JP5433999B2 - Manufacturing method of resin for photoresist - Google Patents

Manufacturing method of resin for photoresist Download PDF

Info

Publication number
JP5433999B2
JP5433999B2 JP2008185288A JP2008185288A JP5433999B2 JP 5433999 B2 JP5433999 B2 JP 5433999B2 JP 2008185288 A JP2008185288 A JP 2008185288A JP 2008185288 A JP2008185288 A JP 2008185288A JP 5433999 B2 JP5433999 B2 JP 5433999B2
Authority
JP
Japan
Prior art keywords
resin
solvent
polymerization
group
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008185288A
Other languages
Japanese (ja)
Other versions
JP2010024298A (en
Inventor
敏郎 西村
康誠 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008185288A priority Critical patent/JP5433999B2/en
Publication of JP2010024298A publication Critical patent/JP2010024298A/en
Application granted granted Critical
Publication of JP5433999B2 publication Critical patent/JP5433999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、フォトレジスト用樹脂の製造方法に関する。更に詳しくは、本発明は、樹脂原料として用いられるモノマーのポリマーへの転化率を向上させることができるフォトレジスト用樹脂の製造方法。   The present invention relates to a method for producing a photoresist resin. More specifically, the present invention relates to a method for producing a photoresist resin, which can improve the conversion rate of a monomer used as a resin raw material into a polymer.

集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、より微細な加工が可能なリソグラフィー技術が必要とされている。しかし、従来のリソグラフィープロセスでは、一般に放射線としてi線等の近紫外線が用いられているが、この近紫外線では、サブクオーターミクロンレベルの微細加工が極めて困難であると言われている。そこで、例えば、0.10μm以下のレベルでの微細加工を可能とするために、より波長の短い放射線の利用が検討されている。このような短波長の放射線としては、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、X線、電子線等を挙げることができるが、これらのうち、特にKrFエキシマレーザー(波長248nm)或いはArFエキシマレーザー(波長193nm)が注目されている。   In the field of microfabrication represented by the manufacture of integrated circuit elements, lithography technology capable of finer processing is required to obtain a higher degree of integration. However, in the conventional lithography process, near ultraviolet rays such as i rays are generally used as radiation, and it is said that fine processing at the subquarter micron level is extremely difficult with this near ultraviolet rays. Therefore, for example, in order to enable fine processing at a level of 0.10 μm or less, use of radiation having a shorter wavelength is being studied. Examples of such short-wavelength radiation include an emission line spectrum of a mercury lamp, far-ultraviolet rays typified by an excimer laser, an X-ray, an electron beam, and the like. Among these, a KrF excimer laser (wavelength 248 nm) is particularly preferable. ) Or ArF excimer laser (wavelength 193 nm) has been attracting attention.

このような放射線による照射に適した、レジスト形成用の感放射線性樹脂組成物、多層レジストにおける上層膜や下層膜(反射防止膜等)を形成するための樹脂組成物等のフォトリソグラフィに使用される樹脂組成物が数多く提案されている。   Used for photolithography such as a radiation-sensitive resin composition for resist formation suitable for irradiation with such radiation, and a resin composition for forming an upper layer film or a lower layer film (antireflection film, etc.) in a multilayer resist. Many resin compositions have been proposed.

そして、このような樹脂組成物に用いられるフォトレジスト用樹脂の製造方法としては、例えば、重合性モノマーを含有する溶液と、重合開始剤を含有する溶液とを、重合系内に連続的又は断続的に供給して重合させる方法(特許文献1及び2参照)や、減圧且つ還流条件下で重合させる方法(特許文献3参照)等が知られている。   And as a manufacturing method of the resin for photoresists used for such a resin composition, for example, a solution containing a polymerizable monomer and a solution containing a polymerization initiator are continuously or intermittently contained in the polymerization system. For example, there are known a method in which the polymer is supplied and polymerized (see Patent Documents 1 and 2), a method in which the polymerization is performed under reduced pressure and reflux conditions (see Patent Document 3), and the like.

特開2004−269855号公報JP 2004-269855 A 特開2003−246825号公報JP 2003-246825 A 特開2005−60511号公報JP 2005-60511 A

しかしながら、従来のレジスト用樹脂の製造方法においては、樹脂原料として用いられるモノマーのポリマーへの転化率は未だ十分であるとはいえず、残留する未反応モノマーが最終製品の露光特性を悪化させる原因となる恐れがある。特に、固体状のモノマー等の重合溶媒に対する溶解性が低いモノマーが用いられる場合には、多量のモノマー溶解用の溶媒が必要となり、重合反応の際におけるモノマー濃度を十分に高めることができず、モノマーのポリマーへの転化率を十分に高められていないのが現状である。
以上のことから、得られる樹脂の更なる性能及び生産性等の向上の観点から、樹脂原料として用いられるモノマーのポリマーへの転化率をより高くすることができるフォトレジスト用樹脂の製造方法が求められているのが現状である。
However, in the conventional method for producing a resist resin, the conversion rate of the monomer used as a resin raw material into a polymer is still not sufficient, and the remaining unreacted monomer causes the exposure characteristics of the final product to deteriorate. There is a risk of becoming. In particular, when a monomer having low solubility in a polymerization solvent such as a solid monomer is used, a large amount of solvent for dissolving the monomer is required, and the monomer concentration in the polymerization reaction cannot be sufficiently increased. The present situation is that the conversion rate of the monomer into the polymer is not sufficiently increased.
From the above, from the viewpoint of improving the performance and productivity of the obtained resin, there is a demand for a method for producing a resin for photoresist that can further increase the conversion rate of the monomer used as the resin raw material to the polymer. This is the current situation.

本発明は、樹脂原料として用いられるモノマーのポリマーへの転化率を向上させることができるフォトレジスト用樹脂の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the resin for photoresists which can improve the conversion rate to the polymer of the monomer used as a resin raw material.

本発明は、以下のとおりである。
[1]溶媒の存在下で重合性化合物を重合させることにより、フォトレジスト用樹脂を製造するフォトレジスト用樹脂の製造方法であって、
前記重合性化合物は、エチレン性不飽和結合を有する単量体であり、
前記重合性化合物のうちの少なくとも1種は、常温において固体状の化合物であり、
重合反応中に、溶媒を留去することを特徴とするフォトレジスト用樹脂の製造方法。
[2]常温において固体状の前記化合物は、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン、2−エチル−2−アダマンチルメタクリレート、5−オキソ−4−オキサ−トリシクロ[5.2.1.03,8]デカ−2−イルメタクリレート、3−(2−ヒドロキシエトキシ)−1−アダマンチルメタクリレート、2−イソプロピル−2−アダマンチルメタクリレート、2−[〔(トリフルオロメチル)スルホニル〕アミノ]エチルメタクリレート、1,2−シクロヘキサンジカルボン酸モノ[2−〔(2−メチル−1−オキソ−2−プロペニル)オキシ〕エチル]エステル、5−[3,3,3−トリフルオロ−2−ヒドロキシ−2−(トリフルオロメチル)プロピル]ビシクロ[2.2.1]ヘプタン−2−イルメタクリレート、又は、6−[3,3,3−トリフルオロ−2−ヒドロキシ−2−(トリフルオロメチル)プロピル]ビシクロ[2.2.1]ヘプタン−2−イルメタクリレートである前記[1]に記載のフォトレジスト用樹脂の製造方法。
[3]重合反応中における前記溶媒の留去量が、重合の際に使用される溶媒の総量を100質量%とした場合に、25〜65質量%である前記[1]又は[2]に記載のフォトレジスト用樹脂の製造方法。
[4]前記反応溶媒の留去を連続的又は間欠的に行う前記[1]乃至[3]のいずれかに記載のフォトレジスト用樹脂の製造方法。
[5]重合反応中における前記溶媒の留去速度が、重合の際に使用される溶媒の初期の総量を100質量%とした場合に、5〜44質量%/hである前記[1]乃至[4]のいずれかに記載のフォトレジスト用樹脂の製造方法。
[6]前記重合反応を加圧下で行う前記[1]乃至[5]のいずれかに記載のフォトレジスト用樹脂の製造方法。
The present invention is as follows.
[1] A method for producing a photoresist resin, which comprises producing a photoresist resin by polymerizing a polymerizable compound in the presence of a solvent,
The polymerizable compound is a monomer having an ethylenically unsaturated bond,
At least one of the polymerizable compounds is a solid compound at room temperature,
A method for producing a photoresist resin, wherein a solvent is distilled off during a polymerization reaction.
[2] The compound that is solid at room temperature includes 5-methacryloyloxy-2,6-norbornanecarbolactone, 2-ethyl-2-adamantyl methacrylate, 5-oxo-4-oxa-tricyclo [5.2.1. 0 3,8 ] dec-2-yl methacrylate, 3- (2-hydroxyethoxy) -1-adamantyl methacrylate, 2-isopropyl-2-adamantyl methacrylate, 2-[[(trifluoromethyl) sulfonyl] amino] ethyl methacrylate 1,2-cyclohexanedicarboxylic acid mono [2-[(2-methyl-1-oxo-2-propenyl) oxy] ethyl] ester, 5- [3,3,3-trifluoro-2-hydroxy-2- (Trifluoromethyl) propyl] bicyclo [2.2.1] heptan-2-ylmetac In the above [1], which is a rate or 6- [3,3,3-trifluoro-2-hydroxy-2- (trifluoromethyl) propyl] bicyclo [2.2.1] heptan-2-yl methacrylate The manufacturing method of resin for description of description.
[3] In the above [1] or [2], the amount of the solvent distilled off during the polymerization reaction is 25 to 65% by mass when the total amount of the solvent used in the polymerization is 100% by mass. The manufacturing method of resin for description of description.
[4] The method for producing a photoresist resin according to any one of [1] to [3], wherein the reaction solvent is distilled off continuously or intermittently.
[5] The above-mentioned [1] to [44], wherein the evaporation rate of the solvent during the polymerization reaction is 5 to 44% by mass / h when the initial total amount of the solvent used in the polymerization is 100% by mass. [4] The method for producing a photoresist resin according to any one of [4].
[6] The method for producing a photoresist resin according to any one of [1] to [5], wherein the polymerization reaction is performed under pressure.

本発明のフォトレジスト用樹脂の製造方法によれば、重合反応中に溶媒を留去(蒸発留去)することによって、重合溶液中における固形分濃度(特に単量体の濃度)を従来よりも高濃度に維持することができ、即ち従来よりも固形分が濃縮された状態で重合させることができ、樹脂原料として用いられるモノマー(単量体)のポリマー(重合体)への転化率を大幅に向上させることができる。また、重合溶媒に対する溶解性が低く、モノマー溶解用の溶媒が多量に必要な固体状のモノマー等を用いる場合であっても、上述のように固形分濃度を従来よりも高濃度に維持して重合可能であるため、ポリマーへの転化率を向上させることができる。更に、ポリマーへの転化率が向上することによって、最終製品の露光特性を悪化させる原因となる未反応モノマー等の不純物の含有量が少ない高純度の樹脂溶液が得られ、高品質なフォトレジスト用樹脂を得ることができる。更には、重合に必要な高価なモノマーの使用量を従来よりも少なくすることができ、フォトレジスト用樹脂の生産性を向上させることができる。   According to the method for producing a resin for a photoresist of the present invention, the solid content concentration (particularly the monomer concentration) in the polymerization solution is made higher than before by distilling off the solvent during the polymerization reaction (evaporation distillation). It can be maintained at a high concentration, that is, it can be polymerized in a state where the solid content is more concentrated than before, and the conversion rate of the monomer (monomer) used as a resin raw material to a polymer (polymer) is greatly increased. Can be improved. In addition, even when using solid monomers that have low solubility in the polymerization solvent and require a large amount of solvent for dissolving the monomer, the solid content concentration is maintained higher than the conventional concentration as described above. Since it can polymerize, the conversion rate to a polymer can be improved. Furthermore, by improving the conversion rate to polymer, a high-purity resin solution with a low content of impurities such as unreacted monomers that cause the exposure characteristics of the final product to deteriorate can be obtained. A resin can be obtained. Furthermore, the amount of expensive monomers required for polymerization can be reduced as compared with the conventional amount, and the productivity of the photoresist resin can be improved.

以下、本発明を詳細に説明する。
本発明のフォトレジスト用樹脂の製造方法は、溶媒の存在下で重合性化合物を重合させることにより、フォトレジスト用樹脂を製造するものであって、重合性化合物のうちの少なくとも1種は、常温において固体状の化合物であり、重合反応中に、溶媒を留去することを特徴とする。
Hereinafter, the present invention will be described in detail.
The method for producing a photoresist resin of the present invention is a method for producing a photoresist resin by polymerizing a polymerizable compound in the presence of a solvent, and at least one of the polymerizable compounds is at room temperature. In which the solvent is distilled off during the polymerization reaction.

前記重合性化合物、レジスト形成用の感放射線性樹脂組成物、多層レジストにおける上層膜や下層膜(反射防止膜等)を形成するための樹脂組成物等のフォトリソグラフィに使用される樹脂組成物に含まれるフォトレジスト用樹脂の製造に用いられるエチレン性不飽和結合を有する重合性化合物(単量体)であるThe polymerizable compound is a resin composition used for photolithography, such as a radiation-sensitive resin composition for resist formation, a resin composition for forming an upper layer film or a lower layer film (antireflection film, etc.) in a multilayer resist. a polymerizable compound having an ethylenically unsaturated bond used in the production of a photoresist resin contained in the (monomeric).

ここで、例えば、レジスト形成用のポジ型感放射線性樹脂組成物に含まれる樹脂は、少なくとも、酸によって分解してアルカリ現像液に可溶となる化学構造を有する繰り返し単位、より具体的には、非極性置換基が酸によって解離してアルカリ現像液に可溶な極性基が発現する化学構造を有する繰り返し単位(1)と、半導体基板等の基板に対する密着性を高めるための極性基を有する繰り返し単位(2)とを必須成分としており、必要に応じて、溶剤やアルカリ現像液への溶解性を調節するための非極性の置換基を有する繰り返し単位(3)を含んで構成されている。   Here, for example, the resin contained in the positive-type radiation-sensitive resin composition for resist formation is at least a repeating unit having a chemical structure that is decomposed by an acid and becomes soluble in an alkali developer, more specifically, And a repeating unit (1) having a chemical structure in which a non-polar substituent is dissociated by an acid and a polar group soluble in an alkali developer is expressed, and a polar group for enhancing adhesion to a substrate such as a semiconductor substrate The repeating unit (2) is an essential component, and includes a repeating unit (3) having a non-polar substituent for adjusting the solubility in a solvent or an alkali developer as necessary. .

前記酸によって分解してアルカリ可溶性となる繰り返し単位(1)は、従来レジストとして一般的に用いられている化学構造を意味し、酸によって分解してアルカリ可溶性になる化学構造を有する単量体を重合させるか、或いは、アルカリ可溶性の化学構造を有する単量体を重合させた後、アルカリ可溶性の化学構造におけるアルカリ可溶性基を有する置換基(アルカリ可溶性基)を、アルカリに溶解せず酸によって解離する基(酸解離性保護基)で保護することにより得ることができる。   The repeating unit (1) that is decomposed by an acid and becomes alkali-soluble means a chemical structure generally used as a conventional resist, and a monomer having a chemical structure that is decomposed by an acid and becomes alkali-soluble. After polymerizing or polymerizing a monomer having an alkali-soluble chemical structure, the substituent having an alkali-soluble group (alkali-soluble group) in the alkali-soluble chemical structure is dissociated by an acid without being dissolved in the alkali. It can be obtained by protecting with a group (acid-dissociable protecting group).

酸によって分解してアルカリ可溶性になる化学構造を有する単量体としては、アルカリ可溶性置換基を含有する重合性化合物に、酸解離性保護基が結合した化合物を挙げることができ、例えば、非極性の酸解離性保護基で保護されたフェノール性水酸基、カルボキシル基やヒドロキシフルオロアルキル基を有する化合物等が挙げられる。具体的には、例えば、p−ヒドロキシスチレン、m−ヒドロキシスチレン、p−ヒドロキシ−α−メチルスチレン等のヒドロキシスチレン類;アクリル酸、メタクリル酸、マレイン酸、フマル酸、α−トリフルオロメチルアクリル酸、5−ノルボルネン−2−カルボン酸、2−トリフルオロメチル−5−ノルボルネン−2−カルボン酸、カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデシルメタクリレート等のエチレン性二重結合を有するカルボン酸類;p−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)スチレン、2−(4−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル)−1,1,1,3,3,3−ヘキサフルオロプロピルアクリレート、2−(4−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)シクロヘキシル)−1,1,1,3,3,3−ヘキサフルオロプロピルトリフルオロメチルアクリレート、5−(2−ヒドロキシ−1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)メチル−2−ノルボルネン等のヒドロキシフルオロアルキル基を有する重合性化合物等が挙げられる。 Examples of the monomer having a chemical structure that becomes alkali-soluble when decomposed by an acid include compounds in which an acid-dissociable protecting group is bonded to a polymerizable compound containing an alkali-soluble substituent. And compounds having a phenolic hydroxyl group, a carboxyl group or a hydroxyfluoroalkyl group protected with an acid dissociable protecting group. Specifically, for example, hydroxystyrenes such as p-hydroxystyrene, m-hydroxystyrene, p-hydroxy-α-methylstyrene; acrylic acid, methacrylic acid, maleic acid, fumaric acid, α-trifluoromethylacrylic acid , 5-norbornene-2-carboxylic acid, 2-trifluoromethyl-5-norbornene-2-carboxylic acid, carboxytetracyclo [4.4.0.1 2,5 . 1 7,10 ] carboxylic acids having an ethylenic double bond such as dodecyl methacrylate; p- (2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) styrene, 2- ( 4- (2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) cyclohexyl) -1,1,1,3,3,3-hexafluoropropyl acrylate, 2- (4 -(2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) cyclohexyl) -1,1,1,3,3,3-hexafluoropropyltrifluoromethyl acrylate, 5- Polymerizable compounds having a hydroxyfluoroalkyl group such as (2-hydroxy-1,1,1,3,3,3-hexafluoro-2-propyl) methyl-2-norbornene That.

また、前記酸解離性の保護基としては、例えば、tert−ブチル基、tert−アミル基、1−メチル−1−シクロペンチル基、1−エチル−1−シクロペンチル基、1−メチル−1−シクロヘキシル基、1−エチル−1−シクロヘキシル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基、2−プロピル−2−アダマンチル基、2−(1−アダマンチル)−2−プロピル基、8−メチル−8−トリシクロ[5.2.1.02,6]デカニル基、8−エチル−8−トリシクロ[5.2.1.02,6]デカニル基、8−メチル−8−テトラシクロ[4.4.0.12,5.17,10]ドデカニル基、8−エチル−8−テトラシクロ[4.4.0.12,5.17,10]ドデカニル基等の飽和炭化水素基;1−メトキシエチル基、2−エトキシエチル基、1−iso−プロポキシエチル基、1−n−ブトキシエチル基、1−tert−ブトキシエチル基、1−シクロペンチルオキシエチル基、1−シクロヘキシルオキシエチル基、1−トリシクロ[5.2.1.02,6]デカニルオキシエチル基、メトキシメチル基、エトキシメチル基、iso−プロポキシメチル基、n−ブトキシメチル基、tert−ブトキシメチル基、シクロペンチルオキシメチル基、シクロヘキシルオキシメチル基、トリシクロ[5.2.1.02,6]デカニルオキシメチル基、tert−ブトキシカルボニル基等の含酸素炭化水素基等が挙げられる。 Examples of the acid dissociable protecting group include a tert-butyl group, a tert-amyl group, a 1-methyl-1-cyclopentyl group, a 1-ethyl-1-cyclopentyl group, and a 1-methyl-1-cyclohexyl group. 1-ethyl-1-cyclohexyl group, 2-methyl-2-adamantyl group, 2-ethyl-2-adamantyl group, 2-propyl-2-adamantyl group, 2- (1-adamantyl) -2-propyl group, 8-methyl-8-tricyclo [5.2.1.0 2,6 ] decanyl group, 8-ethyl-8-tricyclo [5.2.1.0 2,6 ] decanyl group, 8-methyl-8- Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl group, 8-ethyl-8-tetracyclo [4.4.0.1 2,5 . 1 7, 10 ] saturated hydrocarbon group such as dodecanyl group; 1-methoxyethyl group, 2-ethoxyethyl group, 1-iso-propoxyethyl group, 1-n-butoxyethyl group, 1-tert-butoxyethyl group, 1-cyclopentyloxyethyl group, 1-cyclohexyloxyethyl group, 1-tricyclo [5.2.1.0 2,6 ] decanyloxyethyl group, methoxymethyl group, ethoxymethyl group, iso-propoxymethyl group, n Oxygenated carbon such as -butoxymethyl group, tert-butoxymethyl group, cyclopentyloxymethyl group, cyclohexyloxymethyl group, tricyclo [5.2.1.0 2,6 ] decanyloxymethyl group, tert-butoxycarbonyl group A hydrogen group etc. are mentioned.

アルカリ可溶性の化学構造を有する単量体を重合させた後、アルカリ可溶性の化学構造におけるアルカリ可溶性基を、酸解離性保護基で保護する場合は、前記のアルカリ可溶性基を有する化合物をそのまま重合反応に用い、その後、酸触媒のもとでビニルエーテルやハロゲン化アルキルエーテル等のアルカリに溶解しない置換基を与える化合物と反応させることにより、酸解離性保護基を導入することができる。反応に用いる酸触媒としては、p−トルエンスルホン酸、トリフルオロ酢酸、強酸性イオン交換樹脂等が挙げられる。   After polymerizing a monomer having an alkali-soluble chemical structure and then protecting the alkali-soluble group in the alkali-soluble chemical structure with an acid-dissociable protecting group, the compound having the alkali-soluble group is directly polymerized. Then, an acid-dissociable protecting group can be introduced by reacting with a compound that gives a substituent that does not dissolve in an alkali such as vinyl ether or halogenated alkyl ether under an acid catalyst. Examples of the acid catalyst used in the reaction include p-toluenesulfonic acid, trifluoroacetic acid, and strongly acidic ion exchange resin.

また、基板に対する密着性を高めるための極性基を有する繰り返し単位(2)を与える単量体としては、例えば、極性基としてフェノール性水酸基、カルボキシル基やヒドロキシフルオロアルキル基を有する化合物等を挙げることができ、具体的には、例えば、アルカリ可溶性基を含有する重合性化合物として前記説明したヒドロキシスチレン類やエチレン性二重結合を有するカルボン酸類、ヒドロキシフルオロアルキル基を有する重合性化合物、及び、これらに更に極性基が置換した単量体のほか、ノルボルネン環、テトラシクロドデセン環等の脂環構造に極性基が結合した単量体等を挙げることができる。   Examples of the monomer that gives the repeating unit (2) having a polar group for improving adhesion to the substrate include compounds having a phenolic hydroxyl group, a carboxyl group, or a hydroxyfluoroalkyl group as the polar group. Specifically, for example, as the polymerizable compound containing an alkali-soluble group, hydroxystyrenes described above, carboxylic acids having an ethylenic double bond, polymerizable compounds having a hydroxyfluoroalkyl group, and these In addition to the monomer further substituted with a polar group, a monomer having a polar group bonded to an alicyclic structure such as a norbornene ring or a tetracyclododecene ring can be used.

置換基として繰り返し単位(2)に導入される前記極性基としては、ラクトン構造を含むものが特に好ましく、例えば、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、1,3−シクロヘキサンカルボラクトン、2,6−ノルボルナンカルボラクトン、4−オキサトリシクロ[5.2.1.02,6]デカン−3−オン、メバロン酸δ−ラクトン等のラクトン構造を含む置換基が挙げられる。
また、ラクトン構造以外の極性基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、3−ヒドロキシ−1−アダマンチル基等のヒドロキシアルキル基等が挙げられる。
The polar group introduced into the repeating unit (2) as a substituent is particularly preferably one containing a lactone structure, such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, 1,3-cyclohexanecarbolactone. , 2,6-norbornanecarbolactone, 4-oxatricyclo [5.2.1.0 2,6 ] decan-3-one, and a substituent containing a lactone structure such as mevalonic acid δ-lactone.
Examples of polar groups other than the lactone structure include hydroxyalkyl groups such as a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, and a 3-hydroxy-1-adamantyl group.

更に、必要に応じて含有される、レジスト溶剤やアルカリ現像液への溶解性を調節するための非極性の置換基を有する繰り返し単位(3)を与える単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、インデン等のエチレン性二重結合を有する芳香族化合物;アクリル酸、メタクリル酸、トリフルオロメチルアクリル酸、ノルボルネンカルボン酸、2−トリフルオロメチルノルボルネンカルボン酸、カルボキシテトラシクロ[4.4.0.12,5.17,10]ドデシルメタクリレート等のエチレン性二重結合を有するカルボン酸に酸安定性非極性基が置換したエステル化合物;ノルボルネン、テトラシクロドデセン等のエチレン性二重結合を有する脂環式炭化水素化合物等が挙げられる。
また、前記カルボン酸にエステル置換する酸安定性非極性置換基の例としては、メチル基、エチル基、シクロペンチル基、シクロヘキシル基、イソボルニル基、トリシクロ[5.2.1.02,6]デカニル基、2−アダマンチル基、テトラシクロ[4.4.0.12,5.17,10]ドデシル基等が挙げられる。
Furthermore, as a monomer which gives the repeating unit (3) having a nonpolar substituent for adjusting the solubility in a resist solvent or an alkali developer, which is contained as necessary, styrene, α-methyl Aromatic compounds having an ethylenic double bond such as styrene, p-methylstyrene, and indene; acrylic acid, methacrylic acid, trifluoromethyl acrylic acid, norbornene carboxylic acid, 2-trifluoromethyl norbornene carboxylic acid, carboxytetracyclo [ 4.4.0.1 2,5 . 1 7,10 ] ester compound in which acid-stable nonpolar group is substituted for carboxylic acid having ethylenic double bond such as dodecyl methacrylate; alicyclic carbonization having ethylenic double bond such as norbornene and tetracyclododecene A hydrogen compound etc. are mentioned.
Examples of acid-stable nonpolar substituents that are ester-substituted for the carboxylic acid include methyl, ethyl, cyclopentyl, cyclohexyl, isobornyl, and tricyclo [5.2.1.0 2,6 ] decanyl. Group, 2-adamantyl group, tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecyl group and the like.

これらの単量体は、繰り返し単位(1)、(2)及び(3)のそれぞれにおいて、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
レジスト形成用のポジ型感放射線性樹脂組成物に含まれる樹脂中の各繰り返し単位の組成比は、レジストとしての基本性能を損なわない範囲で選択することができる。即ち、一般に、繰り返し単位(1)は10〜70モル%であることが好ましく、より好ましくは10〜60モル%である。また、繰り返し単位(2)の組成比は30〜90モル%であることが好ましく、より好ましくは40〜90モル%であるが、同一の極性基を有する単量体単位については、70モル%以下とすることが好ましい。更に、繰り返し単位(3)の組成比は、50モル%以下であることが好ましく、より好ましくは40モル%以下である。
These monomers may be used individually by 1 type in each of repeating unit (1), (2), and (3), and may be used in combination of 2 or more type.
The composition ratio of each repeating unit in the resin contained in the positive-type radiation-sensitive resin composition for resist formation can be selected within a range that does not impair the basic performance as a resist. That is, in general, the repeating unit (1) is preferably 10 to 70 mol%, more preferably 10 to 60 mol%. The composition ratio of the repeating unit (2) is preferably 30 to 90 mol%, more preferably 40 to 90 mol%, but for the monomer unit having the same polar group, 70 mol% The following is preferable. Furthermore, the composition ratio of the repeating unit (3) is preferably 50 mol% or less, more preferably 40 mol% or less.

一方、多層レジストにおける上層膜や下層膜(反射防止膜等)を形成するための樹脂組成物に含まれる樹脂は、前述のレジスト形成用のポジ型感放射線性樹脂組成物に含まれる樹脂の化学構造から、酸で分解してアルカリ可溶性になる繰り返し単位(1)を除いた化学構造のポリマーが使用される。樹脂中の各繰り返し単位の組成比は特に限定されず、塗膜の使用目的により適宜調整される。一般には、繰り返し単位(2)の組成比は10〜100モル%の範囲から選択され、繰り返し単位(3)の組成比は0〜90モル%の範囲から選択される。   On the other hand, the resin contained in the resin composition for forming the upper layer film and the lower layer film (antireflection film, etc.) in the multilayer resist is the same as the chemistry of the resin contained in the positive type radiation sensitive resin composition for resist formation described above. A polymer having a chemical structure in which the repeating unit (1) which is decomposed with an acid and becomes alkali-soluble is removed from the structure. The composition ratio of each repeating unit in the resin is not particularly limited, and is appropriately adjusted depending on the intended use of the coating film. Generally, the composition ratio of the repeating unit (2) is selected from the range of 10 to 100 mol%, and the composition ratio of the repeating unit (3) is selected from the range of 0 to 90 mol%.

更に、前記多層レジストにおける上層膜や下層膜を反射防止膜として使用する場合には、前記樹脂は、架橋点と、フォトリソグラフィにおいて照射される放射線を吸収する化学構造とを含む必要があり、架橋点としては、水酸基、アミノ基、カルボキシル基、エポキシ基等の、エステル結合やウレタン結合等により架橋可能な反応性の置換基が挙げられる。架橋点となる反応性置換基を含有する単量体としては、p−ヒドロキシスチレン、m−ヒドロキシスチレン等のヒドロキシスチレン類の他、これまで例示してきた重合性化合物に前記水酸基、アミノ基、カルボキシル基、エポキシ基等の反応性置換基が置換した単量体を適宜用いることができる。   Further, when the upper layer film or the lower layer film in the multilayer resist is used as an antireflection film, the resin needs to include a crosslinking point and a chemical structure that absorbs radiation irradiated in photolithography. The point includes reactive substituents that can be cross-linked by an ester bond, a urethane bond, or the like, such as a hydroxyl group, an amino group, a carboxyl group, or an epoxy group. Examples of the monomer containing a reactive substituent serving as a crosslinking point include hydroxystyrenes such as p-hydroxystyrene and m-hydroxystyrene, and the above-described polymerizable compounds such as the hydroxyl group, amino group, and carboxyl. A monomer substituted with a reactive substituent such as a group or an epoxy group can be appropriately used.

放射線を吸収する化学構造は、使用する放射線の波長により異なるが、例えばArFエキシマレーザー光に対しては、ベンゼン環及びその類縁体を含む化学構造が好適に用いられる。この様な化学構造を含む単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、p−ヒドロキシスチレン、m−ヒドロキシスチレン等のスチレン類及びその誘導体;置換又は非置換のフェニル(メタ)アクリレート、置換又は非置換のナフタレン(メタ)アクリレート、置換又は非置換のアントラセンメチル(メタ)アクリレート等のエチレン性二重結合を有する芳香族含有エステル類等が挙げられる。この放射線を吸収する化学構造を有する単量体は、極性基の有無により前記繰り返し単位(2)又は(3)のどちらとして導入されてもよいが、放射線を吸収する化学構造を有する単量体としての組成比は10〜100モル%の範囲から選択されることが好ましい。尚、本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味する。   The chemical structure that absorbs radiation varies depending on the wavelength of the radiation used. For example, for ArF excimer laser light, a chemical structure containing a benzene ring and its analogs is preferably used. Examples of the monomer having such a chemical structure include styrenes such as styrene, α-methylstyrene, p-methylstyrene, p-hydroxystyrene, m-hydroxystyrene, and derivatives thereof; substituted or unsubstituted phenyl (meta And aromatic-containing esters having an ethylenic double bond such as acrylate, substituted or unsubstituted naphthalene (meth) acrylate, substituted or unsubstituted anthracenemethyl (meth) acrylate, and the like. The monomer having a chemical structure that absorbs radiation may be introduced as either the repeating unit (2) or (3) depending on the presence or absence of a polar group, but the monomer having a chemical structure that absorbs radiation. Is preferably selected from the range of 10 to 100 mol%. In the present specification, “(meth) acrylate” means acrylate and methacrylate.

また、本発明のフォトレジスト用樹脂の製造方法は、後述の重合溶媒に対する溶解性が低く、モノマー溶解用の溶媒が多量に必要な固体状のモノマー等を用いる場合であっても、モノマーのポリマーへの転化率を向上させることができる。
本発明において用いられる、常温において固体状の具体的な重合性化合物としては、例えば、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン、2−エチル−2−アダマンチルメタクリレート、5−オキソ−4−オキサ−トリシクロ[5.2.1.03,8]デカ−2−イルメタクリレート、3−(2−ヒドロキシエトキシ)−1−アダマンチルメタクリレート、2−イソプロピル−2−アダマンチルメタクリレート、2−[〔(トリフルオロメチル)スルホニル〕アミノ]エチルメタクリレート、1,2−シクロヘキサンジカルボン酸モノ[2−〔(2−メチル−1−オキソ−2−プロペニル)オキシ〕エチル]エステル、5−[3,3,3−トリフルオロ−2−ヒドロキシ−2−(トリフルオロメチル)プロピル]ビシクロ[2.2.1]ヘプタン−2−イルメタクリレート、6−[3,3,3−トリフルオロ−2−ヒドロキシ−2−(トリフルオロメチル)プロピル]ビシクロ[2.2.1]ヘプタン−2−イルメタクリレート等が挙げられる。
In addition, the method for producing a photoresist resin of the present invention has a low solubility in a polymerization solvent described later, and even when a solid monomer or the like that requires a large amount of a solvent for dissolving a monomer is used, the monomer polymer The conversion rate to can be improved.
Specific examples of the polymerizable compound that is solid at room temperature used in the present invention include, for example, 5-methacryloyloxy-2,6-norbornanecarbolactone, 2-ethyl-2-adamantyl methacrylate, 5-oxo-4- Oxa-tricyclo [5.2.1.0 3,8 ] dec-2-yl methacrylate, 3- (2-hydroxyethoxy) -1-adamantyl methacrylate, 2-isopropyl-2-adamantyl methacrylate, 2-[[( Trifluoromethyl) sulfonyl] amino] ethyl methacrylate, 1,2-cyclohexanedicarboxylic acid mono [2-[(2-methyl-1-oxo-2-propenyl) oxy] ethyl] ester, 5- [3,3,3 -Trifluoro-2-hydroxy-2- (trifluoromethyl) propyl] bi Chro [2.2.1] heptan-2-yl methacrylate, 6- [3,3,3-trifluoro-2-hydroxy-2- (trifluoromethyl) propyl] bicyclo [2.2.1] heptane- Examples include 2-yl methacrylate.

また、前記重合性化合物の重合方法は特に限定されず、溶液重合等の公知の方法を用いることができる。
前記フォトレジスト用樹脂を含有する樹脂溶液は、例えば、重合開始剤を使用し、更には必要に応じて連鎖移動剤を使用し、前述の重合性化合物を適当な溶媒中で重合させることにより得ることができる。
具体的には、例えば、(1)溶媒の入った反応容器に、単量体(重合性化合物)及び重合開始剤を含有する溶液を滴下して重合させる方法、(2)溶媒の入った反応容器に、単量体を含む溶液及び重合開始剤を含む溶液を、それぞれ滴下して重合させる方法、(3)反応容器に、単量体、重合開始剤及び溶媒を仕込み、バッチ方式で重合させる方法等が挙げられる。
Moreover, the polymerization method of the said polymeric compound is not specifically limited, Well-known methods, such as solution polymerization, can be used.
The resin solution containing the photoresist resin is obtained, for example, by using a polymerization initiator and, if necessary, using a chain transfer agent, and polymerizing the polymerizable compound in an appropriate solvent. be able to.
Specifically, for example, (1) a method of polymerizing a solution containing a monomer (polymerizable compound) and a polymerization initiator in a reaction vessel containing a solvent, and (2) a reaction containing a solvent. A method in which a solution containing a monomer and a solution containing a polymerization initiator are dropped into a container and polymerized, and (3) a monomer, a polymerization initiator and a solvent are charged in a reaction vessel and polymerized in a batch system. Methods and the like.

前記重合開始剤としては、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、2,2’−アゾビスイソ酪酸ジメチル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、4,4’−アゾビス(4−シアノ吉草酸)等のアゾ化合物、デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、ビス(3,5,5−トリメチルヘキサノイル)パーオキサイド、コハク酸パーオキサイド、tert−ブチルパーオキシ−2−エチルへキサノエート等の有機過酸化物等のラジカル重合開始剤が挙げられる。これらの重合開始剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Examples of the polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), dimethyl 2,2′-azobisisobutyrate, 1,1′- Azo compounds such as azobis (cyclohexane-1-carbonitrile), 4,4′-azobis (4-cyanovaleric acid), decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, bis (3,5,5-trimethyl) Hexanoyl) peroxide, succinic acid peroxide, radical polymerization initiators such as organic peroxides such as tert-butylperoxy-2-ethylhexanoate. These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.

前記連鎖移動剤としては、例えば、ドデシルメルカプタン、メルカプトエタノール、メルカプトプロパノール、メルカプト酢酸、メルカプトプロピオン酸、4,4−ビス(トリフルオロメチル)−4−ヒドロキシ−1−メルカプトブタン等のチオール化合物を挙げることができる。これらの連鎖移動剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Examples of the chain transfer agent include thiol compounds such as dodecyl mercaptan, mercaptoethanol, mercaptopropanol, mercaptoacetic acid, mercaptopropionic acid, and 4,4-bis (trifluoromethyl) -4-hydroxy-1-mercaptobutane. be able to. These chain transfer agents may be used individually by 1 type, and may be used in combination of 2 or more type.

前記重合開始剤及び連鎖移動剤の使用量は、重合反応に用いる原料モノマー(重合性化合物)や重合開始剤、連鎖移動剤の種類、重合温度、重合溶媒、精製条件等の製造条件により適宜調整することができる。
一般に、樹脂の重量平均分子量が高すぎると、塗膜形成時に使用される溶媒やアルカリ現像液への溶解性が低くなる傾向にある。一方、重量平均分子量が低すぎると、塗膜性能が悪くなる傾向にある。そのため、ゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」ともいう。)は、2000〜40000の範囲になるよう調整することが好ましく、より好ましくは3000〜30000である。
The amount of the polymerization initiator and chain transfer agent used is appropriately adjusted according to the production conditions such as the raw material monomer (polymerizable compound) used in the polymerization reaction, the polymerization initiator, the type of chain transfer agent, the polymerization temperature, the polymerization solvent, and the purification conditions. can do.
In general, if the weight average molecular weight of the resin is too high, the solubility in a solvent or an alkali developer used for forming a coating film tends to be low. On the other hand, when the weight average molecular weight is too low, the coating film performance tends to deteriorate. Therefore, the polystyrene-reduced weight average molecular weight (hereinafter also referred to as “Mw”) by gel permeation chromatography (GPC) is preferably adjusted to be in the range of 2000 to 40000, more preferably 3000 to 30000.

また、重合反応に用いられる溶媒(重合溶媒)は特に限定されないが、例えば、水、アセトン、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン、メチルイソブチルケトン、テトロヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、ベンゼン及びトルエンのうちの少なくとも一種を用いることが好ましい。これらの重合溶媒を用いた場合、高収率で、不純物のより少ないフォトレジスト用樹脂を得ることができる。更には、得られたフォトレジスト用樹脂の分子量分布を狭くでき、レジスト膜や反射防止膜に求められる光学的性質、化学的性質、塗布性や基板或いは下層膜に対する密着性等の物理的な性質を向上させることができる。   Further, the solvent (polymerization solvent) used in the polymerization reaction is not particularly limited. For example, water, acetone, methyl ethyl ketone, methyl amyl ketone, cyclohexanone, methyl isobutyl ketone, tetrohydrofuran, dioxane, propylene glycol monomethyl ether, ethyl lactate, It is preferable to use at least one of propylene glycol monomethyl ether acetate, benzene and toluene. When these polymerization solvents are used, a photoresist resin with a high yield and fewer impurities can be obtained. Furthermore, the molecular weight distribution of the obtained photoresist resin can be narrowed, and physical properties such as optical properties, chemical properties, coating properties and adhesion to the substrate or lower layer film required for resist films and antireflection films. Can be improved.

前記重合溶媒の使用量は特に限定されないが、通常、単量体1質量部に対して0.5〜20質量部、好ましくは1〜10質量部である。溶媒の使用量が少なすぎる場合には、単量体が析出したり高粘度になりすぎて重合系を均一に保てなくなるおそれがある。一方、溶媒の使用量が多すぎる場合には、原料モノマーの転化率が不十分であったり、得られる重合体(樹脂)の分子量を所望の値まで高めることができないおそれがある。   Although the usage-amount of the said polymerization solvent is not specifically limited, Usually, it is 0.5-20 mass parts with respect to 1 mass part of monomers, Preferably it is 1-10 mass parts. If the amount of the solvent used is too small, the monomer may precipitate or become too viscous to keep the polymerization system uniform. On the other hand, when the amount of the solvent used is too large, the conversion rate of the raw material monomer may be insufficient, or the molecular weight of the polymer (resin) obtained may not be increased to a desired value.

また、本発明におけるフォトレジスト用樹脂の製造方法においては、重合反応中に、溶媒が留去される。このように、溶媒を留去することで、重合溶液中における固形分濃度(特に単量体の濃度)を従来よりも高濃度に維持することができ、樹脂原料として用いられるモノマーのポリマーへの転化率を大幅に向上させることができる。
前記溶媒の留去方法は、蒸発留去が可能な限り特に限定されるものではない。例えば、重合容器に還流される反応溶媒の一部を、クライゼン型連結管等を用いることによって留去することができる。
Moreover, in the manufacturing method of the resin for photoresists in this invention, a solvent is distilled off during a polymerization reaction. In this way, by distilling off the solvent, the solid content concentration (particularly the monomer concentration) in the polymerization solution can be maintained at a higher concentration than before, and the monomer used as the resin raw material is converted into a polymer. The conversion rate can be greatly improved.
The method for distilling off the solvent is not particularly limited as far as evaporation can be carried out. For example, a part of the reaction solvent refluxed to the polymerization vessel can be distilled off by using a Claisen type connecting tube or the like.

前記溶媒の重合反応中における留去量は特に限定されず、適宜調整することができる。例えば、前記留去量は、重合の際に使用される溶媒の総量を100質量%とした場合に、25〜65質量%であることが好ましく、より好ましくは28〜45質量%、更に好ましくは30〜40質量%である。この留去量が、25〜65質量%である場合には、モノマー等の固形分を十分に溶解させたまま濃縮でき、且つ固形分濃度を高めて重合できるため、ポリマーへの転化率が向上し、高収率となるため好ましい。   The amount of the solvent distilled off during the polymerization reaction is not particularly limited and can be adjusted as appropriate. For example, the distillation amount is preferably 25 to 65% by mass, more preferably 28 to 45% by mass, further preferably 100% by mass when the total amount of the solvent used in the polymerization is 100% by mass. 30 to 40% by mass. When the amount of this distillation is 25 to 65% by mass, it can be concentrated while sufficiently dissolving the solids such as monomers, and the polymerization can be performed by increasing the solids concentration, so that the conversion rate to the polymer is improved. However, it is preferable because of high yield.

また、前記溶媒の重合反応中における留去速度は特に限定されず、適宜調整することができる。例えば、前記留去速度は、重合の際に使用される溶媒の初期の総量を100質量%とした場合に、5〜44質量%/hであることが好ましく、より好ましくは5〜30質量%/h、更に好ましくは8〜22質量%/h、特に好ましくは10〜17質量%/hである。この留去速度が、5〜44質量%/hである場合には、急激な濃縮による固形分(モノマー等)の析出を防止できるため好ましい。また、本発明においては、このように留去速度を調整することにより、反応生成する樹脂の重合度や分子量分布を所定の範囲内に制御することができる。   Further, the distillation rate of the solvent during the polymerization reaction is not particularly limited, and can be appropriately adjusted. For example, the distillation rate is preferably 5 to 44% by mass, more preferably 5 to 30% by mass, when the initial total amount of the solvent used in the polymerization is 100% by mass. / H, more preferably 8 to 22% by mass / h, particularly preferably 10 to 17% by mass / h. A distillation rate of 5 to 44% by mass / h is preferable because precipitation of solids (monomer and the like) due to rapid concentration can be prevented. In the present invention, the degree of polymerization and the molecular weight distribution of the reaction-generated resin can be controlled within a predetermined range by adjusting the distillation rate in this way.

前記溶媒の留去は、重合反応中において、連続的に行われてもよいし、間欠的に行われてもよい。具体的には、例えば、モノマー溶液の滴下等による重合時間がX時間である場合、(1)所定の留去量となるように、X時間連続で溶媒の留去を行ってもよいし(連続的留去)、(2)所定の留去量となるように、X時間未満の範囲で溶媒の留去を行ってもよいし(間欠的留去)、(3)所定の留去量となるように、合計X時間以下の範囲で、数回に分けて、溶媒の留去を行ってもよい(間欠的留去)。   The solvent may be distilled off continuously or intermittently during the polymerization reaction. Specifically, for example, when the polymerization time by dropping of the monomer solution or the like is X hours, (1) the solvent may be distilled off continuously for X hours so as to obtain a predetermined distillation amount ( (Continuous distillation), (2) the solvent may be distilled off for less than X hours (intermittent distillation), or (3) the predetermined amount The solvent may be distilled off several times within a range of not more than X hours in total (intermittent distillation).

前記重合における反応条件は特に限定されず、用いられる単量体、重合溶媒等に応じて適宜調整できる。例えば、反応温度は、通常40〜120℃、好ましくは50〜100℃である。また、反応時間は、通常1〜48時間、好ましくは1〜24時間である。
また、この重合の際の圧力は特に限定されないが、再現性よくポリマーが得られるという観点から、圧力を調節し、一定の圧力下で行うことが好ましく、常圧下(大気圧下)又は加圧下で行うことがより好ましい。特に、加圧下の条件であれば、真空ポンプ等の装置を使用することなく、窒素等の不活性ガスにより容易に圧力コントロールを行うことができるため好ましい。
具体的な加圧条件[圧力(hPa)]としては、例えば、常圧(1013.25)を超え、1300hPa以下が好ましく、より好ましくは1020〜1100hPa、更に好ましくは1020〜1080hPaである。
The reaction conditions in the polymerization are not particularly limited, and can be appropriately adjusted according to the monomer used, the polymerization solvent, and the like. For example, the reaction temperature is usually 40 to 120 ° C, preferably 50 to 100 ° C. The reaction time is usually 1 to 48 hours, preferably 1 to 24 hours.
The pressure during the polymerization is not particularly limited, but from the viewpoint that a polymer can be obtained with good reproducibility, it is preferable to adjust the pressure and perform the reaction under a constant pressure, under normal pressure (atmospheric pressure) or under pressure. It is more preferable to carry out with. In particular, the condition under pressure is preferable because the pressure can be easily controlled with an inert gas such as nitrogen without using a device such as a vacuum pump.
The specific pressurizing condition [pressure (hPa)] exceeds, for example, normal pressure (101.25) and is preferably 1300 hPa or less, more preferably 1020 to 1100 hPa, still more preferably 1020 to 1080 hPa.

この重合反応により得られる樹脂溶液の濃度(固形分濃度)は、1〜80質量%であることが好ましく、より好ましくは5〜50質量%、更に好ましくは10〜50質量%である。   It is preferable that the density | concentration (solid content density | concentration) of the resin solution obtained by this polymerization reaction is 1-80 mass%, More preferably, it is 5-50 mass%, More preferably, it is 10-50 mass%.

また、本発明のフォトレジスト用樹脂の製造方法においては、前述の重合反応により得られたフォトレジスト用樹脂を含有する樹脂溶液に対して、公知の精製処理等を行い、乾燥することによって、樹脂分(固形分)を分離することができる。   In the method for producing a photoresist resin of the present invention, the resin solution containing the photoresist resin obtained by the above-described polymerization reaction is subjected to a known purification treatment and dried to obtain a resin. Minutes (solid content) can be separated.

以下、実施例を挙げて、本発明を更に具体的に説明する。但し、本発明は、これらの実施例に何ら制約されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

[1]フォトレジスト用樹脂を含有する樹脂溶液の製造(実施例1〜3、比較例1〜4)
(実施例1)
810mLの四口フラスコに、ジムロート管と、受器を装着したクライゼン型連結管と、温度計と、を装着し、メチルエチルケトン40gを入れ十分に窒素置換した後、スリーワンモーターで攪拌しながら80℃まで昇温した。
その後、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(NLM)62g、2−メチル−2−アダマンチルメタクリレート(MAdMA)98g、及びアゾビスイソブチロニトリル11.5gをメチルエチルケトン200gに溶かした溶液を滴下漏斗により3時間かけて一定速度で滴下した。尚、この重合反応は、前記ジムロート管により、重合溶媒(メチルエチルケトン)を還流しながら行った。また、滴下開始と同時に、3時間かけてフラスコ内のメチルエチルケトン80g(溶媒総量を100質量%とした場合に、33.3質量%)を、前記クライゼン型連結管を通じて、1040hPaの圧力下で留去させた。また、留去速度は時間当たり26.7g(初期の溶媒総量を100質量%とした場合に、11.1質量%/h)と一定を保った。
滴下終了後、更に3時間熟成させた後、室温まで冷却し、実施例1のフォトレジスト用樹脂を含有する樹脂溶液を得た。
そして、モノマーのポリマーへの転化率を測定した結果、97.9質量%であった。尚、この転化率は、ゲルパーミエーションクロマトグラフィー(GPC)測定で得られた値(面積100分率)を予め作成しておいた検量線に当てはめて重量比に換算したものである。また、GPC測定及びモノマー転化率の算出方法の詳細を以下に示す。
[1] Production of a resin solution containing a resin for photoresist (Examples 1 to 3, Comparative Examples 1 to 4)
Example 1
A 810 mL four-necked flask is equipped with a Dimroth tube, a Claisen type connecting tube equipped with a receiver, and a thermometer. After 40 g of methyl ethyl ketone is fully substituted with nitrogen, the mixture is heated to 80 ° C. while stirring with a three-one motor. The temperature rose.
Thereafter, 62 g of 5-methacryloyloxy-2,6-norbornanecarbolactone (NLM), 98 g of 2-methyl-2-adamantyl methacrylate (MAdMA), and 11.5 g of azobisisobutyronitrile were dissolved in 200 g of methyl ethyl ketone. It was dripped at a constant speed by a dropping funnel over 3 hours. This polymerization reaction was performed while refluxing a polymerization solvent (methyl ethyl ketone) through the Dimroth tube. Simultaneously with the start of dropping, 80 g of methyl ethyl ketone (33.3% by mass when the total amount of the solvent is 100% by mass) in the flask is distilled out for 3 hours through the Claisen type connecting tube under a pressure of 1040 hPa. I let you. The distillation rate was kept constant at 26.7 g per hour (11.1% by mass / h when the initial total amount of solvent was 100% by mass).
After completion of dropping, the mixture was further aged for 3 hours, and then cooled to room temperature to obtain a resin solution containing the photoresist resin of Example 1.
And as a result of measuring the conversion rate of the monomer to the polymer, it was 97.9 mass%. In addition, this conversion rate is converted into a weight ratio by applying a value (area fraction of 100) obtained by gel permeation chromatography (GPC) measurement to a calibration curve prepared in advance. Moreover, the detail of the calculation method of GPC measurement and a monomer conversion rate is shown below.

<GPCの測定方法>
重合後の樹脂溶液0.05gをテトラヒドロフランで希釈し、全体量を5.00gとする。これを0.45μmのフィルターでろ過した後、専用のガラス製小瓶に詰め込み、測定を開始する。未反応モノマー成分は溶出時間より判断した。
装置:東ソー社製HLC8220
カラム:TSKguardcolumn SuperH−L、TSKgel SuperH4000、TSKgel SuperH2000の組み合わせ
カラム温度:40℃
注入量:10μ?
測定流量:0.6m?/min
<GPC measurement method>
Dilute 0.05 g of the resin solution after polymerization with tetrahydrofuran to a total amount of 5.00 g. After filtering this with a 0.45 μm filter, it is packed in a special glass vial and measurement is started. The unreacted monomer component was judged from the elution time.
Apparatus: HLC8220 manufactured by Tosoh Corporation
Column: Combination of TSKguardcolumn SuperH-L, TSKgel SuperH4000, TSKgel SuperH2000 Column temperature: 40 ° C
Injection volume: 10μ?
Measurement flow rate: 0.6 m? / Min

<モノマー転化率の算出方法>
未反応モノマー成分を十分に除去した樹脂をテトラヒドロフランに溶解し、検量線用の試料とした。試料はテトラヒドロフランに溶解させる樹脂量を変量した数種類を準備し、GPC測定に供した。カラムに供された樹脂量と面積の関係より回帰式を求め、検量線を作成した。測定条件は上述のGPCの測定方法に従った。
<Method for calculating monomer conversion>
The resin from which the unreacted monomer component was sufficiently removed was dissolved in tetrahydrofuran to obtain a sample for a calibration curve. Several types of samples with varying amounts of resin dissolved in tetrahydrofuran were prepared and subjected to GPC measurement. A regression equation was obtained from the relationship between the amount of resin applied to the column and the area, and a calibration curve was prepared. The measurement conditions followed the GPC measurement method described above.

(実施例2)
810mLの四口フラスコに、ジムロート管と、受器を装着したクライゼン型連結管と、温度計と、を装着し、メチルエチルケトン40gを入れ十分に窒素置換した後、スリーワンモーターで攪拌しながら80℃まで昇温した。
その後、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(NLM)62g、2−メチル−2−アダマンチルメタクリレート(MAdMA)98g、及びアゾビスイソブチロニトリル11.5gをメチルエチルケトン200gに溶かした溶液を滴下漏斗により3時間かけて一定速度で滴下した。尚、この重合反応は、前記ジムロート管により、重合溶媒(メチルエチルケトン)を還流しながら行った。また、滴下開始と同時に、1.5時間かけてフラスコ内のメチルエチルケトン80g[溶媒総量〔40(g)+200(g)=240(g)〕を100質量%とした場合に、33.3質量%]を、前記クライゼン型連結管を通じて、1040hPaの圧力下で留去させた。また、留去速度は時間当たり53.3g(初期の溶媒総量を100質量%とした場合に、22.2質量%/h)と一定を保った。
滴下終了後、更に3時間熟成させた後、室温まで冷却し、実施例2のフォトレジスト用樹脂を含有する樹脂溶液を得た。
そして、実施例1と同様にしてモノマーの転化率を測定した結果、97.4質量%であった。
(Example 2)
A 810 mL four-necked flask is equipped with a Dimroth tube, a Claisen type connecting tube equipped with a receiver, and a thermometer. After 40 g of methyl ethyl ketone is fully substituted with nitrogen, the mixture is heated to 80 ° C. while stirring with a three-one motor. The temperature rose.
Thereafter, 62 g of 5-methacryloyloxy-2,6-norbornanecarbolactone (NLM), 98 g of 2-methyl-2-adamantyl methacrylate (MAdMA), and 11.5 g of azobisisobutyronitrile were dissolved in 200 g of methyl ethyl ketone. It was dripped at a constant speed by a dropping funnel over 3 hours. This polymerization reaction was performed while refluxing a polymerization solvent (methyl ethyl ketone) through the Dimroth tube. In addition, at the same time as the start of dropping, 80 g of methyl ethyl ketone [total amount of solvent [40 (g) +200 (g) = 240 (g)] in the flask over 100 hours was set to 33.3% by mass. ] Was distilled off through the Claisen type connecting tube under a pressure of 1040 hPa. The distillation rate was kept constant at 53.3 g per hour (22.2% by mass / h when the initial total amount of solvent was 100% by mass).
After completion of the dropwise addition, the mixture was further aged for 3 hours and then cooled to room temperature to obtain a resin solution containing the photoresist resin of Example 2.
And as a result of measuring the conversion rate of a monomer like Example 1, it was 97.4 mass%.

(実施例3)
810mLの四口フラスコに、ジムロート管と、受器を装着したクライゼン型連結管と、温度計と、を装着し、メチルエチルケトン40gを入れ十分に窒素置換した後、スリーワンモーターで攪拌しながら80℃まで昇温した。
その後、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(NLM)62g、2−メチル−2−アダマンチルメタクリレート(MAdMA)98g、及びアゾビスイソブチロニトリル11.5gをメチルエチルケトン200gに溶かした溶液を滴下漏斗により3時間かけて一定速度で滴下した。尚、この重合反応は、前記ジムロート管により、重合溶媒(メチルエチルケトン)を還流しながら行った。また、滴下開始1.5時間後から、1.5時間かけてフラスコ内のメチルエチルケトン80g[溶媒総量〔40(g)+200(g)=240(g)〕を100質量%とした場合に、33.3質量%]を、前記クライゼン型連結管を通じて、1040hPaの圧力下で留去させた。また、留去速度は時間当たり53.3g(初期の溶媒総量を100質量%とした場合に、22.2質量%/h)と一定を保った。
滴下終了後、更に3時間熟成させた後、室温まで冷却し、実施例3のフォトレジスト用樹脂を含有する樹脂溶液を得た。
そして、実施例1と同様にしてモノマーの転化率を測定した結果、97.4質量%であった。
(Example 3)
A 810 mL four-necked flask is equipped with a Dimroth tube, a Claisen type connecting tube equipped with a receiver, and a thermometer. After 40 g of methyl ethyl ketone is fully substituted with nitrogen, the mixture is heated to 80 ° C. while stirring with a three-one motor. The temperature rose.
Thereafter, 62 g of 5-methacryloyloxy-2,6-norbornanecarbolactone (NLM), 98 g of 2-methyl-2-adamantyl methacrylate (MAdMA), and 11.5 g of azobisisobutyronitrile were dissolved in 200 g of methyl ethyl ketone. It was dripped at a constant speed by a dropping funnel over 3 hours. This polymerization reaction was performed while refluxing a polymerization solvent (methyl ethyl ketone) through the Dimroth tube. Further, from 1.5 hours after the start of dropping, when 80 g of methyl ethyl ketone [total amount of solvent [40 (g) +200 (g) = 240 (g)] in the flask was taken as 100% by mass over a period of 1.5 hours, 33 .3% by mass] was distilled off through the Claisen type connecting tube under a pressure of 1040 hPa. The distillation rate was kept constant at 53.3 g per hour (22.2% by mass / h when the initial total amount of solvent was 100% by mass).
After completion of the dropwise addition, the mixture was further aged for 3 hours and then cooled to room temperature to obtain a resin solution containing the photoresist resin of Example 3.
And as a result of measuring the conversion rate of a monomer like Example 1, it was 97.4 mass%.

(比較例1)
810mLの四口フラスコに、ジムロート管と、温度計と、を装着し、メチルエチルケトン40gを入れ十分に窒素置換した後、スリーワンモーターで攪拌しながら80℃まで昇温した。
その後、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(NLM)62g、2−メチル−2−アダマンチルメタクリレート(MAdMA)98g、及びアゾビスイソブチロニトリル5.7gをメチルエチルケトン200gに溶かした溶液を滴下漏斗により3時間かけて一定速度で滴下した。尚、この重合反応は、前記ジムロート管により、重合溶媒(メチルエチルケトン)を還流しながら行った。
滴下終了後、更に3時間熟成させた後、室温まで冷却し、比較例1のフォトレジスト用樹脂を含有する樹脂溶液を得た。
そして、実施例1と同様にしてモノマーの転化率を測定した結果、94.4質量%であった。
(Comparative Example 1)
A 810 mL four-necked flask was equipped with a Dimroth tube and a thermometer. After 40 g of methyl ethyl ketone was added and sufficiently purged with nitrogen, the temperature was raised to 80 ° C. while stirring with a three-one motor.
Thereafter, 62 g of 5-methacryloyloxy-2,6-norbornanecarbolactone (NLM), 98 g of 2-methyl-2-adamantyl methacrylate (MAdMA) and 5.7 g of azobisisobutyronitrile were dissolved in 200 g of methyl ethyl ketone. It was dripped at a constant speed by a dropping funnel over 3 hours. This polymerization reaction was performed while refluxing a polymerization solvent (methyl ethyl ketone) through the Dimroth tube.
After completion of dropping, the mixture was further aged for 3 hours, and then cooled to room temperature to obtain a resin solution containing the photoresist resin of Comparative Example 1.
And as a result of measuring the conversion rate of a monomer like Example 1, it was 94.4 mass%.

(比較例2)
810mLの四口フラスコに、ジムロート管と、温度計と、を装着し、メチルエチルケトン40gを入れ十分に窒素置換した後、スリーワンモーターで攪拌しながら80℃まで昇温した。
その後、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(NLM)62g、2−メチル−2−アダマンチルメタクリレート(MAdMA)98g、及びアゾビスイソブチロニトリル11.5gをメチルエチルケトン200gに溶かした溶液を滴下漏斗により3時間かけて一定速度で滴下した。尚、この重合反応は、前記ジムロート管により、重合溶媒(メチルエチルケトン)を還流しながら行った。
滴下終了後、更に3時間熟成させた後、室温まで冷却し、比較例2のフォトレジスト用樹脂を含有する樹脂溶液を得た。
そして、実施例1と同様にしてモノマーの転化率を測定した結果、95.4質量%であった。
(Comparative Example 2)
A 810 mL four-necked flask was equipped with a Dimroth tube and a thermometer. After 40 g of methyl ethyl ketone was added and sufficiently purged with nitrogen, the temperature was raised to 80 ° C. while stirring with a three-one motor.
Thereafter, 62 g of 5-methacryloyloxy-2,6-norbornanecarbolactone (NLM), 98 g of 2-methyl-2-adamantyl methacrylate (MAdMA), and 11.5 g of azobisisobutyronitrile were dissolved in 200 g of methyl ethyl ketone. It was dripped at a constant speed by a dropping funnel over 3 hours. This polymerization reaction was performed while refluxing a polymerization solvent (methyl ethyl ketone) through the Dimroth tube.
After completion of dropping, the mixture was further aged for 3 hours, and then cooled to room temperature to obtain a resin solution containing the photoresist resin of Comparative Example 2.
And as a result of measuring the conversion rate of a monomer like Example 1, it was 95.4 mass%.

(比較例3)
810mLの四口フラスコに、ジムロート管と、温度計と、を装着し、メチルエチルケトン40gを入れ十分に窒素置換した後、スリーワンモーターで攪拌しながら80℃まで昇温した。
その後、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(NLM)62g、2−メチル−2−アダマンチルメタクリレート(MAdMA)98g、及びアゾビスイソブチロニトリル8.6gをメチルエチルケトン200gに溶かした溶液を滴下漏斗により3時間かけて一定速度で滴下した。尚、この重合反応は、前記ジムロート管により、重合溶媒(メチルエチルケトン)を還流しながら行った。
滴下終了後、更に3時間熟成させた後、室温まで冷却し、比較例3のフォトレジスト用樹脂を含有する樹脂溶液を得た。
そして、実施例1と同様にしてモノマーの転化率を測定した結果、95.0質量%であった。
(Comparative Example 3)
A 810 mL four-necked flask was equipped with a Dimroth tube and a thermometer. After 40 g of methyl ethyl ketone was added and sufficiently purged with nitrogen, the temperature was raised to 80 ° C. while stirring with a three-one motor.
Thereafter, 62 g of 5-methacryloyloxy-2,6-norbornanecarbolactone (NLM), 98 g of 2-methyl-2-adamantyl methacrylate (MAdMA), and 8.6 g of azobisisobutyronitrile were dissolved in 200 g of methyl ethyl ketone. It was dripped at a constant speed by a dropping funnel over 3 hours. This polymerization reaction was performed while refluxing a polymerization solvent (methyl ethyl ketone) through the Dimroth tube.
After completion of dropping, the mixture was further aged for 3 hours, and then cooled to room temperature to obtain a resin solution containing the photoresist resin of Comparative Example 3.
And as a result of measuring the conversion rate of a monomer like Example 1, it was 95.0 mass%.

(比較例4)
810mLの四口フラスコに、ジムロート管と、温度計と、を装着し、メチルエチルケトン80gを入れ十分に窒素置換した後、スリーワンモーターで攪拌しながら80℃まで昇温した。
その後、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン(NLM)31g、2−メチル−2−アダマンチルメタクリレート(MAdMA)49g、及びアゾビスイソブチロニトリル2.9gをメチルエチルケトン160gに溶かした溶液を滴下漏斗により3時間かけて一定速度で滴下した。尚、この重合反応は、前記ジムロート管により、重合溶媒(メチルエチルケトン)を還流しながら行った。
滴下終了後、更に3時間熟成させた後、室温まで冷却し、比較例4のフォトレジスト用樹脂を含有する樹脂溶液を得た。
そして、実施例1と同様にしてモノマーの転化率を測定した結果、84.7質量%であった。
(Comparative Example 4)
A 810 mL four-necked flask was equipped with a Dimroth tube and a thermometer. After 80 g of methyl ethyl ketone was added and sufficiently purged with nitrogen, the temperature was raised to 80 ° C. while stirring with a three-one motor.
Thereafter, a solution of 31 g of 5-methacryloyloxy-2,6-norbornanecarbolactone (NLM), 49 g of 2-methyl-2-adamantyl methacrylate (MAdMA) and 2.9 g of azobisisobutyronitrile in 160 g of methyl ethyl ketone was prepared. It was dripped at a constant speed by a dropping funnel over 3 hours. This polymerization reaction was performed while refluxing a polymerization solvent (methyl ethyl ketone) through the Dimroth tube.
After completion of dropping, the mixture was further aged for 3 hours, and then cooled to room temperature to obtain a resin solution containing the photoresist resin of Comparative Example 4.
And as a result of measuring the conversion rate of a monomer like Example 1, it was 84.7 mass%.

これらの実施例1〜3及び比較例1〜4のフォトレジスト用樹脂を含有する樹脂溶液の調製における原料組成(単量体、重合開始剤及び溶媒)、重合条件、溶剤の留去速度、留去時間、留去量、モノマーのポリマーへの転化率を表1にまとめて示した。尚、表1における「単量体A」は「5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン」を示し、「単量体B」は「2−メチル−2−アダマンチルメタクリレート」を示し、「重合開始剤」は「アゾビスイソブチロニトリル」を示し、「溶媒」は「重合に用いたメチルエチルケトンの総量」を示す。また、表1における実施例1〜3の「固形分濃度(初期)」は、仕込み段階の固形分の濃度を示し、「固形分濃度(重合後)」は、重合後の固形分の濃度を示す。   Raw material composition (monomer, polymerization initiator and solvent), polymerization conditions, solvent evaporation rate, distillation in the preparation of resin solutions containing the photoresist resins of Examples 1 to 3 and Comparative Examples 1 to 4 Table 1 summarizes the last time, the amount of distillation, and the conversion ratio of the monomer to the polymer. In Table 1, “monomer A” represents “5-methacryloyloxy-2,6-norbornanecarbolactone”, “monomer B” represents “2-methyl-2-adamantyl methacrylate”, “ “Polymerization initiator” indicates “azobisisobutyronitrile”, and “solvent” indicates “total amount of methyl ethyl ketone used for polymerization”. In Table 1, “Solid Concentration (Initial)” in Examples 1 to 3 indicates the solid content concentration in the charging stage, and “Solid Concentration (After Polymerization)” indicates the solid content concentration after polymerization. Show.

Figure 0005433999
Figure 0005433999

[2]実施例の効果
表1によれば、重合反応中に溶剤を留去した実施例1〜3では、原料モノマーのポリマーへの転化率が優れていることが分かった。
[2] Effect of Examples According to Table 1, in Examples 1 to 3 in which the solvent was distilled off during the polymerization reaction, it was found that the conversion rate of the raw material monomer to the polymer was excellent.

Claims (6)

溶媒の存在下で重合性化合物を重合させることにより、フォトレジスト用樹脂を製造するフォトレジスト用樹脂の製造方法であって、
前記重合性化合物は、エチレン性不飽和結合を有する単量体であり、
前記重合性化合物のうちの少なくとも1種は、常温において固体状の化合物であり、
重合反応中に、溶媒を留去することを特徴とするフォトレジスト用樹脂の製造方法。
A method for producing a photoresist resin, which comprises producing a photoresist resin by polymerizing a polymerizable compound in the presence of a solvent,
The polymerizable compound is a monomer having an ethylenically unsaturated bond,
At least one of the polymerizable compounds is a solid compound at room temperature,
A method for producing a photoresist resin, wherein a solvent is distilled off during a polymerization reaction.
常温において固体状の前記化合物は、5−メタクリロイルオキシ−2,6−ノルボルナンカルボラクトン、2−エチル−2−アダマンチルメタクリレート、5−オキソ−4−オキサ−トリシクロ[5.2.1.03,8]デカ−2−イルメタクリレート、3−(2−ヒドロキシエトキシ)−1−アダマンチルメタクリレート、2−イソプロピル−2−アダマンチルメタクリレート、2−[〔(トリフルオロメチル)スルホニル〕アミノ]エチルメタクリレート、1,2−シクロヘキサンジカルボン酸モノ[2−〔(2−メチル−1−オキソ−2−プロペニル)オキシ〕エチル]エステル、5−[3,3,3−トリフルオロ−2−ヒドロキシ−2−(トリフルオロメチル)プロピル]ビシクロ[2.2.1]ヘプタン−2−イルメタクリレート、又は、6−[3,3,3−トリフルオロ−2−ヒドロキシ−2−(トリフルオロメチル)プロピル]ビシクロ[2.2.1]ヘプタン−2−イルメタクリレートである請求項1に記載のフォトレジスト用樹脂の製造方法。 The compound which is solid at room temperature includes 5-methacryloyloxy-2,6-norbornanecarbolactone, 2-ethyl-2-adamantyl methacrylate, 5-oxo-4-oxa-tricyclo [5.2.1.0 3, 8 ] Dec-2-yl methacrylate, 3- (2-hydroxyethoxy) -1-adamantyl methacrylate, 2-isopropyl-2-adamantyl methacrylate, 2-[[(trifluoromethyl) sulfonyl] amino] ethyl methacrylate, 1, 2-cyclohexanedicarboxylic acid mono [2-[(2-methyl-1-oxo-2-propenyl) oxy] ethyl] ester, 5- [3,3,3-trifluoro-2-hydroxy-2- (trifluoro) Methyl) propyl] bicyclo [2.2.1] heptan-2-yl methacrylate Or 6- [3,3,3-trifluoro-2-hydroxy-2- (trifluoromethyl) propyl] bicyclo [2.2.1] heptan-2-yl methacrylate. A method for producing a resin for photoresist. 重合反応中における前記溶媒の留去量が、重合の際に使用される溶媒の総量を100質量%とした場合に、25〜65質量%である請求項1又は2に記載のフォトレジスト用樹脂の製造方法。   The resin for photoresists according to claim 1 or 2, wherein the amount of the solvent distilled off during the polymerization reaction is 25 to 65% by mass when the total amount of the solvent used in the polymerization is 100% by mass. Manufacturing method. 前記反応溶媒の留去を連続的又は間欠的に行う請求項1乃至3のいずれかに記載のフォトレジスト用樹脂の製造方法。   The method for producing a photoresist resin according to claim 1, wherein the reaction solvent is distilled off continuously or intermittently. 重合反応中における前記溶媒の留去速度が、重合の際に使用される溶媒の初期の総量を100質量%とした場合に、5〜44質量%/hである請求項1乃至4のいずれかに記載のフォトレジスト用樹脂の製造方法。   The evaporation rate of the solvent during the polymerization reaction is 5 to 44% by mass / h when the initial total amount of the solvent used in the polymerization is 100% by mass. The manufacturing method of resin for photoresists as described in any one of. 前記重合反応を加圧下で行う請求項1乃至5のいずれかに記載のフォトレジスト用樹脂の製造方法。   The method for producing a photoresist resin according to claim 1, wherein the polymerization reaction is performed under pressure.
JP2008185288A 2008-07-16 2008-07-16 Manufacturing method of resin for photoresist Active JP5433999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008185288A JP5433999B2 (en) 2008-07-16 2008-07-16 Manufacturing method of resin for photoresist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008185288A JP5433999B2 (en) 2008-07-16 2008-07-16 Manufacturing method of resin for photoresist

Publications (2)

Publication Number Publication Date
JP2010024298A JP2010024298A (en) 2010-02-04
JP5433999B2 true JP5433999B2 (en) 2014-03-05

Family

ID=41730419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008185288A Active JP5433999B2 (en) 2008-07-16 2008-07-16 Manufacturing method of resin for photoresist

Country Status (1)

Country Link
JP (1) JP5433999B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310837A (en) * 1992-05-14 1993-11-22 Japan Synthetic Rubber Co Ltd Production of oxygen-permeable polymeric material
JP2004323688A (en) * 2003-04-25 2004-11-18 Mitsubishi Rayon Co Ltd Amphiphilic polymer and method for producing the same
US20070105040A1 (en) * 2005-11-10 2007-05-10 Toukhy Medhat A Developable undercoating composition for thick photoresist layers
JP5103568B2 (en) * 2006-07-24 2012-12-19 エンカレッジ・テクノロジ株式会社 Personal authentication device
DE102007052412A1 (en) * 2006-11-29 2008-06-05 Basf Se Process for the preparation of water-soluble haze-free copolymers of at least one water-soluble N-vinyl lactam and at least one hydrophobic comonomer

Also Published As

Publication number Publication date
JP2010024298A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP3720827B2 (en) Method for producing resist polymer
KR101081776B1 (en) Novel thiol compound, copolymer and method for producing the copolymer
KR20060051697A (en) Positive photosensitive resin and novel dithiol compound
KR101124184B1 (en) A preparation process of copolymer for semiconductor lithography and a copolymer for semiconductor lithography available by this process
JP4808485B2 (en) Manufacturing method of resin for photoresist
JP5192120B2 (en) Method for preventing increase of particles in copolymer for semiconductor resist
JPWO2009063726A1 (en) Manufacturing method of resin for photoresist
JP5024203B2 (en) Method for producing resin solution for photoresist
JP5092721B2 (en) Manufacturing method of resin for photoresist
JP4488906B2 (en) Method for producing polymer compound for photoresist
JP3694685B2 (en) Resist polymer and radiation-sensitive resist composition
US9023982B2 (en) Method for purifying resin for photolithography
JP5433999B2 (en) Manufacturing method of resin for photoresist
JP2010013531A (en) Method of purifying photoresist resin
JP5298549B2 (en) Method for producing polymer for photoresist
JP5206065B2 (en) Method for producing photoresist polymer and distillation can used therefor
JP6051651B2 (en) Method for producing resin solution for photoresist
JP2010204306A (en) Method for producing resin solution for photoresist
JP3679404B2 (en) Chain transfer agent, copolymer and method for producing copolymer using novel thiol compound
JP5298550B2 (en) Method for producing polymer for photoresist
JP3803932B1 (en) Method for producing resin solution for photoresist
JP5309660B2 (en) Method for producing polymer for photoresist
JP3818454B1 (en) Method for producing resin solution for photoresist
JP4344212B2 (en) Copolymer, production method of copolymer and novel thiol compound
JP2006124716A (en) Preparation process of copolymer for semiconductor lithography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5433999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250