JP5435443B2 - Synchronous optical signal generator and synchronous optical signal generation method - Google Patents

Synchronous optical signal generator and synchronous optical signal generation method Download PDF

Info

Publication number
JP5435443B2
JP5435443B2 JP2008091435A JP2008091435A JP5435443B2 JP 5435443 B2 JP5435443 B2 JP 5435443B2 JP 2008091435 A JP2008091435 A JP 2008091435A JP 2008091435 A JP2008091435 A JP 2008091435A JP 5435443 B2 JP5435443 B2 JP 5435443B2
Authority
JP
Japan
Prior art keywords
signal
optical signal
optical
beat
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008091435A
Other languages
Japanese (ja)
Other versions
JP2009244621A (en
Inventor
繁弘 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008091435A priority Critical patent/JP5435443B2/en
Publication of JP2009244621A publication Critical patent/JP2009244621A/en
Application granted granted Critical
Publication of JP5435443B2 publication Critical patent/JP5435443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、同期光信号発生装置及び同期光信号発生方法に関する。 The present invention relates to a synchronous optical signal generator and a synchronous optical signal generation method .

従来、高速の情報通信を行う光通信ネットワークが知られている。例えば、100[Gbit/s]以上の光通信ネットワークにおいて、中継器や受信器は、光ファイバ伝送後のタイミングのずれた光パルスを元のタイミングで整列するリタイミング機能を有する。このリタイミング機能には、通信する光信号に同期した光信号が必要となる。   Conventionally, optical communication networks that perform high-speed information communication are known. For example, in an optical communication network of 100 [Gbit / s] or more, a repeater or a receiver has a retiming function that aligns optical pulses whose timings are shifted after optical fiber transmission at the original timing. This retiming function requires an optical signal synchronized with the optical signal to be communicated.

上記同期光信号を発生する装置として、OPLL(Optical Phase-Lock Loop)やPLL(Phase-Lock Loop)を用いた方式のものがあった。例えば、OPLLにより参照光信号に同期したビート光信号を発生する装置が考えられている(例えば、特許文献1参照)。図17を参照して、従来のOPLLにより同期光信号を出力する同期光信号発生装置を説明する。図17に、従来の同期光信号発生装置7の構成を示す。   As a device for generating the synchronous optical signal, there has been a system using OPLL (Optical Phase-Lock Loop) or PLL (Phase-Lock Loop). For example, an apparatus that generates a beat optical signal synchronized with a reference optical signal by OPLL is considered (for example, see Patent Document 1). With reference to FIG. 17, a synchronous optical signal generator for outputting a synchronous optical signal by conventional OPLL will be described. FIG. 17 shows the configuration of a conventional synchronous optical signal generator 7.

図17に示すように、同期光信号発生装置8は、合波部としての光カプラ81と、光位相比較部としてのSi−APD(Avalanche Photo Diode)82と、ループフィルタ83と、OVCO(Optical Voltage Controlled Oscillator:電圧制御光信号発生源)84と、の三つの要素を備えて構成される。同期させる対象の入力光信号を参照光信号とする。同期光信号発生装置8において、参照光信号に同期したビート光信号をOVCO84から出力する。   As shown in FIG. 17, the synchronous optical signal generator 8 includes an optical coupler 81 as a multiplexing unit, an Si-APD (Avalanche Photo Diode) 82 as an optical phase comparison unit, a loop filter 83, and an OVCO (Optical). Voltage Controlled Oscillator (Voltage Controlled Light Signal Source) 84). An input optical signal to be synchronized is set as a reference optical signal. In the synchronous optical signal generator 8, a beat optical signal synchronized with the reference optical signal is output from the OVCO 84.

なお、光学素子と光学素子との間(光経路)は、特に断らない限り、偏波を保持しない通常の光ファイバにより接続されており、電気素子と電気素子との間(電気経路)が導線により接続されている。また、図面上、光経路を太線で図示し、電気経路を細線で示す。これらの事項は、以下同様とする。   The optical element (optical path) is connected by a normal optical fiber that does not maintain polarization unless otherwise specified, and the electrical element (electrical path) is connected between the optical element and the optical element. Connected by. In the drawing, the optical path is indicated by a bold line, and the electrical path is indicated by a thin line. The same shall apply hereinafter.

OVCO84は、LD(Laser Diode)841,842と、光カプラ843とを備える。OVCO84において、出力光波長が異なる2つのLD841,842の出力光を光カプラ843で合波する。ここで、LD841,842の光出力の偏波は同一にする。その結果、二つの光出力は、光カプラ843内で干渉し、光カプラ843が波長の差に応じた周波数で振動するビート光信号を出力する。波長差に対する制限は光カプラ843の帯域で決まる。LD841,842は、駆動電流や制御温度によって出力光の波長を変化させることができる。よって、OVCO84は、参照光信号に応じてLD841,842の出力光の波長を制御し、出力するビート光信号の周波数を変化させ、参照光信号に同期したビート光信号を出力することができる。   The OVCO 84 includes LDs (Laser Diodes) 841 and 842 and an optical coupler 843. In the OVCO 84, the output lights of the two LDs 841 and 842 having different output light wavelengths are multiplexed by the optical coupler 843. Here, the polarizations of the optical outputs of the LDs 841 and 842 are the same. As a result, the two optical outputs interfere in the optical coupler 843, and the optical coupler 843 outputs a beat optical signal that vibrates at a frequency corresponding to the wavelength difference. The restriction on the wavelength difference is determined by the band of the optical coupler 843. The LDs 841 and 842 can change the wavelength of the output light depending on the drive current and the control temperature. Therefore, the OVCO 84 can control the wavelength of the output light of the LDs 841 and 842 in accordance with the reference light signal, change the frequency of the beat light signal to be output, and output the beat light signal synchronized with the reference light signal.

Si−APD82は、非線形効果としての二光子吸収を用いて二つの入力信号光強度の位相差に応じた電気信号(TPA信号)を位相誤差信号として出力する。ループフィルタ83は、位相誤差信号を平均化して整形し、OVCO84の制御信号として出力する。   The Si-APD 82 outputs an electric signal (TPA signal) corresponding to the phase difference between the two input signal light intensities as a phase error signal using two-photon absorption as a nonlinear effect. The loop filter 83 averages and shapes the phase error signal and outputs it as a control signal for the OVCO 84.

図18を参照して、位相誤差信号について説明する。図18(a)に、ビート光信号と参照光信号との波形及び時間差τを示す。図18(b)に、時間差τに対するTPA(Two Photon Absorption)信号(TPA電流の信号)I(τ)を示す。   The phase error signal will be described with reference to FIG. FIG. 18A shows the waveform and time difference τ between the beat optical signal and the reference optical signal. FIG. 18B shows a TPA (Two Photon Absorption) signal (TPA current signal) I (τ) with respect to the time difference τ.

Si−APD82は、受光すると、二光子吸収により、参照光信号とビート光信号とのTPA信号Iを出力する。Si−APD82が受光した瞬時の光のパワーをPとすると、I∝Pの関係を有する。図18(a)に示すように、同期光信号発生装置8において、参照光信号と、ビート光信号と、の間に時間差τが発生している場合を考える。Si−APD82から出力されるTPA信号I(τ)は、時間差τに対して、図18(b)に示すような関係を有する。つまり、TPA信号I(τ)は、τ=0の場合に最大になり、所定のオフセット電流を中心として振動している。 When receiving light, the Si-APD 82 outputs a TPA signal I of a reference light signal and a beat light signal by two-photon absorption. Assuming that the instantaneous light power received by the Si-APD 82 is P, a relationship of I∝P 2 is established. As shown in FIG. 18A, a case is considered in which a time difference τ is generated between the reference optical signal and the beat optical signal in the synchronous optical signal generator 8. The TPA signal I (τ) output from the Si-APD 82 has a relationship as shown in FIG. 18B with respect to the time difference τ. That is, the TPA signal I (τ) becomes maximum when τ = 0, and oscillates around a predetermined offset current.

そして、同期光信号発生装置8は、Si−APD82から出力されるTPA信号I(τ)と、ビート光信号と、の間の時間差τ(位相差)を0にするように動作する。このようにして、Si−APD82等により、光通信における超高速の光信号同士の位相比較が可能となっている。   Then, the synchronous optical signal generator 8 operates so that the time difference τ (phase difference) between the TPA signal I (τ) output from the Si-APD 82 and the beat optical signal becomes zero. In this way, the phase comparison between ultrahigh-speed optical signals in optical communication can be performed by the Si-APD 82 or the like.

また、OPLLにより線幅の小さい同期ビート光信号を出力する同期光信号発生装置も考えられている(例えば、特許文献2参照)。ここで、図19を参照して、線幅の狭い光信号を用いて同期ビート光信号を出力する同期光信号発生装置9を説明する。図19に、同期光信号発生装置9の構成を示す。   A synchronous optical signal generator that outputs a synchronous beat optical signal with a small line width by OPLL is also considered (see, for example, Patent Document 2). Here, with reference to FIG. 19, the synchronous optical signal generator 9 which outputs a synchronous beat optical signal using an optical signal with a narrow line width will be described. FIG. 19 shows the configuration of the synchronous optical signal generator 9.

図19に示すように、同期光信号発生装置9は、合波部としての光カプラ11と、Si−APD121と、TIA(TransImpedance Amplifier)19と、ループフィルタ20と、VCO(Voltage Controlled Oscillator:電圧制御電気信号発生源)31と、二倍周波数発生器311,312と、RF(Radio Frequency)アンプ32と、DFB(Distributed FeedBack:分布帰還型)−LD331と、LN(Lithium Niobete:ニオブ酸リチウム)位相変調器332と、サーキュレータ341と、AWG(Arrayed Waveguide Grating:アレイ導波路回析格子)342と、FRM(Faraday Rotator Mirror:ファラデーローテーターミラー)351,352と、EDFA(Erbium Doped Fiber Amplifier)361と、光カプラ37と、を備えて構成される。   As shown in FIG. 19, the synchronous optical signal generator 9 includes an optical coupler 11 as a multiplexing unit, an Si-APD 121, a TIA (TransImpedance Amplifier) 19, a loop filter 20, a VCO (Voltage Controlled Oscillator: voltage). Control electric signal generation source) 31, double frequency generators 311, 312, RF (Radio Frequency) amplifier 32, DFB (Distributed FeedBack) -LD331, LN (Lithium Niobete: lithium niobate) A phase modulator 332, a circulator 341, an AWG (Arrayed Waveguide Grating) 342, an FRM (Faraday Rotator Mirror) 351, 352, an EDFA (Erbium Doped Fiber Amplifier) 361, And an optical coupler 37.

同期光信号発生装置9は、例えば、160[GHz]の同期ビート光信号を発生する。光カプラ11は、参照光信号と、光カプラ37から出力されるビート光信号と、を合波して出力する。Si−APD121は、光カプラ11から入力される合波された光信号を受光してTPA信号を位相誤差信号として出力する。TIA19は、Si−APD121から入力される位相誤差信号を電圧信号に変換及び増幅して出力する。ループフィルタ20は、TIA19から入力される位相誤差信号を整形して出力する。   The synchronized optical signal generator 9 generates a synchronized beat optical signal of 160 [GHz], for example. The optical coupler 11 combines the reference optical signal and the beat optical signal output from the optical coupler 37 and outputs the combined optical signal. The Si-APD 121 receives the combined optical signal input from the optical coupler 11 and outputs the TPA signal as a phase error signal. The TIA 19 converts and amplifies the phase error signal input from the Si-APD 121 into a voltage signal and outputs the voltage signal. The loop filter 20 shapes and outputs the phase error signal input from the TIA 19.

VCO31は、ループフィルタ20から入力される位相誤差信号に応じて周波数を変化させた電気信号を発生して出力する。二倍周波数発生器311は、VCO31から入力された電気信号の2倍の周波数の電気信号を発生して出力する。二倍周波数発生器312は、二倍周波数発生器311から入力された電気信号の2倍の周波数の電気信号を発生して出力する。RFアンプ32は、二倍周波数発生器312から入力された電気信号を増幅して出力する。VCO31から出力される電気信号の周波数を10[GHz]程度とすると、RFアンプ32から出力される電気信号の周波数が40[GHz]程度となる。   The VCO 31 generates and outputs an electrical signal whose frequency is changed according to the phase error signal input from the loop filter 20. The double frequency generator 311 generates and outputs an electric signal having a frequency twice that of the electric signal input from the VCO 31. The double frequency generator 312 generates and outputs an electric signal having a frequency twice that of the electric signal input from the double frequency generator 311. The RF amplifier 32 amplifies and outputs the electric signal input from the double frequency generator 312. If the frequency of the electrical signal output from the VCO 31 is about 10 [GHz], the frequency of the electrical signal output from the RF amplifier 32 is about 40 [GHz].

DFB−LD331は、単一周波数のレーザ光を出力する。LN位相変調器332は、DFB−LD331から入力されるレーザ光を位相変調して、RFアンプ32から入力される電気信号の周波数(約40[GHz])間隔の細いスペクトル線を有する光コム信号を発生して出力する。LN位相変調器332から出力された光コム信号は、サーキュレータ341を介してAWG342に入力される。AWG342は、LN位相変調器332から入力された光コム信号から波長λ1,λ2のスペクトル線の光信号を選択して出力する。この波長λ1,λ2の周波数間隔が160[GHz]に設定されている。   The DFB-LD 331 outputs a single frequency laser beam. The LN phase modulator 332 phase-modulates the laser light input from the DFB-LD 331, and an optical comb signal having narrow spectral lines with a frequency (about 40 [GHz]) interval of the electric signal input from the RF amplifier 32. Is generated and output. The optical comb signal output from the LN phase modulator 332 is input to the AWG 342 via the circulator 341. The AWG 342 selects and outputs an optical signal with spectral lines having wavelengths λ 1 and λ 2 from the optical comb signal input from the LN phase modulator 332. The frequency interval between the wavelengths λ1 and λ2 is set to 160 [GHz].

AWG342から出力された波長λ1,λ2の光信号は、偏波がそろっており、それぞれ、FRM351,352で反射され、AWG342を再び通って出力される。また、FRM351,352は、反射により入力光信号の偏波と直交する偏波の光信号を出力する。このため、AWG342から出力された光信号は、波長λ1,λ2のビート光信号となる。AWG342によりビート光信号の偏波純度を高められ、選出したい2つの光スペクトル線が2度AWG342を通過することとにより、光SNR(Signal to Noise Ratio:S/N比)が高くなる(周波数純度が高くなる)。   The optical signals of wavelengths λ1 and λ2 output from the AWG 342 have the same polarization, are reflected by the FRMs 351 and 352, and output through the AWG 342 again. Further, the FRMs 351 and 352 output an optical signal having a polarization orthogonal to the polarization of the input optical signal by reflection. For this reason, the optical signal output from the AWG 342 becomes a beat optical signal with wavelengths λ1 and λ2. The polarization purity of the beat optical signal can be increased by the AWG 342, and two optical spectral lines to be selected pass through the AWG 342 twice, so that the optical SNR (Signal to Noise Ratio: S / N ratio) is increased (frequency purity). Becomes higher).

AWG342から出力された波長λ1,λ2のビート光信号(周波数が160[GHz])は、サーキュレータ341を介してEDFA361に入力される。EDFA361は、入力される波長λ1,λ2のビート光信号を増幅して出力する。光カプラ37は、EDFA361から入力される波長λ1,λ2のビート光信号を分波して、一方を外部に出力し、もう一方を帰還して光カプラ11に出力する。このように、同期光信号発生装置8において、線幅の狭い電気信号に基づき生成した光コム信号から波長λ1,λ2の光スペクトル線を選択及び合波して、参照光信号に同期した線幅の狭い光ビート信号を発生する。このため、ループ帯域を小さくできるとともに、位相雑音及びタイミングジッタを低減できる。   The beat optical signals having the wavelengths λ1 and λ2 (frequency is 160 [GHz]) output from the AWG 342 are input to the EDFA 361 via the circulator 341. The EDFA 361 amplifies and outputs the input beat optical signals having wavelengths λ1 and λ2. The optical coupler 37 demultiplexes the beat optical signals having the wavelengths λ 1 and λ 2 input from the EDFA 361, outputs one to the outside, and feeds back the other to the optical coupler 11. In this way, in the synchronous optical signal generator 8, the line width synchronized with the reference optical signal by selecting and combining the optical spectral lines of the wavelengths λ1 and λ2 from the optical comb signal generated based on the electrical signal having a narrow line width. A narrow optical beat signal is generated. For this reason, the loop band can be reduced and the phase noise and timing jitter can be reduced.

また、OPLLにより参照光信号に同期した電気信号を出力する同期電気信号発生装置も考えられている(例えば、非特許文献1、2参照)。ここで、図20を参照して、同期電気信号を出力する同期電気信号発生装置10を説明する。図20に、同期電気信号発生装置10の構成を示す。   In addition, a synchronous electric signal generator that outputs an electric signal synchronized with a reference light signal by OPLL is also considered (for example, see Non-Patent Documents 1 and 2). Here, with reference to FIG. 20, the synchronous electric signal generator 10 which outputs a synchronous electric signal is demonstrated. FIG. 20 shows a configuration of the synchronous electric signal generator 10.

図20に示すように、同期電気信号発生装置10は、光カプラ101と、EDFA102と、Si−APD103と、ループフィルタ104と、VCO105と、RFアンプ106と、モードロックレーザ107と、PC(Polarization Controller:偏波コントローラ)108と、を備えて構成される。   As shown in FIG. 20, the synchronous electric signal generator 10 includes an optical coupler 101, an EDFA 102, a Si-APD 103, a loop filter 104, a VCO 105, an RF amplifier 106, a mode-locked laser 107, and a PC (Polarization). Controller: polarization controller) 108.

モードロックレーザ107は、入力される電気信号に応じたクロック光信号を出力する。先ず、光カプラ101により、参照光信号とクロック光信号が合波されて出力される。光カプラ101から出力された光信号は、EDFA102により増幅されてSi−APD103に入力される。   The mode-locked laser 107 outputs a clock optical signal corresponding to the input electric signal. First, the reference optical signal and the clock optical signal are combined and output by the optical coupler 101. The optical signal output from the optical coupler 101 is amplified by the EDFA 102 and input to the Si-APD 103.

Si−APD103は、2光子吸収により、EDFA102から入力された参照光信号とクロック光信号とが合波された光信号のTPA信号を位相誤差信号として出力する。Si−APD103から出力された位相誤差信号は、ループフィルタ104により整形され、VCO105に出力される。VCO105は、ループフィルタ104から入力された位相誤差信号に応じた周波数の電気信号を発生し、外部に出力するとともに、RFアンプ106に出力する。また、VCO105から出力された電気信号は、RFアンプ106により増幅されてモードロックレーザ107に入力される。モードロックレーザ107により発生されたクロック信号は、PC108により偏波が調整されて光カプラ101に入力される。このようにして、参照光信号に同期した電気信号を得る。   The Si-APD 103 outputs, as a phase error signal, a TPA signal of an optical signal obtained by combining the reference optical signal input from the EDFA 102 and the clock optical signal by two-photon absorption. The phase error signal output from the Si-APD 103 is shaped by the loop filter 104 and output to the VCO 105. The VCO 105 generates an electrical signal having a frequency corresponding to the phase error signal input from the loop filter 104, outputs the electrical signal to the outside, and outputs it to the RF amplifier 106. The electric signal output from the VCO 105 is amplified by the RF amplifier 106 and input to the mode-locked laser 107. The polarization of the clock signal generated by the mode-locked laser 107 is adjusted by the PC 108 and input to the optical coupler 101. In this way, an electric signal synchronized with the reference light signal is obtained.

図21を参照して、同期電気信号発生装置10のTPA信号の偏波依存性について説明する。図21(a)に、時間差τに対するTPA信号の関係を示す。図21(b)に、時間tに対するTPA信号の関係を示す。   With reference to FIG. 21, the polarization dependence of the TPA signal of the synchronous electrical signal generator 10 will be described. FIG. 21A shows the relationship of the TPA signal with respect to the time difference τ. FIG. 21B shows the relationship of the TPA signal with respect to time t.

同期電気信号発生装置10において、PC108によりクロック信号の偏波を変更した場合のSi−APD103が出力するTPA信号を図21(a),(b)に示す。図21(a),(b)において、PC108の調整により直線偏光のクロック信号を出力した場合のTPA信号を実線で示し、円偏光のクロック信号を出力した場合のTPA信号を点線で示す。   FIGS. 21A and 21B show TPA signals output from the Si-APD 103 when the clock signal polarization is changed by the PC 108 in the synchronous electric signal generator 10. 21A and 21B, a TPA signal when a linearly polarized clock signal is output by adjustment of the PC 108 is indicated by a solid line, and a TPA signal when a circularly polarized clock signal is output is indicated by a dotted line.

図21(a)に示すように、直線偏光のクロック信号を光カプラ101に入力したTPA信号の波形と、円偏光のクロック信号を光カプラ101に入力したTPA信号の波形とでは、オフセット値が異なる。このため、図21(b)に示すように、オフセットを合わせると、直線偏光のクロック信号を光カプラ101に入力したTPA信号の波形と、円偏光のクロック信号を光カプラ101に入力したTPA信号の波形とには、時間tについて周期の10分の1程度のタイミングのずれ(タイミングオフセット)が発生している。   As shown in FIG. 21A, the offset value between the waveform of the TPA signal in which the linearly polarized clock signal is input to the optical coupler 101 and the waveform of the TPA signal in which the circularly polarized clock signal is input to the optical coupler 101 has an offset value. Different. For this reason, as shown in FIG. 21B, when the offset is adjusted, the waveform of the TPA signal in which the linearly polarized clock signal is input to the optical coupler 101 and the TPA signal in which the circularly polarized clock signal is input to the optical coupler 101 are obtained. There is a timing deviation (timing offset) of about one-tenth of the period with respect to time t.

また、上記のようなSi−APDにおける位相誤差信号の偏波依存性を低減するための技術が考えられている。具体的には、Si−APDに入射させる2つの光信号の一方を円偏光にする構成である(例えば、非特許文献3参照)。   Further, a technique for reducing the polarization dependence of the phase error signal in the Si-APD as described above is considered. Specifically, one of the two optical signals incident on the Si-APD is circularly polarized (for example, see Non-Patent Document 3).

図22を参照して、2つの光信号を合波してSi−APDに入力した場合に、Si−APDから出力されるTPA信号の偏波依存性を説明する。図22(a)に、時間差τに対する、少なくとも一方が直線偏光の2つの光信号を合波した場合のTPA信号を示す。図22(b)に、時間差τに対する、少なくとも一方が円偏光の光信号を合波した場合のTPA信号を示す。   With reference to FIG. 22, the polarization dependence of the TPA signal output from the Si-APD when two optical signals are combined and input to the Si-APD will be described. FIG. 22A shows a TPA signal when two optical signals, at least one of which is linearly polarized, are combined with respect to the time difference τ. FIG. 22B shows a TPA signal when at least one of the optical signals having a circular polarization is multiplexed with respect to the time difference τ.

図22(a)において、互いに同じ方向の直線偏光の2つの光信号を合波した場合の位相誤差信号を実線で示し、互いに直交する直線偏光の2つの光信号を合波した場合の位相誤差信号を点線で示し、直線偏光及び円偏光の光信号を合波した場合の位相誤差信号を破断線で示す。図22(a)に示すように、偏波が異なると、位相誤差信号のオフセット値及び振幅がともに異なっている。   In FIG. 22A, a phase error signal when two optical signals of linearly polarized light in the same direction are combined is indicated by a solid line, and a phase error when two optical signals of linearly polarized light orthogonal to each other are combined. A signal is indicated by a dotted line, and a phase error signal when a linearly polarized light signal and a circularly polarized light signal are combined is indicated by a broken line. As shown in FIG. 22A, when the polarization is different, both the offset value and the amplitude of the phase error signal are different.

図22(b)において、円偏光及び直線偏光の光信号を合波した場合のTPA信号を実線で示し、互いに同じ回転方向の円偏光の2つの光信号を合波した場合のTPA信号を破断線で示し、互いに逆回転方向の円偏光の2つの光信号を合波した場合のTPA信号を点線で示す。図22(b)に示すように、図22(a)に比べて、偏波が異なっても、TPA信号の振幅が同一になっている。   In FIG. 22B, the TPA signal when the circularly polarized light signal and the linearly polarized light signal are combined is indicated by a solid line, and the TPA signal when the two circularly polarized light signals having the same rotation direction are combined is broken. A TPA signal when two circularly polarized optical signals in the reverse rotation direction are combined is indicated by a dotted line. As shown in FIG. 22B, the amplitude of the TPA signal is the same even if the polarization is different compared to FIG.

一方を円偏光にして合波した場合のTPA信号I(τ)は、次式(1)〜(4)により記述される。

Figure 0005435443
The TPA signal I (τ) when one of them is combined with circular polarization is described by the following equations (1) to (4).
Figure 0005435443

但し、
I(τ):二光子吸収によりSi−APDに発生する光電流(TPA信号)、
E(t):時間の関数である電場、
η:二光子吸収効率に関する定数、
〜S:片方の入射光の規格化Stokesベクトル、
S’〜S’:もう片方の入射光の規格化Stokesベクトル、
g(t):片方の入射光のエンベロープ、
g’(t):もう片方の入射光のエンベロープ、
B1:I(τ)のオフセット値、
C1:I(τ)の振幅、
である。
However,
I (τ): photocurrent (TPA signal) generated in Si-APD by two-photon absorption,
E (t): electric field as a function of time,
η: constant for two-photon absorption efficiency,
S 1 to S 3 : Normalized Stokes vector of one incident light,
S ′ 1 to S ′ 3 : Normalized Stokes vector of the other incident light,
g (t): envelope of one incident light,
g ′ (t): envelope of the other incident light,
B1: Offset value of I (τ),
C1: amplitude of I (τ),
It is.

図23(a)に、時間tに対するエンベロープg (t)の波形を示す。図23(b)に、時間差τに対するTPA信号I(τ)の波形を示す。式(1)〜(4)に示すエンベロープg(t)、g’(t−τ)は、図23(a)に示すような波形である。このとき、式(2)に示すTPA信号I(τ)は、図23(b)に示すような波形となり、式(3)、(4)で表されるオフセット値B1及び振幅C1を有する。Si−APDへの2つの入力光信号のうち、片方を円偏光にすると、振幅C1は変化せず、オフセット値B1が変化する。
国際公開第03/104886号パンフレット 国際公開第2008/007615号パンフレット Reza Salem,T.E.Murphy,“Broad-Band Optical Clock Recovery System Using Two-Photon Absorption,” Photonics Technology Letters,vol.16,no.9,2141-2143,2004 Reza Salem,G.E.Tudury,T.U.Horton,G.M.Carter and T.E.Murphy,“Polarization-Insensitive Optical Clock Recovery at 80 Gbi/s Using a Silicon Photociode,”Photonics technology letters,vol.17,no.9,pp.1968-1970,2005. Reza Salem and Thomas E.Murphy,“Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,”Optics letters,vol.29,no.13,pp.1524-1526,2004
FIG. 23A shows a waveform of the envelope g (t) with respect to time t. FIG. 23B shows the waveform of the TPA signal I (τ) with respect to the time difference τ. Envelopes g (t) and g ′ (t−τ) shown in equations (1) to (4) have waveforms as shown in FIG. At this time, the TPA signal I (τ) shown in Expression (2) has a waveform as shown in FIG. 23B, and has an offset value B1 and an amplitude C1 expressed by Expressions (3) and (4). If one of the two input optical signals to the Si-APD is circularly polarized, the amplitude C1 does not change and the offset value B1 changes.
WO03 / 104886 pamphlet International Publication No. 2008/007615 Pamphlet Reza Salem, TEMurphy, “Broad-Band Optical Clock Recovery System Using Two-Photon Absorption,” Photonics Technology Letters, vol. 16, no. 9, 2141-2143, 2004 Reza Salem, GETudury, TUHorton, GMCarter and TEMurphy, “Polarization-Insensitive Optical Clock Recovery at 80 Gbi / s Using a Silicon Photociode,” Photonics technology letters, vol. 17, no. 9, pp. 1968-1970, 2005. Reza Salem and Thomas E. Murphy, “Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode,” Optics letters, vol. 29, no. 13, pp. 1524-1526, 2004

しかし、従来のOPLLを利用した同期光信号発生装置において、Si−APDにおけるTPA信号I(τ)の偏波依存性を無くすために片方の入力光信号を円偏光にしたとしても、TPA信号I(τ)の振幅C1を偏波無依存化できるが、オフセット値B1を偏波無依存化できない。このため、参照光信号や、帰還されるビート光信号(以下、この2つを入力光信号とする)の偏波が変わることにより、同期ビート信号のタイミングオフセットが生じる。   However, in the conventional synchronous optical signal generator using OPLL, even if one input optical signal is circularly polarized in order to eliminate the polarization dependence of the TPA signal I (τ) in Si-APD, the TPA signal I Although the amplitude C1 of (τ) can be made independent of polarization, the offset value B1 cannot be made independent of polarization. For this reason, a timing offset of the synchronous beat signal is generated by changing the polarization of the reference optical signal or the beat optical signal to be fed back (hereinafter, these two are referred to as input optical signals).

本発明の課題は、入力光信号の偏波に依存しない同期タイミングで同期ビート光信号を発生することである。   An object of the present invention is to generate a synchronous beat optical signal at a synchronous timing independent of the polarization of the input optical signal.

上記課題を解決するために、本発明に係る同期光信号発生装置は、
所定周波数の変調信号を発生する局所発振部と、
参照光信号と時間的変調された円偏光のビート光信号とを合波する合波部と、
非線形効果により、前記合波された参照光信号及びビート光信号の位相を比較し位相比較信号を生成する位相比較部と、
前記位相比較信号及び前記変調信号を乗算して当該位相比較信号の微分値信号を位相誤差信号として出力する電気ミキサと、
前記位相誤差信号を整形する整形部と、
前記整形された位相誤差信号に基づいて、当該位相誤差信号を0にするビート光信号を発生して出力するビート光信号発生部と、
前記ビート光信号発生部により発生されたビート光信号を、前記変調信号に基づいて時間的変調する時間的変調部と、
前記時間的変調されたビート光信号を円偏光にして前記合波部に出力する円偏光調整部と、を備える。
In order to solve the above problems, a synchronous optical signal generator according to the present invention provides:
A local oscillation unit that generates a modulation signal of a predetermined frequency;
A combining unit for combining the reference light signal and the temporally modulated circularly polarized beat light signal;
A phase comparison unit that generates a phase comparison signal by comparing phases of the combined reference light signal and beat light signal by a non-linear effect;
An electric mixer that multiplies the phase comparison signal and the modulation signal and outputs a differential value signal of the phase comparison signal as a phase error signal;
A shaping unit for shaping the phase error signal;
Based on the shaped phase error signal, a beat optical signal generator that generates and outputs a beat optical signal that sets the phase error signal to 0,
A temporal modulation unit that temporally modulates the beat optical signal generated by the beat optical signal generation unit based on the modulation signal;
A circularly polarized light adjusting unit that converts the temporally modulated beat optical signal into circularly polarized light and outputs the circularly polarized light signal to the multiplexing unit.

好ましくは、前記円偏光調整部は、偏波コントローラである。   Preferably, the circular polarization adjustment unit is a polarization controller.

好ましくは、前記合波部は、ハーフミラーであり、
前記円偏光調整部は、1/4波長板であり、
前記1/4波長板から前記位相比較部までの光路が空間光学系により構成され、
前記ビート光信号発生部から前記1/4波長板までの光路を通る光信号の偏波を直線偏光に保持する偏波保持部を備える。
Preferably, the multiplexing unit is a half mirror.
The circularly polarized light adjusting unit is a quarter wavelength plate,
An optical path from the quarter-wave plate to the phase comparison unit is configured by a spatial optical system,
A polarization holding unit that holds the polarization of the optical signal passing through the optical path from the beat optical signal generation unit to the quarter-wave plate as linearly polarized light;

好ましくは、前記時間的変調部は、前記ビート光信号を構成する一方の波長の光信号を位相変調する位相変調部を備える。   Preferably, the temporal modulation unit includes a phase modulation unit that phase-modulates an optical signal having one wavelength constituting the beat optical signal.

好ましくは、前記時間的変調部は、
前記ビート光信号を構成する第1及び第2の波長の光信号を抽出するアレイ導波路回析格子と、
前記第2の波長の光信号及び位相変調された第1の波長の光信号を反射するファラデーローテータミラーと、を備え、
前記位相変調部は、前記アレイ導波路回析格子から出力される前記第1の波長の光信号を位相変調し、
前記アレイ導波路回析格子は、前記ファラデーローテータミラーにより反射された、前記第2の波長の光信号及び前記位相変調された第1の波長の光信号を合波しビート光信号として出力する。
Preferably, the temporal modulation unit is
An arrayed waveguide diffraction grating for extracting optical signals of the first and second wavelengths constituting the beat optical signal;
A Faraday rotator mirror that reflects the optical signal of the second wavelength and the optical signal of the first wavelength that is phase-modulated,
The phase modulation unit phase modulates the optical signal of the first wavelength output from the arrayed waveguide diffraction grating,
The arrayed waveguide diffraction grating multiplexes the optical signal of the second wavelength and the optical signal of the first wavelength modulated by the phase reflected by the Faraday rotator mirror, and outputs it as a beat optical signal.

好ましくは、前記ビート光信号発生部は、
前記位相誤差信号に応じた周波数間隔の光コム信号を発生する光コム発生部と、
前記発生された光コム信号から第1及び第2の波長の線スペクトルの光信号を選択して抽出する2モード選択部と、
前記抽出された第1及び第2の波長の光信号を合波してビート光信号を発生して出力する2モード合波部と、を備える。
Preferably, the beat optical signal generator is
An optical comb generator for generating an optical comb signal at a frequency interval according to the phase error signal;
A two-mode selection unit for selecting and extracting optical signals of the first and second wavelength line spectra from the generated optical comb signal;
A two-mode multiplexing unit that combines the extracted optical signals of the first and second wavelengths to generate and output a beat optical signal.

好ましくは、前記2モード選択部及び前記2モード合波部は、ファブリペローエタロンにより構成される。   Preferably, the two-mode selection unit and the two-mode multiplexing unit are configured by a Fabry-Perot etalon.

好ましくは、前記時間的変調部は、前記2モード選択部により選択された第1の波長の光信号を時間的変調し、当該時間的変調した第1の波長の光信号と前記第2の波長の光信号とを合波して出力する。   Preferably, the temporal modulation unit temporally modulates the optical signal of the first wavelength selected by the two-mode selection unit, and the temporally modulated optical signal of the first wavelength and the second wavelength Are combined and output.

好ましくは、前記2モード選択部及び前記2モード合波部は、前記時間的変調部を含み、当該時間的変調部により時間的変調されたビート光信号を発生して出力する。   Preferably, the two-mode selection unit and the two-mode multiplexing unit include the temporal modulation unit, and generate and output a beat optical signal temporally modulated by the temporal modulation unit.

好ましくは、前記時間的変調部は、前記ビート光信号を位相変調する位相変調部を備える。   Preferably, the temporal modulation unit includes a phase modulation unit that phase-modulates the beat optical signal.

好ましくは、前記局所発振部からの変調信号の位相をシフトして、前記電気ミキサ又は前記時間的変調部に出力する位相シフタを備える。   Preferably, a phase shifter that shifts the phase of the modulation signal from the local oscillation unit and outputs the shifted signal to the electric mixer or the temporal modulation unit is provided.

本発明に係る同期光信号発生方法は、
参照光信号と時間的変調された円偏光のビート光信号とを合波する工程と、
非線形効果により、前記合波された参照光信号及びビート光信号の位相を比較して位相比較信号を生成する工程と、
前記位相比較信号と、所定周波数の変調信号を乗算して当該位相比較信号の微分値信号を位相誤差信号として出力する工程と、
前記位相誤差信号を整形する工程と、
前記整形された位相誤差信号の微分値信号に基づいて、当該微分値信号を0にするビート光信号を発生して出力する工程と、
前記発生されたビート光信号を、前記変調信号に基づいて時間的変調する工程と、
前記時間的変調されたビート光信号を円偏光にして前記合波に用いる時間的変調された円偏光のビート光信号として出力する工程と、を含む。
The synchronous optical signal generation method according to the present invention includes:
Combining the reference light signal and the temporally modulated circularly polarized beat light signal;
A step of generating a phase comparison signal by comparing phases of the combined reference light signal and beat light signal by a non-linear effect;
Multiplying the phase comparison signal by a modulation signal of a predetermined frequency and outputting a differential value signal of the phase comparison signal as a phase error signal;
Shaping the phase error signal;
Generating and outputting a beat optical signal that sets the differential value signal to 0 based on the differential value signal of the shaped phase error signal;
Temporally modulating the generated beat optical signal based on the modulation signal;
And converting the temporally modulated beat optical signal into circularly polarized light and outputting it as a temporally modulated circularly polarized beat optical signal used for the multiplexing.

本発明によれば、帰還するビート光信号を時間的変調し、円偏光にして復調することにより、位相比較信号の微分値を位相誤差信号として得ることができ、入力光信号の偏波に依存しない同期タイミングで同期ビート光信号を発生できる。   According to the present invention, the differential value of the phase comparison signal can be obtained as a phase error signal by temporally modulating the beat optical signal to be fed back and demodulating it into circularly polarized light, which depends on the polarization of the input optical signal. A synchronous beat optical signal can be generated at a synchronous timing that is not.

以下、図面を参照して本発明に係る実施の形態を説明する。但し、本発明は図示例に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the illustrated examples.

先ず、図1を参照して、本実施の形態の同期光信号発生装置1の装置構成を説明する。図1に、本実施の形態の同期光信号発生装置1の構成を示す。   First, with reference to FIG. 1, the apparatus structure of the synchronous optical signal generator 1 of this Embodiment is demonstrated. FIG. 1 shows a configuration of a synchronous optical signal generator 1 according to the present embodiment.

図1に示すように、同期光信号発生装置1は、合波部としての光カプラ11と、位相比較部12と、電気ミキサ13と、ループフィルタ20と、ビート光信号発生部としてのOVCO30と、局所発振部15と、時間的変調部16と、円偏光調整部17と、を備えて構成される。OVCO30は、VCO31と、RFアンプ32と、光コム発生部33と、2モード選択部34と、2モード合波部35と、を備えて構成される。合波部としては、光カプラ11に限定されるものではなく、ハーフミラー等、他の合波部としてもよい。   As shown in FIG. 1, the synchronous optical signal generator 1 includes an optical coupler 11 as a multiplexing unit, a phase comparison unit 12, an electric mixer 13, a loop filter 20, and an OVCO 30 as a beat optical signal generation unit. The local oscillation unit 15, the temporal modulation unit 16, and the circular polarization adjustment unit 17 are configured. The OVCO 30 includes a VCO 31, an RF amplifier 32, an optical comb generator 33, a two-mode selector 34, and a two-mode multiplexer 35. The multiplexing unit is not limited to the optical coupler 11 and may be another multiplexing unit such as a half mirror.

光カプラ11は、図示しない外部機器から入力される同期させたい参照光信号と円偏光調整部17から出力されるビート光信号とが入力され、その2つの光を合波して出力する。位相比較部12は、光カプラ11から出力された合波された光信号が入力され、その光信号から参照光信号とビート光信号との位相差を示す位相比較信号を出力する。位相比較部12は、非線形効果である2光子吸収により位相比較信号としてのTPA信号(TPA電流)を出力する位相比較器である。以下、一例として、位相比較部12が、Si−APDであるものとして説明するが、Si−PD等、他の二光子吸収による位相比較部を用いることとしてもよい。位相比較部12の出力信号を、RF信号とする。   The optical coupler 11 receives a reference light signal to be synchronized input from an external device (not shown) and a beat light signal output from the circular polarization adjustment unit 17, and combines and outputs the two lights. The phase comparison unit 12 receives the combined optical signal output from the optical coupler 11 and outputs a phase comparison signal indicating the phase difference between the reference optical signal and the beat optical signal from the optical signal. The phase comparison unit 12 is a phase comparator that outputs a TPA signal (TPA current) as a phase comparison signal by two-photon absorption that is a nonlinear effect. Hereinafter, as an example, the phase comparison unit 12 will be described as being Si-APD, but other phase comparison units based on two-photon absorption such as Si-PD may be used. The output signal of the phase comparison unit 12 is an RF signal.

電気ミキサ13は、位相比較部12から出力された位相比較信号と、局所発振部15から出力される変調信号とが入力され、その2つの電気信号を乗算して位相比較信号を復調し位相誤差信号として出力する。電気ミキサ13の出力信号を、IF(Intermediate Frequency:中間周波数)信号とする。   The electric mixer 13 receives the phase comparison signal output from the phase comparison unit 12 and the modulation signal output from the local oscillation unit 15, and multiplies the two electric signals to demodulate the phase comparison signal to generate a phase error. Output as a signal. The output signal of the electric mixer 13 is an IF (Intermediate Frequency) signal.

ループフィルタ20は、電気ミキサ13から出力された位相誤差信号を整形して出力する。OVCO30は、ループフィルタ20から入力された整形後の位相誤差信号に応じて、参照光信号に同期した波長λ1,λ2のビート光信号を出力する。   The loop filter 20 shapes and outputs the phase error signal output from the electric mixer 13. The OVCO 30 outputs beat optical signals with wavelengths λ1 and λ2 synchronized with the reference optical signal in accordance with the shaped phase error signal input from the loop filter 20.

VCO31は、ループフィルタ20から出力された整形後の位相誤差信号が入力され、その位相誤差信号に応じた周波数の電気信号を発生して出力する。RFアンプ32は、VCO31から出力された電気信号が入力され、その電気信号を増幅して出力する。光コム発生部33は、RFアンプ32から出力された電気信号が入力され、その電気信号の周波数間隔(繰り返し周波数)の光コム信号を出力する。光コム信号は、VCO31の電気信号の周波数間隔の複数のスペクトル線を有する光信号である。各スペクトル線間の差周波数の線幅は狭い。このようにして、OVCO30は、ループフィルタ20から入力される位相誤差信号を0にするようなビート光信号を出力する。   The VCO 31 receives the shaped phase error signal output from the loop filter 20 and generates and outputs an electrical signal having a frequency corresponding to the phase error signal. The RF amplifier 32 receives the electrical signal output from the VCO 31 and amplifies and outputs the electrical signal. The optical comb generator 33 receives the electrical signal output from the RF amplifier 32 and outputs an optical comb signal at a frequency interval (repetition frequency) of the electrical signal. The optical comb signal is an optical signal having a plurality of spectral lines at a frequency interval of the electric signal of the VCO 31. The line width of the difference frequency between each spectral line is narrow. In this way, the OVCO 30 outputs a beat optical signal that makes the phase error signal input from the loop filter 20 zero.

2モード選択部34は、光コム発生部33から出力される光コム信号が入力され、その光コム信号のうち、所定の波長λ1,λ2のスペクトル線(所定の2つのモード)の光信号を選択して出力する。2モード合波部35は、2モード選択部34から出力された波長λ1,λ2の光信号が入力され、その波長λ1,λ2の光信号を合波し光ビート光信号として外部に出力するとともに、時間的変調部16にも出力する。なお、2モード合波部35が合波する波長λ1,λ2の光信号の偏波は合っているものとする。   The two-mode selector 34 receives the optical comb signal output from the optical comb generator 33, and selects the optical signals of the spectral lines (predetermined two modes) of the predetermined wavelengths λ1 and λ2 among the optical comb signals. Select and output. The two-mode multiplexing unit 35 receives the optical signals of the wavelengths λ1 and λ2 output from the two-mode selection unit 34, combines the optical signals of the wavelengths λ1 and λ2, and outputs the resultant optical beat optical signal to the outside. Also output to the temporal modulation section 16. It is assumed that the polarizations of the optical signals having the wavelengths λ1 and λ2 combined by the two-mode multiplexing unit 35 match.

局所発振部15は、所定周波数の電気信号を変調信号として出力する。局所発振部15の出力信号を、LO信号とする。時間的変調部16は、2モード合波部35から出力されたビート光信号と局所発振部15から出力された局所周波数信号とが入力され、その局所周波数信号に基づいてビート光信号に時間的変調をかけて出力する。円偏光調整部17は、時間的変調部16から出力された時間的変調後のビート光信号が入力され、そのビート光信号を位相比較部12の入力時に円偏光となるよう調整して光カプラ11に出力する。ビート光信号は、位相比較部12に帰還される。このように、同期光信号発生装置1は、位相誤差信号が0になるところでロックされ、参照光信号に同期したビート光信号を出力する。   The local oscillation unit 15 outputs an electric signal having a predetermined frequency as a modulation signal. The output signal of the local oscillating unit 15 is an LO signal. The temporal modulation unit 16 receives the beat optical signal output from the two-mode multiplexing unit 35 and the local frequency signal output from the local oscillation unit 15, and temporally converts the beat optical signal to the beat optical signal based on the local frequency signal. Output with modulation. The circular polarization adjustment unit 17 receives the time-modulated beat light signal output from the time modulation unit 16, and adjusts the beat light signal to be circularly polarized when input to the phase comparison unit 12. 11 is output. The beat optical signal is fed back to the phase comparison unit 12. Thus, the synchronous optical signal generator 1 is locked when the phase error signal becomes 0, and outputs a beat optical signal synchronized with the reference optical signal.

次に、図2〜図10を参照して、同期光信号発生装置1の動作を説明する。従来の技術で述べたように、二光子吸収の位相比較部12(Si−APD)に入力する2つの光信号のうち、片方を円偏光にすると、位相比較部12から出力される位相比較信号(TPA電流)の振幅が、入力光信号の偏波によらず一定となり、そのオフセット値が入力光信号の偏波に依存する。このため、TPA電流を時間で微分すれば、そのオフセット値がキャンセルされ、その微分値信号が、入力光信号の偏波によらず同一の信号となる。同期光信号発生装置1では、時間的変調部16によりビート光信号に時間的変調がかけられ、円偏光調整部17により円偏光に調整され、参照信号とともに位相比較部12に入力され、電気ミキサ13により位相比較部12のTPA信号が復調されることで、TPA信号の時間的な微分値信号が位相誤差信号として得られる。   Next, the operation of the synchronous optical signal generator 1 will be described with reference to FIGS. As described in the prior art, when one of the two optical signals input to the two-photon absorption phase comparison unit 12 (Si-APD) is circularly polarized, the phase comparison signal output from the phase comparison unit 12 The amplitude of (TPA current) is constant regardless of the polarization of the input optical signal, and the offset value depends on the polarization of the input optical signal. Therefore, if the TPA current is differentiated with respect to time, the offset value is canceled, and the differentiated value signal becomes the same signal regardless of the polarization of the input optical signal. In the synchronous optical signal generator 1, the beat optical signal is temporally modulated by the temporal modulator 16, is adjusted to circularly polarized light by the circular polarization adjuster 17, and is input to the phase comparator 12 together with the reference signal. 13, the TPA signal of the phase comparison unit 12 is demodulated, so that a temporal differential value signal of the TPA signal is obtained as a phase error signal.

ここで、ビート光信号に対する時間的変調と、TPA信号に対する復調とにより、TPA信号の時間的な微分値信号が得られることを説明する。先ず、参照光信号とビート光信号との時間差τに対して得られる位相比較部12のTPA信号をX(τ)とする。所定の時間差τにて局所発振部15による時間的変調sinωtを振幅Dで、時間的変調部16
によりビート光信号に加えると、TPA信号X(τ)が(τ+Dsinωt)で記述される。
Here, it will be described that a temporal differential value signal of the TPA signal can be obtained by temporal modulation of the beat optical signal and demodulation of the TPA signal. First, let T (τ) be the TPA signal of the phase comparison unit 12 obtained with respect to the time difference τ between the reference light signal and the beat light signal. At a predetermined time difference τ 0, the temporal modulation sin ωt by the local oscillating unit 15 is amplitude D and the temporal modulation unit 16
Is added to the beat light signal, the TPA signal X (τ) is described by X0 + Dsinωt).

ここで、TPA信号X(τ)をテイラー展開すると、次式(5)で表される。ここでは、Dが小さい極限では式(5)の右辺の第二項がX(τ)の微分値と等しくなることを意味する。

Figure 0005435443
Here, when the TPA signal X (τ) is Taylor-expanded, it is expressed by the following equation (5). Here, in the limit where D is small, it means that the second term on the right side of Equation (5) is equal to the differential value of X (τ).
Figure 0005435443

また、局所発振部15がDsinωtで駆動されて電気ミキサ13に入力され、また電気ミキサ13に式(5)のTPA信号が入力されると、電気ミキサ13の出力は、式(5)の右辺の第二項にsinωtを乗じた値となる。というのは、通常用いられる電気ミキサでは、入力DC成分が無視されるからである。   Further, when the local oscillation unit 15 is driven by Dsinωt and input to the electric mixer 13, and the TPA signal of Expression (5) is input to the electric mixer 13, the output of the electric mixer 13 is the right side of Expression (5). The second term is multiplied by sinωt. This is because an input DC component is ignored in a commonly used electric mixer.

式(5)の右辺の第二項にsinωtを乗じた値は、次式(6)で示される。また、式(6)からDC成分を抜き出すと、次式(7)の値が得られる。

Figure 0005435443
A value obtained by multiplying the second term on the right side of the equation (5) by sinωt is expressed by the following equation (6). Further, when the DC component is extracted from the equation (6), the value of the following equation (7) is obtained.
Figure 0005435443

時間振幅Dが小さな極限では、式(7)がTPA信号の微分値に一致する。式(7)の値は、電気ミキサ13の出力信号である。通常の動作では、時間振幅Dが有限の値をとり、その値はできる限り小さく抑制されるため、電気ミキサ13の出力信号がほぼTPA信号の微分値に一致する。ただし、通常の動作での時間振幅Dの大きさは、ビート光信号の周期に比較すると十分小さな値であり、且つタイミングジッタよりは大きな値である必要がある。   In the limit where the time amplitude D is small, Equation (7) matches the differential value of the TPA signal. The value of equation (7) is the output signal of the electric mixer 13. In a normal operation, the time amplitude D takes a finite value, and the value is suppressed as small as possible. Therefore, the output signal of the electric mixer 13 substantially matches the differential value of the TPA signal. However, the magnitude of the time amplitude D in the normal operation needs to be a sufficiently small value as compared with the cycle of the beat optical signal and a value larger than the timing jitter.

次いで、図2を参照して時間的変調の例を説明する。図2に、時間的変調がなされた信号の波形を示す。図2において、横軸の「ピリオド」とは、ビート光信号の一周期であり、以下の図でも同様とする。また、時間的変調周期をΔtで示す。   Next, an example of temporal modulation will be described with reference to FIG. FIG. 2 shows a waveform of a signal subjected to temporal modulation. In FIG. 2, “period” on the horizontal axis is one cycle of the beat optical signal, and the same applies to the following figures. The temporal modulation period is indicated by Δt.

時間的変調部16において、例えば、図2に示すように、所定の時間tからt+4Δtまで、変調量が振動するように時間的変調がなされる。また、時間的変調信号の周波数は、OPLL信号周波数に比較して小さいことが必要である。つまり、次式(8)を満たす。
(時間的変調周期Δt)≫(OPLL出力信号の一周期) …(8)
In the temporal modulation unit 16, for example, as shown in FIG. 2, temporal modulation is performed so that the modulation amount oscillates from a predetermined time t to t + 4Δt. Further, the frequency of the temporally modulated signal needs to be smaller than the OPLL signal frequency. That is, the following expression (8) is satisfied.
(Temporal modulation period Δt) >> (one period of the OPLL output signal) (8)

また、時間的変調信号の周波数は、OPLLループ帯域に比較して大きいことが必要である。つまり、次式(9)を満たす。
(時間的変調周期Δt)≪(ループ帯域の逆数) …(9)
本実施の形態では、例えば、
(ループ帯域の逆数=10[μs])≫(時間的変調周期=100[ns])≫(OPLL出力信号(ビート光信号)の周期=6.25[ps])
の関係を満たすように設定されている。
Further, the frequency of the temporally modulated signal needs to be larger than the OPLL loop band. That is, the following expression (9) is satisfied.
(Temporal modulation period Δt) << (reciprocal of loop band) (9)
In the present embodiment, for example,
(Reciprocal of loop band = 10 [μs]) >> (temporal modulation period = 100 [ns]) >> (period of OPLL output signal (beat optical signal) = 6.25 [ps])
It is set to satisfy the relationship.

次いで、図3及び図4を参照して、時間的変調・復調の様子を説明する。図3(a)に、時間差τに対するTPA信号の一例と時間的変調するポイントA,B,Cとを示す。図3(b)に、図3(a)のTPA信号の微分値信号を示す。図4(a)に、図3(a)のポイントA,B,Cにおける時間的変調後のTPA信号の波形を示す。図4(b)に、局所発振部15のLO信号と図3(a)のポイントA,B,Cにおける復調信号との波形を示す。   Next, with reference to FIG. 3 and FIG. 4, the state of temporal modulation / demodulation will be described. FIG. 3A shows an example of the TPA signal with respect to the time difference τ and points A, B, and C for temporal modulation. FIG. 3B shows a differential value signal of the TPA signal shown in FIG. FIG. 4A shows the waveform of the TPA signal after temporal modulation at points A, B, and C in FIG. FIG. 4B shows waveforms of the LO signal of the local oscillating unit 15 and the demodulated signals at points A, B, and C in FIG.

位相比較部12の出力信号は、ビート光信号に時間的変調を加えないと、図3(a)に示す実線、破断線、点線のように、時間差τに対してオフセット値が異なるTPA信号となる。このような場合に、時間的変調部16により、局所発振部15が発生する変調信号の周波数で時間的変調をかける。ここで、時間差τ<0、τ=0、τ>0の各所定値のTPA信号を、順に、ポイントA,B,Cとする。   The output signal of the phase comparison unit 12 is a TPA signal having a different offset value with respect to the time difference τ, as shown by a solid line, a broken line, and a dotted line in FIG. Become. In such a case, the temporal modulation unit 16 applies temporal modulation at the frequency of the modulation signal generated by the local oscillation unit 15. Here, TPA signals having predetermined values with time differences τ <0, τ = 0, and τ> 0 are assumed to be points A, B, and C in order.

すると、ポイントA,B,Cにおける位相比較部12の出力信号(TPA信号)は、図4(a)に示すような波形となる。さらに、局所発振部15から出力されるLO信号(変調信号)と、ポイントA,B,Cにおける電気ミキサ13の出力信号(復調信号)とは、図4(b)に示すような波形となる。図4(b)に示すように、復調信号のDC成分(平均値)は、ポイントAで正の値となり、ポイントBで0の値となり、ポイントCで負の値となる。つまり、復調信号は、図3(a)のTPA信号の微分値になっていることが分かる。なお、図3(a)のTPA信号の微分値信号は、図3(b)に示す波形となる。   Then, the output signal (TPA signal) of the phase comparison unit 12 at points A, B, and C has a waveform as shown in FIG. Furthermore, the LO signal (modulation signal) output from the local oscillation unit 15 and the output signal (demodulation signal) of the electric mixer 13 at points A, B, and C have waveforms as shown in FIG. . As shown in FIG. 4B, the DC component (average value) of the demodulated signal has a positive value at point A, a zero value at point B, and a negative value at point C. That is, it can be seen that the demodulated signal is a differential value of the TPA signal of FIG. Note that the differential value signal of the TPA signal in FIG. 3A has the waveform shown in FIG.

次いで、図5を参照して、局所発振部15の変調信号の適切な周波数範囲について説明する。図5に、電気ミキサ13の出力信号の周波数分布を示す。   Next, an appropriate frequency range of the modulation signal of the local oscillation unit 15 will be described with reference to FIG. FIG. 5 shows the frequency distribution of the output signal of the electric mixer 13.

電気ミキサ13の出力信号は、図5に示すような周波数分布となる。ここで、局所発振部15の変調信号の周波数をfLOとする。位相比較部12から出力されるTPA信号は、局所発振部15の変調信号で時間的に変調されているため、周波数fLOに信号成分を有する。また、電気ミキサ13のアイソレーション不足により、電気ミキサ13の出力信号に現れている。電気ミキサ13から出力される復調信号は、TPA信号と局所発振部15の変調信号との乗算成分を有するため、DC成分と2×fLO成分とを有する。 The output signal of the electric mixer 13 has a frequency distribution as shown in FIG. Here, the frequency of the modulation signal of the local oscillation unit 15 is assumed to be f LO . Since the TPA signal output from the phase comparison unit 12 is temporally modulated by the modulation signal of the local oscillation unit 15, it has a signal component at the frequency f LO . Further, due to insufficient isolation of the electric mixer 13, it appears in the output signal of the electric mixer 13. Since the demodulated signal output from the electric mixer 13 has a multiplication component of the TPA signal and the modulation signal of the local oscillation unit 15, it has a DC component and a 2 × f LO component.

電気ミキサ13の出力信号は、ループフィルタ20により復調信号DC成分のみが抽出されて整形されてOVCO30(VCO31)に入力される。よって、ループフィルタ20には、電気ミキサ13の出力信号から、fLO成分と2×fLO成分とを効率よく減衰するローパスフィルタを用いることが好ましい。このため、局所発振部15の変調信号の周波数fLOは、OPLLのループ帯域より大きいことが好ましい。また、周波数fLOが、OPLLのループ帯域の10倍より大きいことがさらに好ましい。 From the output signal of the electric mixer 13, only the demodulated signal DC component is extracted and shaped by the loop filter 20, and is input to the OVCO 30 (VCO 31). Therefore, it is preferable to use a low-pass filter that efficiently attenuates the f LO component and the 2 × f LO component from the output signal of the electric mixer 13 as the loop filter 20. For this reason, the frequency f LO of the modulation signal of the local oscillation unit 15 is preferably larger than the loop band of OPLL. Further, it is more preferable that the frequency f LO is larger than 10 times the loop band of OPLL.

次に、図6〜図10を参照して、時間的変調部16の時間的変調方法として、第1〜第4の時間的変調方法を順に説明する。なお、従来、位相変調器を用いて光信号を位相変調する構成はあった(例えば、特許文献2参照)。しかし、光信号(特にビート光信号)に対して時間的変調をかける技術はなかった。   Next, with reference to FIGS. 6 to 10, first to fourth temporal modulation methods will be sequentially described as temporal modulation methods of the temporal modulation unit 16. Conventionally, there has been a configuration in which an optical signal is phase-modulated using a phase modulator (for example, see Patent Document 2). However, there has been no technique for applying temporal modulation to an optical signal (particularly a beat optical signal).

先ず、図6〜図8を参照して、第1の時間的変調方法を説明する。図6に、第1の時間的変調方法による位相変調部16Aを用いた装置構成を示す。   First, the first temporal modulation method will be described with reference to FIGS. FIG. 6 shows an apparatus configuration using the phase modulation unit 16A according to the first temporal modulation method.

第1の時間的変調方法は、ビート光信号を構成する波長λ1,λ2のCW(Continuous Wave:連続波)光のうち、片方(波長λ1)を位相変調することにより時間的変調を行う方法である。図2に示すように、時間的変調は、位相変調により実現できる。第1の時間的変調方法において、図6に示すように、時間的変調部16は、位相変調部16Aと、光カプラ160と、により構成される。例えば、局所発振部15から出力された変調信号がRFアンプ151により増幅されて位相変調部16Aに出力される。   The first temporal modulation method is a method of performing temporal modulation by phase-modulating one (wavelength λ1) of CW (Continuous Wave) light of wavelengths λ1 and λ2 constituting the beat optical signal. is there. As shown in FIG. 2, the temporal modulation can be realized by phase modulation. In the first temporal modulation method, the temporal modulation unit 16 includes a phase modulation unit 16A and an optical coupler 160, as shown in FIG. For example, the modulation signal output from the local oscillation unit 15 is amplified by the RF amplifier 151 and output to the phase modulation unit 16A.

位相変調部16Aは、局所発振部15から入力された変調信号の電圧でビート光信号の波長λ1成分を位相変調する。位相変調部16Aにより位相変調されたビート光信号の波長λ1成分と、ビート光信号の波長λ2成分とは、光カプラ160により合波され、時間的変調後のビート光信号として円偏光調整部17に出力される。   The phase modulation unit 16A phase-modulates the wavelength λ1 component of the beat optical signal with the voltage of the modulation signal input from the local oscillation unit 15. The wavelength λ1 component of the beat optical signal phase-modulated by the phase modulating unit 16A and the wavelength λ2 component of the beat optical signal are combined by the optical coupler 160, and the circularly polarized light adjusting unit 17 is used as the beat optical signal after temporal modulation. Is output.

ここで、第1の時間的変調方法によるビート光信号の位相の変化を説明する。先ず、ビート光信号の波長λ1成分の電場をE(t)とし、同じく波長λ2成分の電場をE(t)とする。また、電場E(t)=sin(ωt+φ)、電場E(t)=sinωtとする。但し、ω:波長λ1に対応する角速度、ω:波長λ2に対応する角速度、φ:位相変調部16Aによる位相変調量、である。本実施の形態では、例えば、193[THz](波長1550[nm])程度のビート光信号を想定するが、これに限定されるものではない。 Here, the change in the phase of the beat optical signal by the first temporal modulation method will be described. First, the electric field of the wavelength λ1 component of the beat optical signal is E 1 (t), and the electric field of the wavelength λ2 component is E 2 (t). In addition, the electric field E 1 (t) = sin (ω 1 t + φ) and the electric field E 2 (t) = sinω 2 t are set. Where ω 1 is an angular velocity corresponding to the wavelength λ1, ω 2 is an angular velocity corresponding to the wavelength λ2, and φ is a phase modulation amount by the phase modulation unit 16A. In the present embodiment, for example, a beat optical signal of about 193 [THZ] (wavelength 1550 [nm]) is assumed, but the present invention is not limited to this.

すると、時間的変調後のビート光信号のパワーP(t)は、次式(10)により記述される。

Figure 0005435443
Then, the power P (t) of the beat optical signal after temporal modulation is described by the following equation (10).
Figure 0005435443

式(10)において、(1+cos((ω−ω)t−φ))/2の成分がビート光信号のエンベロープ成分(例えば、160[GHz])であり、sin(((ω+ω)t+φ)/2)の成分(例えば、193[THz])が搬送波の成分となる。式(10)から、位相変調部16Aの位相変調量φを0から2πまで変化させると、ビート光信号の位相も0から2πまで変化することが分かる。すなわち、波長λ1成分の任意の位相変調により、ビート光信号を自在に時間的変調することができる。 In Expression (10), the component of (1 + cos ((ω 2 −ω 1 ) t−φ)) / 2 is the envelope component (for example, 160 [GHz]) of the beat optical signal, and sin 2 (((ω 1 The component of + ω 2 ) t + φ) / 2) (for example, 193 [THz]) is the component of the carrier wave. From equation (10), it can be seen that when the phase modulation amount φ of the phase modulation section 16A is changed from 0 to 2π, the phase of the beat optical signal also changes from 0 to 2π. That is, the beat optical signal can be freely temporally modulated by arbitrary phase modulation of the wavelength λ1 component.

図7を参照して、位相変調部16Aに入力する変調信号の電圧を説明する。図7に、位相変調部16Aに加えた電圧に対するビート光信号の強度時間波形を示す。   With reference to FIG. 7, the voltage of the modulation signal input to the phase modulation unit 16A will be described. FIG. 7 shows an intensity time waveform of the beat optical signal with respect to the voltage applied to the phase modulation unit 16A.

図7において、Vπは、位相変調部16Aがビート光信号を構成する搬送波の位相をπずらすために必要な印加電圧である。通常のLN位相変調器を用いる場合に、Vπは3〜5[V]程度である。 In FIG. 7, is an applied voltage necessary for the phase modulation unit 16A to shift the phase of the carrier wave constituting the beat optical signal by π. When a normal LN phase modulator is used, is about 3 to 5 [V].

位相変調部を通過する光の変調時間量Tと、その時間的変調に必要な電圧Vとは、次式(11)に従う。

Figure 0005435443
但し、Tperiod-of-BeatSignal:入力ビート光信号の一周期である。ビート光信号の周波数が160[GHz]である場合に、Tperiod-of-BeatSignalは、6.25[ps]となる。一般的には、Tperiod-of-BeatSignal=1/fbeatである。ただし、fbeat:ビート光信号の周波数である。 A modulation amount of time T m of a light passing through the phase modulation unit, the voltage V required for the temporal modulation, according to the following equation (11).
Figure 0005435443
Where T period-of-BeatSignal is one period of the input beat optical signal. When the frequency of the beat optical signal is 160 [GHz], T period-of-BeatSignal is 6.25 [ps]. Generally, T period-of-BeatSignal = 1 / f beat . Where f beat is the frequency of the beat optical signal.

例えば、図7に示すように、160[GHz]のビート光信号の周波数を半周期である3.125[ps]だけ時間的に変調させるためには、式(11)によりV=Vπの印加電圧を必要とする。よって、ビート光信号を時間的変調するために位相変調部16Aに入力する局所発振部15の変調信号の電圧値は、比較的小さい。 For example, as shown in FIG. 7, in order to temporally modulate the frequency of the beat optical signal of 160 [GHz] by 3.125 [ps] which is a half period, V = Requires applied voltage. Therefore, the voltage value of the modulation signal of the local oscillation unit 15 input to the phase modulation unit 16A in order to temporally modulate the beat optical signal is relatively small.

また、第1の時間的変調方法では、変調周波数の上限が位相変調部16Aの帯域で決まる。このため、例えば、50[GHz]程度までの変調周波数が可能である。そして、時間的変調量はビート光信号の周期の数倍程度まで可能である。例えば、160[GHz]のビート光信号であれば、容易に6.25[ps]は変調可能である。   In the first temporal modulation method, the upper limit of the modulation frequency is determined by the band of the phase modulation unit 16A. For this reason, for example, a modulation frequency up to about 50 [GHz] is possible. The amount of temporal modulation can be up to several times the period of the beat optical signal. For example, if the beat optical signal is 160 [GHz], 6.25 [ps] can be easily modulated.

ここで、図8を参照して、第1の時間的変調方法を行う時間的変調部の一例としての時間的変調部161を説明する。図8に、時間的変調部161の構成を示す。   Here, with reference to FIG. 8, a temporal modulation unit 161 as an example of a temporal modulation unit that performs the first temporal modulation method will be described. FIG. 8 shows the configuration of the temporal modulation unit 161.

図8に示すように、時間的変調部161は、サーキュレータ1611と、AWG1612と、LN位相変調器1613と、FRM1614と、VOA(Variable Optical Attenuator)1615と、FRM1616と、を備えて構成される。   As illustrated in FIG. 8, the temporal modulation unit 161 includes a circulator 1611, an AWG 1612, an LN phase modulator 1613, an FRM 1614, a VOA (Variable Optical Attenuator) 1615, and an FRM 1616.

サーキュレータ1611は、OVCO30から入力された光コム信号(ビート光信号)をAWG1612に出力するとともに、AWG1612から入力されたビート光信号を(円偏光調整部17に)出力する。AWG1612は、サーキュレータ1611から入力される光コム信号(ビート光信号)から波長λ1,λ2のスペクトル線の光信号を選択し、波長λ1の光信号をLN位相変調器1613に出力し、波長λ2の光信号をVOA1615に出力する。   The circulator 1611 outputs the optical comb signal (beat optical signal) input from the OVCO 30 to the AWG 1612 and outputs the beat optical signal input from the AWG 1612 (to the circular polarization adjustment unit 17). The AWG 1612 selects an optical signal having a wavelength of λ1 or λ2 from the optical comb signal (beat optical signal) input from the circulator 1611, outputs the optical signal having the wavelength λ1 to the LN phase modulator 1613, and outputs the optical signal having the wavelength λ2. The optical signal is output to the VOA 1615.

LN位相変調器1613は、局所発振部15からの変調信号と、AWG1612からの波長λ1の光信号と、が入力される。LN位相変調器1613は、入力された変調信号の電圧に応じて、波長λ1の光信号の位相を変調して出力する。LN位相変調器1613から出力された波長λ1の光信号は、FRM1614で反射され、LN位相変調器1613を介し、AWG1612に再び入力される。VOA1615は、AWG1612からの波長λ2の光信号が入力され、その波長λ2の光信号にLN位相変調器1613と等しい減衰をかけて出力する。VOA1615から出力された波長λ2の光信号は、FRM1616で反射され、VOA1615を介し、AWG1612に再び入力される。   The LN phase modulator 1613 receives the modulation signal from the local oscillation unit 15 and the optical signal having the wavelength λ1 from the AWG 1612. The LN phase modulator 1613 modulates and outputs the phase of the optical signal having the wavelength λ1 in accordance with the voltage of the input modulation signal. The optical signal having the wavelength λ1 output from the LN phase modulator 1613 is reflected by the FRM 1614 and is input again to the AWG 1612 via the LN phase modulator 1613. The VOA 1615 receives the optical signal having the wavelength λ 2 from the AWG 1612, and outputs the optical signal having the wavelength λ 2 with the same attenuation as the LN phase modulator 1613. The optical signal having the wavelength λ2 output from the VOA 1615 is reflected by the FRM 1616 and input again to the AWG 1612 through the VOA 1615.

LN位相変調器1613、VOA1615を介して入力された波長λ1,λ2の光信号は、AWG1612により合波されてビート光信号としてサーキュレータ1611を介して円偏光調整部17に出力される。   The optical signals of wavelengths λ1 and λ2 input through the LN phase modulator 1613 and the VOA 1615 are combined by the AWG 1612 and output to the circular polarization adjustment unit 17 through the circulator 1611 as a beat optical signal.

AWG1612から出力された波長λ1,λ2の光信号は、偏波がそろっており、それぞれ、LN位相変調器1613、VOA161を介して、FRM16141,1615で反射され、AWG1612を再び通って出力される。また、FRM16141,1615は、反射により入力光信号の偏波と直交する偏波の光信号を出力する。このため、AWG1612から出力された光信号は、波長λ1,λ2のビート光信号となる。AWG1612によりビート光信号の偏波純度を高められ、選出したい2つの光スペクトル線が2度AWG1612を通過することとにより、光SNRが高くなる。   The optical signals of wavelengths λ1 and λ2 output from the AWG 1612 have the same polarization, are reflected by the FRMs 16141 and 1615 via the LN phase modulator 1613 and the VOA 161, respectively, and output through the AWG 1612 again. Further, the FRMs 16141 and 1615 output an optical signal having a polarization orthogonal to the polarization of the input optical signal by reflection. For this reason, the optical signal output from the AWG 1612 is a beat optical signal having wavelengths λ1 and λ2. The polarization purity of the beat optical signal is increased by the AWG 1612, and the two optical spectrum lines to be selected pass through the AWG 1612 twice, so that the optical SNR is increased.

次いで、図9及び図10を参照して、第2の時間的変調方法を説明する。図9に、第2の時間的変調方法による装置構成を示す。   Next, the second temporal modulation method will be described with reference to FIGS. 9 and 10. FIG. 9 shows an apparatus configuration according to the second temporal modulation method.

第2の時間的変調方法は、入力光信号(ビート光信号)そのものを位相変調する方法である。図9に示すように、第2の時間的変調方法では、図6に示すように、時間的変調部16は、位相変調部16Bにより構成される。例えば、局所発振部15から出力された変調信号がRFアンプ152により増幅されて位相変調部16Bに出力される。位相変調部16Bは、RFアンプ152から入力された変調信号の電圧に応じて、入力されたビート光信号に位相変調をかけて出力する。   The second temporal modulation method is a method of phase-modulating the input optical signal (beat optical signal) itself. As shown in FIG. 9, in the second temporal modulation method, as shown in FIG. 6, the temporal modulation unit 16 includes a phase modulation unit 16B. For example, the modulation signal output from the local oscillation unit 15 is amplified by the RF amplifier 152 and output to the phase modulation unit 16B. The phase modulation unit 16B performs phase modulation on the input beat optical signal according to the voltage of the modulation signal input from the RF amplifier 152 and outputs the result.

第2の時間的変調方法は、最も構成が簡単である。また、ビート光信号に限らず、任意の光信号を時間的に変調できる。また、高速の変調が可能である。例えば、変調周波数の最大値を50[GHz]にできる。   The second temporal modulation method has the simplest configuration. Moreover, not only a beat optical signal but arbitrary optical signals can be temporally modulated. Further, high-speed modulation is possible. For example, the maximum value of the modulation frequency can be set to 50 [GHz].

図10を参照して、第2の時間的変調方法に必要な電圧を説明する。図10に、位相変調部16Bに加えた電圧に対するビート光信号の強度時間波形を示す。   The voltage required for the second temporal modulation method will be described with reference to FIG. FIG. 10 shows the intensity time waveform of the beat optical signal with respect to the voltage applied to the phase modulation unit 16B.

図10において、Vπは、位相変調部16Bが搬送波であるビート光信号の位相をπずらすために必要な印加電圧値であり、例えば3〜5[V]程度である。 10, the V [pi, an applied voltage required for phase modulation section 16B is shifted the phase of the beat light signal is the carrier [pi, for example, about 3 to 5 [V].

位相変調部を通過する光の変調時間量Tと、その時間的変調に必要な電圧Vとは、次式(12)に従う。

Figure 0005435443
但し、Tperiod:入力光信号の搬送波の一周期である。 A modulation amount of time T m of a light passing through the phase modulation unit, the voltage V required for the temporal modulation, according to the following equation (12).
Figure 0005435443
Where T period is one period of the carrier wave of the input optical signal.

例えば、入力光信号の波長を1533.33[nm](193.0[THz])とすると、T=5.18[fs]となる。このとき、160[GHz]のビート光信号を半周期である3.125[ps]時間的に遅延させるためには、式(12)より、図10に示すように1206・Vπの電圧の印加が必要となる。 For example, if the wavelength of the input optical signal is 1533.33 [nm] (193.0 [THz]), T m = 5.18 [fs]. At this time, 160 for delaying the optical beat signal of a half cycle 3.125 [ps] temporally [GHz], from equation (12), the voltage of as 1206 · V [pi shown in FIG. 10 Application is required.

次いで、第3の時間的変調方法を説明する。第3の時間的変調方法は、空間光学系において、空間の光路長を振動させることにより時間的変調を行う方法である。例えば、入力光信号を第1の固定ミラーにより反射させるとともに、その反射光を第1、第2の可動ミラーで反射し、その反射光を第2の固定ミラーにより反射させて出力する構成を考える。第1、第2の可動ミラーにピエゾ素子等のアクチュエータが取り付けられている。局所発振部から出力されRFアンプにより増幅された変調信号により、アクチュエータを振動させる。第3の時間的変調方法によれば、遅延量を大きくとることができる。その反面、アクチュエータが機械的な振動をするので、メガヘルツオーダの変調信号による時間的変調が困難である。   Next, a third temporal modulation method will be described. The third temporal modulation method is a method of performing temporal modulation by vibrating the optical path length of the space in the spatial optical system. For example, consider a configuration in which an input optical signal is reflected by a first fixed mirror, the reflected light is reflected by first and second movable mirrors, and the reflected light is reflected by a second fixed mirror and output. . Actuators such as piezo elements are attached to the first and second movable mirrors. The actuator is vibrated by the modulation signal output from the local oscillation unit and amplified by the RF amplifier. According to the third temporal modulation method, the delay amount can be increased. On the other hand, since the actuator vibrates mechanically, it is difficult to perform temporal modulation using a modulation signal in the megahertz order.

次いで、第4の時間的変調方法を説明する。第4の時間的変調方法は、モードロックレーザの繰り返し周波数を変調することにより時間的変調を行う方法である。局所発振部から出力された変調信号により、モードロックレーザを駆動してレーザ光を出力させる。このように、繰り返し周波数の増減を通じて出力パルスのタイミングを変調する。タイミング変調度は、周波数ずれに時間を乗じた値となる。第4の時間的変調方法によれば、大きなタイミング変調を行える。その反面、ループ帯域よりも大きな変調周波数が必要であり、メガヘルツオーダの変調信号による時間的変調が困難である。   Next, a fourth temporal modulation method will be described. The fourth temporal modulation method is a method of performing temporal modulation by modulating the repetition frequency of the mode-locked laser. The mode-locked laser is driven by the modulation signal output from the local oscillating unit to output laser light. As described above, the timing of the output pulse is modulated by increasing or decreasing the repetition frequency. The timing modulation degree is a value obtained by multiplying the frequency deviation by time. According to the fourth temporal modulation method, large timing modulation can be performed. On the other hand, a modulation frequency larger than the loop band is required, and it is difficult to temporally modulate with a megahertz order modulation signal.

以上、本実施の形態によれば、光カプラ11が参照光信号と時間的変調された円偏光のビート光信号とを合波し、位相比較部12がその合波された参照光信号及びビート光信号の位相比較信号(TPA信号)を生成し、電気ミキサ13がその位相比較信号と局所発振部15の変調信号とを乗算して(復調して)位相比較信号の微分値信号を位相誤差信号として出力してループフィルタ20が整形する。そして、OVCO30がその整形された位相誤差信号に基づいて、当該位相誤差信号が0になるビート光信号を発生して出力し、時間的変調部16がOVCO30により発生されたビート光信号を局所発振部15の変調信号に基づいて時間的変調し、円偏光調整部17が時間的変調されたビート光信号を円偏光にして光カプラ11に出力する。このように、OPLLにおいて、ビート光信号に時間的変調をかけ、円偏光にし、位相比較信号を復調することにより、位相比較信号の微分値信号を位相誤差信号として得る。このため、OPLLにおける入力光信号(参照光信号、帰還するビート光信号)の偏波に依存しない同期タイミングで同期ビート光信号を発生できる。   As described above, according to the present embodiment, the optical coupler 11 combines the reference optical signal and the temporally modulated circularly-polarized beat optical signal, and the phase comparison unit 12 combines the combined reference optical signal and beat. A phase comparison signal (TPA signal) of the optical signal is generated, and the electric mixer 13 multiplies (demodulates) the phase comparison signal and the modulation signal of the local oscillation unit 15 to obtain a phase error from the differential value signal of the phase comparison signal. It outputs as a signal and the loop filter 20 shapes. Then, based on the shaped phase error signal, the OVCO 30 generates and outputs a beat optical signal in which the phase error signal becomes 0, and the temporal modulation unit 16 locally oscillates the beat optical signal generated by the OVCO 30. The time-modulated signal is modulated based on the modulation signal of the unit 15, and the circularly polarized light adjusting unit 17 converts the time-modulated beat optical signal into circularly polarized light and outputs it to the optical coupler 11. In this way, in OPLL, the beat optical signal is temporally modulated to be circularly polarized, and the phase comparison signal is demodulated to obtain a differential value signal of the phase comparison signal as a phase error signal. Therefore, a synchronized beat optical signal can be generated at a synchronization timing that does not depend on the polarization of the input optical signal (reference optical signal, feedback beat optical signal) in OPLL.

また、OVCO30は、VCO31と、光コム発生部33と、2モード選択部34と、2モード合波部35と、を備える。このため、OVCO30から出力する同期ビート光信号の線幅を狭くでき、その位相雑音を低減し、ループ帯域を小さくできるとともに、ループ長を適切にできる。   The OVCO 30 includes a VCO 31, an optical comb generator 33, a two-mode selector 34, and a two-mode multiplexer 35. For this reason, the line width of the synchronous beat optical signal output from the OVCO 30 can be reduced, the phase noise can be reduced, the loop band can be reduced, and the loop length can be made appropriate.

また、時間的変調部16が第1の時間的変調方法を行うものである場合に、位相変調部16Bで位相を0から2πまで変えることにより、ビート光信号の位相も0から2πまで自在に変化できる。また、局所発振部15からの比較的低い電圧の変調信号を用いてビート光信号の時間的変調を容易に行うことができる。   Further, when the temporal modulation unit 16 performs the first temporal modulation method, the phase of the beat optical signal can be freely changed from 0 to 2π by changing the phase from 0 to 2π by the phase modulation unit 16B. Can change. In addition, it is possible to easily perform temporal modulation of the beat optical signal using a relatively low voltage modulation signal from the local oscillation unit 15.

また、第1の時間的変調方法を行う時間的変調部161は、AWG1612、FRM1614,1616を含んで構成され、波長λ1、λ2の光信号がAWG1612を2回通る。このため、帰還するビート光信号の光SNRを高くできる。   The temporal modulation unit 161 that performs the first temporal modulation method includes an AWG 1612 and FRMs 1614 and 1616, and optical signals having wavelengths λ1 and λ2 pass through the AWG 1612 twice. For this reason, the optical SNR of the beat optical signal to be returned can be increased.

また、時間的変調部16が第2の時間的変調方法を行うものである場合に、局所発振部15からの変調信号を用いてビート光信号の時間的変調を行うことができるとともに、時間的変調部16の装置構成を簡単にできる。   Further, when the temporal modulation unit 16 performs the second temporal modulation method, the temporal modulation of the beat optical signal can be performed using the modulation signal from the local oscillation unit 15, and the temporal modulation is performed. The apparatus configuration of the modulation unit 16 can be simplified.

図11を参照して、上記実施の形態の具体的な一実施例としての実施例1を説明する。図11に、本実施例の同期光信号発生装置2の構成を示す。但し、上記実施の形態で説明した構成と同じ構成要素には、同じ符号を付し、その説明を省略する。   With reference to FIG. 11, Example 1 as a specific example of the above embodiment will be described. In FIG. 11, the structure of the synchronous optical signal generator 2 of a present Example is shown. However, the same reference numerals are given to the same components as those described in the above embodiment, and the description thereof is omitted.

本実施例の同期光信号発生装置2は、第1の時間的変調方法によりビート光信号に時間的変調をかけるとともに、参照光信号に同期した同期ビート光信号を出力する装置である。図11に示すように、同期光信号発生装置2は、光カプラ11と、Si−APD121と、TIA19と、電気ミキサ13と、ループフィルタ20と、OVCO301と、局所発振部15と、時間的変調部161と、位相シフタ18と、PC171と、を備えて構成される。OVCO301は、VCO31と、二倍周波数発生器311,312と、RFアンプ32と、DFB−LD331と、LN位相変調器332と、サーキュレータ341と、AWG342と、FRM351,352と、EDFA361と、光カプラ37と、を備える。   The synchronized optical signal generator 2 according to the present embodiment is a device that applies time modulation to the beat optical signal by the first temporal modulation method and outputs a synchronized beat optical signal synchronized with the reference optical signal. As shown in FIG. 11, the synchronous optical signal generator 2 includes an optical coupler 11, an Si-APD 121, a TIA 19, an electric mixer 13, a loop filter 20, an OVCO 301, a local oscillator 15, and temporal modulation. The unit 161, the phase shifter 18, and the PC 171 are configured. The OVCO 301 includes a VCO 31, double frequency generators 311 and 312, an RF amplifier 32, a DFB-LD 331, an LN phase modulator 332, a circulator 341, an AWG 342, an FRM 351 and 352, an EDFA 361, and an optical coupler. 37.

局所発振部15は、所定周波数の局所的な電気信号(変調信号)を発生して出力する。光カプラ11は、参照光信号とPC171から入力された円偏光のビート光信号とを合波して出力する。Si−APD121は、光カプラ11から出力された合波後の光信号が入力され、参照光信号とビート光信号との位相比較信号(TPA信号)を出力する。位相比較信号は、TIA19で電圧信号にされて増幅され、電気ミキサ13により、局所発振部15から入力された変調信号と乗算されて復調されて出力される。この復調信号が、位相比較信号の微分値信号であり、位相誤差信号として用いられる。   The local oscillating unit 15 generates and outputs a local electrical signal (modulated signal) having a predetermined frequency. The optical coupler 11 combines the reference optical signal and the circularly polarized beat optical signal input from the PC 171 and outputs the combined optical signal. The Si-APD 121 receives the combined optical signal output from the optical coupler 11 and outputs a phase comparison signal (TPA signal) between the reference optical signal and the beat optical signal. The phase comparison signal is converted into a voltage signal by the TIA 19 and amplified, multiplied by the modulation signal input from the local oscillation unit 15 by the electric mixer 13, and demodulated and output. This demodulated signal is a differential value signal of the phase comparison signal and is used as a phase error signal.

位相誤差信号は、ループフィルタ20により整形されOVCO301のVCO31に入力される。VCO31は、ループフィルタ20から入力された位相誤差信号に応じて周波数を変化した電気信号を発生して出力する。VCO31から出力された電気信号は、二倍周波数発生器311,312により周波数が4倍にされ、RFアンプ32により増幅される。DFB−LD331は、CW光を発生して出力する。LN位相変調器332は、DFB−LD331から出力されたCW光をRFアンプ32から出力された電気信号の周波数間隔の光コム信号に変換して出力する。   The phase error signal is shaped by the loop filter 20 and input to the VCO 31 of the OVCO 301. The VCO 31 generates and outputs an electrical signal whose frequency is changed according to the phase error signal input from the loop filter 20. The electric signal output from the VCO 31 is quadrupled in frequency by the double frequency generators 311 and 312 and amplified by the RF amplifier 32. The DFB-LD 331 generates and outputs CW light. The LN phase modulator 332 converts the CW light output from the DFB-LD 331 into an optical comb signal having a frequency interval of the electrical signal output from the RF amplifier 32 and outputs the optical comb signal.

LN位相変調器332から出力された光コム信号は、サーキュレータ341を介してAWG342に入力され、AWG342により、波長λ1、λ2のスペクトル線の光信号が選択され、FRM351,352で反射されて合波され、波長λ1、λ2のビート光信号が出力される。AWG342から出力されたビート光信号は、サーキュレータ341を介してEDFA361により増幅されて外部に出力されるとともに、時間的変調部161に出力される。このように、OVCO301は、波長λ1、λ2の光信号がAWG342を2回通る。このため、ビート光信号の光SNRを高くできる。   The optical comb signal output from the LN phase modulator 332 is input to the AWG 342 via the circulator 341, and the optical signals of the spectral lines having the wavelengths λ1 and λ2 are selected by the AWG 342, reflected by the FRMs 351 and 352, and multiplexed. Then, beat optical signals with wavelengths λ1 and λ2 are output. The beat optical signal output from the AWG 342 is amplified by the EDFA 361 via the circulator 341 and output to the outside, and also output to the temporal modulation unit 161. Thus, in the OVCO 301, the optical signals having the wavelengths λ1 and λ2 pass through the AWG 342 twice. For this reason, the optical SNR of the beat optical signal can be increased.

位相シフタ18は、局所発振部15から出力された変調信号が入力され、その変調信号を設定された位相量だけシフトして時間的変調部161のLN位相変調器1613に出力する。この位相シフト量は、同期光信号発生装置2の経路等に因り、位相誤差信号振幅が最大になるように調整される。   The phase shifter 18 receives the modulation signal output from the local oscillation unit 15, shifts the modulation signal by a set phase amount, and outputs the shifted signal to the LN phase modulator 1613 of the temporal modulation unit 161. This phase shift amount is adjusted so that the phase error signal amplitude becomes maximum, depending on the path of the synchronous optical signal generator 2 and the like.

時間的変調部161により時間的変調されたビート光信号は、サーキュレータ1611から出力され、PC171に入力される。PC171は、サーキュレータ1611から入力されたビート光信号がSi−APD121の入力で円偏光になるよう偏波を調整して光カプラ11に出力する。   The beat optical signal temporally modulated by the temporal modulation unit 161 is output from the circulator 1611 and input to the PC 171. The PC 171 adjusts the polarization so that the beat optical signal input from the circulator 1611 becomes circularly polarized at the input of the Si-APD 121, and outputs it to the optical coupler 11.

ここで、位相シフタ18の機能について説明する。図3(a)において、ポイントA,B,Cにおいて時間的変調を加えた場合の時間経路例を基に考える。同期光信号発生装置2において、電気ミキサ13に入力されるLO信号は、電気経路の長さに因り、cos(ωt+φ)と記述できる。また、ポイントA,B,Cの信号は、順に、cos(ωt+π)、cos(2ωt+π)、cosωtと記述できる。電気ミキサ13は乗算をする。このため、ポイントA,B,Cの信号は、順に、次式(13)〜(15)で記述される。

Figure 0005435443
Here, the function of the phase shifter 18 will be described. In FIG. 3A, a time path example when time modulation is applied at points A, B, and C will be considered. In the synchronous optical signal generator 2, the LO signal input to the electric mixer 13 can be described as cos (ωt + φ) depending on the length of the electric path. Further, the signals of points A, B, and C can be described in order as cos (ωt + π), cos (2ωt + π), and cosωt. The electric mixer 13 performs multiplication. For this reason, the signals of points A, B, and C are sequentially described by the following equations (13) to (15).
Figure 0005435443

ポイントA,Cにおいて、ループフィルタ20で抽出されるDC成分(低周波成分)は、式(13),(15)の各第1項である。式(14)により、ポイントBでは、φに関わらずDC成分が常にゼロとなる。ポイントA,Cでは、DC成分がφの値により増減し、且つ正負が反転する。同期動作を実現するには、非同期であるがOPLLの出力周波数と参照光信号のビットレートとがほとんど同じ状態で、位相誤差信号振幅が最大値になるように、位相シフタ18によりφを調整する。但し、局所発振部15からLN位相変調器1613へと、局所発振部15から電気ミキサ13へと、の導線の長さを変調波長の波長の1/5以下の誤差で同一にした場合は位相シフタ18が無くとも、ある程度の振幅の位相誤差信号が得られる。   At points A and C, the DC component (low frequency component) extracted by the loop filter 20 is the first term of each of the equations (13) and (15). According to Equation (14), at point B, the DC component is always zero regardless of φ. At points A and C, the DC component increases or decreases depending on the value of φ, and the sign is reversed. In order to realize the synchronous operation, φ is adjusted by the phase shifter 18 so that the phase error signal amplitude becomes the maximum value while the output frequency of the OPLL is almost the same as the bit rate of the reference light signal. . However, if the lengths of the conductors from the local oscillation unit 15 to the LN phase modulator 1613 and from the local oscillation unit 15 to the electric mixer 13 are the same with an error of 1/5 or less of the wavelength of the modulation wavelength, the phase is Even without the shifter 18, a phase error signal with a certain amplitude can be obtained.

以上、本実施例によれば、上記実施の形態と同様に、入力光信号の偏波に依存しない同期ビート光信号を発生できる。また、第1の時間的変調方法を行うので、ビート光信号の時間的変調を容易に行うことができる。また、時間的変調部161により、波長λ1、λ2の光信号がAWG1612を2回通る。このため、帰還するビート光信号の光SNRを高くできる。さらに、既製の光学部品を用いて装置構成を容易に実現できる。   As described above, according to the present embodiment, a synchronous beat optical signal that does not depend on the polarization of the input optical signal can be generated as in the above-described embodiment. Further, since the first temporal modulation method is performed, the temporal modulation of the beat optical signal can be easily performed. Further, the optical signal having the wavelengths λ 1 and λ 2 passes through the AWG 1612 twice by the temporal modulation unit 161. For this reason, the optical SNR of the beat optical signal to be returned can be increased. Furthermore, the apparatus configuration can be easily realized using ready-made optical components.

また、局所発振部15の変調信号の位相を、位相誤差信号振幅が最大となる量シフトする位相シフタ18を備える。このため、位相誤差信号の振幅を最大にできる。これにより、位相誤差信号のSNRを高くでき、タイミングジッタを小さくできる。   Further, a phase shifter 18 that shifts the phase of the modulation signal of the local oscillation unit 15 by an amount that maximizes the phase error signal amplitude is provided. For this reason, the amplitude of the phase error signal can be maximized. Thereby, the SNR of the phase error signal can be increased and the timing jitter can be reduced.

図12を参照して、上記実施の形態の具体的な一実施例としての実施例2を説明する。図12に、本実施例の同期光信号発生装置3の構成を示す。但し、上記実施の形態及び実施例で説明した構成と同じ構成要素には、同じ符号を付し、その説明を省略する。   With reference to FIG. 12, Example 2 as a specific example of the above embodiment will be described. FIG. 12 shows the configuration of the synchronous optical signal generator 3 of this embodiment. However, the same components as those described in the above embodiments and examples are denoted by the same reference numerals, and the description thereof is omitted.

本実施例の同期光信号発生装置3は、第1の時間的変調方法によりビート光信号に時間的変調をかけるとともに、参照光信号に同期した同期ビート光信号を出力する装置である。図12に示すように、同期光信号発生装置3は、ハーフミラー111と、レンズ112と、Si−APD121と、TIA19と、電気ミキサ13と、ループフィルタ20と、OVCO302と、偏波保持部としてのPMF(Polarization Maintaining Fiber:偏波保持ファイバ)45,46と、局所発振部15と、位相シフタ18と、時間的変調部162と、1/4波長板172と、を備えて構成される。   The synchronized optical signal generator 3 of this embodiment is a device that applies temporal modulation to the beat optical signal by the first temporal modulation method and outputs a synchronized beat optical signal synchronized with the reference optical signal. As shown in FIG. 12, the synchronous optical signal generator 3 includes a half mirror 111, a lens 112, a Si-APD 121, a TIA 19, an electric mixer 13, a loop filter 20, an OVCO 302, and a polarization holding unit. PMF (Polarization Maintaining Fibers) 45 and 46, a local oscillation unit 15, a phase shifter 18, a temporal modulation unit 162, and a quarter wavelength plate 172.

OVCO302は、VCO31と、二倍周波数発生器311,312と、RFアンプ32と、DFB−LD331と、偏波保持部としてのPMF41〜44と、LN位相変調器332と、偏波保持部としてのPBS(Polarized Beam Splitter:偏光ビームスプリッタ)343と、AWG342と、FRM351,352と、偏波保持部としてのPM(Polarization Maintaining:偏波保持)−EDFA362と、光カプラ37と、を備えて構成される。時間的変調部162は、偏波保持部としてのPBS1617と、AWG1612と、LN位相変調器1613と、FRM1614と、VOA1615と、FRM1616と、を備えて構成される。PBS343,1617は、PBC(Polarized Beam Combiner:偏波合成器)でもよい。   The OVCO 302 includes a VCO 31, double frequency generators 311 and 312, an RF amplifier 32, a DFB-LD 331, PMFs 41 to 44 as polarization holding units, an LN phase modulator 332, and a polarization holding unit. PBS (Polarized Beam Splitter) 343, AWG 342, FRM 351, 352, PM (Polarization Maintaining) -EDFA 362 as a polarization maintaining unit, and optical coupler 37. The The temporal modulation unit 162 includes a PBS 1617 as a polarization maintaining unit, an AWG 1612, an LN phase modulator 1613, an FRM 1614, a VOA 1615, and an FRM 1616. The PBSs 343 and 1617 may be PBC (Polarized Beam Combiner).

ハーフミラー111、レンズ112、Si−APD121及び1/4波長板172により、空間光学系Fが構成されている。空間光学系Fでは、光学素子同士が光ファイバでなく空間を介するよう構成され、空間中では偏波が変化しない。ハーフミラー111は、参照光信号を透過するとともに、1/4波長板172から出射される円偏光のビート光信号を反射し、参照光信号と同じ方向(レンズ112)に出射する。レンズ112は、ハーフミラー111から出射された光信号をSi−APD121の表面に集光する。Si−APD121は、入射された光信号の位相比較信号を発生して出力する。   The half mirror 111, the lens 112, the Si-APD 121, and the quarter wavelength plate 172 constitute a spatial optical system F. In the spatial optical system F, the optical elements are configured to pass through a space rather than an optical fiber, and polarization does not change in the space. The half mirror 111 transmits the reference light signal, reflects the circularly polarized beat light signal emitted from the quarter-wave plate 172, and emits it in the same direction (lens 112) as the reference light signal. The lens 112 collects the optical signal emitted from the half mirror 111 on the surface of the Si-APD 121. The Si-APD 121 generates and outputs a phase comparison signal of the incident optical signal.

OVCO302において、DFB−LD331とLN位相変調器332との間がPMF41を介して接続され、LN位相変調器332とPBS332との間がPMF42を介して接続され、PBS332とPM−EDFA362との間がPMF43を介して接続され、PM−EDFA362と光カプラ37との間がPMF44を介して接続される。PMF41〜44を通過する光信号は、偏波が保持される。DFB―LD331から出力される直線偏光のCW光は、PMF41を介してLN位相変調器332に入力され、LN位相変調器332により直線偏光の光コム信号に変換されて出力される。PBS343は、LN位相変調器332からPMF42を介して入力される直線偏光の光コム信号を反射してAWG342に出力するとともに、AWG342から入力される直線偏光の波長λ1,λ2のビート光信号をPMF43を介してPM−EDFA362に出力する。PM−EDFA362は、PBS343から入力される直線偏光のビート光信号の偏波を保持し増幅して出力する。   In the OVCO 302, the DFB-LD 331 and the LN phase modulator 332 are connected via the PMF 41, the LN phase modulator 332 and the PBS 332 are connected via the PMF 42, and the PBS 332 and the PM-EDFA 362 are connected. The PMF 43 is connected, and the PM-EDFA 362 and the optical coupler 37 are connected via the PMF 44. The polarization of the optical signal passing through the PMFs 41 to 44 is maintained. The linearly polarized CW light output from the DFB-LD 331 is input to the LN phase modulator 332 via the PMF 41, converted into a linearly polarized optical comb signal by the LN phase modulator 332, and output. The PBS 343 reflects the linearly polarized optical comb signal input from the LN phase modulator 332 via the PMF 42 and outputs the reflected optical comb signal to the AWG 342, and also outputs the beat optical signals of the linearly polarized wavelengths λ 1 and λ 2 input from the AWG 342 to the PMF 43. To the PM-EDFA 362. The PM-EDFA 362 maintains and amplifies the polarization of the linearly polarized beat optical signal input from the PBS 343 and outputs the amplified signal.

PM−EDFA362から出力された直線偏光のビート光信号は、PMF44を介して光カプラ37により分波され、外部に出力されるとともに、PMF45を介して時間的変調部162のPBS1617に出力される。PBS1617は、PMF45を介して入力された直線偏光のビート光信号を反射してAWG1612に出力するとともに、AWG1612から入力される直線偏光のビート光信号を、時間的変調されたビート光信号としてPMF46を介して1/4波長板172に出力する。1/4波長板172は、直線偏光を円偏光に変換する機能を有する。このため、1/4波長板172は、PMF46を介して入力された直線偏光のビート光信号を円偏光に変換してハーフミラー111に出力する。   The linearly-polarized beat optical signal output from the PM-EDFA 362 is demultiplexed by the optical coupler 37 via the PMF 44, output to the outside, and output to the PBS 1617 of the temporal modulation unit 162 via the PMF 45. The PBS 1617 reflects the linearly-polarized beat light signal input via the PMF 45 and outputs it to the AWG 1612. The PBS 1617 converts the linearly-polarized beat light signal input from the AWG 1612 into a time-modulated beat light signal. To the quarter-wave plate 172. The quarter wave plate 172 has a function of converting linearly polarized light into circularly polarized light. Therefore, the quarter wavelength plate 172 converts the linearly polarized beat light signal input via the PMF 46 into circularly polarized light and outputs the circularly polarized light to the half mirror 111.

以上、本実施例によれば、上記実施の形態と同様に、入力光信号の偏波に依存しない同期ビート光信号を発生できる。また、第1の時間的変調方法を行うので、ビート光信号の時間的変調を容易に行うことができる。さらに、円偏光調整部17に1/4波長板172を用いるので、PC171のような偏波の調整を不要にできる。   As described above, according to the present embodiment, a synchronous beat optical signal that does not depend on the polarization of the input optical signal can be generated as in the above-described embodiment. Further, since the first temporal modulation method is performed, the temporal modulation of the beat optical signal can be easily performed. Furthermore, since the quarter-wave plate 172 is used for the circular polarization adjustment unit 17, the adjustment of the polarization as in the PC 171 can be made unnecessary.

また、実施例1と同様に、時間的変調部162により、波長λ1、λ2の光信号がAWG1612を2回通る。このため、帰還するビート光信号の光SNRを高くできる。さらに、位相シフタ18により、位相誤差信号の振幅を最大にでき、位相誤差信号のSNRを高くでき、タイミングジッタを小さくできる。   As in the first embodiment, the optical signal having the wavelengths λ 1 and λ 2 passes through the AWG 1612 twice by the temporal modulation unit 162. For this reason, the optical SNR of the beat optical signal to be returned can be increased. Further, the phase shifter 18 can maximize the amplitude of the phase error signal, increase the SNR of the phase error signal, and reduce the timing jitter.

図13を参照して、上記実施の形態の具体的な一実施例としての実施例3を説明する。図13に、本実施例の同期光信号発生装置4の構成を示す。但し、上記実施の形態及び実施例で説明した構成と同じ構成要素には、同じ符号を付し、その説明を省略する。   With reference to FIG. 13, Example 3 as a specific example of the above embodiment will be described. FIG. 13 shows the configuration of the synchronous optical signal generator 4 of this embodiment. However, the same components as those described in the above embodiments and examples are denoted by the same reference numerals, and the description thereof is omitted.

本実施例の同期光信号発生装置4は、第1の時間的変調方法によりビート光信号に時間的変調をかけるとともに、参照光信号に同期した同期ビート光信号を出力する装置である。図13に示すように、同期光信号発生装置4は、光カプラ11と、Si−APD121と、TIA19と、電気ミキサ13と、ループフィルタ20と、OVCO303と、局所発振部15と、位相シフタ181と、時間的変調部163と、PC171と、を備えて構成される。   The synchronized optical signal generator 4 of this embodiment is a device that applies temporal modulation to the beat optical signal by the first temporal modulation method and outputs a synchronized beat optical signal synchronized with the reference optical signal. As shown in FIG. 13, the synchronous optical signal generator 4 includes an optical coupler 11, an Si-APD 121, a TIA 19, an electric mixer 13, a loop filter 20, an OVCO 303, a local oscillator 15, and a phase shifter 181. And a temporal modulation unit 163 and a PC 171.

OVCO303は、VCO31と、RFアンプ32と、DFB−LD331と、LN位相変調器332と、AWG342と、光カプラ344,345と、PC353と、光カプラ354と、を備えて構成される。時間的変調部163は、LN位相変調器1613と、PC1618と、光カプラ1619と、EDFA1620と、を備えて構成される。   The OVCO 303 includes a VCO 31, an RF amplifier 32, a DFB-LD 331, an LN phase modulator 332, an AWG 342, optical couplers 344 and 345, a PC 353, and an optical coupler 354. The temporal modulation unit 163 includes an LN phase modulator 1613, a PC 1618, an optical coupler 1619, and an EDFA 1620.

同期光信号発生装置4において、位相シフタ181は、局所発振部15から入力される変調信号を、位相誤差信号振幅が最大になるような位相量シフトして出力する。電気ミキサ13は、TIA19からの時間的に調整され増幅された位相比較信号と、局所発振部15から出力されて位相シフタ181により位相シフトされた変調信号と、が入力されて、それら2つの信号を乗算して位相比較信号の微分値信号を生成し位相誤差信号として出力する。   In the synchronous optical signal generation device 4, the phase shifter 181 shifts the modulation signal input from the local oscillation unit 15 by a phase amount so that the phase error signal amplitude is maximized, and outputs the modulated signal. The electric mixer 13 receives the time-adjusted phase comparison signal from the TIA 19 and the modulation signal output from the local oscillation unit 15 and phase-shifted by the phase shifter 181, and receives these two signals. To generate a differential value signal of the phase comparison signal and output it as a phase error signal.

OVCO303において、LN位相変調器332から出力される光コム信号は、AWG342に入力される。AWG342は、LN位相変調器332から入力される光コム信号から波長λ1,λ2の線スペクトルの光信号を出力する。AWG342から出力された波長λ1の光信号は、光カプラ344により分波され、光カプラ354に出力されるとともに、時間的変調部163のLN位相変調器1613に出力される。AWG342から出力された波長λ2の光信号は、光カプラ345により分波され、PC353を介して光カプラ354に出力されるとともに、時間的変調部163のPC1618に出力される。PC353は、AWG342から入力された波長λ2の光信号の偏波を、光カプラ354に入力される波長λ1の光信号の偏波に調整して出力する。光カプラ344から出力された波長λ1の光信号と、PC353から出力された波長λ2の光信号とは、光カプラ354により合波され、ビート光信号として外部に出力される。   In the OVCO 303, the optical comb signal output from the LN phase modulator 332 is input to the AWG 342. The AWG 342 outputs an optical signal having a line spectrum of wavelengths λ1 and λ2 from the optical comb signal input from the LN phase modulator 332. The optical signal having the wavelength λ1 output from the AWG 342 is demultiplexed by the optical coupler 344, output to the optical coupler 354, and output to the LN phase modulator 1613 of the temporal modulation unit 163. The optical signal of wavelength λ 2 output from the AWG 342 is demultiplexed by the optical coupler 345, output to the optical coupler 354 via the PC 353, and output to the PC 1618 of the temporal modulation unit 163. The PC 353 adjusts the polarization of the optical signal having the wavelength λ 2 input from the AWG 342 to the polarization of the optical signal having the wavelength λ 1 input to the optical coupler 354, and outputs it. The optical signal of wavelength λ1 output from the optical coupler 344 and the optical signal of wavelength λ2 output from the PC 353 are combined by the optical coupler 354 and output to the outside as a beat optical signal.

時間的変調部163において、LN位相変調器1613は、局所発振部15から出力されてRFアンプ151により増幅された変調信号の電圧に応じて、光カプラ343から入力される波長λ1の光信号の位相を変調して光カプラ1619に出力する。PC1618は、光カプラ344から入力される波長λ2の光信号の偏波を、光カプラ1619に入力される波長λ2の光信号の偏波に調整して出力する。LN位相変調器1613から出力される波長λ1の光信号と、PC1618から出力される波長λ2の光信号とは、光カプラ1619により合波されてEDFA1620により増幅され、時間的変調されたビート光信号としてPC171に出力される。   In the temporal modulation unit 163, the LN phase modulator 1613 outputs an optical signal having the wavelength λ 1 input from the optical coupler 343 in accordance with the voltage of the modulation signal output from the local oscillation unit 15 and amplified by the RF amplifier 151. The phase is modulated and output to the optical coupler 1619. The PC 1618 adjusts the polarization of the optical signal having the wavelength λ2 input from the optical coupler 344 to the polarization of the optical signal having the wavelength λ2 input to the optical coupler 1619, and outputs the adjusted signal. The optical signal of wavelength λ1 output from the LN phase modulator 1613 and the optical signal of wavelength λ2 output from the PC 1618 are combined by an optical coupler 1619, amplified by an EDFA 1620, and temporally modulated beat optical signal. Is output to the PC 171.

以上、本実施例によれば、上記実施の形態と同様に、入力光信号の偏波に依存しない同期ビート光信号を発生できる。また、第1の時間的変調方法を行うので、ビート光信号の時間的変調を容易に行うことができる。また、OVCO303と時間的変調部163とで、波長λ1,λ2の波長の選択部分(2モード選択部34)が共通であり、装置構成を簡単にできる。特に、同期光信号発生装置2,3に比べて、AWGが1つで済み、製造コストを低減できる。   As described above, according to the present embodiment, a synchronous beat optical signal that does not depend on the polarization of the input optical signal can be generated as in the above-described embodiment. Further, since the first temporal modulation method is performed, the temporal modulation of the beat optical signal can be easily performed. In addition, the OVCO 303 and the temporal modulation unit 163 share the wavelength selection portion (two-mode selection unit 34) of the wavelengths λ1 and λ2, and the apparatus configuration can be simplified. In particular, as compared with the synchronous optical signal generators 2 and 3, only one AWG is required, and the manufacturing cost can be reduced.

また、実施例1と同様に、位相シフタ181により、位相誤差信号の振幅を最大にでき、位相誤差信号のSNRを高くでき、タイミングジッタを小さくできる。   Similarly to the first embodiment, the phase shifter 181 can maximize the amplitude of the phase error signal, increase the SNR of the phase error signal, and reduce the timing jitter.

図14を参照して、上記実施の形態の具体的な一実施例としての実施例4を説明する。図14に、本実施例の同期光信号発生装置5の構成を示す。但し、上記実施の形態及び実施例で説明した構成と同じ構成要素には、同じ符号を付し、その説明を省略する。   Referring to FIG. 14, Example 4 as a specific example of the above embodiment will be described. FIG. 14 shows the configuration of the synchronous optical signal generator 5 of this embodiment. However, the same components as those described in the above embodiments and examples are denoted by the same reference numerals, and the description thereof is omitted.

本実施例の同期光信号発生装置5は、第の時間的変調方法によりビート光信号に時間的変調をかけるとともに、参照光信号に同期した同期ビート光信号を出力する装置である。図14に示すように、同期光信号発生装置5は、光カプラ11と、Si−APD121と、TIA19と、電気ミキサ13と、ループフィルタ20と、OVCO301と、局所発振部15と、位相シフタ18と、時間的変調部としてのLN位相変調器164と、PC171と、を備えて構成される。 The synchronized optical signal generator 5 of this embodiment is a device that applies temporal modulation to the beat optical signal by the second temporal modulation method and outputs a synchronized beat optical signal synchronized with the reference optical signal. As shown in FIG. 14, the synchronous optical signal generator 5 includes an optical coupler 11, an Si-APD 121, a TIA 19, an electric mixer 13, a loop filter 20, an OVCO 301, a local oscillator 15, and a phase shifter 18. And an LN phase modulator 164 as a temporal modulation unit and a PC 171.

LN位相変調器164は、位相シフタ18から入力される変調信号の電圧に応じて、OVCO301の光カプラ37から入力されるビート光信号を位相変調し、時間的変調されたビート光信号としてPC17に出力する。   The LN phase modulator 164 phase-modulates the beat optical signal input from the optical coupler 37 of the OVCO 301 in accordance with the voltage of the modulation signal input from the phase shifter 18, and sends it to the PC 17 as a time-modulated beat optical signal. Output.

以上、本実施例によれば、上記実施の形態と同様に、入力光信号の偏波に依存しない同期ビート光信号を発生できる。また、第2の時間的変調方法を行うので、ビート光信号の時間的変調を行うことができるとともに、装置構成を簡単にできる。特に、同期光信号発生装置2,3に比べて、AWGが1つで済み、製造コストを低減できる。   As described above, according to the present embodiment, a synchronous beat optical signal that does not depend on the polarization of the input optical signal can be generated as in the above-described embodiment. In addition, since the second temporal modulation method is performed, the beat optical signal can be temporally modulated and the apparatus configuration can be simplified. In particular, as compared with the synchronous optical signal generators 2 and 3, only one AWG is required, and the manufacturing cost can be reduced.

また、実施例1と同様に、位相シフタ18により、位相誤差信号の振幅を最大にでき、位相誤差信号のSNRを高くでき、タイミングジッタを小さくできる。   Similarly to the first embodiment, the phase shifter 18 can maximize the amplitude of the phase error signal, increase the SNR of the phase error signal, and reduce the timing jitter.

図15を参照して、上記実施の形態の具体的な一実施例としての実施例5を説明する。図15に、本実施例の同期光信号発生装置6の構成を示す。但し、上記実施の形態及び実施例で説明した構成と同じ構成要素には、同じ符号を付し、その説明を省略する。   With reference to FIG. 15, Example 5 as a specific example of the above embodiment will be described. FIG. 15 shows the configuration of the synchronous optical signal generator 6 of this embodiment. However, the same components as those described in the above embodiments and examples are denoted by the same reference numerals, and the description thereof is omitted.

本実施例の同期光信号発生装置6は、第1の時間的変調方法によりビート光信号に時間的変調をかけるとともに、参照光信号に同期した同期ビート光信号を出力する装置である。図15に示すように、同期光信号発生装置6は、光カプラ11と、Si−APD121と、TIA19と、電気ミキサ13と、ループフィルタ20と、OVCO304と、局所発振部15と、位相シフタ18と、PC171と、を備えて構成される。   The synchronous optical signal generator 6 of this embodiment is a device that applies temporal modulation to the beat optical signal by the first temporal modulation method and outputs a synchronous beat optical signal synchronized with the reference optical signal. As shown in FIG. 15, the synchronous optical signal generator 6 includes an optical coupler 11, an Si-APD 121, a TIA 19, an electric mixer 13, a loop filter 20, an OVCO 304, a local oscillator 15, and a phase shifter 18. And a PC 171.

OVCO304は、VCO31と、二倍周波数発生器311,312と、RFアンプ32と、DFB−LD331と、LN位相変調器332と、時間的変調部161と、EDFA361と、光カプラ37と、を備えて構成される。LN位相変調器332から出力された光コム信号は、時間的変調部161のサーキュレータ1611を介してAWG1612に出力される。また、AWG1612から出力されるLN位相変調器332から出力された時間的変調されたビート光信号は、EDFA361により増幅され、光カプラ37により分波され、外部とPC171とに出力される。   The OVCO 304 includes a VCO 31, double frequency generators 311 and 312, an RF amplifier 32, a DFB-LD 331, an LN phase modulator 332, a temporal modulation unit 161, an EDFA 361, and an optical coupler 37. Configured. The optical comb signal output from the LN phase modulator 332 is output to the AWG 1612 via the circulator 1611 of the temporal modulation unit 161. In addition, the time-modulated beat optical signal output from the LN phase modulator 332 output from the AWG 1612 is amplified by the EDFA 361, demultiplexed by the optical coupler 37, and output to the outside and the PC 171.

つまり、同期光信号発生装置6から外部に出力されるビート光信号は、時間的変調されたビート光信号となる。このため、外部のビート光信号を用いるアプリケーション等が、時間的変調されたビート光信号を許容する場合に、同期光信号発生装置6が適用可能となる。   That is, the beat optical signal output to the outside from the synchronous optical signal generator 6 is a time-modulated beat optical signal. For this reason, when an application using an external beat optical signal or the like permits a time-modulated beat optical signal, the synchronous optical signal generator 6 can be applied.

以上、本実施例によれば、上記実施の形態と同様に、入力光信号の偏波に依存しない同期ビート光信号を発生できる。また、第1の時間的変調方法を行うので、ビート光信号の時間的変調を容易に行うことができる。さらに、OVCO304が時間的変調部161を含むので、装置構成を簡単にできる。特に、同期光信号発生装置2,3に比べて、AWGが1つで済み、製造コストを低減できる。   As described above, according to the present embodiment, a synchronous beat optical signal that does not depend on the polarization of the input optical signal can be generated as in the above-described embodiment. Further, since the first temporal modulation method is performed, the temporal modulation of the beat optical signal can be easily performed. Furthermore, since the OVCO 304 includes the temporal modulation unit 161, the apparatus configuration can be simplified. In particular, as compared with the synchronous optical signal generators 2 and 3, only one AWG is required, and the manufacturing cost can be reduced.

また、実施例1と同様に、時間的変調部161により、波長λ1、λ2の光信号がAWG1612を2回通る。このため、帰還するビート光信号の光SNRを高くできる。さらに、位相シフタ18により、位相誤差信号の振幅を最大にでき、位相誤差信号のSNRを高くでき、タイミングジッタを小さくできる。   As in the first embodiment, the optical signal having the wavelengths λ 1 and λ 2 passes through the AWG 1612 twice by the temporal modulation unit 161. For this reason, the optical SNR of the beat optical signal to be returned can be increased. Further, the phase shifter 18 can maximize the amplitude of the phase error signal, increase the SNR of the phase error signal, and reduce the timing jitter.

図16を参照して、上記実施の形態の具体的な一実施例としての実施例6を説明する。図16に、本実施例の同期光信号発生装置7の構成を示す。但し、上記実施の形態及び実施例で説明した構成と同じ構成要素には、同じ符号を付し、その説明を省略する。   With reference to FIG. 16, Example 6 will be described as a specific example of the above embodiment. FIG. 16 shows the configuration of the synchronous optical signal generator 7 of this embodiment. However, the same components as those described in the above embodiments and examples are denoted by the same reference numerals, and the description thereof is omitted.

本実施例の同期光信号発生装置7は、第1の時間的変調方法によりビート光信号に時間的変調をかけ、参照光信号に同期した同期ビート光信号を出力する装置である。図16に示すように、同期光信号発生装置7は、光カプラ11と、Si−APD121と、TIA19と、電気ミキサ13と、ループフィルタ20と、OVCO305と、局所発振部15と、位相シフタ18と、時間的変調部161と、PC171と、を備えて構成される。   The synchronized optical signal generator 7 of this embodiment is a device that applies temporal modulation to the beat optical signal by the first temporal modulation method and outputs a synchronized beat optical signal synchronized with the reference optical signal. As shown in FIG. 16, the synchronous optical signal generator 7 includes an optical coupler 11, an Si-APD 121, a TIA 19, an electric mixer 13, a loop filter 20, an OVCO 305, a local oscillator 15, and a phase shifter 18. And a temporal modulation unit 161 and a PC 171.

OVCO305は、VCO31と、二倍周波数発生器311,312と、RFアンプ32と、DFB−LD331と、LN位相変調器332と、ファブリペローエタロン346と、EDFA361と、光カプラ37と、を備えて構成される。   The OVCO 305 includes a VCO 31, double frequency generators 311, 312, an RF amplifier 32, a DFB-LD 331, an LN phase modulator 332, a Fabry-Perot etalon 346, an EDFA 361, and an optical coupler 37. Composed.

ファブリペローエタロンは、ファブリペロー干渉系のうち、干渉間距離が固定されている光学素子であり、入力光のうち、特定の波長が強められて出力される。ファブリペローエタロンが透過する特定の波長の間隔は、FSR(Free Spectral Range)として設定されている。また、ファブリペローエタロンは、出力光の波長精度を保つため、温度調整が必要となる。   The Fabry-Perot etalon is an optical element in which the inter-interference distance is fixed in the Fabry-Perot interference system, and a specific wavelength of the input light is enhanced and output. The interval between specific wavelengths transmitted by the Fabry-Perot etalon is set as an FSR (Free Spectral Range). In addition, the Fabry-Perot etalon requires temperature adjustment in order to maintain the wavelength accuracy of the output light.

ファブリペローエタロン346は、例えば、FSRが160[GHz]に設定されているものとする。ファブリペローエタロン346は、LN位相変調器332から出力された光コム信号が入力され、その光コム信号からFSRに対応する波長(λ1,λ2)の光信号を透過し(例えば160[GHz]の)ビート光信号としてEDFA361に出力する。   In the Fabry-Perot etalon 346, for example, the FSR is set to 160 [GHz]. The Fabry-Perot etalon 346 receives the optical comb signal output from the LN phase modulator 332 and transmits an optical signal having a wavelength (λ1, λ2) corresponding to the FSR from the optical comb signal (for example, 160 [GHz]). ) Output to the EDFA 361 as a beat light signal.

以上、本実施例によれば、上記実施の形態と同様に、入力光信号の偏波に依存しない同期ビート光信号を発生できる。また、第1の時間的変調方法を行うので、ビート光信号の時間的変調を容易に行うことができる。さらに、OVCO304にAWGを用いることなくファブリペローエタロン346を用いて構成するので、装置構成を簡単にできる。特に、同期光信号発生装置2,3に比べて、AWGが1つで済み、製造コストを低減できる。   As described above, according to the present embodiment, a synchronous beat optical signal that does not depend on the polarization of the input optical signal can be generated as in the above-described embodiment. Further, since the first temporal modulation method is performed, the temporal modulation of the beat optical signal can be easily performed. Furthermore, since the OVCO 304 is configured using the Fabry-Perot etalon 346 without using AWG, the apparatus configuration can be simplified. In particular, as compared with the synchronous optical signal generators 2 and 3, only one AWG is required, and the manufacturing cost can be reduced.

また、実施例1と同様に、時間的変調部161により、波長λ1、λ2の光信号がAWG1612を2回通る。このため、帰還するビート光信号の光SNRを高くできる。さらに、位相シフタ18により、位相誤差信号の振幅を最大にでき、位相誤差信号のSNRを高くでき、タイミングジッタを小さくできる。   As in the first embodiment, the optical signal having the wavelengths λ 1 and λ 2 passes through the AWG 1612 twice by the temporal modulation unit 161. For this reason, the optical SNR of the beat optical signal to be returned can be increased. Further, the phase shifter 18 can maximize the amplitude of the phase error signal, increase the SNR of the phase error signal, and reduce the timing jitter.

なお、上記実施の形態及び変形例における記述は、本発明に係る同期光信号発生装置、時間的変調装置、同期光信号発生方法及び時間的変調方法の一例であり、これに限定されるものではない。   Note that the descriptions in the above-described embodiments and modifications are examples of the synchronous optical signal generation device, the temporal modulation device, the synchronous optical signal generation method, and the temporal modulation method according to the present invention, and are not limited thereto. Absent.

例えば、上記実施の形態、各実施例及び以下に述べる構成の一部又は全部のうち、少なくとも2つの構成を適宜組み合わせることとしてもよい。   For example, at least two of the above-described embodiments, each example, and some or all of the configurations described below may be appropriately combined.

また、上記実施の形態、各実施例では、OVCOとして、光コム発生部、2モード選択部、2モード合波部により、線幅の狭いビート光信号を発生する構成としたが、これに限定されるものではない。例えば、従来の同期光信号発生装置7のように、LDを用いたOVCO等、他のOVCOを用いる構成としてもよい。   In the above embodiment and each example, the OVCO is configured to generate a beat optical signal having a narrow line width by the optical comb generator, the two-mode selector, and the two-mode multiplexer, but the present invention is not limited thereto. Is not to be done. For example, like the conventional synchronous optical signal generator 7, it is good also as a structure using other OVCOs, such as OVCO using LD.

また、上記実施の形態、各実施例では、位相比較部12として、非線形効果として二光子吸収を利用したSi−APD121を用いる構成としたが、これに限定されるものではなく、他の非線形効果を利用したものとしてもよい。例えば、光ファイバ中の四光波混合(FWM:Four Wave Mixing)を利用する位相比較部を用いてもよい。FWMを利用する位相比較部は、FWMによって新しく生じたFWM光を光フィルタを用いて抜き出し、フォトダイオードで電流に変換し位相比較信号として出力する。FWMを利用する位相比較部は、例えば、HNLF(Highly Nonlinear Fiber:高非線形ファイバ)等の非線形媒質や、SOA(Semiconductor Optical Amplifier)等を用いる。   Moreover, in the said embodiment and each Example, although it was set as the structure which uses Si-APD121 using two-photon absorption as a nonlinear effect as the phase comparison part 12, it is not limited to this, Other nonlinear effects It is good also as a thing using. For example, a phase comparator that uses four-wave mixing (FWM) in an optical fiber may be used. The phase comparison unit using the FWM extracts FWM light newly generated by the FWM using an optical filter, converts it into a current with a photodiode, and outputs it as a phase comparison signal. The phase comparison unit using FWM uses, for example, a nonlinear medium such as HNLF (Highly Nonlinear Fiber), SOA (Semiconductor Optical Amplifier), or the like.

また、位相比較部としては、光ファイバ中の相互位相変調(XPM:Cross Phase Modulation)を利用する位相比較部を用いてもよい。XPMを利用する位相比較部は、XPMによって光信号の波長が移動し、移動した波長を持つXPM光を光フィルタで抜き出しフォトダイオードで電流に変換し位相比較信号として出力する。   Further, as the phase comparison unit, a phase comparison unit that uses cross phase modulation (XPM) in an optical fiber may be used. The phase comparison unit using XPM shifts the wavelength of the optical signal by XPM, extracts the XPM light having the shifted wavelength by an optical filter, converts it to a current by a photodiode, and outputs it as a phase comparison signal.

また、非線形光学結晶における第二次高調波発生(SHG:Second Harmonic Generation)を利用する位相比較部を用いてもよい。SHGを利用する位相比較部は、SHG光を光フィルタで抜き出しフォトダイオードで電流に変換し位相比較信号として出力する。   Further, a phase comparison unit using second harmonic generation (SHG) in the nonlinear optical crystal may be used. A phase comparison unit using SHG extracts SHG light with an optical filter, converts it into a current with a photodiode, and outputs it as a phase comparison signal.

また、擬似位相整合(PPLN:Periodically Poled Lithium Niobate)におけるSHGを利用する位相比較部を用いてもよい。PPLNにおけるSHGを利用する位相比較部は、SHG光を光フィルタで抜き出しフォトダイオードで電流に変換し位相比較信号として出力する。他にも、位相比較部として、PMT(Photo Multiplier Tube:光電子倍増管)を利用したもの、カー効果を利用したもの等としてもよい。   Further, a phase comparator using SHG in pseudo phase matching (PPLN: Periodically Poled Lithium Niobate) may be used. A phase comparison unit using SHG in the PPLN extracts SHG light with an optical filter, converts it into a current with a photodiode, and outputs it as a phase comparison signal. In addition, as the phase comparison unit, a unit using a PMT (Photo Multiplier Tube), a unit using the Kerr effect, or the like may be used.

また、上記実施の形態及び各実施例で説明した同期光信号発生装置の各構成要素の細部構成、及び細部動作に関しては、本発明の趣旨を逸脱することのない範囲で適宜変更可能であることは勿論である。   The detailed configuration and detailed operation of each component of the synchronous optical signal generator described in the above embodiments and examples can be changed as appropriate without departing from the spirit of the present invention. Of course.

本発明に係る実施の形態の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the synchronous optical signal generator of embodiment which concerns on this invention. 時間的変調がなされた信号の波形を示す図である。It is a figure which shows the waveform of the signal by which time modulation was made. (a)は、時間差τに対するTPA信号の一例と時間的変調するポイントA,B,Cとを示す図である。(b)は、(a)のTPA信号の微分値信号を示す図である。(A) is a figure which shows an example of the TPA signal with respect to time difference (tau), and the points A, B, and C which time-modulate. (B) is a figure which shows the differential value signal of the TPA signal of (a). (a)は、図3(a)のポイントA,B,Cにおける時間的変調後のTPA信号の波形を示す図である。(b)は、局所発振部15のLO信号と図3(a)のポイントA,B,Cにおける復調信号との波形を示す図である。(A) is a figure which shows the waveform of the TPA signal after the time modulation | alteration in the points A, B, and C of Fig.3 (a). (B) is a figure which shows the waveform of the LO signal of the local oscillation part 15, and the demodulated signal in point A, B, C of Fig.3 (a). 電気ミキサの出力信号の周波数分布を示す図である。It is a figure which shows the frequency distribution of the output signal of an electric mixer. 第1の時間的変調方法による位相変調部を用いた装置構成を示す図である。It is a figure which shows the apparatus structure using the phase modulation part by the 1st temporal modulation method. 位相変調部に加えた電圧に対するビート光信号の強度時間波形を示す図である。It is a figure which shows the intensity | strength time waveform of the beat optical signal with respect to the voltage added to the phase modulation part. 時間的変調部の構成を示す図である。It is a figure which shows the structure of a temporal modulation part. 第2の時間的変調方法による装置構成を示す図である。It is a figure which shows the apparatus structure by the 2nd time modulation method. 位相変調器に加えた電圧に対するビート光信号の強度時間波形を示す図である。It is a figure which shows the intensity | strength time waveform of the beat optical signal with respect to the voltage applied to the phase modulator. 本発明に係る実施例1の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the synchronous optical signal generator of Example 1 which concerns on this invention. 本発明に係る実施例2の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the synchronous optical signal generator of Example 2 which concerns on this invention. 本発明に係る実施例3の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the synchronous optical signal generator of Example 3 which concerns on this invention. 本発明に係る実施例4の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the synchronous optical signal generator of Example 4 which concerns on this invention. 本発明に係る実施例5の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the synchronous optical signal generator of Example 5 which concerns on this invention. 本発明に係る実施例6の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the synchronous optical signal generator of Example 6 which concerns on this invention. 従来の第1の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the conventional 1st synchronous optical signal generator. (a)は、ビート光信号と参照光信号との波形及び時間差τを示す図である。(b)は、時間差τに対する位相誤差信号I(τ)を示す図である。(A) is a figure which shows the waveform and time difference (tau) of a beat light signal and a reference light signal. (B) is a diagram showing a phase error signal I (τ) with respect to the time difference τ. 従来の第2の同期光信号発生装置の構成を示す図である。It is a figure which shows the structure of the 2nd conventional synchronous optical signal generator. 従来の同期電気信号発生装置の構成を示す図である。It is a figure which shows the structure of the conventional synchronous electric signal generator. (a)は、時間差τに対するTPA信号の関係を示す図である。(b)は、時間tに対するTPA信号の関係を示す図である。(A) is a figure which shows the relationship of the TPA signal with respect to time difference (tau). (B) is a figure which shows the relationship of the TPA signal with respect to time t. (a)は、時間差τに対する、少なくとも一方が直線偏光の2つの光信号を合波した場合のTPA信号を示す図である。(b)は、時間差τに対する、少なくとも一方が円偏光の光信号を合波した場合のTPA信号を示す図である。(A) is a figure which shows a TPA signal at the time of combining two optical signals with at least one linearly polarized light with respect to the time difference τ. (B) is a figure which shows a TPA signal at the time of combining the optical signal with at least one circularly polarized light with respect to the time difference (tau). (a)は、時間tに対するエンベロープg(t)の波形を示す図である。(b)は、時間差τに対するTPA信号I(τ)の波形を示す図である。(A) is a figure which shows the waveform of envelope g (t) with respect to time t. (B) is a diagram showing a waveform of the TPA signal I (τ) with respect to the time difference τ.

符号の説明Explanation of symbols

1,2,3,4,5,6,7,8,9 同期光信号発生装置
10 同期電気信号発生装置
11 光カプラ
F 空間光学系
111 ハーフミラー
112 レンズ
12 位相比較部
121 Si−APD
15 局所発振部
151,152 RFアンプ
16 時間的変調部
16A,16B 位相変調部
160 光カプラ
161,162,163 時間的変調部
1611 サーキュレータ
1612 AWG
1613 LN位相変調器
1614,1616 FRM
1615 VOA
1617 PBS
1618 PC
1619 光カプラ
1620 EDFA
164 LN位相変調器
17 円偏光調整部
171 PC
172 1/4波長板
18 位相シフタ
19 TIA
20 ループフィルタ
30,301,302,303,304,305 OVCO
31 VCO
311,312 二倍周波数発生器
32 RFアンプ
33 光コム発生部
331 DFB−LD
332 LN位相変調器
34 2モード選択部
341 サーキュレータ
342 AWG
343 PBS
344,345 光カプラ
346 ファブリペローエタロン
35 2モード合波部
351,352 FRM
353 PC
354 光カプラ
361 EDFA
362 PM−EDFA
37 光カプラ
41,52,53,44,45,46 PMF
81 光カプラ
82 Si−APD
83 ループフィルタ
84 OVCO
841,842 LD
843 光カプラ
101 光カプラ
102 EDFA
103 Si−APD
104 ループフィルタ
105 VCO
106 RFアンプ
107 モードロックレーザ
108 PC
1, 2, 3, 4, 5, 6, 7, 8, 9 Synchronous optical signal generator 10 Synchronous electric signal generator 11 Optical coupler F Spatial optical system 111 Half mirror 112 Lens 12 Phase comparator 121 Si-APD
DESCRIPTION OF SYMBOLS 15 Local oscillation part 151,152 RF amplifier 16 Temporal modulation part 16A, 16B Phase modulation part 160 Optical coupler 161,162,163 Temporal modulation part 1611 Circulator 1612 AWG
1613 LN phase modulators 1614 and 1616 FRM
1615 VOA
1617 PBS
1618 PC
1619 Optical coupler 1620 EDFA
164 LN phase modulator 17 Circular polarization adjustment unit 171 PC
172 1/4 wavelength plate 18 phase shifter 19 TIA
20 Loop filter 30, 301, 302, 303, 304, 305 OVCO
31 VCO
311, 312 Double frequency generator 32 RF amplifier 33 Optical comb generator 331 DFB-LD
332 LN phase modulator 34 2 mode selection unit 341 circulator 342 AWG
343 PBS
344, 345 Optical coupler 346 Fabry-Perot etalon 35 2-mode multiplexing unit 351, 352 FRM
353 PC
354 Optical Coupler 361 EDFA
362 PM-EDFA
37 Optical coupler 41, 52, 53, 44, 45, 46 PMF
81 Optical coupler 82 Si-APD
83 Loop filter 84 OVCO
841,842 LD
843 Optical coupler 101 Optical coupler 102 EDFA
103 Si-APD
104 Loop filter 105 VCO
106 RF amplifier 107 Mode-locked laser 108 PC

Claims (12)

所定周波数の変調信号を発生する局所発振部と、
参照光信号と時間的変調された円偏光のビート光信号とを合波する合波部と、
非線形効果により、前記合波された参照光信号及びビート光信号の位相を比較し位相比較信号を生成する位相比較部と、
前記位相比較信号及び前記変調信号を乗算して当該位相比較信号の微分値信号を位相誤差信号として出力する電気ミキサと、
前記位相誤差信号を整形する整形部と、
前記整形された位相誤差信号に基づいて、当該位相誤差信号を0にするビート光信号を発生して出力するビート光信号発生部と、
前記ビート光信号発生部により発生されたビート光信号を、前記変調信号に基づいて時間的変調する時間的変調部と、
前記時間的変調されたビート光信号を円偏光にして前記合波部に出力する円偏光調整部と、を備える同期光信号発生装置。
A local oscillation unit that generates a modulation signal of a predetermined frequency;
A combining unit for combining the reference light signal and the temporally modulated circularly polarized beat light signal;
A phase comparison unit that generates a phase comparison signal by comparing phases of the combined reference light signal and beat light signal by a non-linear effect;
An electric mixer that multiplies the phase comparison signal and the modulation signal and outputs a differential value signal of the phase comparison signal as a phase error signal;
A shaping unit for shaping the phase error signal;
Based on the shaped phase error signal, a beat optical signal generator that generates and outputs a beat optical signal that sets the phase error signal to 0,
A temporal modulation unit that temporally modulates the beat optical signal generated by the beat optical signal generation unit based on the modulation signal;
A synchronous optical signal generator comprising: a circularly polarized light adjusting unit that converts the temporally modulated beat optical signal into circularly polarized light and outputs the circularly polarized light to the combining unit.
前記円偏光調整部は、偏波コントローラである請求項1に記載の同期光信号発生装置。   The synchronous optical signal generator according to claim 1, wherein the circular polarization adjustment unit is a polarization controller. 前記合波部は、ハーフミラーであり、
前記円偏光調整部は、1/4波長板であり、
前記1/4波長板から前記位相比較部までの光路が空間光学系により構成され、
前記ビート光信号発生部から前記1/4波長板までの光路を通る光信号の偏波を直線偏光に保持する偏波保持部を備える請求項1又は2に記載の同期光信号発生装置。
The multiplexing unit is a half mirror,
The circularly polarized light adjusting unit is a quarter wavelength plate,
An optical path from the quarter-wave plate to the phase comparison unit is configured by a spatial optical system,
The synchronous optical signal generation device according to claim 1, further comprising a polarization holding unit that holds a polarization of an optical signal passing through an optical path from the beat optical signal generation unit to the quarter-wave plate as linearly polarized light.
前記時間的変調部は、前記ビート光信号を構成する一方の波長の光信号を位相変調する位相変調部を備える請求項1から3のいずれか一項に記載の同期光信号発生装置。   4. The synchronous optical signal generation device according to claim 1, wherein the temporal modulation unit includes a phase modulation unit that performs phase modulation on an optical signal having one wavelength constituting the beat optical signal. 5. 前記時間的変調部は、
前記ビート光信号を構成する第1及び第2の波長の光信号を抽出するアレイ導波路回析格子と、
前記第2の波長の光信号及び位相変調された第1の波長の光信号を反射するファラデーローテータミラーと、を備え、
前記位相変調部は、前記アレイ導波路回析格子から出力される前記第1の波長の光信号を位相変調し、
前記アレイ導波路回析格子は、前記ファラデーローテータミラーにより反射された、前記第2の波長の光信号及び前記位相変調された第1の波長の光信号を合波しビート光信号として出力する請求項4に記載の同期光信号発生装置。
The temporal modulation unit is
An arrayed waveguide diffraction grating for extracting optical signals of the first and second wavelengths constituting the beat optical signal;
A Faraday rotator mirror that reflects the optical signal of the second wavelength and the optical signal of the first wavelength that is phase-modulated,
The phase modulation unit phase modulates the optical signal of the first wavelength output from the arrayed waveguide diffraction grating,
The arrayed waveguide diffraction grating combines the optical signal of the second wavelength reflected by the Faraday rotator mirror and the optical signal of the first wavelength that has been phase-modulated and outputs it as a beat optical signal. Item 5. The synchronous optical signal generator according to Item 4.
前記ビート光信号発生部は、
前記位相誤差信号に応じた周波数間隔の光コム信号を発生する光コム発生部と、
前記発生された光コム信号から第1及び第2の波長の線スペクトルの光信号を選択して抽出する2モード選択部と、
前記抽出された第1及び第2の波長の光信号を合波してビート光信号を発生して出力する2モード合波部と、を備える請求項1から5のいずれか一項に記載の同期光信号発生装置。
The beat optical signal generator is
An optical comb generator for generating an optical comb signal at a frequency interval according to the phase error signal;
A two-mode selection unit for selecting and extracting optical signals of the first and second wavelength line spectra from the generated optical comb signal;
6. A two-mode multiplexing unit that multiplexes the extracted optical signals of the first and second wavelengths to generate and output a beat optical signal. 6. Synchronous optical signal generator.
前記2モード選択部及び前記2モード合波部は、ファブリペローエタロンにより構成される請求項6に記載の同期光信号発生装置。   The synchronous optical signal generation device according to claim 6, wherein the two-mode selection unit and the two-mode multiplexing unit are configured by a Fabry-Perot etalon. 前記時間的変調部は、前記2モード選択部により選択された第1の波長の光信号を時間的変調し、当該時間的変調した第1の波長の光信号と前記第2の波長の光信号とを合波して出力する請求項6に記載の同期光信号発生装置。   The temporal modulation unit temporally modulates the optical signal of the first wavelength selected by the two-mode selection unit, and the temporally modulated optical signal of the first wavelength and the optical signal of the second wavelength The synchronous optical signal generator according to claim 6, which outputs a combined signal. 前記2モード選択部及び前記2モード合波部は、前記時間的変調部を含み、当該時間的変調部により時間的変調されたビート光信号を発生して出力する請求項6に記載の同期光信号発生装置。   The synchronized light according to claim 6, wherein the two-mode selection unit and the two-mode multiplexing unit include the temporal modulation unit, and generate and output a beat optical signal temporally modulated by the temporal modulation unit. Signal generator. 前記時間的変調部は、前記ビート光信号を位相変調する位相変調部を備える請求項1から7のいずれか一項に記載の同期光信号発生装置。   The synchronized optical signal generation device according to claim 1, wherein the temporal modulation unit includes a phase modulation unit that performs phase modulation on the beat optical signal. 前記局所発振部からの変調信号の位相をシフトして、前記電気ミキサ又は前記時間的変調部に出力する位相シフタを備える請求項1から10のいずれか一項に記載の同期光信号発生装置。   11. The synchronous optical signal generator according to claim 1, further comprising: a phase shifter that shifts a phase of a modulation signal from the local oscillation unit and outputs the shifted signal to the electric mixer or the temporal modulation unit. 参照光信号と時間的変調された円偏光のビート光信号とを合波する工程と、Combining the reference light signal and the temporally modulated circularly polarized beat light signal;
非線形効果により、前記合波された参照光信号及びビート光信号の位相を比較して位相比較信号を生成する工程と、A step of generating a phase comparison signal by comparing phases of the combined reference light signal and beat light signal by a non-linear effect;
前記位相比較信号と、所定周波数の変調信号を乗算して当該位相比較信号の微分値信号を位相誤差信号として出力する工程と、Multiplying the phase comparison signal by a modulation signal of a predetermined frequency and outputting a differential value signal of the phase comparison signal as a phase error signal;
前記位相誤差信号を整形する工程と、Shaping the phase error signal;
前記整形された位相誤差信号の微分値信号に基づいて、当該微分値信号を0にするビート光信号を発生して出力する工程と、Generating and outputting a beat optical signal that sets the differential value signal to 0 based on the differential value signal of the shaped phase error signal;
前記発生されたビート光信号を、前記変調信号に基づいて時間的変調する工程と、Temporally modulating the generated beat optical signal based on the modulation signal;
前記時間的変調されたビート光信号を円偏光にして前記合波に用いる時間的変調された円偏光のビート光信号として出力する工程と、を含む同期光信号発生方法。And generating a time-modulated beat optical signal as circularly polarized light and outputting it as a time-modulated circularly-polarized beat optical signal used for the multiplexing.
JP2008091435A 2008-03-31 2008-03-31 Synchronous optical signal generator and synchronous optical signal generation method Expired - Fee Related JP5435443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091435A JP5435443B2 (en) 2008-03-31 2008-03-31 Synchronous optical signal generator and synchronous optical signal generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091435A JP5435443B2 (en) 2008-03-31 2008-03-31 Synchronous optical signal generator and synchronous optical signal generation method

Publications (2)

Publication Number Publication Date
JP2009244621A JP2009244621A (en) 2009-10-22
JP5435443B2 true JP5435443B2 (en) 2014-03-05

Family

ID=41306571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091435A Expired - Fee Related JP5435443B2 (en) 2008-03-31 2008-03-31 Synchronous optical signal generator and synchronous optical signal generation method

Country Status (1)

Country Link
JP (1) JP5435443B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925550B1 (en) * 2021-01-26 2021-08-25 株式会社Xtia Optical comb generator
JP6972403B1 (en) * 2021-02-22 2021-11-24 株式会社Xtia Low relative phase noise optical comb generator
JP6994128B1 (en) * 2021-03-29 2022-02-03 株式会社Xtia Optical comb generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697350B2 (en) * 1998-05-25 2005-09-21 株式会社東芝 Optical transmitter

Also Published As

Publication number Publication date
JP2009244621A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5883974B2 (en) Optical signal amplifier
JP3401483B2 (en) Wavelength converter
EP1681542B1 (en) Optical waveform measuring apparatus and optical waveform measuring method
US6959152B2 (en) Polarization scrambler and optical network using the same
JP4813963B2 (en) Optical transmitter, optical repeater, optical transmission system, and optical transmission method in wavelength division multiplexing transmission
US8494378B2 (en) Synchronous optical signal generating device and synchronous optical signal generating method
Lorences-Riesgo et al. Frequency-comb regeneration for self-homodyne superchannels
JP2013182140A (en) Light amplification device, optical signal generator, and signal/noise ratio improvement device
JP2006013573A (en) Quantum optical transmission apparatus
Zheng et al. Comb spacing multiplication enabled widely spaced flexible frequency comb generation
JP4845145B2 (en) Broadband multi-wavelength light source
JP5665038B2 (en) Broadband optical comb generator
JP5435443B2 (en) Synchronous optical signal generator and synchronous optical signal generation method
JP6226431B2 (en) Signal generator
US20230053856A1 (en) Optical Communication System
JP6774381B2 (en) Optical transmitter and optical transmission system using it
Yi et al. A theoretical and experimental study on modulation-format-independent wavelength conversion
Parra-Cetina et al. Subharmonic all-optical clock recovery of up to 320 Gb/s signal using a quantum dash Fabry–Perot mode-locked laser
Pfeifle Terabit-rate transmission using optical frequency comb sources
JP5534707B2 (en) Phase synchronization circuit and phase synchronization method
JP6796027B2 (en) Optical transmitter and optical transmission system using it
JP3787617B2 (en) Four-wave mixing device using a ring laser
Tang et al. Multifold clock recovery and demultiplexing based on a polarization-dependent phase modulator incorporated frequency-doubling optoelectronic oscillator
Desi Development and investigation of optical frequency combs for photonic communication systems
Ma et al. Multiple microwave waveform generation by a dual-loop optoelectronic oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

LAPS Cancellation because of no payment of annual fees