1 is knocked down, NO does not propagate even when a single cell is irradiated. Using a microbeam irradiation device, 1 cell (differential interference image, right figure) is irradiated with 5 neon ions (inset, right figure) on the cytoplasm, and NO propagation is observed with DAF-2T fluorescent (green) (center figure). Things. The white arrows in the middle and right figures indicate the same cells. The cells are fluroescently-labelled RNA and GRIA1 knocked down with siRNA (red, left figure) and DNA stained with DAPI (not shown). Transfection efficiency is over 98%. 照射治療を施行した患者の手術摘出標本を用いて浸潤性増殖最先端部位でのGluR1,iNOS,cGKIIの蛋白発現を免疫組織学的に示した図である。図中aは、照射後の浸潤最先端部の定型的な病理学的所見を示し、照射後の摘出組織の代表的所見を示す。Massive necrosis (N)とhyalinized microvascular proliferations (V)を認める。小型円形細胞 (赤矢印)、と紡錘形(青矢印) が周囲脳組織に浸潤している。 H.E. 染色像。図中bは、浸潤最先端部の小型円形細胞と紡錘形細胞の免疫組織学的所見を示す。浸潤最先端部(左図、白枠)をvimentin (VIM)とGluR1で2重染色を施行(右図上段)、左図の黒枠部分をiNOSとcGKIIで2重染色を施行(右図下段)。It is the figure which showed the protein expression of GluR1, iNOS, and cGKII in the invasive growth most advanced region using the surgically-extracted specimen of the patient who performed radiation therapy. In the figure, “a” shows a typical pathological finding of the infiltrating most distal portion after irradiation, and shows a typical finding of the excised tissue after irradiation. Massive necrosis (N) and hyalinized microvascular proliferations (V) are observed. Small round cells (red arrows) and spindles (blue arrows) infiltrate the surrounding brain tissue. H.E. Stained image. In the figure, b shows the immunohistological findings of the small round cells and spindle cells at the invasion frontmost part. Double-stained the infiltrating cutting edge (left figure, white frame) with vimentin (VIM) and GluR1 (upper right figure), and the black frame in the left figure with iNOS and cGKII (lower right figure) .

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

12C、20Ne、40Arイオンビーム等の高線エネルギー付与(LET)荷電粒子線は、低LET X線と比べて相対的に高い生物学的活性を持つ。従ってグリア芽腫細胞などの最も未分化であり侵襲的であるヒト癌は従来のX線療法に通常は抵抗性を有することから、それらの癌の治療に対して高LET放射線療法という新手法が有望である。さらに高LET荷電粒子線はBraggピークが鋭いために空間分布が一層正確になり、定位がよく定まることから、周辺の生体構造に及ぼす有害作用を最小限にしながら病変部の治療を行うことが可能となる。 High line energy imparted (LET) charged particle beams such as 12 C, 20 Ne, and 40 Ar ion beams have relatively high biological activity compared to low LET X-rays. Therefore, the most undifferentiated and invasive human cancers such as glioblastoma cells are usually resistant to conventional X-ray therapy, so a new technique called high-LET radiation therapy is used to treat these cancers. Promising. In addition, the high-LET charged particle beam has a sharp Bragg peak, so the spatial distribution is more accurate and the localization is well defined, so it is possible to treat lesions while minimizing adverse effects on surrounding anatomy. It becomes.

12Cイオンビーム、20Neイオンビーム、40Arイオンビームなどの高線エネルギー付与(LET)荷電粒子線は、X線抵抗性癌の治療に用いる新しい療法となる可能性を有しているが、本発明では、腫瘍の放射線反応性が、腫瘍細胞増殖と転移の両者に対する放射線感受性により決定されることが確認されている。高LET放射線はヒトグリア芽腫細胞株であるCGNH-89に対して顕著な細胞毒性作用を示す。12C、20Neならびに40ArイオンビームのX線に対する相対的な生物学的作用を、D10、すなわちクローン化可能細胞の10%生存率を示す線量としてそれぞれ計算したところ、3.4、4.5ならびに6.2Gyになった。高LETならびに低LET放射線の単回大量10Gy線量により腫瘍細胞の転移が促進される。 High line energy imparted (LET) charged particle beams such as 12 C ion beam, 20 Ne ion beam, and 40 Ar ion beam have the potential to become new therapies for the treatment of X-ray resistant cancer, In the present invention, it has been confirmed that the radioactivity of the tumor is determined by the radiosensitivity to both tumor cell proliferation and metastasis. High LET radiation has a marked cytotoxic effect on CGNH-89, a human glioblastoma cell line. The relative biological effects of 12 C, 20 Ne, and 40 Ar ion beams on X-rays were calculated as D 10 , the dose representing 10% viability of cloneable cells, respectively, 3.4, 4.5 and 6.2. I became Gy. A single massive 10 Gy dose of high and low LET radiation promotes tumor cell metastasis.

本発明において有効成分として用いられる、一酸化窒素(NO)および一酸化窒素合成酵素(NOS)の産生抑制活性を有する化合物(以下、NO,NOS阻害剤)の具体例としては、
エブセレン
エダラボン(商品名ラジカット)
プラバスタチンNa(商品名メバロチン)
シンバスタチン(商品名リポバス)
フルバスタチンNa(商品名ローコール)
アトルバスタチンCa水和物(商品名リピトール)
ピタバスタチンCa(商品名リバロ)
等が挙げられる。これらの物質は、公知文献に記載された合成方法を参照し、あるいは通常の合成法を用いることにより製造することができ、また、これらの物質の製造、販売、開発会社等から入手することもできる。
As specific examples of compounds (hereinafter referred to as NO, NOS inhibitors) having activity of inhibiting production of nitric oxide (NO) and nitric oxide synthase (NOS) used as active ingredients in the present invention,
Ebselen edarabon (trade name Rajcut)
Pravastatin Na (trade name Mevalotin)
Simvastatin (trade name Lipobas)
Fluvastatin Na (trade name Law Coal)
Atorvastatin Ca hydrate (trade name Lipitor)
Pitavastatin Ca (trade name Rivaro)
Etc. These substances can be produced by referring to synthesis methods described in known literature or by using ordinary synthesis methods, and can also be obtained from the manufacture, sales, development companies, etc. of these substances. it can.

また、選択的NO,NOS阻害剤として以下のものを挙げることができる。
1400W
[N-(3-Aminomethyl)benzylacetamidine, 2HCl]
1-Amino-2-hydroxyguanidine, p -Toluenesulfonate
Aminoguanidine, Hemisulfate
Angeli’s Salt (AS; Disodium Diazen-1-ium-1,2,2-triolate; Sodium α-Oxyhyponitrite; Sodium Trioxodinitrate)
Bromocriptine Mesylate (BCT; BRC; 2-Bromo-α-ergocryptine, Methanesulfonate)
NG,NG´-Dimethyl-L-arginine, Dihydrochloride (SDMA, 2HCl)
NG,NG-Dimethyl-L-arginine, Dihydrochloride (ADMA, 2HCl)
Diphenyleneiodonium Chloride (DPI)
2-Ethyl-2-thiopseudourea, Hydrobromide (S-Ethyl-ITU, HBr; S-Ethylisothiourea, HBr)
L-Thiocitrulline, Dihydrochloride (2-Thioureido-L-norvaline)
MEG, Hydrochloride (Mercaptoethylguanidine, HCl)
NG-Monomethyl-D-arginine, Monoacetate Salt (NG-Me-D-Arg, AcOH; Nω-Me-D-Arg; D-NMMA)
NG-Monomethyl-L-arginine(L-NMMA)
NG-Monomethyl-L-arginine, Monoacetate (Nω-Me-L-Arg; NG-Me-L-Arg, AcOH; L-NMMA)
L-NIL, Dihydrochloride [L-N6-(1-Iminoethyl)lysine, DiHCl]
7-Nitroindazole, Sodium Salt (7-NiNa)
7-Nitroindazole, 3-Bromo-, Sodium Salt (BrNINa)
{(4S)-N-(4-Amino-5[aminoethyl]aminopentyl)-N´-nitroguanidine, TFA}
L-N5-(1-Iminoethyl)ornithine, HCl
S-Methyl-L thiocitrulline, HCl
NG-Monomethyl-L-arginine Monoacetate Salt
NG-Nitro-L-arginine Methyl Ester, HCl
NG-Nitro-D-arginine Methyl Ester, HCl
7-Nitroindazole
L-Thiocitrulline, HCl
Nα-Tosyl-Phe Chloromethyl Ketone (TPCK)
1,3-PBITU, Dihydrobromide [S,S´-1,3-Phenylene-bis(1,2-ethanediyl)-bis -isothiourea, 2HBr]
NG-Propyl-L-arginine (N-PLA; Nω-Propyl-L-arginine)
PTIO (2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)
SIN-1, Hydrochloride (3-Morpholinosydnonimine, HCl)
S-Methylisothiourea, Sulfate (2-Methyl-2-thiopseudourea, Sulfate; SMT)
L-NMMA
S-Methyl-L-thiocitrulline, Dihydrochloride [Nδ-(S-Methyl)isothioureido-L-ornithine]
Sodium Nitroprusside, Dihydrate [SNP; Sodium Nitroferricyanide(III) Dihydrate]
TRIM [1-(2-Trifluoromethylphenyl)imidazole]
Zinc (II) Protoporphyrin IX (ZnPP-9)
NG-Nitro-L-arginine (L-NNA; NG-NO2-L-Arg)
NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME, HCl; Nω-NO2-L-Arg-OMe; NG-NO2-L-Arg-OMe)
LY 83583 (6-Anilino-5,8-quinolinequinone)
ODQ (1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one)
S-Methyl-ITU
S-Ethyl-ITU
S-Isopropyl-ITU
S-Aminoethyl-ITU
2-Iminopiperidine
DAHP
7-Nitroindazole
3-Bromo-7- Nitroindazole
APDC
これらの物質に対する1時間曝露後に放射線に曝露した細胞では、細胞増殖と細胞運動の阻害が顕著に促進されることが示された。これらの結果から、新しい放射線療法は細胞移動阻害剤の投与と組み合わせるべきであることが確認されている。
Moreover, the following can be mentioned as selective NO and NOS inhibitors.
1400W
[N- (3-Aminomethyl) benzylacetamidine, 2HCl]
1-Amino-2-hydroxyguanidine, p -Toluenesulfonate
Aminoguanidine, Hemisulfate
Angeli's Salt (AS; Disodium Diazen-1-ium-1,2,2-triolate; Sodium α-Oxyhyponitrite; Sodium Trioxodinitrate)
Bromocriptine Mesylate (BCT; BRC; 2-Bromo-α-ergocryptine, Methanesulfonate)
NG, NG´-Dimethyl-L-arginine, Dihydrochloride (SDMA, 2HCl)
NG, NG-Dimethyl-L-arginine, Dihydrochloride (ADMA, 2HCl)
Diphenyleneiodonium Chloride (DPI)
2-Ethyl-2-thiopseudourea, Hydrobromide (S-Ethyl-ITU, HBr; S-Ethylisothiourea, HBr)
L-Thiocitrulline, Dihydrochloride (2-Thioureido-L-norvaline)
MEG, Hydrochloride (Mercaptoethylguanidine, HCl)
NG-Monomethyl-D-arginine, Monoacetate Salt (NG-Me-D-Arg, AcOH; Nω-Me-D-Arg; D-NMMA)
NG-Monomethyl-L-arginine (L-NMMA)
NG-Monomethyl-L-arginine, Monoacetate (Nω-Me-L-Arg; NG-Me-L-Arg, AcOH; L-NMMA)
L-NIL, Dihydrochloride [LN 6- (1-Iminoethyl) lysine, DiHCl]
7-Nitroindazole, Sodium Salt (7-NiNa)
7-Nitroindazole, 3-Bromo-, Sodium Salt (BrNINa)
{(4S) -N- (4-Amino-5 [aminoethyl] aminopentyl) -N´-nitroguanidine, TFA}
LN 5- (1-Iminoethyl) ornithine, HCl
S-Methyl-L thiocitrulline, HCl
NG-Monomethyl-L-arginine Monoacetate Salt
NG-Nitro-L-arginine Methyl Ester, HCl
NG-Nitro-D-arginine Methyl Ester, HCl
7-Nitroindazole
L-Thiocitrulline, HCl
Nα-Tosyl-Phe Chloromethyl Ketone (TPCK)
1,3-PBITU, Dihydrobromide [S, S´-1,3-Phenylene-bis (1,2-ethanediyl) -bis -isothiourea, 2HBr]
NG-Propyl-L-arginine (N-PLA; Nω-Propyl-L-arginine)
PTIO (2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)
SIN-1, Hydrochloride (3-Morpholinosydnonimine, HCl)
S-Methylisothiourea, Sulfate (2-Methyl-2-thiopseudourea, Sulfate; SMT)
L-NMMA
S-Methyl-L-thiocitrulline, Dihydrochloride [Nδ- (S-Methyl) isothioureido-L-ornithine]
Sodium Nitroprusside, Dihydrate [SNP; Sodium Nitroferricyanide (III) Dihydrate]
TRIM [1- (2-Trifluoromethylphenyl) imidazole]
Zinc (II) Protoporphyrin IX (ZnPP-9)
NG-Nitro-L-arginine (L-NNA; NG-NO 2 -L-Arg)
NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME, HCl; Nω-NO 2 -L-Arg-OMe; NG-NO 2 -L-Arg-OMe)
LY 83583 (6-Anilino-5,8-quinolinequinone)
ODQ (1H- [1,2,4] Oxadiazolo [4,3-a] quinoxalin-1-one)
S-Methyl-ITU
S-Ethyl-ITU
S-Isopropyl-ITU
S-Aminoethyl-ITU
2-Iminopiperidine
DAHP
7-Nitroindazole
3-Bromo-7- Nitroindazole
APDC
Cells exposed to radiation after 1 hour exposure to these substances have been shown to significantly promote inhibition of cell proliferation and cell motility. These results confirm that new radiation therapy should be combined with the administration of cell migration inhibitors.

本発明においては、以上のような放射線がん治療用の放射線増感性遊走阻害剤が提供されるとともに、薬剤等による他のがん治療用の遊走阻害剤も提供される。   In the present invention, the radiosensitizing migration inhibitor for the treatment of radiation cancer as described above is provided, and the migration inhibitor for other cancer treatment by a drug or the like is also provided.

本発明に係る遊走阻害剤の製剤は、通常製剤化に用いられる担体や賦形剤、その他の添加剤を用いて調製される。製剤用の担体や賦形剤としては、固体または液体のいずれであってもよく、たとえば、乳糖、ステアリン酸マグネシウム、スターチ、タルク、ゼラチン、寒天、ペクチン、アラビアゴム、オリーブ油、ゴマ油、カカオバター、エチレングリコール、その他常用のものが挙げられる。   The preparation of the migration inhibitor according to the present invention is prepared using carriers, excipients and other additives that are usually used for formulation. The carrier or excipient for the preparation may be either solid or liquid, such as lactose, magnesium stearate, starch, talc, gelatin, agar, pectin, gum arabic, olive oil, sesame oil, cocoa butter, Examples include ethylene glycol and other commonly used ones.

投与は、錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤などによる経口投与、あるいは静注、筋注などの注射剤、坐剤、経皮などによる非経口投与のいずれの形態であってもよい。   Administration can be in any form of oral administration by tablets, pills, capsules, granules, powders, liquids, etc., or parenteral administration by injections such as intravenous injection, intramuscular injection, suppositories, and transdermal. Also good.

放射線がん治療においては、たとえば、NO,NOS阻害剤の使用方法は分割照射の場合は連日照射直前に内服または注射を行い、単回照射の場合は照射直前および照射後も最低2週間は連日投与することが好ましい。特に重粒子線照射を病巣部に限局して照射する場合は激しく腫瘍細胞が遊走することを考慮し十分な照射前後のNO,NOS阻害剤の投与が必要である。   In the treatment of radiation cancer, for example, the use of NO and NOS inhibitors is given by oral administration or injection immediately before daily irradiation in the case of fractional irradiation, and every day for at least 2 weeks immediately before and after irradiation in the case of single irradiation. Administration is preferred. In particular, when irradiation with heavy particle irradiation is confined to the lesion, it is necessary to administer sufficient NO and NOS inhibitors before and after irradiation in consideration of intense migration of tumor cells.

また、X線と重粒子線照射を併用する場合は、従来技術により安全な線量が開示されているX線をNO,NOS阻害剤と併用して腫瘍塊中心部と浸潤領域を含む範囲に比較的広く分割照射したのち、重粒子線照射はX線照射後に腫瘍塊中心部に限局してやはりNO,NOS阻害剤と併用して照射を行い、照射後も2週間以上投与するのが効果的である。   In addition, when X-rays and heavy particle beam irradiation are used in combination, X-rays with a safe dose disclosed by conventional technology are used in combination with NO and NOS inhibitors and compared with the range including the tumor mass center and the infiltrated area. It is effective to administer heavy particle beam irradiation after X-ray irradiation, confined to the center of the tumor mass, combined with NO and NOS inhibitors, and administered for more than 2 weeks after irradiation. It is.

高線量の重粒子線は脳壊死を引き起こし、また低線量でも広範囲に重粒子線照射を行うと顕著な脳萎縮、水頭症の発現など重篤な副作用が出現する可能性があるため、安全性が確立されているX線照射をまず広範囲に行った後に、腫瘍塊限局重粒子線照射を行うのが安全性が高く効果的な治療法であると考えられる。   High doses of heavy particle radiation cause brain necrosis, and exposure to heavy particle radiation over a wide range even at low doses may cause serious side effects such as marked brain atrophy and hydrocephalus. It is considered that a safe and effective treatment method is to first perform a wide range of X-ray irradiation, which has been established, and then perform localized irradiation of heavy tumor particles.

この際NO,NOS阻害剤との併用が必要で、照射単独では従来技術の成果しか望めず、したがって照射野内における局所再発や髄空内播種、および浸潤性増殖が起こり得る。NO,NOS阻害剤を併用することで照射による浸潤性増殖の抑止抗効果が期待できる。   In this case, combined use with NO and NOS inhibitors is necessary, and irradiation alone can only achieve the results of the prior art, and therefore local recurrence, intraspinal dissemination, and invasive growth in the irradiation field may occur. The combined use of NO and NOS inhibitors can be expected to suppress the invasive growth caused by irradiation.

サイバーナイフなど比較的高線量・分割照射可能な装置を用いてNO,NOS阻害剤の併用を行うとさらに治療効果が上がる。具体的には、サイバーナイフ装置にて1回線量5Gyで6〜8分割にて照射しNO,NOS阻害剤と併用して行い、さらに照射後も2週間NO,NOS阻害剤を投与する。また、比較的病変が広範で浸潤領域が広い場合には、通常のX線照射を浸潤部位を含む領域に広範囲に40Gy(2Gy/日×20回)照射し、その後サイバーナイフ装置を用いて腫瘍塊に限局して20Gy(5Gy/回×4)照射を行う。この際も、照射単独では照射による腫瘍細胞の遊走と浸潤性の亢進を引き起こすので、照射直前より照射後2週間は連日NO,NOS阻害剤を併用するのがよい。   When a combination of NO and NOS inhibitors is used with a device capable of relatively high dose and split irradiation such as Cyberknife, the therapeutic effect is further improved. Specifically, irradiation is performed in 6 to 8 divisions with a line amount of 5 Gy with a cyber knife device, and the NO and NOS inhibitors are administered for 2 weeks after irradiation. If the lesion is relatively wide and the infiltrated area is large, normal X-ray irradiation is applied to the area including the infiltrated area over a wide range of 40 Gy (2 Gy / day x 20 times), and then the tumor is applied using a cyber knife device. 20Gy (5Gy / times x 4) irradiation is limited to the lump. Also in this case, irradiation alone causes tumor cell migration and increased invasiveness by irradiation, so it is recommended to use NO and NOS inhibitors in combination every day for 2 weeks after irradiation.

臨床的には薬剤の副作用を軽減するためには、分割照射開始から初期10日間に限り薬剤を施行するのも良い。現行の標準治療であるtemozolomide (テモダール(R))、インターフェロン(フェロン(R))、さらにはAMPA型受容体拮抗薬(タランパネル(R))などの遊走阻害剤と併用するのも効果的である。   Clinically, in order to reduce side effects of the drug, the drug may be administered only for the first 10 days from the start of divided irradiation. It is also effective in combination with migration inhibitors such as the current standard treatment temozolomide (Temodar (R)), interferon (Feron (R)), and AMPA receptor antagonist (Taranpanel (R)). is there.

本発明の遊走阻害剤の投与量は、症状、投与対象の年齢、性別などを考慮して、個々の場合に応じて適宜に決定されるが、通常成人1日当たり10〜2000mg、好ましくは1日当たり150mg程度である。成人1日当たり10〜2000mgを、1回で、あるいは2〜4回に分けて投与してもよい。静脈内投与や、持続的静脈内投与の場合には、1日当たり1〜24時間で投与してもよい。投与量は、有効成分の種類や遊走阻害剤の形態などに応じて決められるが、有効である場合には上記の範囲よりも少ない投与量を用いることもできる。   The dosage of the migration inhibitor of the present invention is appropriately determined depending on the individual case in consideration of symptoms, age of the administration subject, sex, etc., but usually 10 to 2000 mg per day for an adult, preferably per day About 150mg. 10-2000 mg per day for an adult may be administered once or divided into 2-4 times. In the case of intravenous administration or continuous intravenous administration, it may be administered at 1 to 24 hours per day. The dose is determined according to the type of active ingredient, the form of migration inhibitor, and the like, but if effective, a dose smaller than the above range can be used.

本発明の遊走阻害剤は、主に非経口投与、具体的には、皮下投与、筋肉内投与、静脈内投与、経皮投与、髄腔内投与、硬膜外、関節内、および局所投与、あるいは可能であれば経口投与など、種々の投与形態で投与可能である。   The migration inhibitor of the present invention is mainly administered parenterally, specifically subcutaneous administration, intramuscular administration, intravenous administration, transdermal administration, intrathecal administration, epidural, intraarticular, and topical administration. Alternatively, it can be administered in various dosage forms such as oral administration if possible.

非経口投与のための注射剤としては、無菌の水性または非水性の溶液剤、懸濁剤、乳濁剤などが挙げられる。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水および生理食塩水などが挙げられる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油等の植物油、エタノール等のアルコール類、ポリソルベート80(商品名)などが挙げられる。   Examples of injections for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, emulsions and the like. Examples of the aqueous solution and suspension include distilled water for injection and physiological saline. Examples of the water-insoluble solution and suspension include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, polysorbate 80 (trade name), and the like.

非経口投与のための組成物はさらに、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、溶解補助剤(例えば、メグルミン酸)などの補助剤を含んでいてもよい。これらは、たとえばバクテリア保留フィルターを通す濾過、殺菌剤の配合、または光照射によって無菌化される。また、非経口投与のための組成物は、無菌の固体組成物を製造しておき使用前に無菌水または無菌の注射用溶媒に溶解して調製することもできる。   The composition for parenteral administration may further contain adjuvants such as preservatives, wetting agents, emulsifying agents, dispersing agents, stabilizing agents (eg lactose), solubilizing agents (eg megluminic acid). . These are sterilized by, for example, filtration through a bacteria-retaining filter, blending of bactericides, or light irradiation. A composition for parenteral administration can be prepared by preparing a sterile solid composition and dissolving it in sterile water or a sterile solvent for injection before use.

本発明の遊走阻害剤を経口投与のための固体組成物とする場合、錠剤、丸剤、散剤、顆粒剤などの形態とすることができる。このような固体組成物は、例えば、乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸、アルミン酸マグネシウムなどの不活性な希釈剤を、有効成分としての活性物質と混合して調製することができる。   When the migration inhibitor of the present invention is used as a solid composition for oral administration, it can be in the form of tablets, pills, powders, granules and the like. Such a solid composition includes, for example, an inert diluent such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone, metasilicic acid, magnesium aluminate, and the active substance as an active ingredient. And can be prepared by mixing.

固体組成物には、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウム等の潤滑剤、繊維素グリコール酸カルシウム等の崩壊剤、ラクトース等の安定化剤、グルタミン酸およびアスパラギン酸等の溶解補助剤などを配合することができる。錠剤や丸剤には、必要に応じて、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等の糖衣、あるいは、胃溶性または腸溶性物質のフィルムを被膜してもよい。   For solid compositions, additives other than inert diluents, for example, lubricants such as magnesium stearate, disintegrants such as calcium calcium glycolate, stabilizers such as lactose, glutamic acid and aspartic acid are used in accordance with conventional methods. A solubilizing agent such as can be blended. Tablets and pills may be coated with sugar coating such as gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate or the like, or a film of gastric or enteric substance, if necessary.

本発明の遊走阻害剤を経口投与のための液体組成物とする場合、薬理上許容される乳濁剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有してもよい。   When the migration inhibitor of the present invention is used as a liquid composition for oral administration, it contains a pharmacologically acceptable emulsion, suspension, syrup, elixir, etc. Contains agents such as purified water and ethanol. In addition to the inert diluent, the composition may contain adjuvants such as wetting agents and suspending agents, sweeteners, flavors, fragrances and preservatives.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.

以下の実施例においては次の手段が採用されている。
1)外科標本と細胞培養
本実施例で調べた外科標本は、世界保健機関の分類に従って組織学的に多形性グリア芽腫細胞であることが同定された。細胞培養は既報に従い調製した。CGNH-89の亜系統であるCGNH-PMも使用した。細胞培養は10%ウシ胎児血清と2mMグルタミンを添加したイーグル最少必須培地(Life Technologies, Rockville, MD)中で行った。
2)X線照射
細胞に対する放射線照射は、140kV、4.5mAで運転するMBR-1505R X線装置(日立製)に0.5mm Al濾過を用い、焦点源距離30cm、1.11Gy/分の条件で既報(Akimoto, T. et al. Int. J. Radiat. Oncol. Bial. Phys. 50, 195-201(2001))に従って実施した。
3)炭素線照射
炭素線照射は日本原子力研究開発機構 高崎量子応用研究所 AVFサイクロトロンより作られた12C イオン線(220 MeV),LET;linear energy transfer, 108KeV/μm broad beamを用いて照射した。照射中は培養上清を抜き腫瘍細胞は、このための乾燥を防ぐために8μmの厚さのポリイミド・フィルム(Kapton; DuPont-Toray Co., Ltd.)を被せた。
4)免疫蛍光法
間接蛍光抗体染色は既報に従い実施した(Huang, X. et al. Proc. Natl. Acad. Sci. USA 102, 1065-1070(2005))。二重免疫蛍光法には、フルオレセインイソチオシアネートならびにローダミン結合二次抗体(Molecular Probes, Inc.)を用いて結合抗体を可視化した。染色細胞はレーザー走査共焦点顕微鏡(Pascal LSM5; Carl Zeiss)を用いて検査した。デオキシリボ核酸対比染色はDAPIを用いて実施した。用いた一次抗体はPhospho-Akt (Ser-473;Cell Signaling Technology), vimentin (V9; Dako), GluR1(C-terminal) (Chemicon), GluR1(N-terminal)(Carbiochem), GluR1(S845phosphorylated)(Upstate), cGKII (Santa Cruz Biotechnology, Santa Cruz, CA), iNOS (BD Transduction Laboratories), GFAP(DAKO)である。
5)遊走アッセイ
遊走アッセイでは、一端をシリコングリスでコーティングしたガラス製クローニングシリンダ(直径7mm)を培養皿の中央に配置した。このシリンダ内に5×104個の細胞を蒔いた。このプレーティング後24時間の時点で、細胞に放射線照射を行い、このクローニング環を除去した。細胞をさらに48時間にわたり培養した。続いてこのクローニング環の境界を越えた細胞数を計数した。
6)NO産生細胞の同定および標識
NO産生細胞の同定および標識はdiaminofluorescein-2 diacetate (DAF-2 DA、10μMで使用、第一化学薬品株式会社)を用いて行った(Nakatsubo, Kojima FFBS Letters 427,273-266,1998)。NO産生細胞の分布はNO存在下でDAF-2より変換したDAF-2T fluorescenceを共焦点顕微鏡(Pascal LSM5; Carl Zeiss)で可視化することで捉えた。
7)Surface GluR1 cross linking.
回収した細胞はice-cold PBSで冷却し2 mM BS3 (Pierce, Rockford, IL)で30 min at 4℃で攪拌。半分にはBS3を入れice-cold PBSのみで攪拌した。100 mM glycine (10 min, 4°C)でクエンチングしCross-linkingを終了する。ペレットはlysis buffers [25 mM HEPES, pH 7.4, 500 mM NaCl, 2 mM EDTA, 1 mM DTT, 1 mM phenylmethyl sulfonyl fluoride, 20 mM NaF, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 1 mM microcystin-LF, 1 μM okadaic acid, 1 μL protease inhibitor mixture (Calbiochem, La Jolla, CA), and 0.1% Nonidet P-40 (v/v)]でサスペンドした後5秒間回転しホモジェナイズした後Lowry 法 (Lowry et al., 1951)にてたんぱく定量した。
8)データ分析
データは平均±標準誤差で示している。統計比較は対応のないt検定、または一元配置分散分析(事後分析のためにはSchaffeの試験)を用いて実施した。
<実施例1>
臨床検体を用いた遊走実験から一酸化窒素を介する放射線誘発浸潤性増殖の亢進の分子機構を解析した。
In the following embodiments, the following means are employed.
1) Surgical specimen and cell culture The surgical specimen examined in this example was histologically identified as a polymorphic glioblastoma cell according to the classification of the World Health Organization. Cell cultures were prepared according to previous reports. CGNH-PM, a subline of CGNH-89, was also used. Cell culture was performed in Eagle's minimal essential medium (Life Technologies, Rockville, MD) supplemented with 10% fetal bovine serum and 2 mM glutamine.
2) X-ray irradiation As for the irradiation of cells, the MBR-1505R X-ray device (manufactured by Hitachi) operating at 140kV and 4.5mA is used with 0.5mm Al filtration, and the focal source distance is 30cm and 1.11Gy / min. Akimoto, T. et al. Int. J. Radiat. Oncol. Bial. Phys. 50, 195-201 (2001)).
3) Carbon beam irradiation Carbon beam irradiation was performed using a 12 C ion beam (220 MeV), LET; linear energy transfer, 108 KeV / μm broad beam made by AVF cyclotron, Japan Atomic Energy Agency. . During the irradiation, the culture supernatant was removed and the tumor cells were covered with a polyimide film (Kapton; DuPont-Toray Co., Ltd.) having a thickness of 8 μm to prevent drying.
4) Immunofluorescence Indirect fluorescent antibody staining was performed according to the previous report (Huang, X. et al. Proc. Natl. Acad. Sci. USA 102, 1065-1070 (2005)). For double immunofluorescence, the bound antibody was visualized using fluorescein isothiocyanate and a rhodamine-conjugated secondary antibody (Molecular Probes, Inc.). Stained cells were examined using a laser scanning confocal microscope (Pascal LSM5; Carl Zeiss). Deoxyribonucleic acid counterstaining was performed using DAPI. Primary antibodies used were Phospho-Akt (Ser-473; Cell Signaling Technology), vimentin (V9; Dako), GluR1 (C-terminal) (Chemicon), GluR1 (N-terminal) (Carbiochem), GluR1 (S845 phosphorrylated) ( Upstate), cGKII (Santa Cruz Biotechnology, Santa Cruz, CA), iNOS (BD Transduction Laboratories), GFAP (DAKO).
5) Migration assay In the migration assay, a glass cloning cylinder (diameter 7 mm) coated at one end with silicon grease was placed in the center of the culture dish. 5 × 10 4 cells were seeded in this cylinder. At 24 hours after the plating, the cells were irradiated with radiation to remove this cloning ring. Cells were cultured for an additional 48 hours. Subsequently, the number of cells exceeding the boundary of this cloning circle was counted.
6) Identification and labeling of NO-producing cells
Identification and labeling of NO-producing cells were performed using diaminofluorescein-2 diacetate (DAF-2 DA, used at 10 μM, Daiichi Chemicals Co., Ltd.) (Nakatsubo, Kojima FFBS Letters 427,273-266, 1998). The distribution of NO-producing cells was captured by visualizing DAF-2T fluorescence converted from DAF-2 in the presence of NO with a confocal microscope (Pascal LSM5; Carl Zeiss).
7) Surface GluR1 cross linking.
The collected cells were cooled with ice-cold PBS and stirred with 2 mM BS3 (Pierce, Rockford, IL) for 30 min at 4 ° C. Half was filled with BS3 and stirred only with ice-cold PBS. Quench with 100 mM glycine (10 min, 4 ° C) to complete cross-linking. Pellets were lysis buffers (25 mM HEPES, pH 7.4, 500 mM NaCl, 2 mM EDTA, 1 mM DTT, 1 mM phenylmethyl sulfonyl fluoride, 20 mM NaF, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 1 mM microcystin-LF, Suspended with 1 μM okadaic acid, 1 μL protease inhibitor mixture (Calbiochem, La Jolla, CA), and 0.1% Nonidet P-40 (v / v)], rotated for 5 seconds, homogenized, and Lowry method (Lowry et al. , 1951).
8) Data analysis Data are shown as mean ± standard error. Statistical comparisons were performed using unpaired t-tests or one-way analysis of variance (Schaffe test for post hoc analysis).
<Example 1>
The molecular mechanism of the enhancement of radiation-induced invasive growth via nitric oxide was analyzed from migration experiments using clinical specimens.

図2の遊走能評価試験では、X線および炭素線照射により、遊走する細胞が照射直後よりNOの発現を呈することを確認し、このNOはその後、非照射細胞に伝播することを見出した。また図3に示すようにNO中和剤(C-PTIO)により、細胞の走行性が低下するとを見出した。   In the migration ability evaluation test of FIG. 2, it was confirmed by X-ray and carbon beam irradiation that the migrating cells exhibited expression of NO immediately after irradiation, and this NO was subsequently transmitted to non-irradiated cells. Further, as shown in FIG. 3, it was found that the mobility of the cells is lowered by the NO neutralizer (C-PTIO).

図4に示すようにNOの合成阻害剤L-NAMEも細胞の走行性を低下させること、またNOS1(nNOS), NOS2(iNOS), NOS3(eNOS)を選択的にRNA干渉するとNOS2のみでNOの発現が低下し遊走抑制が生じることから腫瘍細胞に発現するNOS2(iNOS)の阻害がNO産生の抑止に重要であることを確認した。   As shown in FIG. 4, NO synthesis inhibitor L-NAME also reduces cell mobility, and NOS1 (nNOS), NOS2 (iNOS), NOS3 (eNOS) selectively interferes with RNA and NOS2 alone Inhibition of NOS2 (iNOS) expressed in tumor cells was confirmed to be important for suppressing NO production.

NOSに対するRNA干渉実験はInvitrogen社より購入したNOS1、NOS2、NOS3に対するRNAiプローブを用いてtransfectionした。RNA干渉実験に用いたprobeの配列は次のとおりである。   RNA interference experiments for NOS were performed using RNAi probes for NOS1, NOS2, and NOS3 purchased from Invitrogen. The probe sequence used in the RNA interference experiment is as follows.

Fluorescent Oligo(Invitrogen社)を導入マーカーとしてプローブと一緒に共transfectionした。   Fluorescent Oligo (Invitrogen) was co-transfected with the probe as an introduction marker.

本発明者はカルシウム透過性AMPA受容体を介するカルシウムの細胞内流入によりAktのSer473のリン酸化が惹起されこれにより細胞遊走の亢進が起きることを報告している(J Neuroscience27:7987-8001,2007)。実際照射下腫瘍塊の遊走最先端でAktのSer473のリン酸化が起こることは、特許文献3に示した。図5では腫瘍細胞をあらかじめRNA干渉し、Aktをknock outすると細胞遊走が阻害されるばかりではなく、NO産生も低下することからAktはNOの基質となっていると考えられた。照射によって促進される細胞遊走の分子機構の背景にはNO-AMPA receptor-Akt signalingが関与していることが判明した。AktのRNA 干渉実験ではInvitrogen社より購入したAkt1に対するRNAiプローブを用いてtransfectionした。用いたprobeの配列は次のとおりである。   The present inventor has reported that phosphorylation of Ser473 of Akt is induced by intracellular influx of calcium via a calcium permeable AMPA receptor, and this leads to enhanced cell migration (J Neuroscience 27: 7987-8001,2007). ). It was shown in Patent Document 3 that phosphorylation of Ser473 of Akt occurs at the leading edge of migration of tumor mass under irradiation. In FIG. 5, it was considered that Akt is a substrate for NO because tumor interference with RNA in advance and knockout of Akt not only inhibits cell migration but also reduces NO production. It was revealed that NO-AMPA receptor-Akt signaling is involved in the background of the molecular mechanism of cell migration promoted by irradiation. In the RNA interference experiment of Akt, transfection was performed using an RNAi probe for Akt1 purchased from Invitrogen. The probe sequence used is as follows.

Fluorescent Oligo(Invitrogen社)を導入マーカーとしてプローブと一緒に共transfectionした。   Fluorescent Oligo (Invitrogen) was co-transfected with the probe as an introduction marker.

図6で示すように、Fluo-3を用いたカルシウム測光の実験から、遊走亢進している紡錘型細胞ではAMPA+CTZ刺激による細胞内カルシウムの上昇が非照射細胞と比較して約二倍に上昇していることを確認した。   As shown in Fig. 6, from the calcium photometry experiment using Fluo-3, spindle cells with enhanced migration showed about twice the increase in intracellular calcium by AMPA + CTZ stimulation compared to non-irradiated cells. I confirmed that it was rising.

以上より放射線がNOS2を介してNO産生を促進し、腫瘍細胞に発現しているカルシウム透過性AMPA型受容体を介し細胞内カルシウムの上昇を倍加し、Aktのセリン473のリン酸化を促進することで遊走亢進が惹起されることが判明した。またAktはNOの基質となることも判明した。これ等より、図1の概念図を創作した。
<実施例2>
GluR1サブユニットの細胞膜への移動機序の分子機構について解析した。
From the above, radiation promotes NO production via NOS2, doubles the increase of intracellular calcium via calcium-permeable AMPA-type receptor expressed in tumor cells, and promotes phosphorylation of serine 473 of Akt. It was found that increased migration was induced. Akt was also found to be a substrate for NO. From these, the conceptual diagram of FIG. 1 was created.
<Example 2>
The molecular mechanism of GluR1 subunit translocation mechanism was analyzed.

図7では、GluR1の細胞外ドメインN-末端を認識する抗体を用いて、細胞を生染色することで細胞表面の受容体を同定し、その表現量を解析したものである。放射線処理同様にNO donorであるNOC-18や8-Br-cGMP処理群ではGluR1の細胞膜で発現が倍加した。NOC-18にNO中和剤C-PTIOを同時に投与した群、8-Br-cGMPにcGMP dependent kinase II (cGKII)の選択的阻害剤KT5823を投与した群では発現量での増加を認めなかった。照射してもKT5823を併用すると発現の増加は抑制され、8Br-cGMPにcPTIOを同時投与しても発現が倍加し、照射にC-PTIOを同時に投与しても8Br-cGMPを同時併用すると発現が倍加することより、GluR1サブユニットの細胞膜への移動にcGKIIの介在が必須であることが示唆された。   In FIG. 7, a cell surface receptor is identified by live-staining the cell using an antibody that recognizes the extracellular domain N-terminus of GluR1, and the expression level thereof is analyzed. As in the case of radiation treatment, NOC-18 and 8-Br-cGMP treatment groups, which are NO donors, doubled expression in the cell membrane of GluR1. No increase in the expression level was observed in the group in which NO-C-18 was simultaneously administered with NO-neutralizing agent C-PTIO, and in the group in which 8-Br-cGMP was administered with KT5823, a selective inhibitor of cGMP dependent kinase II (cGKII). . Increased expression is suppressed when KT5823 is used in combination with irradiation, expression is doubled even when cPTIO is co-administered with 8Br-cGMP, and expression is observed when 8Br-cGMP is used concomitantly with C-PTIO for irradiation The doubling of cGKII suggests that cGKII intervention is essential for the movement of the GluR1 subunit into the cell membrane.

図8では、N-末を認識するGluR1抗体とcGKII抗体の2重染色像であるが、非照射、放射群ともsurface GluR1に一致しcGKIIの局在を認めた。   FIG. 8 is a double-stained image of the GluR1 antibody and cGKII antibody that recognizes the N-terminal, and the non-irradiated and irradiated groups were consistent with surface GluR1 and the localization of cGKII was observed.

以上よりGluR1サブユニットの細胞膜への移動にcGKIIが介在することが判明した。
<実施例3>
Crosslinking assay法によるGluR1の細胞膜成分と細胞質内成分の解析
図9に示すように放射線により膜表面の受容体は非照射細胞に比較して2倍に増加する。GluR1の細胞膜成分と細胞質内成分の比率も、非照射細胞では細胞質成分と膜成分が半々であるが、照射細胞では受容体全体の3/4が膜成分1/4が細胞質成分であることが判明した。このようにNOが腫瘍細胞内のカルシウム透過性AMPA型受容体の再配分に関与していることが判明した。
<実施例4>
照射によるGluR1のSer845のリン酸化の誘導
図10は照射によりGluR1のSer845のリン酸化が惹起され、このリン酸化はGluR1の細胞膜への移動を促進する。X線及び炭素線とも非照射対照に比較して約1.5倍GluR1のリン酸化を促進させる。NO中和剤、cPTIOはリン酸化の促進を抑制するのでGluR1のSer845のリン酸化におけるNOの重要性を見出している。
<実施例5>
NO-GluR1シグナリングの重要性について
図11は照射による腫瘍細胞の遊走性の亢進に、NOシグナルのバイスタンダー効果を見出し、このシグナルの非照射細胞への伝播にGluR1が重要であることを示している。
<実施例6>
放射線治療を施行した直後(1ヶ月以内)の臨床検体を用いたiNOS-NO-cGKII-GluR1シグナリングの同定。
From the above, it was found that cGKII is involved in the movement of the GluR1 subunit to the cell membrane.
<Example 3>
Analysis of cell membrane components and cytoplasmic components of GluR1 by crosslinking assay As shown in FIG. 9, the receptor on the membrane surface is doubled by radiation compared to non-irradiated cells. The ratio of cytoplasmic and cytoplasmic components of GluR1 is also half for cytoplasmic and membrane components in non-irradiated cells, but in irradiated cells, 3/4 of all receptors are membrane components 1/4 of cytoplasmic components. found. Thus, NO was found to be involved in the redistribution of calcium-permeable AMPA-type receptors in tumor cells.
<Example 4>
Induction of Ser845 phosphorylation of GluR1 by irradiation In FIG. 10, phosphorylation of Ser845 of GluR1 is induced by irradiation, and this phosphorylation promotes the transfer of GluR1 to the cell membrane. Both X-rays and carbon rays promote phosphorylation of GluR1 about 1.5 times compared to the non-irradiated control. The NO neutralizer, cPTIO, suppresses the promotion of phosphorylation, and therefore has found the importance of NO in phosphorylation of Ser845 of GluR1.
<Example 5>
About the importance of NO-GluR1 signaling Figure 11 shows the bystander effect of NO signal in enhancing the migration of tumor cells by irradiation, and shows that GluR1 is important for the propagation of this signal to non-irradiated cells Yes.
<Example 6>
Identification of iNOS-NO-cGKII-GluR1 signaling using clinical specimens immediately after radiotherapy (within 1 month).

手術摘出11例の臨床検体を用いて、iNOS、cGKII、GluR1の蛋白発現を免疫組織学的に解析した。対照は非照射摘出組織14検体とした。
照射組織に特徴的な所見を抽出すると、
1) 広範な壊死組織。血管の閉塞をともなうischemic necrosis
2) 腫瘍血管の硝子化、閉塞
3) 広範巣周囲の円形の小型細胞または紡錘型細胞の浸潤性増殖と新生血管の存在
4) 少数の核破砕象、奇怪な多角巨細胞の出現
などの神経病理学的所見を呈する。
Immunohistological analysis of iNOS, cGKII, and GluR1 protein expression was performed using 11 surgically removed clinical specimens. As controls, 14 specimens of non-irradiated tissue were used.
Extracting findings characteristic of irradiated tissue,
1) Extensive necrotic tissue. Ischemic necrosis with occlusion of blood vessels
2) Vitrification and occlusion of tumor blood vessels 3) Invasive proliferation of circular small cells or spindle cells around wide nests and presence of new blood vessels 4) Neurons such as the appearance of a small number of splintered elephants and bizarre polygonal giant cells Presents with pathological findings.

図11に示すように、照射組織の浸潤性増殖最先端部位で顕著なiNOS、cGKII、GluR1の蛋白発現を認めた。非照射組織のいわゆるnecrosis pseudopalisading部位にはこのような所見は認めなかった。   As shown in FIG. 11, significant iNOS, cGKII, and GluR1 protein expression was observed at the most advanced site of invasive growth of irradiated tissues. Such a finding was not observed in the so-called necrosis pseudopalisading region of the non-irradiated tissue.

以上実施例1〜6によりiNOS-NO-cGKII-GluR1シグナリングを同定し、臨床検体での裏付けを確認できた。図1の概念図に示すように、放射線療法を用いる際には、NOおよびNOSを介する遊走性亢進のシグナルを遮断することが重要で、ここにNO,NOS阻害剤の併用の有用性を証明できた。   As described above, iNOS-NO-cGKII-GluR1 signaling was identified by Examples 1 to 6 and confirmed by clinical samples. As shown in the conceptual diagram of Fig. 1, when using radiotherapy, it is important to block the NO and NOS-mediated signals of increased migration, and here we prove the usefulness of the combined use of NO and NOS inhibitors. did it.

Claims (1)

放射線がん治療における腫瘍細胞への放射線照射に伴う腫瘍細胞の遊走性の亢進を阻害する遊走阻害剤であって、一酸化窒素(NO)および一酸化窒素合成酵素(NOS)の産生抑制活性を有する以下の化合物(1)(2)、
(1)2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO)、
(2)NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME)、
のうちの少なくともいずれかを含有することを特徴とする遊走阻害剤。
It is a migration inhibitor that inhibits the enhancement of tumor cell migration associated with irradiation of tumor cells in radiation cancer treatment, and has the activity of inhibiting the production of nitric oxide (NO) and nitric oxide synthase (NOS) Having the following compounds (1) (2),
(1) 2- (4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO),
(2) NG-Nitro-L-arginine Methyl Ester, Hydrochloride (L-NAME),
Yu run inhibitors you characterized by containing at least one of.
JP2009135486A 2009-06-04 2009-06-04 Migration inhibitor for cancer treatment Active JP5435461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135486A JP5435461B2 (en) 2009-06-04 2009-06-04 Migration inhibitor for cancer treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135486A JP5435461B2 (en) 2009-06-04 2009-06-04 Migration inhibitor for cancer treatment

Publications (2)

Publication Number Publication Date
JP2010280615A JP2010280615A (en) 2010-12-16
JP5435461B2 true JP5435461B2 (en) 2014-03-05

Family

ID=43537734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135486A Active JP5435461B2 (en) 2009-06-04 2009-06-04 Migration inhibitor for cancer treatment

Country Status (1)

Country Link
JP (1) JP5435461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111939147B (en) * 2019-12-31 2022-01-21 中南大学 NnApplication of-acylamino acid ester in preparation of antitumor drugs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3638124C2 (en) * 1986-11-08 1996-09-05 Nattermann A & Cie New pharmaceutical use of Ebselen
JPH0841008A (en) * 1994-07-29 1996-02-13 Ono Pharmaceut Co Ltd Nitrogen monoxide synthetase inhibitor
JP2008308491A (en) * 2007-05-11 2008-12-25 Gunma Univ Migration inhibitor for treating cancer

Also Published As

Publication number Publication date
JP2010280615A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
Hall et al. First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M–mutant pediatric diffuse intrinsic pontine glioma: a case report
Ling et al. Combination of metformin and sorafenib suppresses proliferation and induces autophagy of hepatocellular carcinoma via targeting the mTOR pathway
CN104220057B (en) Pharmaceutical composition and method
Zou et al. AEG-1/MTDH-activated autophagy enhances human malignant glioma susceptibility to TGF-β1-triggered epithelial-mesenchymal transition
US20200316046A1 (en) Nanoparticle compositions of endothelin b receptor antagonists
JP6046702B2 (en) CSF-1R inhibitor for the treatment of brain tumors
Sheehan et al. Inhibition of glioblastoma and enhancement of survival via the use of mibefradil in conjunction with radiosurgery
CN108463221A (en) Benzazole compounds stimulate the purposes of immune system
DE202018006567U1 (en) Stable, concentrated radionuclide complex solutions
KR20190084291A (en) Pharmaceutical compositions and methods for the treatment of cancer
AU2018352382A1 (en) Compounds and methods for treating cancer
US10722526B2 (en) Pharmaceutical compositions for radioprotection or radiomitigation and methods for using them
JP5435461B2 (en) Migration inhibitor for cancer treatment
WO2023172669A9 (en) Combination therapies for modulation of lipid production
Dreicer et al. A phase II trial of deferoxamine in patients with hormone-refractory metastatic prostate cancer
JP2022502450A (en) Therapeutic use of atomic quantum clusters
CA2617492A1 (en) Adjuvant chemotherapy for anaplastic gliomas
JP2008308491A (en) Migration inhibitor for treating cancer
JP7545147B2 (en) Lymphatic tracer and method for preparing same
WO2021170045A1 (en) Methods of treating dlbcl using btk inhibitors and combinations thereof
JP6667792B2 (en) Method for producing anticancer agent, anticancer agent and pharmaceutical
KR20220101120A (en) Use of iodine compounds for the treatment and prophylaxis of chemotherapy-associated cachexia and cardiotoxicity
WO2020243058A1 (en) Compositions and methods to treat cancer
CN110022891A (en) Restore the function of tumour acidification T cell
US9546354B2 (en) Z cells activated by zinc finger-like protein and uses thereof in cancer treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5435461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250