JP5433781B2 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP5433781B2
JP5433781B2 JP2012509359A JP2012509359A JP5433781B2 JP 5433781 B2 JP5433781 B2 JP 5433781B2 JP 2012509359 A JP2012509359 A JP 2012509359A JP 2012509359 A JP2012509359 A JP 2012509359A JP 5433781 B2 JP5433781 B2 JP 5433781B2
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
recording medium
nonmagnetic underlayer
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012509359A
Other languages
Japanese (ja)
Other versions
JPWO2011125403A1 (en
Inventor
拓 岩瀬
正義 清水
義幸 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012509359A priority Critical patent/JP5433781B2/en
Publication of JPWO2011125403A1 publication Critical patent/JPWO2011125403A1/en
Application granted granted Critical
Publication of JP5433781B2 publication Critical patent/JP5433781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Description

本発明は、磁気記録再生装置(ハードディスクドライブ)に搭載する磁気記録媒体に関わり、特に磁気記録層にディスクリートパターンやビットパターンに代表されるパターン構造を有する磁気記録媒体に関する。   The present invention relates to a magnetic recording medium mounted on a magnetic recording / reproducing apparatus (hard disk drive), and more particularly to a magnetic recording medium having a pattern structure represented by a discrete pattern or a bit pattern in a magnetic recording layer.

近年、情報化社会の発展に伴い、新たに生み出される情報量は飛躍的に増加している。したがって、磁気記録再生装置には更なる記録密度の向上が求められている。高密度化のためには情報の記録領域の単位であるビットサイズをより微細化していく必要がある。このための技術の一つとして、垂直磁気記録方式が用いられている。垂直磁気記録は、記録媒体の磁化容易軸を媒体面に対して垂直に配向させ、隣接する記録ビットの磁化が互いに反平行に向くようにした方式で面内磁気記録方式と比べて磁化遷移領域を小さくでき、記録ビットの高密度化が可能である。   In recent years, with the development of an information-oriented society, the amount of information newly created has increased dramatically. Therefore, the magnetic recording / reproducing apparatus is required to further improve the recording density. In order to increase the density, it is necessary to further reduce the bit size, which is a unit of information recording area. As one of the techniques for this purpose, a perpendicular magnetic recording system is used. Perpendicular magnetic recording is a method in which the easy axis of magnetization of a recording medium is oriented perpendicularly to the medium surface, and the magnetization of adjacent recording bits is antiparallel to each other, compared to the in-plane magnetic recording method. The recording bit can be increased in density.

しかし、さらにビットサイズの微細化を進めようとすると、1ビット当たりの磁化最小体積が小さくなり、熱揺らぎの影響でデータの消失を起こしてしまうという問題がある。また、トラック密度を高くすると隣接トラック間距離が近づき、再生時に隣接トラックによるノイズの影響が大きくなる。   However, if further miniaturization of the bit size is attempted, there is a problem that the minimum magnetization volume per bit is reduced and data is lost due to the influence of thermal fluctuation. Further, when the track density is increased, the distance between adjacent tracks is reduced, and the influence of noise due to the adjacent tracks is increased during reproduction.

そこで、熱揺らぎに対する耐性とSN比を向上させる方法として磁気記録層をトラックごとに、もしくはビットごとに分離することが試みられ、それぞれディスクリートトラック媒体、ビットパターンド媒体と呼ばれている。また、これらは総称してパターンド媒体と呼ばれている。   Therefore, as a method for improving the resistance to thermal fluctuation and the SN ratio, it has been attempted to separate the magnetic recording layer for each track or for each bit, which are called a discrete track medium and a bit patterned medium, respectively. These are collectively called a patterned medium.

パターンド媒体の磁気記録層を物理的に分離する方法として、磁気記録層を形成した後にトラック間もしくはビット間の磁気記録層をエッチングで除去する方法や、基板表面に凹凸を形成した後に磁気記録層を形成して凸部を磁気記録部として用いる方法や、ガードバンド部となる領域にイオンを注入して磁気特性を変化させる方法などがある(例えば、特許文献1、2)。
磁気記録層を部分的にエッチングで除去して溝を形成する方法は、ガードバンド部からのノイズが小さくなり良好なSN比が得られることが期待される。また、ガードバンド部を軟磁性材料で充填することでサイドイレーズを抑圧し、磁気記録層と軟磁性材料の間に非磁性部材を挿入することでSN比を向上させる構造が示されている。(特許文献3)
ただし、磁気記録層を部分的にエッチングで除去して溝を形成したパターンド媒体においては磁気記録層が立体的な構造となるため、磁気記録層の表面積が大きくなり、従来の垂直磁気記録媒体以上の腐食対策が必要となる。
As a method for physically separating the magnetic recording layer of the patterned medium, a method of removing the magnetic recording layer between tracks or bits by etching after forming the magnetic recording layer, or a magnetic recording after forming irregularities on the substrate surface There are a method of forming a layer and using a convex portion as a magnetic recording portion, and a method of changing magnetic characteristics by implanting ions into a region to be a guard band portion (for example, Patent Documents 1 and 2).
The method of partially removing the magnetic recording layer by etching to form a groove is expected to reduce the noise from the guard band portion and obtain a good S / N ratio. In addition, a structure is shown in which side erasure is suppressed by filling the guard band portion with a soft magnetic material, and an S / N ratio is improved by inserting a nonmagnetic member between the magnetic recording layer and the soft magnetic material. (Patent Document 3)
However, since the magnetic recording layer has a three-dimensional structure in the patterned medium in which the magnetic recording layer is partially removed by etching, the surface area of the magnetic recording layer increases, and the conventional perpendicular magnetic recording medium The above countermeasures against corrosion are required.

例えば特許文献4、5では、エッチングされた磁気記録層上にカーボン、金属、または金属窒化物などの酸化防止層を成膜することで腐食を防止するとしている。   For example, in Patent Documents 4 and 5, corrosion is prevented by forming an antioxidant layer such as carbon, metal, or metal nitride on the etched magnetic recording layer.

特許文献6では、磁気記録層をエッチング後に酸化防止層を成膜し、ガードバンド部を充填剤で埋め戻す方法が示され、特許文献7では、磁気記録層に含まれる非磁性材料をガードバンド部に残すようにエッチングを行い、それを酸化防止層としてからガードバンド部を埋め戻す方法が示されている。   Patent Document 6 discloses a method of forming an anti-oxidation layer after etching a magnetic recording layer and filling the guard band part back with a filler. Patent Document 7 discloses a non-magnetic material contained in the magnetic recording layer as a guard band. A method is shown in which etching is performed so as to remain in the portion, and this is used as an antioxidant layer, and then the guard band portion is backfilled.

特開2004−178793号公報JP 2004-178793 A 特開平05−205257号公報Japanese Patent Laid-Open No. 05-205257 特開2009−238317号公報JP 2009-238317 A 特開2008−217959号公報JP 2008-217959 A 特開2009−199637号公報JP 2009-199637 A 特開2009−176389号公報JP 2009-176389 A 特開2005−70544号公報JP 2005-70544 A

磁気記録層には記録再生特性の観点から鉄族元素のFe、Co、Niを含む磁性材料が用いられるが、このような磁性材料はイオン化傾向が大きく腐食性が高いため、腐食対策が必要である。従来は磁気記録層の表面に保護膜を形成することなどにより対策してきた。   A magnetic material containing the iron group elements Fe, Co, and Ni is used for the magnetic recording layer from the viewpoint of recording / reproducing characteristics. However, since such a magnetic material has a high ionization tendency and is highly corrosive, a countermeasure against corrosion is necessary. is there. Conventionally, measures have been taken by forming a protective film on the surface of the magnetic recording layer.

しかし、パターンド媒体においては磁気記録層を部分的にエッチングで除去して溝を形成するため、特許文献4や5に記載されているように磁気記録媒体表面の凹凸に沿って保護膜を形成したとしても、磁気記録層の表面積が大きくなり、従来以上に腐食のリスクが高くなる。また、特許文献6や7に記載されているように磁気記録層を部分的に除去してできた溝を非磁性材料で埋め戻して磁気記録媒体表面を平坦にした場合にも腐食の問題が発生することが判明した。   However, in patterned media, the magnetic recording layer is partially removed by etching to form grooves, so that a protective film is formed along the irregularities on the surface of the magnetic recording media as described in Patent Documents 4 and 5. Even so, the surface area of the magnetic recording layer is increased, and the risk of corrosion is higher than before. Further, as described in Patent Documents 6 and 7, there is a problem of corrosion even when a groove formed by partially removing the magnetic recording layer is backfilled with a nonmagnetic material to flatten the surface of the magnetic recording medium. It was found to occur.

本発明は上記課題に鑑みてなされたものであり、耐食性に優れたパターン型磁気記録媒体を実現することを目的としたものである。   The present invention has been made in view of the above problems, and an object thereof is to realize a patterned magnetic recording medium having excellent corrosion resistance.

上記目的を達成するための一実施形態として、非磁性下地層と、前記非磁性下地層上に設けられたパターン状に物理的に分離された磁気記録層を有する磁気記録媒体において、前記磁気記録層の側壁面が水素よりイオン化傾向の小さい材料から成る側壁層で覆われており、前記非磁性下地層が前記側壁層と同一の材料から成り、前記磁気記録層の上面と前記側壁層の側面が、CもしくはSiを含む不導体材料から成る保護膜で覆われていることを特徴とする磁気記録媒体とする。   As an embodiment for achieving the above object, in a magnetic recording medium comprising a nonmagnetic underlayer and a magnetic recording layer physically separated into a pattern provided on the nonmagnetic underlayer, the magnetic recording The side wall surface of the layer is covered with a side wall layer made of a material having a smaller ionization tendency than hydrogen, the nonmagnetic underlayer is made of the same material as the side wall layer, and the upper surface of the magnetic recording layer and the side surface of the side wall layer Is covered with a protective film made of a nonconductive material containing C or Si.

本発明によれば、耐食性に優れたパターン型磁気記録媒体が実現できる。   According to the present invention, a patterned magnetic recording medium having excellent corrosion resistance can be realized.

本発明の第1の実施例に係る磁気記録媒体の断面構造を模式的に示した図である。1 is a diagram schematically showing a cross-sectional structure of a magnetic recording medium according to a first embodiment of the present invention. 本発明の第1の実施例に係る磁気記録媒体の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a magnetic recording medium according to a first embodiment of the present invention. 本発明の第1の実施例に係る磁気記録媒体の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a magnetic recording medium according to a first embodiment of the present invention. 本発明の第1の実施例に係る磁気記録媒体の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a magnetic recording medium according to a first embodiment of the present invention. 本発明の第1の実施例に係る磁気記録媒体の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a magnetic recording medium according to a first embodiment of the present invention. 本発明の第1の実施例に係る磁気記録媒体の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a magnetic recording medium according to a first embodiment of the present invention. 本発明の第1の実施例に係る磁気記録媒体の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a magnetic recording medium according to a first embodiment of the present invention. 本発明の第1の実施例に係る磁気記録媒体の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a magnetic recording medium according to a first embodiment of the present invention. 比較例1−3に係る磁気記録媒体の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the magnetic recording medium which concerns on Comparative Example 1-3. 比較例1−3に係る磁気記録媒体の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the magnetic recording medium which concerns on Comparative Example 1-3. 本発明の実施例2に係る磁気記録媒体の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the magnetic-recording medium based on Example 2 of this invention. 比較例1−3に係る磁気記録媒体の断面構造を模式的に示した図である。It is the figure which showed typically the cross-section of the magnetic recording medium which concerns on Comparative Example 1-3. 本発明の第3の実施例に係る磁気記録媒体の断面構造を模式的に示した図である。It is the figure which showed typically the cross-section of the magnetic-recording medium based on the 3rd Example of this invention. 本発明の実施例1−1〜1−3、比較例1−1〜1−5の側壁層、非磁性下地層材料の標準電極電位を示す図である。It is a figure which shows the standard electrode potential of the side wall layer of Examples 1-1 to 1-3 of this invention, and Comparative Examples 1-1 to 1-5, and a nonmagnetic underlayer material. 本発明の実施例1−1〜1−3、比較例1−1〜1−5の標準電極電位と腐食点数の関係を示す図である。It is a figure which shows the relationship between the standard electrode potential of Examples 1-1 to 1-3 of this invention, and Comparative Examples 1-1 to 1-5, and a corrosion score. 側壁層と非磁性下地層とが異なる材料からなる従来の磁気記録媒体及びその一部を拡大した断面構造を模式的に示した図である。It is the figure which showed typically the cross-sectional structure which expanded the conventional magnetic recording medium which consists of a material from which a side wall layer and a nonmagnetic base layer differ, and its part. 発明を実施するための形態に係る磁気記録媒体及びその一部を拡大した断面構造を模式的に示した図である。1 is a diagram schematically showing a cross-sectional structure in which a magnetic recording medium according to an embodiment for carrying out the invention and a part thereof are enlarged. FIG.

磁気記録層が物理的に分離された凹凸パターンを有する磁気記録媒体において腐食の発生する原因を鋭意検討した結果、以下の現象が腐食の発生に深く関係している問題であることがわかった。異種の金属材料が接合する状態が存在する場合には、金属材料それぞれの電気化学ポテンシャルの違いにより、イオン化傾向のより大きな材料のガルバニック腐食が発生することである。   As a result of intensive studies on the cause of corrosion in a magnetic recording medium having a concavo-convex pattern in which the magnetic recording layer is physically separated, it has been found that the following phenomenon is a problem deeply related to the occurrence of corrosion. When there is a state in which different kinds of metal materials are joined, galvanic corrosion of a material having a greater ionization tendency occurs due to a difference in electrochemical potential of each metal material.

特にパターンド媒体において物理的に分離された磁気記録層の側壁面は、保護膜あるいは埋め戻し充填層で覆われたとしても欠陥が発生しやすく、水分などの腐食誘発成分が磁気記録媒体表面から侵入しやすい箇所となる。   In particular, the side wall surface of the magnetic recording layer physically separated in the patterned medium is prone to defects even if it is covered with a protective film or backfill filling layer, and corrosion-inducing components such as moisture are removed from the surface of the magnetic recording medium. It becomes a place that is easy to invade.

したがって、磁気記録層の側壁面を埋め戻し充填層で覆った場合には、磁気記録層と埋め戻し充填層の間でガルバニック腐食が発生し、あるいは磁気記録層の側壁面を保護膜で覆った場合には、磁気記録層の側壁面下部に磁気記録層と非磁性下地層が接する状態が存在し、この接合面でガルバニック腐食が発生する。   Therefore, when the sidewall surface of the magnetic recording layer is covered with the backfilling layer, galvanic corrosion occurs between the magnetic recording layer and the backfilling layer, or the sidewall surface of the magnetic recording layer is covered with the protective film. In some cases, the magnetic recording layer and the nonmagnetic underlayer are in contact with each other below the side wall surface of the magnetic recording layer, and galvanic corrosion occurs at this bonding surface.

前記問題を解決するために、非磁性下地層上に設けられたトラック構造またはビット構造などのパターン状に分離された磁気記録層を有する磁気記録媒体において、磁気記録層の側壁面が水素よりイオン化傾向の小さい材料から成る側壁層で覆われており、非磁性下地層が側壁層と同一の材料から成り、かつ、磁気記録層の上面と側壁層の側面がCもしくはSiを含む不導体材料から成る保護膜で覆われた構造を形成する。   In order to solve the above problem, in a magnetic recording medium having a magnetic recording layer separated into a pattern such as a track structure or a bit structure provided on a nonmagnetic underlayer, the side wall surface of the magnetic recording layer is ionized from hydrogen. It is covered with a side wall layer made of a material having a low tendency, the nonmagnetic underlayer is made of the same material as the side wall layer, and the top surface of the magnetic recording layer and the side surface of the side wall layer are made of a nonconductive material containing C or Si. A structure covered with a protective film is formed.

ここで、イオン化傾向が水素より小さい材料としては、化学的に安定な金属(Pt、Pd、Ru、Ir、Rh、Os、Au)あるいはこれらを含んだ合金であることが好ましい。このような構造を形成することで、磁気記録層の側壁面と底面が水素よりイオン化傾向が小さい材料で完全に覆われて保護されるために、磁気記録層のガルバニック腐食耐性を向上させることができる。   Here, the material having an ionization tendency smaller than that of hydrogen is preferably a chemically stable metal (Pt, Pd, Ru, Ir, Rh, Os, Au) or an alloy containing them. By forming such a structure, the side wall surface and the bottom surface of the magnetic recording layer are completely covered and protected by a material having a lower ionization tendency than hydrogen, thereby improving the galvanic corrosion resistance of the magnetic recording layer. it can.

さらに、側壁層の側面を非金属であるCもしくはSiを含む不導体材料の保護膜で覆うことにより磁気記録層の側壁面近傍におけるガルバニック腐食を抑制することができる。埋め戻し充填層には非磁性材料を用いることができる。   Furthermore, the galvanic corrosion in the vicinity of the side wall surface of the magnetic recording layer can be suppressed by covering the side surface of the side wall layer with a protective film made of a non-conductive material containing C or Si which is a nonmetal. A nonmagnetic material can be used for the backfilling layer.

図1に本発明の実施形態に係わる磁気記録媒体の断面図を示す。平坦な基板11上に下地層121を介して、非磁性下地層122を有する。非磁性下地層122上にトラック状またはドット状のパターンに分離された磁気記録層13を有し、磁気記録層13の側壁に非磁性下地層と同材料を用いた側壁層14を有する。磁気記録層13、側壁層14及び非磁性下地層122の表面を被覆する保護膜16及び潤滑層17を有する。なお、図4に示すように、凹凸パターンの凹部の保護膜16上に埋め戻し充填層18を有し、表面を被覆する潤滑膜17を有してもよい。   FIG. 1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention. A nonmagnetic underlayer 122 is provided on a flat substrate 11 with an underlayer 121 interposed therebetween. The magnetic recording layer 13 separated into a track-like or dot-like pattern is provided on the nonmagnetic underlayer 122, and the side wall layer 14 using the same material as the nonmagnetic underlayer is provided on the side wall of the magnetic recording layer 13. A protective film 16 and a lubricating layer 17 are provided to cover the surfaces of the magnetic recording layer 13, the sidewall layer 14, and the nonmagnetic underlayer 122. In addition, as shown in FIG. 4, you may have the backfill filling layer 18 on the protective film 16 of the recessed part of an uneven | corrugated pattern, and may have the lubricating film 17 which coat | covers the surface.

次に、各層の構造、役割について詳細に説明する。
(1)非磁性下地層122は、側壁層14とともに磁気記録層13の腐食を防止する役割を持つ。非磁性下地層122と側壁層14自体が腐食しないようにするためには、非磁性下地層122と側壁層14には、化学的に安定な材料を用いる必要がある。腐食は大気中の成分である、水、酸素、硫黄などとの反応が問題となるため、これらと反応しにくい元素として、イオン化傾向が水素よりも小さい材料を用いればよい。イオン化傾向が水素よりも小さい材料として、白金族元素(Pt、Pd、Ru、Ir、Rh、Os)や第11族元素の中で安定なAuを用いることができる。
Next, the structure and role of each layer will be described in detail.
(1) The nonmagnetic underlayer 122 has a role of preventing corrosion of the magnetic recording layer 13 together with the sidewall layer 14. In order to prevent the nonmagnetic underlayer 122 and the sidewall layer 14 itself from corroding, it is necessary to use a chemically stable material for the nonmagnetic underlayer 122 and the sidewall layer 14. Corrosion has a problem of reaction with water, oxygen, sulfur, and the like, which are components in the atmosphere. Therefore, a material that has a smaller ionization tendency than hydrogen may be used as an element that hardly reacts with these elements. As a material whose ionization tendency is smaller than that of hydrogen, stable Au can be used among platinum group elements (Pt, Pd, Ru, Ir, Rh, Os) and group 11 elements.

前記金属に他の元素を加えた合金でも、イオン化傾向が水素よりも小さければ、非磁性下地層122と側壁層14に用いることができる。ただし、非磁性下地層122と側壁層14の接合部の電気化学ポテンシャル差による磁気記録層13の側壁下部からの腐食を防止するためには、非磁性下地層122と側壁層14に同一の材料を用いる必要がある。   Even an alloy obtained by adding another element to the metal can be used for the nonmagnetic underlayer 122 and the sidewall layer 14 if the ionization tendency is smaller than that of hydrogen. However, the same material is used for the nonmagnetic underlayer 122 and the side wall layer 14 in order to prevent corrosion from the bottom of the side wall of the magnetic recording layer 13 due to the electrochemical potential difference between the nonmagnetic underlayer 122 and the side wall layer 14. Must be used.

図7(a)、図7(b)に示すように磁気記録層の下部では、非磁性下地層122、磁気記録層13、側壁層14の3種の材料が接合する部分が存在する。図7(a)に示すように側壁層14と非磁性下地層122が異なる金属材料の場合、非磁性下地層122と磁気記録層13との間の電気化学ポテンシャルと、側壁層14と磁気記録層13との間の電気化学ポテンシャルが異なるため、側壁層14と非磁性下地層122との間に電位差が発生しガルバニック腐食が発生する事になる。   As shown in FIGS. 7A and 7B, there is a portion where the three materials of the nonmagnetic underlayer 122, the magnetic recording layer 13, and the side wall layer 14 are joined below the magnetic recording layer. As shown in FIG. 7A, when the sidewall layer 14 and the nonmagnetic underlayer 122 are made of different metal materials, the electrochemical potential between the nonmagnetic underlayer 122 and the magnetic recording layer 13, and the sidewall layer 14 and the magnetic recording are recorded. Since the electrochemical potential between the layers 13 is different, a potential difference is generated between the sidewall layer 14 and the nonmagnetic underlayer 122, and galvanic corrosion occurs.

一方で、図7(b)に示すように側壁層14と非磁性下地層122が同一材料の場合、非磁性下地層122と磁気記録層13との間の電気化学ポテンシャルと、側壁層14と磁気記録層13との間の電気化学ポテンシャルが釣り合うため当該部分において安定となり耐食性が向上する。   On the other hand, when the sidewall layer 14 and the nonmagnetic underlayer 122 are made of the same material as shown in FIG. 7B, the electrochemical potential between the nonmagnetic underlayer 122 and the magnetic recording layer 13, the sidewall layer 14 and Since the electrochemical potential between the magnetic recording layer 13 and the magnetic recording layer 13 is balanced, the portion becomes stable and the corrosion resistance is improved.

(2)磁気記録層13の上面と側壁層14の側面と非磁性下地層122の上面を覆うように形成する、カーボンやSiなどの不導体材料から成る保護膜16には三つの役割がある。一つ目は、硬質な保護膜によって磁気記録媒体の表面をヘッドから保護することである。このときヘッドと磁気記録層13とのスペーシングは、十分な保護膜の強度を保ちつつ、できる限り低減する必要がある。二つ目は、非金属材料で側壁層14と非磁性下地層122を覆うことによって異種の金属材料によるガルバニック腐食が発生しないようにすることである。三つ目は、パターン状に分離された磁気記録層の間を分断するように不導体の保護膜16が存在することによって、表面欠陥などに起因して発生した腐食が周囲の磁気記録層に広がらないようにすることである。   (2) The protective film 16 made of a nonconductive material such as carbon or Si, which covers the upper surface of the magnetic recording layer 13, the side surface of the side wall layer 14, and the upper surface of the nonmagnetic underlayer 122 has three roles. . The first is to protect the surface of the magnetic recording medium from the head with a hard protective film. At this time, the spacing between the head and the magnetic recording layer 13 needs to be reduced as much as possible while maintaining sufficient strength of the protective film. Second, the sidewall layer 14 and the nonmagnetic underlayer 122 are covered with a nonmetallic material so that galvanic corrosion due to a different metal material does not occur. Third, the non-conductive protective film 16 is present so as to divide the magnetic recording layers separated in a pattern shape, so that corrosion caused by surface defects and the like is caused in the surrounding magnetic recording layers. It is to prevent it from spreading.

(1)と(2)に示すような側壁層14と保護膜16を形成することで十分に優れた耐食性が得られる。   By forming the sidewall layer 14 and the protective film 16 as shown in (1) and (2), sufficiently excellent corrosion resistance can be obtained.

基板11、下地層121、磁気記録層13、保護膜16、潤滑層17については、一般的な垂直磁気記録媒体の構造を用いることができる。以下にその代表例を示す。   For the substrate 11, the underlayer 121, the magnetic recording layer 13, the protective film 16, and the lubricating layer 17, a general perpendicular magnetic recording medium structure can be used. Typical examples are shown below.

基板11にはAl−Mg合金などの非磁性金属や、結晶化ガラス、アモルファスガラス、Si、樹脂などの材料を用いることができる。   The substrate 11 can be made of a nonmagnetic metal such as an Al—Mg alloy, a material such as crystallized glass, amorphous glass, Si, or resin.

下地層121は、軟磁性下地層や非磁性中間層などから構成することができる。軟磁性層には、Fe、Co、Niを含む軟磁性材料を用いることができる。非磁性中間層を磁気記録層下部に配置することで、磁気記録層13の結晶配向性や結晶粒径を制御し、結晶粒間の交換結合を制御する役割を持たせることができる。   The underlayer 121 can be composed of a soft magnetic underlayer, a nonmagnetic intermediate layer, or the like. For the soft magnetic layer, a soft magnetic material containing Fe, Co, and Ni can be used. By disposing the nonmagnetic intermediate layer below the magnetic recording layer, it is possible to control the crystal orientation and crystal grain size of the magnetic recording layer 13 and to control exchange coupling between crystal grains.

磁気記録層13は、記録部を担う層であり、結晶粒界にCr偏析もしくは酸化物が存在するグラニュラー構造、CoPt、CoPdなどの人工格子構造、FePtなどのL1規則合金構造、CoPtなどのL1規則合金構造、希土類−遷移金属合金構造などの垂直磁気異方性の大きく熱減磁特性に優れた垂直磁性膜を用いることができる。Magnetic recording layer 13 is a layer which has a recording unit, granular structure exists Cr segregation or oxide in the grain boundary, CoPt, artificial lattice structure such as CoPd, L1 0 ordered alloy structures such as FePt, such as CoPt A perpendicular magnetic film having a large perpendicular magnetic anisotropy such as an L1 1-order alloy structure or a rare earth-transition metal alloy structure and excellent in thermal demagnetization characteristics can be used.

保護膜16には、アモルファスカーボンや窒化ケイ素の単層膜、またはこれらの多層膜を用いることができる。   As the protective film 16, a single layer film of amorphous carbon or silicon nitride, or a multilayer film thereof can be used.

潤滑層17には、パーフルオロポリエーテル、フッ化アルコール、フッ素化カルボン酸などの液体潤滑剤を用いることができる。   The lubricant layer 17 can be a liquid lubricant such as perfluoropolyether, fluorinated alcohol, or fluorinated carboxylic acid.

上記構造を形成することにより、磁気記録層の側壁面下部に磁気記録層と非磁性下地層と埋め戻し充填層などの3種類の材料が接合する状態が存在することがなくなるため、この部分で発生するガルバニック腐食も抑制することができる。また、パターン状に分離された磁気記録層の間に非金属材料である保護膜を挿入していることで、表面欠陥などに起因して発生した腐食が周囲の磁気記録層に波及することを抑制できる。   By forming the above structure, there is no state where three kinds of materials such as a magnetic recording layer, a nonmagnetic underlayer, and a backfilling layer are bonded to the lower portion of the side wall surface of the magnetic recording layer. The generated galvanic corrosion can also be suppressed. In addition, by inserting a protective film, which is a non-metallic material, between the magnetic recording layers separated in a pattern, it is possible to prevent corrosion caused by surface defects from spreading to the surrounding magnetic recording layers. Can be suppressed.

以下、実施例により詳細に説明する。   Hereinafter, the embodiment will be described in detail.

第1の実施例について図2(a)〜図2(g)を用いて説明する。なお、発明を実施するための形態に記載され、本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。   The first embodiment will be described with reference to FIGS. 2 (a) to 2 (g). Note that items described in the mode for carrying out the invention and not described in the present embodiment can also be applied to the present embodiment unless there are special circumstances.

図2(a)〜図2(g)は本実施例に係るパターン型磁気記録媒体の作製過程の模式図(断面図)である。図2(a)に示すように基板11として、直径65mmのガラス基板を用いた。スパッタ装置を用いて、下地層121、非磁性下地層122、磁気記録層13、インプリント保護膜21を順に形成した。下地層には、FeCoTaZr軟磁性膜、非磁性下地層122、磁気記録層13として下層を13nmのCoCrPt−SiOグラニュラー膜を用いた。インプリント保護膜21としてスパッタカーボンを4nm形成した。FIG. 2A to FIG. 2G are schematic views (cross-sectional views) of the manufacturing process of the pattern type magnetic recording medium according to this example. A glass substrate having a diameter of 65 mm was used as the substrate 11 as shown in FIG. The underlayer 121, the nonmagnetic underlayer 122, the magnetic recording layer 13, and the imprint protective film 21 were sequentially formed using a sputtering apparatus. As the underlayer, a CoCrPt—SiO 2 granular film having a lower layer of 13 nm was used as the FeCoTaZr soft magnetic film, the nonmagnetic underlayer 122, and the magnetic recording layer 13. As the imprint protective film 21, 4 nm of sputtered carbon was formed.

次に、図2(b)に示すようにインプリント装置を用いて、インプリントレジストパターン22を形成した。レジストの総厚は70nmでパターンの高さが60nm、レジストの残渣が10nmとなるようにした。次に図2(c)に示すようにリアクティブイオンエッチング装置を用いて、酸素ガス中でエッチングを行い、ガードバンド部のレジスト残渣22とインプリント保護膜21を除去した。記録部のレジストの高さは50nmまで減少した。次に、図2(d)に示すようにArガスを用いたイオンビームエッチングでガードバンド部の磁気記録層13を非磁性下地層122がちょうど露出するまで除去した。次に、図2(e)に示すようにスパッタ装置を用いて非磁性下地層122と同一の材料の側壁層14を、磁気記録層13の側壁面を覆うように成膜した。次に、図2(f)に示すように水素を用いたリアクティブイオンエッチングにより記録部の上部に残ったインプリントレジスト22とインプリント保護膜21と側壁層14を除去した。図2(g)に示すようにChemical Vapor Depositionを用いて保護膜16としてカーボンを4nm成膜した。最後に、図1に示すように潤滑層17としてパーフルオロアルキルポリエーテル系の材料をフルオロカーボン材で希釈した潤滑剤を塗布してパターン型磁気記録媒体を作製した。   Next, as shown in FIG. 2B, an imprint resist pattern 22 was formed using an imprint apparatus. The total thickness of the resist was 70 nm, the pattern height was 60 nm, and the resist residue was 10 nm. Next, as shown in FIG. 2C, etching was performed in oxygen gas using a reactive ion etching apparatus, and the resist residue 22 and the imprint protective film 21 in the guard band portion were removed. The resist height in the recording area was reduced to 50 nm. Next, as shown in FIG. 2D, the magnetic recording layer 13 in the guard band portion was removed by ion beam etching using Ar gas until the nonmagnetic underlayer 122 was just exposed. Next, as shown in FIG. 2 (e), the sidewall layer 14 made of the same material as the nonmagnetic underlayer 122 was formed using a sputtering apparatus so as to cover the sidewall surface of the magnetic recording layer 13. Next, as shown in FIG. 2F, the imprint resist 22, the imprint protective film 21, and the sidewall layer 14 remaining on the upper portion of the recording portion were removed by reactive ion etching using hydrogen. As shown in FIG. 2G, a carbon film having a thickness of 4 nm was formed as the protective film 16 using Chemical Vapor Deposition. Finally, as shown in FIG. 1, a lubricant obtained by diluting a perfluoroalkyl polyether material with a fluorocarbon material was applied as the lubricating layer 17 to produce a patterned magnetic recording medium.

これらの媒体について、耐食性の評価を以下の手順で行った。まず、温度60℃、相対湿度90%RH以上の高温多湿状態の条件下にサンプルを96時間放置する。次に、Optical Surface Analyzerを用いて半径14mmから25mmまでの範囲内における腐食点の数をカウントし、以下のようにランク付けした。カウント数が50未満のものをA、50以上200未満のものをB、200以上500未満のものをC、500以上のものをDとして評価した。作製した磁気記録媒体を磁気記録装置に取り付けて十分な信頼性を得るには、ランクAであることが必要である。   These media were evaluated for corrosion resistance by the following procedure. First, the sample is allowed to stand for 96 hours under conditions of a high temperature and high humidity state at a temperature of 60 ° C. and a relative humidity of 90% RH or higher. Next, the number of corrosion points in the range from a radius of 14 mm to 25 mm was counted using an Optical Surface Analyzer and ranked as follows. A sample having a count number of less than 50 was evaluated as A, a sample having a count of 50 or more and less than 200 was evaluated as B, a sample having a count of 200 or more and less than 500 was evaluated as C, and a sample having 500 or more was evaluated as D. In order to obtain a sufficient reliability by attaching the produced magnetic recording medium to the magnetic recording apparatus, it is necessary to have rank A.

実施例1は側壁層14としてRuを厚さ2nm形成した媒体である。比較例1−1は側壁層14を形成せずに保護層16としてカーボンを厚さ4nm形成した媒体である。比較例1−2は側壁層14を形成せずに磁気記録層13の側壁面と非磁性下地層122の上面に沿ってCrTiを厚さ13nm形成して溝を埋めてから保護膜16として厚さ4nmのカーボンを形成した媒体である。比較例1−3は保護膜16を形成する前に側壁層14として厚さ2nmのRuと側壁層14の側面と非磁性下地層122の上面に沿ってCrTiを13nm形成し(図2(f)の構造)、溝を埋めて(図2(h)の構造)から保護膜16として厚さ4nmのカーボンを形成し(図2(i)の構造)、更に潤滑層17を形成した図3に示すような断面構造の媒体である。   Example 1 is a medium in which Ru is formed to a thickness of 2 nm as the sidewall layer 14. Comparative Example 1-1 is a medium in which carbon is formed to a thickness of 4 nm as the protective layer 16 without forming the sidewall layer 14. In Comparative Example 1-2, without forming the sidewall layer 14, CrTi is formed to a thickness of 13 nm along the sidewall surface of the magnetic recording layer 13 and the upper surface of the nonmagnetic underlayer 122 to fill the groove, and then the protective film 16 is thick. This is a medium in which carbon having a thickness of 4 nm is formed. In Comparative Example 1-3, before forming the protective film 16, Ru having a thickness of 2 nm was formed as the sidewall layer 14, and 13 nm of CrTi was formed along the side surface of the sidewall layer 14 and the upper surface of the nonmagnetic underlayer 122 (FIG. 3), carbon having a thickness of 4 nm is formed as a protective film 16 (structure of FIG. 2 (i)) from filling the groove (structure of FIG. 2 (h)), and a lubricating layer 17 is further formed. A medium having a cross-sectional structure as shown in FIG.

実施例1と比較例1−1〜1−3の腐食性試験の結果について纏めたものを表1に示す。   Table 1 summarizes the results of the corrosive tests of Example 1 and Comparative Examples 1-1 to 1-3.

Figure 0005433781
Figure 0005433781

側壁層14が無く、磁気記録層13の側壁面に接するように保護膜16が形成されている比較例1−1では耐食性ランクCとなり十分な耐食性が得られなかった。磁気記録層の側壁面のように角度のついた面へカーボンを成膜すると膜中に欠陥が生じやすく膜質の良い膜を形成しにくい。その結果、大気中の水、酸素、硫黄などが磁気記録層表面に侵入し易くなり、磁気記録層13の耐食性が低下すると考えられる。   In Comparative Example 1-1 in which the side wall layer 14 was not provided and the protective film 16 was formed so as to be in contact with the side wall surface of the magnetic recording layer 13, the corrosion resistance rank C was obtained and sufficient corrosion resistance was not obtained. When carbon is deposited on an angled surface such as the side wall surface of the magnetic recording layer, defects are likely to occur in the film, and it is difficult to form a film with good film quality. As a result, it is considered that water, oxygen, sulfur, etc. in the air easily enter the surface of the magnetic recording layer, and the corrosion resistance of the magnetic recording layer 13 is lowered.

比較例1−2のように磁気記録層13の側壁面に接するようにCrTiを形成した場合には、三種類の金属材料が接することになりガルバニック腐食の発生により耐食性が低下すると考えられ、耐食性ランクはDとなる。   When CrTi is formed so as to be in contact with the side wall surface of the magnetic recording layer 13 as in Comparative Example 1-2, it is considered that three kinds of metal materials are in contact with each other and the corrosion resistance is lowered due to the occurrence of galvanic corrosion. The rank is D.

比較例1−3のように側壁層14を形成してから側壁層14に接するように金属材料の埋め戻し充填層18を形成した場合には側壁層14と埋め戻し充填層18との間に電位差が生じてガルバニック腐食が生じると考えられ、耐食性ランクCとなり十分な耐食性は得られない。   When the backfill filling layer 18 made of a metal material is formed so as to be in contact with the side wall layer 14 after the side wall layer 14 is formed as in Comparative Example 1-3, it is between the side wall layer 14 and the backfill filling layer 18. It is considered that galvanic corrosion occurs due to the potential difference, and the corrosion resistance rank C is obtained, and sufficient corrosion resistance cannot be obtained.

実施例1のように側壁層14に非磁性下地層122と同じで化学的に安定なRuを用いて磁気記録層13の側面と底面を完全に覆い、かつ保護膜16を側壁層14の側面に形成した構造では耐食性ランクAとなり十分な耐食性が得られた。   As in the first embodiment, the side wall layer 14 is completely covered with the side surface and the bottom surface of the magnetic recording layer 13 using Ru which is the same as the nonmagnetic underlayer 122 and chemically stable, and the protective film 16 is covered with the side surface of the side wall layer 14. In the structure formed in this way, the corrosion resistance rank A was obtained, and sufficient corrosion resistance was obtained.

以上述べたように、本実施例で示した側壁層と保護膜とを有することにより、耐食性に優れたパターン型の磁気記録媒体を提供できることが分かった。   As described above, it has been found that the pattern type magnetic recording medium having excellent corrosion resistance can be provided by having the sidewall layer and the protective film shown in this embodiment.

第2の実施例について説明する。なお、発明を実施するための形態又は実施例1に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。   A second embodiment will be described. Note that items described in the mode for carrying out the invention or in Example 1 but not described in the present example can be applied to this example as long as there is no particular circumstance.

本実施例と本比較例では、実施例1と同様の過程で磁気記録媒体を作製し、側壁層14の厚さは1.5nmとした。また、耐食性の評価として実施例1と同様の手順で腐食性試験を行った。   In this example and this comparative example, a magnetic recording medium was manufactured in the same process as in Example 1, and the thickness of the sidewall layer 14 was 1.5 nm. Moreover, the corrosion test was done in the same procedure as Example 1 as evaluation of corrosion resistance.

図5に、本実施例、比較例で側壁層と非磁性下地層に用いた材料と、水素の標準電極電位Eを示す。標準電極電位が大きいほどイオン化傾向が小さく、標準電極電位が小さいほどイオン化傾向が大きい。ここで、実施例2−1〜2−3、比較例2−1〜2−5とは側壁層と非磁性下地層の材料が同一の媒体である。実施例2−1〜2−3の材料では、イオン化傾向が水素よりも小さく、比較例2−1〜2−5ではイオン化傾向が水素よりも大きいことが分かる。FIG. 5 shows the materials used for the sidewall layer and the nonmagnetic underlayer in this example and the comparative example, and the standard electrode potential Eo of hydrogen. The greater the standard electrode potential, the smaller the ionization tendency, and the smaller the standard electrode potential, the greater the ionization tendency. Here, Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-5 are media in which the material of the side wall layer and the nonmagnetic underlayer is the same. It can be seen that the materials of Examples 2-1 to 2-3 have a smaller ionization tendency than hydrogen, and Comparative Examples 2-1 to 2-5 have a larger ionization tendency than hydrogen.

また、図6に側壁層と下地層に用いた材料の標準電極電位と腐食点数の関係を示す。イオン化傾向が水素よりも小さい、実施例2−1〜2−3では腐食点数が50未満のランクAであり、磁気記録媒体として十分な信頼性がある。   FIG. 6 shows the relationship between the standard electrode potential and the number of corrosion points of the materials used for the sidewall layer and the underlayer. In Examples 2-1 to 2-3 in which the ionization tendency is smaller than that of hydrogen, the corrosion score is rank A with less than 50, and there is sufficient reliability as a magnetic recording medium.

一方で、比較例2−1〜2−5では腐食点数が、実施例2−1〜2−3と比較して大幅に増大しており、ランクCもしくはランクDであった。したがって、側壁層と非磁性下地層に用いる材料のイオン化傾向が水素よりも小さいことが、耐食性には重要であることが分かる。   On the other hand, in Comparative Examples 2-1 to 2-5, the number of corrosion points was significantly increased as compared with Examples 2-1 to 2-3, and was rank C or rank D. Therefore, it can be seen that it is important for the corrosion resistance that the ionization tendency of the material used for the sidewall layer and the nonmagnetic underlayer is smaller than that of hydrogen.

非磁性下地層122と側壁層14の材料と、腐食性試験の結果について纏めたものを表2に示す。   Table 2 summarizes the materials of the nonmagnetic underlayer 122 and the sidewall layer 14 and the results of the corrosive test.

Figure 0005433781
Figure 0005433781

非磁性下地層122と側壁層14の一方にイオン化傾向が水素より小さい材料を用いないとランクDと非常に腐食しやすかった。一方、非磁性下地層122と側壁層14に異なる材料を用いた場合ランクCとなった。これらに対して、非磁性下地層122と側壁層14に同じ材料を用いるとランクAとなり腐食信頼性の高い媒体が得られることがわかる。   If a material having an ionization tendency smaller than hydrogen is not used for one of the non-magnetic underlayer 122 and the side wall layer 14, it was very easily corroded as rank D. On the other hand, when different materials were used for the nonmagnetic underlayer 122 and the side wall layer 14, the rank was C. On the other hand, when the same material is used for the nonmagnetic underlayer 122 and the side wall layer 14, it becomes rank A and it can be seen that a medium having high corrosion reliability can be obtained.

側壁層14にイオン化傾向が水素より小さい材料を用いなかったランクDの媒体で腐食点が発生した場所の断面を透過型電子顕微鏡で観察したところ、磁気記録層13が酸化していることが分かった。また、非磁性下地層122と側壁層14に異なるイオン化傾向が水素より小さい材料を用いた媒体で腐食点が発生した場所の断面を透過型電子顕微鏡で観察したところ磁気記録層13の側壁下部が白くなっており、電子エネルギー損失分光法を用いて分析したところ酸素が増加していることがわかった。これは、磁気記録層13と非磁性下地層122と側壁層14の3層が接合した部分で、非磁性下地層12と側壁層14の間に電気化学ポテンシャルに差が発生すると、空気中の水分の侵入により磁気記録層13中の磁性材料がイオン化し酸化したと考えられる。   When the cross section of the place where the corrosion point was generated in the medium of rank D which did not use a material whose ionization tendency is smaller than hydrogen was not used for the side wall layer 14, it was found that the magnetic recording layer 13 was oxidized. It was. Further, when a cross section where a corrosion point was generated in a medium using a material having a different ionization tendency different from that of hydrogen in the nonmagnetic underlayer 122 and the side wall layer 14 was observed with a transmission electron microscope, the lower part of the side wall of the magnetic recording layer 13 was observed. It turned white and analysis using electron energy loss spectroscopy revealed that oxygen increased. This is a portion where the magnetic recording layer 13, the nonmagnetic underlayer 122, and the side wall layer 14 are joined. If a difference occurs in the electrochemical potential between the nonmagnetic underlayer 12 and the side wall layer 14, It is considered that the magnetic material in the magnetic recording layer 13 was ionized and oxidized by the penetration of moisture.

すなわち、非磁性下地層122と側壁層14にイオン化傾向が水素より小さい材料でかつ同じ材料を用いることで磁気記録層13の耐食性を格段に向上させることができ、耐食性に優れたパターン型の磁気記録媒体を提供できることが分かった。   That is, the corrosion resistance of the magnetic recording layer 13 can be remarkably improved by using the same material as the non-magnetic underlayer 122 and the side wall layer 14 that is less ionized than hydrogen, and the pattern type magnetic layer having excellent corrosion resistance. It has been found that a recording medium can be provided.

第3の実施例について説明する。なお、発明を実施するための形態、実施例1又は実施例2に記載され本実施例に未記載の事項は特段の事情が無い限り本実施例にも適用することができる。   A third embodiment will be described. It should be noted that matters described in the mode for carrying out the invention, Example 1 or Example 2 but not described in this example can be applied to this example as long as there are no special circumstances.

図2(a)〜図2(d)、図2(j)、図2(f)、図2(g)、図4に本実施例に係るパターン型磁気記録媒体の作製過程の模式図(断面図)を示す。   2 (a) to 2 (d), 2 (j), 2 (f), 2 (g), and 4 are schematic views of the manufacturing process of the patterned magnetic recording medium according to the present embodiment ( Sectional view).

図2(a)に示すように基板11として、直径65mmのガラス基板を用いた。スパッタ装置を用いて、下地層121、非磁性下地層122、磁気記録層13、インプリント保護膜21を順に形成した。下地層には、FeCoTaZr軟磁性膜、非磁性下地層122、磁気記録層13として下層を13nmのCoCrPt−SiOグラニュラー膜を用いた。インプリント保護膜21としてスパッタカーボンを4nm形成した。A glass substrate having a diameter of 65 mm was used as the substrate 11 as shown in FIG. The underlayer 121, the nonmagnetic underlayer 122, the magnetic recording layer 13, and the imprint protective film 21 were sequentially formed using a sputtering apparatus. As the underlayer, a CoCrPt—SiO 2 granular film having a lower layer of 13 nm was used as the FeCoTaZr soft magnetic film, the nonmagnetic underlayer 122, and the magnetic recording layer 13. As the imprint protective film 21, 4 nm of sputtered carbon was formed.

次に、図2(b)に示すようにインプリント装置を用いて、インプリントレジストパターン22を形成した。レジストの総厚は70nmでパターンの高さが60nm、レジストの残渣が10nmとなるようにした。次に図2(c)に示すようにリアクティブイオンエッチング装置を用いて、酸素ガス中でエッチングを行い、ガードバンド部のレジスト残渣22とインプリント保護膜21を除去した。記録部のレジストの高さは50nmまで減少した。次に、図2(d)に示すようにArガスを用いたイオンビームエッチングでガードバンド部の磁気記録層13と非磁性下地層122がちょうど露出するまで除去した。   Next, as shown in FIG. 2B, an imprint resist pattern 22 was formed using an imprint apparatus. The total thickness of the resist was 70 nm, the pattern height was 60 nm, and the resist residue was 10 nm. Next, as shown in FIG. 2C, etching was performed in oxygen gas using a reactive ion etching apparatus, and the resist residue 22 and the imprint protective film 21 in the guard band portion were removed. The resist height in the recording area was reduced to 50 nm. Next, as shown in FIG. 2 (d), the magnetic recording layer 13 and the nonmagnetic underlayer 122 in the guard band were removed by ion beam etching using Ar gas until they were just exposed.

次に、図2(j)に示すようにArガスを用いたイオンビームエッチングでガードバンド部の非磁性下地層122の上部2nmまでエッチングした。ここで、エッチング角度を基板に対して垂直に近付けて、非磁性下地層122のエッチング再付着物が磁気記録層13の側壁面に十分に付着するようにし、側壁面を覆うようにする。前記エッチング再付着物を側壁層14とする。次に、図2(f)に示すように水素を用いたリアクティブイオンエッチングにより記録部の上部に残ったインプリントレジスト22とインプリント保護膜21と側壁層14を除去した。図2(g)に示すように保護膜16を成膜した。   Next, as shown in FIG. 2 (j), the upper part of the nonmagnetic underlayer 122 in the guard band was etched to 2 nm by ion beam etching using Ar gas. Here, the etching angle is set to be perpendicular to the substrate so that the re-deposited material of the nonmagnetic underlayer 122 adheres sufficiently to the side wall surface of the magnetic recording layer 13 and covers the side wall surface. The etching redeposition material is used as the sidewall layer 14. Next, as shown in FIG. 2F, the imprint resist 22, the imprint protective film 21, and the sidewall layer 14 remaining on the upper portion of the recording portion were removed by reactive ion etching using hydrogen. A protective film 16 was formed as shown in FIG.

次に、図4に示すように保護層16のトップ部が覆われないように埋め戻し充填層18を形成し、最後に潤滑層17としてパーフルオロアルキルポリエーテル系の材料をフルオロカーボン材で希釈した潤滑剤を塗布してパターン型磁気記録媒体を作製した。   Next, as shown in FIG. 4, a backfilling filling layer 18 is formed so that the top portion of the protective layer 16 is not covered, and finally a perfluoroalkyl polyether material is diluted with a fluorocarbon material as the lubricating layer 17. A lubricant was applied to produce a patterned magnetic recording medium.

ここで、実施例3−1は保護膜16にカーボンを用い、埋め戻し充填層18にCrTiを用いた。実施例3−2は保護膜16にカーボンを用い、埋め戻し充填層18にパーフルオロアルキルポリエーテル系の材料Aを用いた。実施例3−3は保護膜16にカーボンを用い、埋め戻し充填層18にカーボンを用いた。実施例3−4は保護膜16にカーボンを用い、埋め戻し充填層18は形成せず図1と同様の構造とした。実施例3−5は保護膜16にSiNxとカーボンの複合膜を用い、埋め戻し充填層18は形成せず図1と同様の構造とした。   Here, in Example 3-1, carbon was used for the protective film 16 and CrTi was used for the backfilling filling layer 18. In Example 3-2, carbon was used for the protective film 16 and perfluoroalkyl polyether material A was used for the backfilling filling layer 18. In Example 3-3, carbon was used for the protective film 16, and carbon was used for the backfilling filling layer 18. In Example 3-4, carbon was used for the protective film 16, and the backfilling filling layer 18 was not formed, and the structure was the same as that shown in FIG. In Example 3-5, a composite film of SiNx and carbon was used as the protective film 16, and the backfilling filling layer 18 was not formed, and the structure was the same as that shown in FIG.

実施例3−1、3−2、3−3、3−4、3−5、実施例1の腐食性試験の結果について纏めたものを表3に示す。   Table 3 summarizes the results of the corrosive tests of Examples 3-1, 3-2, 3-3, 3-4, 3-5, and Example 1.

Figure 0005433781
Figure 0005433781

実施例3−1、3−2、3−3、3−4、3−5いずれも腐食点の数は少なく、本実施例の作製方法においても、実施例1と同等の耐食性が得られ、耐食性に優れたパターン型の磁気記録媒体を提供できることが分かった。また、埋め戻し充填層を形成することにより表面平坦性が向上し、安定したヘッドの浮上性が得られた。   Examples 3-1, 3-2, 3-3, 3-4, and 3-5 all have a small number of corrosion points. It was found that a pattern type magnetic recording medium having excellent corrosion resistance can be provided. In addition, by forming the backfilling layer, the surface flatness was improved and stable head flying characteristics were obtained.

11…非磁性基板、
121…下地層、
122…非磁性下地層、
13…磁気記録層、
14…側壁層、
16…保護膜、
17…潤滑層、
18…埋め戻し充填層、
21…インプリント保護膜、
22…ナナノインプリントレジスト。
11 ... Non-magnetic substrate,
121 ... Underlayer,
122 ... nonmagnetic underlayer,
13: Magnetic recording layer,
14 ... sidewall layer,
16 ... Protective film,
17 ... Lubrication layer,
18 ... backfill packed bed,
21 ... Imprint protective film,
22 ... Nanoimprint resist.

Claims (4)

非磁性下地層と、前記非磁性下地層上に設けられたパターン状に物理的に分離された磁気記録層を有する磁気記録媒体において、
前記磁気記録層の側壁面が水素よりイオン化傾向の小さい材料から成る側壁層で覆われており、
前記非磁性下地層が前記側壁層と同一の材料から成り、
前記磁気記録層の上面と前記側壁層の側面が、CもしくはSiを含む不導体材料から成る保護膜で覆われていることを特徴とする磁気記録媒体。
In a magnetic recording medium having a nonmagnetic underlayer and a magnetic recording layer physically separated into a pattern provided on the nonmagnetic underlayer,
The side wall surface of the magnetic recording layer is covered with a side wall layer made of a material having a smaller ionization tendency than hydrogen;
The nonmagnetic underlayer is made of the same material as the sidewall layer,
A magnetic recording medium, wherein an upper surface of the magnetic recording layer and a side surface of the sidewall layer are covered with a protective film made of a nonconductive material containing C or Si.
請求項1記載の磁気記録媒体において、
前記非磁性下地層材料がPt、Pd、Au、Ru、Ir、Rh、Osのいずれかの金属、あるいはこれらの元素のうち少なくとも一つを含む合金であることを特徴とする磁気記録媒体。
The magnetic recording medium according to claim 1,
The magnetic recording medium, wherein the nonmagnetic underlayer material is a metal selected from Pt, Pd, Au, Ru, Ir, Rh, and Os, or an alloy containing at least one of these elements.
請求項1記載の磁気記録媒体において、
前記保護膜上に存在する凹凸パターンの凹部が非磁性材料により充填されていることを特徴とする磁気記録媒体。
The magnetic recording medium according to claim 1,
A magnetic recording medium, wherein a concave portion of a concave / convex pattern existing on the protective film is filled with a nonmagnetic material.
非磁性下地層と、前記非磁性下地層上に互いに離間して設けられ、側壁面と上面とを備えた磁気記録層とを有する磁気記録媒体において、
前記非磁性下地層は、水素よりイオン化傾向の小さい第1の材料からなり、
前記磁気記録層の前記側壁面を覆い、前記第1の材料と同一の材料からなる側壁層と、
前記磁気記録層の上面と、前記第1の材料からなる前記側壁層および前記非磁性下地層とを覆い、CもしくはSiを含む不導体材料からなる保護膜と、
前記磁気記録層間凹部の保護膜上に形成された埋め戻し充填層と、を更に有することを特徴とする磁気記録媒体。
In a magnetic recording medium having a nonmagnetic underlayer and a magnetic recording layer provided on the nonmagnetic underlayer and spaced apart from each other and having a side wall surface and an upper surface,
The nonmagnetic underlayer is made of a first material having a smaller ionization tendency than hydrogen,
A sidewall layer that covers the sidewall surface of the magnetic recording layer and is made of the same material as the first material;
A protective film made of a nonconductive material containing C or Si, covering the upper surface of the magnetic recording layer, the side wall layer made of the first material, and the nonmagnetic underlayer;
A magnetic recording medium further comprising a backfilling layer formed on a protective film of the concave portion of the magnetic recording interlayer.
JP2012509359A 2010-04-05 2011-03-08 Magnetic recording medium Expired - Fee Related JP5433781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509359A JP5433781B2 (en) 2010-04-05 2011-03-08 Magnetic recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010087012 2010-04-05
JP2010087012 2010-04-05
PCT/JP2011/055311 WO2011125403A1 (en) 2010-04-05 2011-03-08 Magnetic recording medium
JP2012509359A JP5433781B2 (en) 2010-04-05 2011-03-08 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPWO2011125403A1 JPWO2011125403A1 (en) 2013-07-08
JP5433781B2 true JP5433781B2 (en) 2014-03-05

Family

ID=44762364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509359A Expired - Fee Related JP5433781B2 (en) 2010-04-05 2011-03-08 Magnetic recording medium

Country Status (2)

Country Link
JP (1) JP5433781B2 (en)
WO (1) WO2011125403A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002806A (en) * 2012-06-15 2014-01-09 Fuji Electric Co Ltd Magnetic recording medium and method of manufacturing the same
US9564164B2 (en) 2013-12-20 2017-02-07 Seagate Technology Llc Exchange decoupled data storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120222A (en) * 2004-10-20 2006-05-11 Toshiba Corp Magnetic recording medium and its manufacturing method
JP2009070426A (en) * 2007-09-10 2009-04-02 Tdk Corp Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
JP2010108540A (en) * 2008-10-29 2010-05-13 Showa Denko Kk Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
JP2010218610A (en) * 2009-03-16 2010-09-30 Hitachi Ltd Magnetic recording medium and magnetic recording device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120222A (en) * 2004-10-20 2006-05-11 Toshiba Corp Magnetic recording medium and its manufacturing method
JP2009070426A (en) * 2007-09-10 2009-04-02 Tdk Corp Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
JP2010108540A (en) * 2008-10-29 2010-05-13 Showa Denko Kk Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
JP2010218610A (en) * 2009-03-16 2010-09-30 Hitachi Ltd Magnetic recording medium and magnetic recording device

Also Published As

Publication number Publication date
JPWO2011125403A1 (en) 2013-07-08
WO2011125403A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
US9082444B2 (en) Magnetic recording medium and method of manufacturing a magnetic recording medium
JP3916636B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus
US20070281078A1 (en) Patterned media, method of manufacturing the same, and magnetic recording/reproducing apparatus
US8250736B2 (en) Method for manufacturing a magnetic recording medium
JP4296204B2 (en) Magnetic recording medium
JP3924301B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
US8652338B2 (en) Magnetic recording medium and method of manufacturing the same
JP2007109358A (en) Perpendicular magnetic recording medium
US20100232054A1 (en) Magnetic recording medium and magnetic storage
JP3881350B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP2006236474A (en) Magnetic recording medium and magnetic recording/reproducing device
JP5433781B2 (en) Magnetic recording medium
US7514163B2 (en) Magnetic recording medium and magnetic recording device
JP2008159146A (en) Magnetic recording medium and manufacturing method of magnetic recording medium
JP4421403B2 (en) Magnetic recording medium, magnetic recording apparatus, and method of manufacturing magnetic recording medium
JP2011023107A (en) Magnetic recording medium
JP4595025B2 (en) Magnetic recording device
JP2008123602A (en) Perpendicular magnetic recording medium
JP2006139821A (en) Magnetic recording medium, and magnetic recording and reproducing device
JP2004256837A (en) Carbon protective film, magnetic recording medium and magnetic head having the same, and magnetic storage device
JP2007280609A (en) Manufacturing method of magnetic recording medium
JP2008010088A (en) Perpendicular magnetic recording medium
US20100187197A1 (en) Method for manufacturing a vertical magnetic recording medium
JP4630850B2 (en) Patterned magnetic recording medium and manufacturing method thereof
JP2009245477A (en) Vertical magnetic recording medium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees