JP5433451B2 - Heat source system - Google Patents

Heat source system Download PDF

Info

Publication number
JP5433451B2
JP5433451B2 JP2010022278A JP2010022278A JP5433451B2 JP 5433451 B2 JP5433451 B2 JP 5433451B2 JP 2010022278 A JP2010022278 A JP 2010022278A JP 2010022278 A JP2010022278 A JP 2010022278A JP 5433451 B2 JP5433451 B2 JP 5433451B2
Authority
JP
Japan
Prior art keywords
temperature
temperature difference
heat source
small temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010022278A
Other languages
Japanese (ja)
Other versions
JP2010266183A (en
Inventor
啓之 大立
邦昭 山田
敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2010022278A priority Critical patent/JP5433451B2/en
Publication of JP2010266183A publication Critical patent/JP2010266183A/en
Application granted granted Critical
Publication of JP5433451B2 publication Critical patent/JP5433451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は熱源システムに関し、特に熱負荷の状況に応じた冷凍機の処理負荷の配分のバリエーションを増加させた熱源システムに関する。   The present invention relates to a heat source system, and more particularly, to a heat source system in which variations in the distribution of processing loads of a refrigerator according to the state of heat load are increased.

例えば半導体関連工場等におけるクリーンルーム空調方式に代表されるように、除湿再熱運転を回避して省エネルギー化を図る観点から、外気の全熱処理と室内の顕熱処理とを分離したシステムが採用されている。   For example, as typified by clean room air conditioning systems in semiconductor-related factories, etc., a system that separates all outside air heat treatment and indoor sensible heat treatment from the viewpoint of energy saving by avoiding dehumidification and reheating operation is adopted. .

図6に、上述のシステムの一例の模式的系統図を示す。このシステムは、中温系統180と低温系統190とが独立して構成されている。中温系統180は、顕熱を処理するドライコイル181と、ドライコイル181に供給する中温度の冷水を製造する中温冷凍機110とを配管で結び、ドライコイル181と中温冷凍機110との間で中温度の冷水を循環させる。低温系統190は、全熱を処理する外調機191と、外調機191に供給する低温度の冷水を製造する低温冷凍機130とを配管で結び、外調機191と低温冷凍機130との間で低温度の冷水を循環させる。ドライコイル181に供給される中温の冷水は、ドライコイル181が潜熱処理を行わないので処理空気を露点温度まで低下させずに済むため、比較的高い温度(例えば13℃程度)で足りる。他方、外調機191に供給される低温の冷水は、処理空気を除湿のために露点温度以下に低下させることから、比較的低い温度(例えば7℃)に冷却される。このシステムは、中温系統180において中温冷凍機が製造する冷水の温度が比較的高くて済むため、中温冷凍機のCOP(成績係数)を向上させることができ、省エネルギーに資する。   FIG. 6 shows a schematic system diagram of an example of the above-described system. In this system, an intermediate temperature system 180 and a low temperature system 190 are configured independently. The intermediate temperature system 180 connects a dry coil 181 that processes sensible heat and an intermediate temperature refrigerator 110 that manufactures intermediate temperature cold water to be supplied to the dry coil 181 with a pipe, and between the dry coil 181 and the intermediate temperature refrigerator 110. Circulate medium temperature cold water. The low-temperature system 190 connects an external air conditioner 191 that processes total heat and a low-temperature refrigerator 130 that manufactures low-temperature cold water to be supplied to the external air conditioner 191 with pipes, and the external air conditioner 191 and the low-temperature refrigerator 130 Circulate cold water at low temperature between. The medium-temperature cold water supplied to the dry coil 181 need only be at a relatively high temperature (for example, about 13 ° C.) because the dry coil 181 does not perform the latent heat treatment and thus the processing air does not have to be lowered to the dew point temperature. On the other hand, the low-temperature cold water supplied to the external air conditioner 191 is cooled to a relatively low temperature (for example, 7 ° C.) because the treated air is lowered below the dew point temperature for dehumidification. In this system, since the temperature of the cold water produced by the intermediate temperature refrigerator in the intermediate temperature system 180 may be relatively high, the COP (coefficient of performance) of the intermediate temperature refrigerator can be improved, which contributes to energy saving.

しかしながら、上述のシステムは、中温系統と低温系統とが独立して構成されており、各々独立して運転されるため、処理する熱負荷の変動に応じた適切な部分負荷運転を行う場合に、中温系統と低温系統との各々で最適な運転を行うことができるに留まり、最適運転のバリエーションが限られていた。   However, in the above-described system, the middle temperature system and the low temperature system are configured independently, and each is operated independently, so when performing an appropriate partial load operation according to the variation of the heat load to be processed, Only the optimum operation can be performed in each of the medium temperature system and the low temperature system, and variations of the optimum operation are limited.

上述の事情は、冷房運転のみならず、暖房運転にも当てはまる。近年、省エネルギーと快適性とを両立する冷暖房方式として、放射冷暖房システムが注目されているが、放射冷暖房システムで用いられる放射パネルを温める温水(熱媒体)の温度は、従来一般的に用いられている対流方式における温風の温度よりも低くて済む。つまり、放射パネルに供給される熱媒体の温度は、冷暖房対象室の温度との差が比較的小さくて足りる。暖房運転の場合も、図6における中温冷凍機110を小温度差熱源機に、低温冷凍機130を大温度差熱源機に置き換えることで、小温度差熱源機のCOPを向上させることができるが、小温度差熱源機系統と大温度差熱源機系統との各々で最適な運転を行うことができるに留まり、最適運転のバリエーションが限られる。   The above situation applies not only to cooling operation but also to heating operation. In recent years, a radiant cooling and heating system has attracted attention as a cooling and heating system that achieves both energy saving and comfort. However, the temperature of hot water (heat medium) that heats the radiant panel used in the radiant cooling and heating system has been generally used in the past. The temperature is lower than the temperature of the hot air in the convection method. That is, the difference between the temperature of the heat medium supplied to the radiant panel and the temperature of the air conditioning target room is relatively small. Also in the case of heating operation, the COP of the small temperature difference heat source machine can be improved by replacing the medium temperature refrigerator 110 in FIG. 6 with a small temperature difference heat source machine and the low temperature refrigerator 130 with a large temperature difference heat source machine. The optimum operation can be performed only in each of the small temperature difference heat source system and the large temperature difference heat source system, and variations of the optimum operation are limited.

本発明は上述の課題に鑑み、熱負荷の状況に応じた熱源機(冷凍機を含む)の処理負荷の配分のバリエーションを増加させた熱源システムを提供することを目的とする。   In view of the above-described problems, an object of the present invention is to provide a heat source system in which variations in the distribution of the processing load of a heat source machine (including a refrigerator) according to the state of the heat load are increased.

上記目的を達成するために、本発明の第1の態様に係る熱源システムは、例えば図1に示すように、基準温度との差が第1の所定の値となるように熱媒体Cの温度を調節可能な小温度差熱源機10と;小温度差熱源機10で温度調節された熱媒体Cである小温度差熱媒体CMSを、熱負荷を処理する第1の負荷側機器81に供給する前に通過させる小温度差往集合部21と;第1の負荷側機器81で熱が利用された小温度差熱媒体CMを、小温度差熱源機10に還す前に集める小温度差還集合部22と;小温度差還集合部22内の熱媒体Cを小温度差熱源機10に導く小温度差導入管12と;小温度差往集合部21と小温度差還集合部22とを、小温度差熱源機10を介さずに連通する小温度差連通管25と;基準温度との差が第1の所定の値よりも大きい第2の所定の値となるように熱媒体Cの温度を調節可能な大温度差熱源機30と;大温度差熱源機30で温度調節された熱媒体Cである大温度差熱媒体CLSの熱を利用して熱負荷を処理する第1の負荷側機器81とは異なる第2の負荷側機器91から導出された大温度差熱媒体CLを、小温度差連通管25に流入させる大温度差熱媒体戻り管44と;小温度差往集合部21内の熱媒体Cを大温度差熱源機30に導く大温度差導入管32とを備える。   In order to achieve the above object, the heat source system according to the first aspect of the present invention, for example, as shown in FIG. 1, the temperature of the heat medium C so that the difference from the reference temperature becomes a first predetermined value. A small temperature difference heat source device 10 capable of adjusting the temperature; and a small temperature difference heat medium CMS, which is the heat medium C adjusted in temperature by the small temperature difference heat source device 10, is supplied to the first load side device 81 that processes the heat load. A small temperature difference return unit 21 to be passed before the temperature difference is collected; and the small temperature difference heat medium CM in which heat is used in the first load side device 81 is collected before returning to the small temperature difference heat source unit 10. A collecting portion 22; a small temperature difference introducing pipe 12 that guides the heat medium C in the small temperature difference collecting portion 22 to the small temperature difference heat source device 10; a small temperature difference collecting portion 21 and a small temperature difference collecting portion 22; A small temperature difference communication pipe 25 that communicates without passing through the small temperature difference heat source device 10; and a difference from the reference temperature is a first predetermined value A large temperature difference heat source device 30 capable of adjusting the temperature of the heat medium C so as to be a second predetermined value larger than the above; a large temperature difference heat which is the heat medium C whose temperature is adjusted by the large temperature difference heat source device 30 The large temperature difference heat medium CL derived from the second load side device 91 different from the first load side device 81 that processes the heat load using the heat of the medium CLS flows into the small temperature difference communication pipe 25. A large temperature difference heat medium return pipe 44 to be caused; and a large temperature difference introduction pipe 32 for guiding the heat medium C in the small temperature difference forward gathering portion 21 to the large temperature difference heat source unit 30.

なお、上記本発明の第1の態様に係る熱源システムが冷却に用いられる場合は、例えば図1に示すように、熱媒体Cを所定の中温度に冷却可能な中温冷凍機10と;中温冷凍機10で冷却された熱媒体Cである中温熱媒体CMSを、熱負荷を処理する第1の負荷側機器81に供給する前に通過させる中温往集合部21と;第1の負荷側機器81で冷熱が利用された中温熱媒体CMを、中温冷凍機10に還す前に集める中温還集合部22と;中温還集合部22内の熱媒体Cを中温冷凍機10に導く中温導入管12と;中温往集合部21と中温還集合部22とを、中温冷凍機10を介さずに連通する中温連通管25と;熱媒体Cを前記中温度よりも低い低温度に冷却可能な低温冷凍機30と;低温冷凍機30で冷却された熱媒体Cである低温熱媒体CLSの冷熱を利用して熱負荷を処理する第1の負荷側機器81とは異なる第2の負荷側機器91から導出された低温熱媒体CLを、中温連通管25に流入させる低温熱媒体戻り管44と;中温往集合部21内の熱媒体Cを低温冷凍機30に導く低温導入管32とを備えることとなる。   When the heat source system according to the first aspect of the present invention is used for cooling, for example, as shown in FIG. 1, an intermediate temperature refrigerator 10 capable of cooling the heat medium C to a predetermined intermediate temperature; An intermediate temperature collecting unit 21 that passes the medium temperature heat medium CMS that is the heat medium C cooled by the machine 10 before supplying the medium temperature heat medium CMS to the first load side device 81 that processes the heat load; and the first load side device 81 The intermediate temperature collecting medium 22 that collects the medium temperature heating medium CM in which the cold energy is used before returning it to the medium temperature refrigerator 10; and the medium temperature introduction pipe 12 that guides the heat medium C in the medium temperature recovery group 22 to the medium temperature refrigerator 10. An intermediate temperature communication pipe 25 that connects the intermediate temperature collecting section 21 and the intermediate temperature return collecting section 22 without going through the intermediate temperature refrigerator 10, and a low-temperature refrigerator that can cool the heat medium C to a lower temperature than the intermediate temperature. 30; a low temperature heating medium which is the heating medium C cooled by the low temperature refrigerator 30 Return of the low-temperature heat medium that causes the low-temperature heat medium CL derived from the second load-side device 91 different from the first load-side device 81 that processes the heat load using the cold heat of the CLS to flow into the intermediate temperature communication pipe 25 A pipe 44; and a low-temperature introduction pipe 32 that guides the heat medium C in the medium temperature collecting section 21 to the low-temperature refrigerator 30.

このように構成すると、小温度差熱源機と大温度差熱源機とが直列に配設されると共に第2の負荷側機器から導出された大温度差熱媒体を大温度差熱源機と小温度差熱源機とに分配して還すことが可能となるため、第2の負荷側機器の熱負荷の一部又は全部を小温度差熱源機で処理することが可能となり、大温度差熱源機及び小温度差熱源機で処理する第2の負荷側機器の熱負荷の按分もバリエーションの中から適切な値を決定することが可能となる。   With this configuration, the small temperature difference heat source device and the large temperature difference heat source device are arranged in series, and the large temperature difference heat medium derived from the second load side device is converted into the large temperature difference heat source device and the small temperature. Since it can be distributed and returned to the differential heat source unit, a part or all of the thermal load of the second load side device can be processed by the small temperature differential heat source unit, and the large temperature differential heat source unit and The apportionment of the heat load of the second load side device to be processed by the small temperature difference heat source apparatus can also be determined as an appropriate value from the variations.

また、本発明の第2の態様に係る熱源システムは、例えば図1を参照して示すと、上記本発明の第1の態様に係る熱源システムにおいて、小温度差熱源機10が、生成する小温度差熱媒体CMSの温度の設定を変えることができるように構成されている。   Moreover, when the heat source system according to the second aspect of the present invention is shown with reference to FIG. 1, for example, in the heat source system according to the first aspect of the present invention, the small temperature difference heat source device 10 generates The temperature setting of the temperature difference heat medium CMS can be changed.

このように構成すると、第1の負荷側機器に影響を与えない範囲で小温度差熱源機の設定温度を基準温度との差が大きくなるようにすることにより大温度差熱源機の負荷を軽減することができ、例えば大温度差熱源機の負荷の少ない時期(例えば中間期)には大温度差熱源機を停止することが可能となりうる。   If comprised in this way, the load of a large temperature difference heat source apparatus will be reduced by making the difference with the reference temperature the setting temperature of a small temperature difference heat source apparatus large in the range which does not affect the 1st load side apparatus. For example, it may be possible to stop the large temperature difference heat source unit at a time when the load of the large temperature difference heat source unit is low (for example, an intermediate period).

また、本発明の第3の態様に係る熱源システムは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る熱源システム1において、小温度差熱源機10で生成された小温度差熱媒体CMSを小温度差往集合部21に導く小温度差導出管11と;小温度差往集合部21から第1の負荷側機器81に向けて供給される熱媒体Cを小温度差往集合部21の外に導く小温度差供給管23とを備え;小温度差連通管25及び大温度差導入管32が隣接した状態、かつ、小温度差導出管11及び小温度差供給管23が隣接した状態で、小温度差往集合部21に接続されている。ここで「小温度差連通管及び大温度差導入管が隣接した状態」とは、典型的には両者の間に小温度差導出管又は小温度差供給管が介在しないことをいい、「小温度差導出管及び小温度差供給管が隣接した状態」とは、典型的には両者の間に小温度差連通管又は大温度差導入管が介在しないことをいう。   In addition, the heat source system according to the third aspect of the present invention is, for example, as shown in FIG. 1, in the heat source system 1 according to the first aspect or the second aspect of the present invention described above. A small temperature difference deriving pipe 11 for guiding the generated small temperature difference heat medium CMS to the small temperature difference collecting section 21; and a heat medium supplied from the small temperature difference collecting section 21 to the first load side device 81 A small temperature difference supply pipe 23 that guides C to the outside of the small temperature difference collecting section 21; a state in which the small temperature difference communication pipe 25 and the large temperature difference introduction pipe 32 are adjacent to each other; The small temperature difference supply pipe 23 is connected to the small temperature difference collecting unit 21 in a state where the small temperature difference supply pipe 23 is adjacent to the small temperature difference supply pipe 23. Here, “the state in which the small temperature difference communication pipe and the large temperature difference introduction pipe are adjacent” typically means that there is no small temperature difference derivation pipe or small temperature difference supply pipe between them. The state in which the temperature difference derivation pipe and the small temperature difference supply pipe are adjacent to each other typically means that a small temperature difference communication pipe or a large temperature difference introduction pipe is not interposed therebetween.

このように構成すると、小温度差熱媒体を専ら第1の負荷側機器の系統で循環させ、かつ、大温度差熱媒体戻り管を流れる大温度差熱媒体を大温度差熱源機へ優先的に導入させつつ、大温度差熱媒体戻り管を流れる大温度差熱媒体の余剰分を小温度差熱源機に導入させることが可能となり、第1の負荷側機器及び第2の負荷側機器の要求を乱すことなく大温度差熱源機及び小温度差熱源機の最適な運転を行うことが可能になる。   If comprised in this way, a small temperature difference heat medium will be circulated exclusively in the system | strain of a 1st load side apparatus, and the large temperature difference heat medium which flows through a large temperature difference heat medium return pipe will be given priority to a large temperature difference heat source machine. It is possible to introduce a surplus portion of the large temperature difference heat medium flowing through the large temperature difference heat medium return pipe into the small temperature difference heat source unit, and the first load side device and the second load side device. It is possible to optimally operate the large temperature difference heat source machine and the small temperature difference heat source machine without disturbing the requirements.

また、本発明の第4の態様に係る熱源システムは、例えば図3に示すように、上記本発明の第3の態様に係る熱源システムにおいて、基準温度との差が第1の所定の値となる熱媒体C及び基準温度との差が第2の所定の値となる熱媒体Cを生成可能なバックアップ熱源機50と;小温度差還集合部22内の熱媒体Cをバックアップ熱源機50に導くバックアップ導入管52と;バックアップ熱源機50で温度調節された熱媒体Cを、大温度差導入管32の接続部と小温度差導出管11の接続部との間で小温度差往集合部21に流入させるバックアップ導出管51とを備える。   Moreover, as shown in FIG. 3, for example, in the heat source system according to the fourth aspect of the present invention, the heat source system according to the fourth aspect of the present invention has a difference from the reference temperature equal to the first predetermined value. A backup heat source device 50 capable of generating a heat medium C in which the difference between the heat medium C and the reference temperature becomes a second predetermined value; and the heat medium C in the small temperature difference collecting unit 22 as the backup heat source device 50 A backup introduction pipe 52 for guiding the heat medium C, the temperature of which has been adjusted by the backup heat source device 50, between the connection part of the large temperature difference introduction pipe 32 and the connection part of the small temperature difference derivation pipe 11. And a backup lead-out pipe 51 to be introduced into the pipe 21.

このように構成すると、1種類のバックアップ熱源機で、第1の負荷側機器の系統と第2の負荷側機器の系統とに、両系統への供給を切り換える切換弁を設けることなく、バックアップを行うことが可能になる。   With this configuration, a backup heat source machine can be used for backup without providing a switching valve for switching supply to both systems in the system of the first load side device and the system of the second load side device. It becomes possible to do.

また、本発明の第5の態様に係る熱源システムは、例えば図1を参照して示すと、上記本発明の第1の態様乃至第4の態様のいずれか1つの態様に係る熱源システム1において、第2の負荷側機器91で処理される最大熱負荷の一部に相当する熱量が、小温度差熱源機10で温度調節された小温度差熱媒体CMが保有する熱量で充当されるように、小温度差熱源機10及び大温度差熱源機30の定格能力が決定されている。   In addition, the heat source system according to the fifth aspect of the present invention is, for example, referring to FIG. 1, in the heat source system 1 according to any one of the first to fourth aspects of the present invention. The amount of heat corresponding to a part of the maximum heat load processed by the second load side device 91 is applied with the amount of heat held by the small temperature difference heat medium CM adjusted in temperature by the small temperature difference heat source unit 10. In addition, the rated capacities of the small temperature difference heat source device 10 and the large temperature difference heat source device 30 are determined.

このように構成すると、小温度差熱源機及び大温度差熱源機の容量を選定する際の自由度を大きくすることができる。   If comprised in this way, the freedom degree at the time of selecting the capacity | capacitance of a small temperature difference heat source machine and a large temperature difference heat source machine can be enlarged.

また、本発明の第6の態様に係る熱源システムは、例えば図4に示すように、上記本発明の第1の態様乃至第5の態様のいずれか1つの態様に係る熱源システムにおいて、大温度差熱媒体戻り管44との接続部と、小温度差還集合部22と、の間の小温度差連通管25内の熱媒体CHの流通を遮断可能な開閉弁325vを備える。   In addition, the heat source system according to the sixth aspect of the present invention is a heat source system according to any one of the first to fifth aspects of the present invention, as shown in FIG. There is provided an on-off valve 325v capable of blocking the flow of the heat medium CH in the small temperature difference communication pipe 25 between the connection part to the differential heat medium return pipe 44 and the small temperature return collecting part 22.

このように構成すると、必要に応じて小温度差熱源機の系統と大温度差熱源機系統とを独立して運転させることができ、小温度差熱源機で熱媒体を冷却し、大温度差熱源機で熱媒体を加熱することが可能となり、冷熱負荷と温熱負荷とを同時に満たすことができる。   If comprised in this way, the system of a small temperature difference heat source machine and a large temperature difference heat source machine system can be operated independently as needed, a heat carrier is cooled with a small temperature difference heat source machine, and a large temperature difference The heat medium can be heated by the heat source device, and the cold load and the warm load can be satisfied at the same time.

本発明によれば、小温度差熱源機と大温度差熱源機とが直列に配設されると共に第2の負荷側機器から導出された大温度差熱媒体を大温度差熱源機と小温度差熱源機とに分配して還すことが可能となるため第2の負荷側機器の熱負荷の一部又は全部を小温度差熱源機で処理することが可能となり、大温度差熱源機及び小温度差熱源機で処理する第2の負荷側機器の熱負荷の按分もバリエーションの中から適切な値を決定することが可能となる。   According to the present invention, the small temperature difference heat source device and the large temperature difference heat source device are arranged in series, and the large temperature difference heat source derived from the second load side device is converted into the large temperature difference heat source device and the small temperature difference. Since it can be distributed and returned to the differential heat source unit, part or all of the thermal load of the second load side equipment can be processed by the small temperature differential heat source unit. The apportionment of the heat load of the second load side device to be processed by the temperature difference heat source apparatus can also be determined as an appropriate value from the variations.

本発明の第1の実施の形態に係る熱源システムの模式的系統図である。1 is a schematic system diagram of a heat source system according to a first embodiment of the present invention. 中温冷凍機及び低温冷凍機の定格出力の按分例を示すテーブルの図である。It is a figure of the table which shows the apportioning example of the rated output of a medium temperature refrigerator and a low-temperature refrigerator. 本発明の第2の実施の形態に係る熱源システムの模式的系統図である。It is a typical systematic diagram of the heat source system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る熱源システムの模式的系統図である。It is a typical systematic diagram of the heat source system which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る熱源システムを構成する小温度差往集合部の部分平面図である。It is a partial top view of the small temperature difference gathering part which comprises the heat-source system which concerns on the 3rd Embodiment of this invention. 従来の熱源システムの模式的系統図である。It is a typical systematic diagram of the conventional heat source system.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or similar members are denoted by the same or similar reference numerals, and redundant description is omitted.

まず図1を参照して、本発明の第1の実施の形態に係る熱源システム1を説明する。図1は、熱源システム1の模式的系統図である。本実施の形態では、小温度差熱源機及び大温度差熱源機が共に冷凍機であるとして説明する。熱源システム1は、熱媒体としての冷水Cを冷却する中温冷凍機10及び低温冷凍機30と、中温往集合部としての中温往ヘッダ21と、中温還集合部としての中温還ヘッダ22と、冷水Cを効果的に流動させる配管類(後に詳述する)とを備えている。中温冷凍機10、低温冷凍機30、中温往集合部、中温還集合部は、それぞれ小温度差熱源機、大温度差熱源機、小温度差往集合部、小温度差還集合部に相当する。   First, a heat source system 1 according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the heat source system 1. In the present embodiment, it is assumed that both the small temperature difference heat source machine and the large temperature difference heat source machine are refrigerators. The heat source system 1 includes an intermediate temperature refrigerator 10 and a low temperature refrigerator 30 that cool cold water C as a heat medium, an intermediate temperature header 21 as an intermediate temperature assembly portion, an intermediate temperature header 22 as an intermediate temperature recovery portion, cold water Piping (which will be described in detail later) for effectively flowing C. The intermediate temperature refrigerator 10, the low temperature refrigerator 30, the intermediate temperature return unit, and the intermediate temperature return unit correspond to a small temperature difference heat source unit, a large temperature difference heat source unit, a small temperature difference set unit, and a small temperature return set unit, respectively. .

以下の説明においては、冷水Cに関し、便宜上次のように区別する場合がある。中温冷凍機10で製造された冷水Cを「中温往冷水CMS」と、中温冷凍機10に導入される冷水Cを「中温還冷水CMR」と、両者を総称して「中温冷水CM」という。低温冷凍機30で製造された冷水Cを「低温往冷水CLS」と、低温冷凍機30に導入される冷水Cを「低温還冷水CLR」と、両者を総称して「低温冷水CL」という。このほか、説明の便宜上冷水Cの区別をする場合は適宜別の呼称を使用する場合があるが、その場合も「C」で始まる符号を付することとする。中温冷水CMは小温度差熱媒体に相当し、低温冷水CLは大温度差熱媒体に相当する。なお、中温冷凍機10及び低温冷凍機30の両方が運転されている場合、典型的には中温往冷水CMSの温度よりも低温往冷水CLSの温度の方が低くなる。   In the following description, the cold water C may be distinguished as follows for convenience. The cold water C produced by the intermediate temperature refrigerator 10 is referred to as “medium temperature cold water CMS”, the cold water C introduced into the intermediate temperature refrigerator 10 is referred to as “medium temperature return cold water CMR”, and both are collectively referred to as “medium temperature cold water CM”. The cold water C produced by the low temperature refrigerator 30 is collectively referred to as “low temperature cold water CLS”, the cold water C introduced into the low temperature refrigerator 30 is referred to as “low temperature cold water CLR”, and both are collectively referred to as “low temperature cold water CL”. In addition, when distinguishing the cold water C for convenience of explanation, another name may be used as appropriate, and in this case, a code beginning with “C” is also attached. The medium temperature cold water CM corresponds to a small temperature difference heat medium, and the low temperature cold water CL corresponds to a large temperature difference heat medium. When both the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 are operated, the temperature of the low temperature cooling water CLS is typically lower than the temperature of the medium temperature cooling water CMS.

中温往冷水CMSが供給される第1の負荷側機器は、典型的には顕熱を処理する顕熱処理機器であり、低温往冷水CLSが供給される第2の負荷側機器は、典型的には全熱を処理する全熱処理機器であるが、第1の負荷側機器が全熱を処理する機器であってもよく、第2の負荷側機器が顕熱を処理する機器であってもよい。本実施の形態では、熱源システム1で製造された冷水Cが、クリーンルームの冷房のような精密空調を行うのに用いられる、第1の負荷側機器としてのドライコイル81及び第2の負荷側機器としての外調機91に供給されることとして説明する。本実施の形態の精密空調では、温度及び湿度の調節を精密に行うため、精密空調用の空気の潜熱の処理(除湿)は外調機91が行い、ドライコイル81では顕熱(例えば生産機器の発熱)の処理のみが行われる。このため、外調機91には除湿を行う一般的な空調に用いられるのと同様の低温度(例えば7℃)の冷水Cが供給される。他方、ドライコイル81には、除湿が行われないように低温度よりも高い中温度(例えば13℃)の冷水Cが供給される。所定の中温度は、処理空気の露点温度よりも高く、顕熱を処理できる範囲で適宜決定される。このような負荷側機器81、91に供給する冷水Cを製造する熱源システム1の構成を、次から説明する。なお、負荷側機器81、91では空気を冷却するためにエネルギーを消費するので、負荷側機器81、91で処理する熱負荷を、冷凍機10、30で処理する熱負荷と区別するために、「空気負荷」という場合がある。また、冷凍機10、30では冷水Cを冷却するためにエネルギーを消費するので、冷凍機10、30で処理する熱負荷を「冷水負荷」という場合がある。また、「中温度」は基準温度との差が第1の所定の値となる温度であり、「低温度」は基準温度との差が第2の所定の値となる温度である。第2の所定の値は第1の所定の値よりも大きい。ここで「基準温度」とは、中温度との差よりも低温度との差の方が大きくなる任意の温度であり、例えば中間期の外気温あるいは20℃等とすることができる。   The first load side device to which the medium temperature cool water CMS is supplied is typically a sensible heat treatment device for processing sensible heat, and the second load side device to which the low temperature cool water CLS is supplied is typically Is a total heat treatment device that processes total heat, but the first load side device may be a device that processes total heat, and the second load side device may be a device that processes sensible heat. . In the present embodiment, the cold water C produced by the heat source system 1 is used to perform precision air conditioning such as cooling in a clean room, and the dry coil 81 and the second load side device as the first load side device. It will be described as being supplied to the external air conditioner 91. In the precision air conditioning according to the present embodiment, in order to precisely adjust the temperature and humidity, the external air conditioner 91 performs the latent heat treatment (dehumidification) of the air for precision air conditioning, and the dry coil 81 has sensible heat (for example, production equipment). Only heat generation) is performed. For this reason, cold air C having a low temperature (for example, 7 ° C.) similar to that used for general air conditioning for dehumidification is supplied to the external air conditioner 91. On the other hand, the dry coil 81 is supplied with cold water C having a medium temperature (for example, 13 ° C.) higher than the low temperature so that dehumidification is not performed. The predetermined medium temperature is appropriately determined within a range in which sensible heat can be processed, which is higher than the dew point temperature of the processing air. The configuration of the heat source system 1 that manufactures the cold water C supplied to the load side devices 81 and 91 will be described below. In addition, since the load side devices 81 and 91 consume energy to cool the air, in order to distinguish the heat load processed by the load side devices 81 and 91 from the heat load processed by the refrigerators 10 and 30, Sometimes referred to as “air load”. In addition, since the refrigerators 10 and 30 consume energy to cool the cold water C, the heat load processed by the refrigerators 10 and 30 may be referred to as “cold water load”. The “medium temperature” is a temperature at which the difference from the reference temperature becomes the first predetermined value, and the “low temperature” is the temperature at which the difference from the reference temperature becomes the second predetermined value. The second predetermined value is greater than the first predetermined value. Here, the “reference temperature” is an arbitrary temperature at which the difference from the low temperature is greater than the difference from the intermediate temperature, and can be, for example, an outside air temperature in the middle period or 20 ° C.

中温冷凍機10は、例えば空調用として用いられる水冷式あるいは空冷式の熱源装置であり、典型的には、ターボ冷凍機、吸収式冷凍機、チリングユニット等が用いられる。中温冷凍機10は、不図示の冷媒が冷凍サイクルを行い(蒸発と凝縮を交互に行う)、冷媒が蒸発する際に、中温冷凍機10内を通過する中温冷水CMから熱を奪う(冷却する)ことで中温往冷水CMSを製造する機器である。中温冷凍機10は、中温往冷水CMSを専ら中温度にする機器であるが、好ましくは温度の設定を適宜変えることができるように構成され、さらに、低温度にすることができる能力を有していることがより好ましい。温度の設定を適宜変えることができるように構成されていることで、負荷変動に応じた冷水負荷配分(ドライコイル81及び外調機91の空気負荷を処理するための冷熱源の受け持ち分)のバリエーションをさらに増やすことができる。例えば、ドライコイル81に影響を与えない範囲(低すぎる温度とならない範囲)で中温冷凍機10の設定温度を下げることにより低温冷凍機30の冷水負荷を軽減することができ、条件によっては、中間期等において低負荷運転となり運転COP(成績係数)が低下した低温冷凍機30を停止して中温冷凍機10でドライコイル81及び外調機91の空気負荷を処理することが可能となり、熱源システム1の省エネルギーを図ることができる。さらに、中温冷凍機10が中温往冷水CMSを低温度にすることができる能力を有する場合は、中温冷凍機10を低温冷凍機30の故障時のバックアップ機器として用いることが可能になる。   The intermediate temperature refrigerator 10 is, for example, a water-cooled or air-cooled heat source device used for air conditioning. Typically, a turbo refrigerator, an absorption refrigerator, a chilling unit, or the like is used. In the intermediate temperature refrigerator 10, a refrigerant (not shown) performs a refrigeration cycle (evaporation and condensation are alternately performed), and when the refrigerant evaporates, heat is taken from the intermediate temperature cold water CM passing through the intermediate temperature refrigerator 10 (cooling). ) To produce medium temperature cold water CMS. The medium-temperature refrigerator 10 is a device that exclusively brings the medium-temperature cold water CMS to a medium temperature, but is preferably configured so that the temperature setting can be changed as appropriate, and further has the ability to reduce the temperature. More preferably. By being configured so that the temperature setting can be changed as appropriate, the distribution of the chilled water load according to the load fluctuation (the share of the cold heat source for processing the air load of the dry coil 81 and the external air conditioner 91) Variations can be further increased. For example, the chilled water load of the low-temperature refrigerator 30 can be reduced by lowering the set temperature of the intermediate temperature refrigerator 10 within a range that does not affect the dry coil 81 (a range where the temperature is not too low). The low-temperature refrigerator 30 whose operation COP (coefficient of performance) has been reduced due to low-load operation in the season or the like can be stopped, and the intermediate-temperature refrigerator 10 can process the air load of the dry coil 81 and the external air conditioner 91. 1 energy saving can be achieved. Furthermore, when the intermediate temperature refrigerator 10 has the ability to reduce the intermediate temperature cold water CMS, the intermediate temperature refrigerator 10 can be used as a backup device when the low temperature refrigerator 30 fails.

中温冷凍機10には、製造した中温往冷水CMSを導出する中温導出管としての中温冷水往管11と、中温還冷水CMRを導入する中温導入管としての中温冷水還管12とが接続されている。中温導出管は小温度差導出管に相当し、中温導入管は小温度差導入管に相当する。中温冷水往管11の他端は、中温往ヘッダ21に接続されている。中温冷水還管12の他端は、中温還ヘッダ22に接続されている。中温冷水還管12には、中温冷水CMを圧送する中温冷水ポンプ13が挿入配置されている。中温冷凍機10まわりの構成は、中温往ヘッダ21に流入する中温往冷水CMSの流量を変えることができるようになっている。中温往ヘッダ21に流入する中温往冷水CMSの流量を可変にする構成としては、中温冷水ポンプ13にインバータを設けて吐出流量(ひいては中温冷凍機10を通過する冷水Cの流量)を可変にしてもよく(この場合、典型的には中温冷凍機10をいわゆる変流量対応型とする。)、あるいは中温冷凍機10から吐出された中温往冷水CMSの一部を中温冷水還管12に戻す中温冷凍機バイパス管(不図示)を設けてもよく(この場合、典型的には中温冷凍機10をいわゆる定流量型とする。)、あるいは中温冷凍機10を複数台に分割して(換言すれば複数の中温冷凍機10を並列に配置した中温冷凍機群を構成して)それぞれに中温冷水往管11及び中温冷水ポンプ13が配設された中温冷水還管12を設けて台数制御を行うようにしてもよく(この場合、典型的には中温冷凍機10をいわゆる定流量型とする。)、あるいはこれらの2つ以上を組み合わせてもよい。本実施の形態では、便宜上、中温冷水ポンプ13をインバータ制御することにより中温往ヘッダ21に流入する中温往冷水CMSの流量を可変にすることとして説明する。   Connected to the intermediate temperature refrigerator 10 are an intermediate temperature cold water outlet tube 11 as an intermediate temperature outlet tube for extracting the produced intermediate temperature cold water CMS and an intermediate temperature cold water return tube 12 as an intermediate temperature inlet tube for introducing the intermediate temperature return cold water CMR. Yes. The intermediate temperature outlet tube corresponds to a small temperature difference inlet tube, and the intermediate temperature inlet tube corresponds to a small temperature difference inlet tube. The other end of the intermediate temperature cold water outgoing pipe 11 is connected to the intermediate temperature outgoing header 21. The other end of the intermediate temperature cold water return pipe 12 is connected to the intermediate temperature return header 22. An intermediate-temperature cold water pump 13 that pumps the intermediate-temperature cold water CM is inserted into the intermediate-temperature cold water return pipe 12. The configuration around the intermediate temperature refrigerator 10 can change the flow rate of the intermediate temperature cold water CMS flowing into the intermediate temperature header 21. As a configuration for making the flow rate of the medium-temperature cold water CMS flowing into the medium-temperature cold header 21 variable, an inverter is provided in the medium-temperature cold water pump 13 so that the discharge flow rate (and thus the flow rate of the cold water C passing through the medium-temperature refrigerator 10) is variable. (In this case, typically, the intermediate temperature refrigerator 10 is a so-called variable flow rate type), or the intermediate temperature in which a part of the intermediate warm water CMS discharged from the intermediate temperature refrigerator 10 is returned to the intermediate temperature cold water return pipe 12. A refrigerator bypass pipe (not shown) may be provided (in this case, typically, the intermediate temperature refrigerator 10 is a so-called constant flow type), or the intermediate temperature refrigerator 10 is divided into a plurality of units (in other words, For example, a group of medium-temperature refrigerators in which a plurality of medium-temperature refrigerators 10 are arranged in parallel is provided), and a medium-temperature cold water return pipe 12 in which a medium-temperature cold water outgoing pipe 11 and an intermediate-temperature cold water pump 13 are arranged is provided for each. Like Well (in this case, typically the medium temperature refrigerator 10 and a so-called constant flow type.) Also, or it may be a combination of two or more of these. In the present embodiment, for the sake of convenience, the description will be made on the assumption that the flow rate of the intermediate temperature cold water CMS flowing into the intermediate temperature header 21 is made variable by performing inverter control of the intermediate temperature cold water pump 13.

中温往ヘッダ21には、ドライコイル81に向けて中温冷水CMを導出する小温度差供給管としての中温供給管23が接続されている。中温供給管23の他端とドライコイル81とは、ドライコイル81に中温冷水CMを圧送する中温2次ポンプ82が配設された配管83で接続されている。中温2次ポンプ82は、インバータを有していて冷水Cの吐出流量を変えることができるように及び/又は複数台に分割されて台数制御を行うことにより全体として冷水Cの吐出流量を変えることができるように構成されていてもよい。配管83には、内部を流れる冷水Cの温度を検出する中温往温度計88が配設されている。中温還ヘッダ22には、ドライコイル81から導出された中温冷水CMを導入する中温熱媒体戻り管(小温度差熱媒体戻り管)としての中温戻り管24が接続されている。中温戻り管24の他端とドライコイル81とは、配管84で接続されている。中温戻り管24には、内部を流れる冷水Cの温度を検出する中温還温度計18及び流量を検出する中温流量計19が配設されている。中温往ヘッダ21と中温還ヘッダ22とは、中温冷凍機10を介さずに両ヘッダ21、22を連通する小温度差連通管としての中温連通管25で接続されている。中温往ヘッダ21及び/又は中温還ヘッダ22は、典型的には架台を有して床上に設置される構成となっているが、いわゆるヘッダの外観を呈しない、配管ヘッダとして構成されていてもよい。さらに、中温往ヘッダ21と中温還ヘッダ22と中温連通管25とは、外観上一体不可分に構成されていていてもよい。   A medium temperature supply pipe 23 is connected to the medium temperature header 21 as a small temperature difference supply pipe for leading the medium temperature cold water CM toward the dry coil 81. The other end of the intermediate temperature supply pipe 23 and the dry coil 81 are connected by a pipe 83 provided with an intermediate temperature secondary pump 82 that pumps the intermediate temperature cold water CM to the dry coil 81. The intermediate temperature secondary pump 82 has an inverter so that the discharge flow rate of the cold water C can be changed and / or is divided into a plurality of units so as to change the discharge flow rate of the cold water C as a whole. It may be configured to be able to. The pipe 83 is provided with an intermediate temperature thermometer 88 that detects the temperature of the cold water C flowing inside. A medium temperature return pipe 24 is connected to the medium temperature return header 22 as a medium temperature heat medium return pipe (small temperature difference heat medium return pipe) for introducing the medium temperature cold water CM derived from the dry coil 81. The other end of the intermediate temperature return pipe 24 and the dry coil 81 are connected by a pipe 84. The intermediate temperature return pipe 24 is provided with an intermediate temperature return thermometer 18 for detecting the temperature of the cold water C flowing inside and an intermediate temperature flow meter 19 for detecting the flow rate. The intermediate temperature return header 21 and the intermediate temperature return header 22 are connected by a medium temperature communication pipe 25 as a small temperature difference communication pipe that communicates the headers 21 and 22 without going through the intermediate temperature refrigerator 10. The medium temperature header 21 and / or medium temperature return header 22 is typically configured to have a frame and be installed on the floor, but may be configured as a pipe header that does not exhibit the appearance of a so-called header. Good. Furthermore, the intermediate temperature return header 21, the intermediate temperature return header 22, and the intermediate temperature communication pipe 25 may be configured so as to be integral with each other in appearance.

低温冷凍機30は、中温冷凍機10と同様の水冷式あるいは空冷式の熱源装置であって典型的には、ターボ冷凍機、吸収式冷凍機、チリングユニット等が用いられる。低温冷凍機30は、不図示の冷媒が冷凍サイクルを行い(蒸発と凝縮を交互に行う)、冷媒が蒸発する際に、低温冷凍機30内を通過する低温冷水CLから熱を奪う(冷却する)ことで低温往冷水CLSを製造する機器である。低温冷凍機30は、低温往冷水CLSを専ら低温度にする機器である。しかしながら、低温冷凍機30が温度の設定を適宜変えることができるように構成されていると、例えば低温冷凍機30の冷水負荷の少ない中間期などに低温往冷水CLSを中温度に近づけることで低温冷凍機30の運転COPを向上させることができ、熱源システム1の省エネルギーを図ることができるため、好ましい。   The low-temperature refrigerator 30 is a water-cooled or air-cooled heat source device similar to the medium-temperature refrigerator 10, and typically a turbo refrigerator, an absorption refrigerator, a chilling unit, or the like is used. In the low-temperature refrigerator 30, a refrigerant (not shown) performs a refrigeration cycle (evaporation and condensation are alternately performed), and when the refrigerant evaporates, heat is extracted from the low-temperature cold water CL passing through the low-temperature refrigerator 30 (cools). ) To produce low-temperature cold water CLS. The low-temperature refrigerator 30 is a device that lowers the temperature of the cold cooling water CLS exclusively. However, if the low-temperature refrigerator 30 is configured to be able to change the temperature setting as appropriate, the low-temperature freezing water CLS is brought to a medium temperature in the intermediate period where the cold water load of the low-temperature refrigerator 30 is low, for example, to lower the temperature. The operation COP of the refrigerator 30 can be improved, and energy saving of the heat source system 1 can be achieved, which is preferable.

低温冷凍機30には、製造した低温往冷水CLSを導出する低温導出管としての低温冷水往管31と、低温還冷水CLRを導入する低温導入管としての低温冷水還管32とが接続されている。低温導出管は大温度差導出管に相当し、低温導入管は大温度差導入管に相当する。低温冷水往管31の他端は、低温往ヘッダ41に接続されている。低温冷水還管32の他端は、中温往ヘッダ21に接続されている。低温冷水還管32には、低温冷水CLを圧送する低温冷水ポンプ33が挿入配置されている。低温冷凍機30まわりの構成は、省エネルギーの観点から、低温往ヘッダ41に流入する低温往冷水CLSの流量を変えることができるようになっていることが好ましい。例えば、低温冷水ポンプ33にインバータを設けて吐出流量(ひいては低温冷凍機30を通過する冷水Cの流量)を可変にしてもよく(この場合、典型的には低温冷凍機30をいわゆる変流量対応型とする。)、あるいは低温冷凍機30を複数台に分割して(換言すれば複数の低温冷凍機30を並列に配置した低温冷凍機群を構成して)それぞれに低温冷水往管31及び低温冷水ポンプ33が配設された低温冷水還管32を設けて台数制御を行うようにしてもよく(この場合、典型的には低温冷凍機30をいわゆる定流量型とする。)、あるいはこれらを組み合わせてもよい。本実施の形態では、便宜上、低温冷水ポンプ33をインバータ制御することにより低温往ヘッダ41に流入する低温往冷水CLSの流量を可変にすることとして説明する。   Connected to the low-temperature refrigerator 30 are a low-temperature cold water forward pipe 31 as a low-temperature outlet pipe for deriving the produced low-temperature cold-cooled water CLS and a low-temperature cold water return pipe 32 as a low-temperature inlet pipe for introducing the low-temperature return cold water CLR. Yes. The low temperature lead pipe corresponds to a large temperature difference lead pipe, and the low temperature lead pipe corresponds to a large temperature difference lead pipe. The other end of the low-temperature cold water forward pipe 31 is connected to a low-temperature forward header 41. The other end of the low-temperature cold water return pipe 32 is connected to the intermediate temperature header 21. A low-temperature cold water pump 33 for pumping the low-temperature cold water CL is inserted into the low-temperature cold water return pipe 32. The configuration around the low-temperature refrigerator 30 is preferably configured such that the flow rate of the low-temperature cold water CLS flowing into the low-temperature header 41 can be changed from the viewpoint of energy saving. For example, an inverter may be provided in the low-temperature chilled water pump 33 so that the discharge flow rate (and thus the flow rate of the chilled water C passing through the low-temperature refrigerator 30) may be variable (in this case, the low-temperature refrigerator 30 is typically adapted to a so-called variable flow rate). Or by dividing the low-temperature refrigerator 30 into a plurality of units (in other words, forming a group of low-temperature refrigerators in which a plurality of low-temperature refrigerators 30 are arranged in parallel). The number control may be performed by providing a low temperature cold water return pipe 32 provided with a low temperature cold water pump 33 (in this case, the low temperature refrigerator 30 is typically a so-called constant flow type), or these. May be combined. In the present embodiment, for the sake of convenience, description will be made assuming that the flow rate of the low-temperature cold water CLS flowing into the low-temperature cold header 41 is made variable by inverter-controlling the low-temperature cold water pump 33.

低温往ヘッダ41には、外調機91に向けて低温冷水CLを導出する低温供給管43が接続されている。低温供給管43の他端と外調機91とは、外調機91に低温冷水CLを圧送する低温2次ポンプ92が配設された配管93で接続されている。低温2次ポンプ92は、インバータを有していて冷水Cの吐出流量を変えることができるように及び/又は複数台に分割されて台数制御を行うことにより全体として冷水Cの吐出流量を変えることができるように構成されていてもよい。配管93には、内部を流れる冷水Cの温度を検出する低温往温度計98が配設されている。外調機91には、冷熱を利用して温度が上昇した低温冷水CLを導出する配管94も接続されている。配管94の他端は、大温度差熱媒体戻り管としての低温戻り管44に接続されている。低温戻り管44の他端は、中温連通管25に接続されている。このように、中温連通管25は、中温往ヘッダ21と中温還ヘッダ22とを連通する機能を有するほか、低温戻り管44からの冷水Cを受け入れる機能を有する部材である。このような趣旨に鑑みて、例えば、低温戻り管44がいわゆるヘッダの外観を呈した部材に接続されている場合には、そのヘッダの外観を呈した部材の少なくとも低温戻り管44が接続されている部分までは、中温連通管25の概念に含まれることとする。低温戻り管44には、内部を流れる冷水Cの温度を検出する低温還温度計38及び流量を検出する低温流量計39が配設されている。中温連通管25には、低温戻り管44の接続部と中温還ヘッダ22との間に、連通流量計29が配設されている。連通流量計29は、低温戻り管44の接続部と中温往ヘッダ21との間の中温連通管25に配設されていてもよい。あるいは、低温戻り管44の接続部と中温還ヘッダ22との間及び低温戻り管44の接続部と中温往ヘッダ21との間の双方に配設されていてもよく、この場合は低温流量計39を設けるには及ばない。中温往ヘッダ21と低温往ヘッダ41とは、低温冷凍機30を介さずに両ヘッダ21、41を連通する低温バイパス管26で接続されている。   A low-temperature supply pipe 43 that leads low-temperature cold water CL toward the external air conditioner 91 is connected to the low-temperature forward header 41. The other end of the low temperature supply pipe 43 and the external air conditioner 91 are connected to each other by a pipe 93 provided with a low temperature secondary pump 92 that pumps the low temperature cold water CL to the external air conditioner 91. The low-temperature secondary pump 92 has an inverter so that the discharge flow rate of the cold water C can be changed and / or the discharge flow rate of the cold water C is changed as a whole by being divided into a plurality of units and performing unit control. It may be configured to be able to. The pipe 93 is provided with a low temperature thermometer 98 that detects the temperature of the cold water C flowing inside. The external air conditioner 91 is also connected with a pipe 94 for deriving the low-temperature cold water CL whose temperature has increased by using cold heat. The other end of the pipe 94 is connected to a low temperature return pipe 44 as a large temperature difference heat medium return pipe. The other end of the low temperature return pipe 44 is connected to the medium temperature communication pipe 25. Thus, the intermediate temperature communication pipe 25 is a member having a function of communicating the intermediate temperature return header 21 and the intermediate temperature return header 22 and a function of receiving the cold water C from the low temperature return pipe 44. In view of such a purpose, for example, when the low-temperature return pipe 44 is connected to a member having a header appearance, at least the low-temperature return pipe 44 of the member having the header appearance is connected. The portion up to this point is included in the concept of the intermediate temperature communication pipe 25. The low temperature return pipe 44 is provided with a low temperature return thermometer 38 for detecting the temperature of the cold water C flowing inside and a low temperature flow meter 39 for detecting the flow rate. In the intermediate temperature communication pipe 25, a communication flow meter 29 is disposed between the connection portion of the low temperature return pipe 44 and the intermediate temperature return header 22. The communication flow meter 29 may be disposed in the intermediate temperature communication pipe 25 between the connection portion of the low temperature return pipe 44 and the intermediate temperature header 21. Alternatively, it may be disposed both between the connection portion of the low temperature return pipe 44 and the intermediate temperature return header 22 and between the connection portion of the low temperature return pipe 44 and the intermediate temperature return header 21, and in this case, the low temperature flow meter 39 is not necessary. The intermediate temperature header 21 and the low temperature header 41 are connected by a low temperature bypass pipe 26 that communicates the headers 21 and 41 without passing through the low temperature refrigerator 30.

中温往ヘッダ21に接続される各配管は、本実施の形態では、中温往ヘッダ21の長手方向に沿って、中温連通管25、低温冷水還管32、中温冷水往管11、中温供給管23の順に接続されているが、中温連通管25と低温冷水還管32とが隣接しており、中温冷水往管11と中温供給管23とが隣接していれば、この接続順に限られない。また、本実施の形態では、低温バイパス管26が、低温冷水還管32との接続部よりも中温連通管25側で中温往ヘッダ21に接続されているが、中温冷水往管11及び中温供給管23の双方よりも低温冷水還管32に近い位置で接続されていればよい。このような態様で各配管が中温往ヘッダ21に接続されていることで、中温冷凍機10及びドライコイル81の系統と低温冷凍機30及び外調機91の系統とが独立(分離)して構成されずに統合されていても、中温連通管25及び低温バイパス管26から中温往ヘッダ21へ流入する低温冷水CLが中温供給管23に流入することを防ぐことができ、ドライコイル81へ送水される冷水Cを適正な温度に維持することが可能になる。また、冷水Cの全体的な流れ方向から見て上流から下流に向かって、中温冷凍機10、中温往ヘッダ21、低温冷凍機30の順に直列に接続され、ドライコイル81に供給される冷水Cが中温往ヘッダ21から取り出される構成になっているために、低温度の冷水Cがドライコイル81に誤って導入される可能性をより低減することができる。なお、本実施の形態では、中温還ヘッダ22に接続される各配管は、中温還ヘッダ22の長手方向に沿って、中温連通管25、中温戻り管24、中温冷水還管12の順に接続されているが、この接続順に限られない。   In the present embodiment, the pipes connected to the intermediate temperature header 21 are, along the longitudinal direction of the intermediate temperature header 21, the intermediate temperature communication pipe 25, the low temperature cold water return pipe 32, the intermediate temperature cold water forward pipe 11, and the intermediate temperature supply pipe 23. However, the connection order is not limited as long as the intermediate temperature communication pipe 25 and the low temperature cold water return pipe 32 are adjacent to each other, and the intermediate temperature cold water outgoing pipe 11 and the intermediate temperature supply pipe 23 are adjacent to each other. In the present embodiment, the low temperature bypass pipe 26 is connected to the intermediate temperature header 21 on the intermediate temperature communication pipe 25 side of the connecting portion with the low temperature cold water return pipe 32. What is necessary is just to be connected in the position close | similar to the low temperature cold water return pipe 32 rather than both the pipes 23. By connecting each pipe to the intermediate temperature header 21 in such a manner, the system of the intermediate temperature refrigerator 10 and the dry coil 81 and the system of the low temperature refrigerator 30 and the external air conditioner 91 are independent (separated). Even if they are integrated without being configured, it is possible to prevent the low-temperature cold water CL flowing from the intermediate-temperature communication pipe 25 and the low-temperature bypass pipe 26 from flowing into the intermediate-temperature feed header 21 from flowing into the intermediate-temperature supply pipe 23, and supplying water to the dry coil 81. It is possible to maintain the chilled water C at an appropriate temperature. Further, the cold water C supplied to the dry coil 81 is connected in series in the order of the intermediate temperature refrigerator 10, the intermediate temperature header 21, and the low temperature refrigerator 30 from the upstream to the downstream as viewed from the overall flow direction of the cold water C. Therefore, the possibility that the low-temperature cold water C is erroneously introduced into the dry coil 81 can be further reduced. In the present embodiment, each pipe connected to the intermediate temperature return header 22 is connected in the order of the intermediate temperature communication pipe 25, the intermediate temperature return pipe 24, and the intermediate temperature cold water return pipe 12 along the longitudinal direction of the intermediate temperature return header 22. However, the order of connection is not limited.

中温冷凍機10、中温往ヘッダ21、低温冷凍機30の順に直列に接続された熱源システム1では、中温冷凍機10及び低温冷凍機30の定格出力(定格冷凍能力又は定格冷凍容量ともいう)を複数のバリエーションから決定することが可能である。例えば、ドライコイル81の最大空気負荷の合計が800kWに相当する単位時間当たりの熱量であり、外調機91の最大空気負荷の合計が1200kWに相当する単位時間当たりの熱量である場合、中温冷凍機10及びドライコイル81の系統と低温冷凍機30及び外調機91の系統とが独立(分離)して構成されていると中温冷凍機10の定格冷凍容量を800kWとして低温冷凍機30の定格冷凍容量を1200kWとせざるを得ないが、ドライコイル81系統と外調機91系統とが統合された熱源システム1では、中温冷凍機10の定格冷凍容量がドライコイル81の最大空気負荷に相当する冷凍能力(ここでの例では800kW)以上、かつ、中温冷凍機10及び低温冷凍機30の合計定格冷凍容量が2000kWになるようにすれば、その按分は複数のバリエーションから決定することができる。   In the heat source system 1 connected in series in the order of the intermediate temperature refrigerator 10, the intermediate temperature header 21, and the low temperature refrigerator 30, the rated outputs (also referred to as rated refrigeration capacity or rated refrigeration capacity) of the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 are obtained. It is possible to determine from a plurality of variations. For example, when the total maximum air load of the dry coil 81 is a heat amount per unit time corresponding to 800 kW, and the total maximum air load of the external air conditioner 91 is a heat amount per unit time corresponding to 1200 kW, the medium temperature refrigeration If the system of the machine 10 and the dry coil 81 and the system of the low temperature refrigerator 30 and the external air conditioner 91 are configured independently (separated), the rated refrigeration capacity of the intermediate temperature refrigerator 10 is set to 800 kW, and the rating of the low temperature refrigerator 30 Although the refrigeration capacity must be 1200 kW, in the heat source system 1 in which the dry coil 81 system and the external air conditioner 91 system are integrated, the rated refrigeration capacity of the intermediate temperature refrigerator 10 corresponds to the maximum air load of the dry coil 81. Refrigeration capacity (800 kW in this example) or more, and the total rated refrigeration capacity of the medium temperature refrigerator 10 and the low temperature refrigerator 30 is 2000 kW. In its apportioning can be determined from a plurality of variations.

ここで図2をも参照すると、図2には上記の条件における中温冷凍機10及び低温冷凍機30の定格出力(定格冷凍容量)の按分の例を示している。例1では、中温冷凍機10の定格出力をドライコイル81の空気負荷に合わせ、低温冷凍機30の定格出力を外調機91の空気負荷に合わせている。これを、例2のように中温冷凍機10及び低温冷凍機30の定格出力を共に1000kWとしてもよく、例3のように中温冷凍機10の定格出力を低温冷凍機30の定格出力よりも大きくしてもよい。あるいは、例4及び例5に示すように、中温冷凍機10及び/又は低温冷凍機30を複数台に分割して、中温冷凍機10の定格出力が800kW以上、かつ、中温冷凍機10及び低温冷凍機30の合計定格出力が2000kWになるように適宜各冷凍機10、30の定格出力の按分を決定してもよい。このように、中温冷凍機10及び低温冷凍機30の定格出力の按分の様々なバリエーションの中から、各冷凍機10、30まわりのイニシャルコストやランニングコストを勘案して経済的な組み合わせを決定することができる(経済設計)。   Referring now also to FIG. 2, FIG. 2 shows an example of apportionment of the rated output (rated refrigeration capacity) of the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 under the above conditions. In Example 1, the rated output of the intermediate temperature refrigerator 10 is matched with the air load of the dry coil 81, and the rated output of the low temperature refrigerator 30 is matched with the air load of the external air conditioner 91. As in Example 2, both the rated output of the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 may be 1000 kW, and the rated output of the intermediate temperature refrigerator 10 is larger than the rated output of the low temperature refrigerator 30 as in Example 3. May be. Alternatively, as shown in Example 4 and Example 5, the intermediate temperature refrigerator 10 and / or the low temperature refrigerator 30 is divided into a plurality of units, the rated output of the intermediate temperature refrigerator 10 is 800 kW or more, and the intermediate temperature refrigerator 10 and the low temperature refrigerator. The apportionment of the rated output of each of the refrigerators 10 and 30 may be appropriately determined so that the total rated output of the refrigerator 30 is 2000 kW. Thus, the economical combination is determined in consideration of the initial cost and the running cost around each of the refrigerators 10 and 30 from various variations of the rated output of the medium temperature refrigerator 10 and the low temperature refrigerator 30. (Economic design)

中温冷凍機10及び低温冷凍機30の運転時の出力(各冷凍機10、30で製造される冷水Cの利用可能な冷熱量)は、制御装置60からの信号を受信して調節されるように構成されている。制御装置60は、熱源システム1の運転を制御する機器であり、中温冷凍機10及び低温冷凍機30の運転制御や温度設定のほか、中温冷水ポンプ13及び低温冷水ポンプ33に信号を送信してそれぞれの回転速度(ひいては吐出流量)を調節することができるように構成されている。また、制御装置60は、中温還温度計18、低温還温度計38、中温往温度計88、低温往温度計98から温度信号を受信し、中温流量計19、連通流量計29、低温流量計39から流量信号を受信して、両冷凍機10、30及び両ポンプ13、33の制御に反映させることができるように構成されている。例えば、中温還温度計18及び中温往温度計88並びに中温流量計19の計測値から、ドライコイル81の運転負荷を算出し、低温還温度計38及び低温往温度計98並びに低温流量計39の計測値から外調機91の運転負荷を算出して、中温冷凍機10及び低温冷凍機30における冷水負荷を、外調機91の空気負荷を両冷凍機10、30で受け持つ按分率を勘案して設定し、この設定に基づいて中温冷凍機10及び低温冷凍機30で製造される冷水Cの流量や温度あるいは連通流量計29を通過する冷水Cの流量を算出する。この算出された、中温冷凍機10及び低温冷凍機30で製造される冷水Cの流量や温度となるように中温冷凍機10及び低温冷凍機30の運転制御を行うほか、連通流量計29を通過する冷水Cの流量が算出された値となるように中温冷水ポンプ13の回転速度を調節する。また、制御装置60は、中温2次ポンプ82及び低温2次ポンプ92の変流量制御や中温冷凍機10及び低温冷凍機30のそれぞれの冷却水ポンプ(不図示)の変流量制御等、その他熱源運転制御システムを兼用して構成してもよい。   The output at the time of operation of the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 (the amount of cold heat available for the chilled water C produced by each refrigerator 10, 30) is adjusted by receiving a signal from the control device 60. It is configured. The control device 60 is a device that controls the operation of the heat source system 1, and transmits signals to the medium temperature chilled water pump 13 and the low temperature chilled water pump 33 in addition to operation control and temperature setting of the medium temperature refrigerator 10 and the low temperature refrigerator 30. Each rotational speed (and hence the discharge flow rate) can be adjusted. The control device 60 receives temperature signals from the intermediate temperature return thermometer 18, the low temperature return thermometer 38, the intermediate temperature return thermometer 88, and the low temperature return thermometer 98, and the intermediate temperature flow meter 19, the communication flow meter 29, and the low temperature flow meter. The flow rate signal is received from 39 and can be reflected in the control of both refrigerators 10, 30 and both pumps 13, 33. For example, the operation load of the dry coil 81 is calculated from the measured values of the intermediate temperature return thermometer 18, the intermediate temperature return thermometer 88 and the intermediate temperature flow meter 19, and the low temperature return thermometer 38, the low temperature return thermometer 98 and the low temperature flow meter 39 The operating load of the external air conditioner 91 is calculated from the measured value, and the cold water load in the medium temperature refrigerator 10 and the low temperature refrigerator 30 is taken into consideration, and the proportion of the air load of the external air conditioner 91 that is handled by both the refrigerators 10 and 30 is taken into consideration. Based on this setting, the flow rate and temperature of the cold water C produced by the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 or the flow rate of the cold water C passing through the communication flow meter 29 is calculated. In addition to controlling the operation of the medium-temperature refrigerator 10 and the low-temperature refrigerator 30 so that the calculated flow rate and temperature of the cold water C produced by the medium-temperature refrigerator 10 and the low-temperature refrigerator 30 are obtained, it passes through the communication flow meter 29. The rotational speed of the medium temperature chilled water pump 13 is adjusted so that the flow rate of the chilled water C to be the calculated value. Further, the control device 60 controls other flow sources such as variable flow rate control of the intermediate temperature secondary pump 82 and the low temperature secondary pump 92 and variable flow rate control of the cooling water pumps (not shown) of the intermediate temperature refrigerator 10 and the low temperature refrigerator 30. An operation control system may also be used.

引き続き図1を参照して、熱源システム1の作用を説明する。以下の説明では、中温冷凍機10、中温冷水ポンプ13、中温2次ポンプ82、低温冷凍機30、低温冷水ポンプ33、低温2次ポンプ92が変流量仕様であり、各ポンプ13、33、82、92の変流量の方法がインバータ制御であることとする。また、中温冷凍機10の定格出力とドライコイル81の最大空気負荷、及び低温冷凍機30の定格出力と外調機91の最大空気負荷とがそれぞれ同じ熱量であることとする。まず、基本的な運転状況として、ドライコイル81に供給される冷水Cの流量に見合った中温往冷水CMSが中温冷凍機10で製造され、外調機91に供給される冷水Cの流量に見合った低温往冷水CLSが低温冷凍機30で製造される場合を説明する。この場合、中温冷凍機10では中温度(本実施の形態では例えば13℃)の中温往冷水CMSが製造され、低温冷凍機30では低温度(本実施の形態では例えば7℃)の低温往冷水CLSが製造される。ドライコイル81及び外調機91を流れる冷水Cは、処理する空気負荷の変動に応じて流量が制御される変流量とされる。また、中温往ヘッダ21に流入する中温往冷水CMSの流量とドライコイル81に流入する冷水Cの流量とが等しくなるように中温冷水ポンプ13の回転速度が調節される。また、低温往ヘッダ41に流入する低温往冷水CLSの流量と外調機91に流入する冷水Cの流量とが好ましくは等しくなるように、少なくとも低温往ヘッダ41に流入する低温往冷水CLSの流量が外調機91に流入する冷水Cの流量よりも多くなるように低温冷水ポンプ33の回転速度が調節される。低温往ヘッダ41に流入する低温往冷水CLSの流量が外調機91に流入する冷水Cの流量よりも多くなる場合、余剰分は低温バイパス管26を介して低温冷水還管32に導かれる。   With continued reference to FIG. 1, the operation of the heat source system 1 will be described. In the following description, the intermediate temperature refrigerator 10, the intermediate temperature cold water pump 13, the intermediate temperature secondary pump 82, the low temperature refrigerator 30, the low temperature cold water pump 33, and the low temperature secondary pump 92 have variable flow specifications, and each pump 13, 33, 82 92, the variable flow rate method is inverter control. Further, the rated output of the intermediate temperature refrigerator 10 and the maximum air load of the dry coil 81, and the rated output of the low temperature refrigerator 30 and the maximum air load of the external air conditioner 91 are assumed to have the same amount of heat. First, as a basic operation situation, intermediate temperature cold water CMS corresponding to the flow rate of cold water C supplied to the dry coil 81 is manufactured by the intermediate temperature refrigerator 10, and corresponds to the flow rate of cold water C supplied to the external air conditioner 91. The case where the low-temperature cold-cooled water CLS is manufactured by the low-temperature refrigerator 30 will be described. In this case, the intermediate temperature refrigerator 10 produces intermediate temperature cold water CMS at an intermediate temperature (eg, 13 ° C. in the present embodiment), and the low temperature refrigerator 30 generates low temperature cold water at a low temperature (eg, 7 ° C. in the present embodiment). CLS is manufactured. The cold water C flowing through the dry coil 81 and the external air conditioner 91 has a variable flow rate in which the flow rate is controlled according to the fluctuation of the air load to be processed. Further, the rotational speed of the intermediate temperature cold water pump 13 is adjusted so that the flow rate of the intermediate temperature cold water CMS flowing into the intermediate temperature header 21 and the flow rate of the cold water C flowing into the dry coil 81 are equal. Further, at least the flow rate of the low-temperature cold water CLS flowing into the low-temperature forward header 41 so that the flow rate of the low-temperature cold-cooled water CLS flowing into the low-temperature forward header 41 and the flow rate of the cold water C flowing into the external controller 91 are preferably equal. The rotational speed of the low-temperature chilled water pump 33 is adjusted so as to be larger than the flow rate of the chilled water C flowing into the external air conditioner 91. When the flow rate of the low-temperature cold water CLS flowing into the low-temperature forward header 41 is larger than the flow rate of the cold water C flowing into the external air conditioner 91, the surplus is led to the low-temperature cold water return pipe 32 via the low-temperature bypass pipe 26.

上述のように中温冷水ポンプ13及び低温冷水ポンプ33の回転速度が調節されると、中温冷凍機10で製造された中温度の中温往冷水CMSは、中温冷水往管11から中温往ヘッダ21を介して中温供給管23に流入し、中温2次ポンプ82で昇圧されて配管83を介してドライコイル81に流入する。ドライコイル81に流入した中温往冷水CMSは、被処理空気(不図示)の顕熱を奪って温度が上昇した後に(本実施の形態では例えば18℃になる)、配管84、中温戻り管24、中温還ヘッダ22、中温冷水還管12を介して中温還冷水CMRとして中温冷凍機10に流入する。中温冷凍機10に流入した中温還冷水CMRは、冷却されて中温度の中温往冷水CMSとなって再び中温冷凍機10から導出される。   As described above, when the rotation speeds of the medium temperature cold water pump 13 and the low temperature cold water pump 33 are adjusted, the medium temperature medium temperature cold water CMS produced by the medium temperature refrigerator 10 is transferred from the medium temperature cold water forward pipe 11 to the medium temperature cold header 21. Into the intermediate temperature supply pipe 23, boosted by the intermediate temperature secondary pump 82, and flows into the dry coil 81 through the pipe 83. The intermediate temperature cold water CMS that has flowed into the dry coil 81 deprives the sensible heat of the air to be treated (not shown) and rises in temperature (for example, 18 ° C. in the present embodiment), and then the pipe 84 and the intermediate temperature return pipe 24. Then, it flows into the intermediate temperature refrigerator 10 as intermediate temperature return cold water CMR via the intermediate temperature return header 22 and the intermediate temperature cold water return pipe 12. The medium-temperature return cold water CMR that has flowed into the medium-temperature refrigerator 10 is cooled and becomes medium-temperature medium-temperature cold water CMS, and is derived from the medium-temperature refrigerator 10 again.

他方、低温冷凍機30で製造された低温度の低温往冷水CLSは、低温冷水往管31から低温往ヘッダ41を介して低温供給管43に流入し、低温2次ポンプ92で昇圧されて配管93を介して外調機91に流入する。外調機91に流入した低温往冷水CLSは、被処理空気(不図示)の全熱を奪って温度が上昇した後に(本実施の形態では例えば17℃になる)、配管94、低温戻り管44を介して中温連通管25に流入する。中温連通管25に流入した低温冷水CLは、流量配分の関係から、全量が中温往ヘッダ21に向かって流れ、中温往ヘッダ21及び低温冷水還管32を介して低温還冷水CLRとして低温冷凍機30に流入する。低温冷凍機30に流入した低温還冷水CLRは、冷却されて低温度の低温往冷水CLSとなって再び低温冷凍機30から導出される。   On the other hand, the low-temperature low-temperature cold water CLS produced by the low-temperature refrigerator 30 flows into the low-temperature supply pipe 43 from the low-temperature cold water forward pipe 31 through the low-temperature forward header 41, and is pressurized by the low-temperature secondary pump 92 to be piped. It flows into the external air conditioner 91 through 93. The low-temperature cold-cooled water CLS that has flowed into the external air conditioner 91 takes the total heat of the air to be treated (not shown) and rises in temperature (in this embodiment, for example, 17 ° C.), and then the pipe 94 and the low-temperature return pipe It flows into the intermediate temperature communication pipe 25 through 44. The low-temperature chilled water CL that has flowed into the intermediate temperature communication pipe 25 flows toward the intermediate-temperature header 21 due to the flow distribution, and the low-temperature refrigerator as the low-temperature return chilled water CLR via the intermediate-temperature header 21 and the low-temperature chilled water return pipe 32. 30. The low-temperature return cold water CLR that has flowed into the low-temperature refrigerator 30 is cooled to become low-temperature low-temperature cold-cooled water CLS, and is derived from the low-temperature refrigerator 30 again.

このように、熱源システム1は、中温往ヘッダ21に流入する中温往冷水CMSの流量とドライコイル81に流入する冷水Cの流量とが等しくなるように、また、好適には低温往ヘッダ41に流入する低温往冷水CLSの流量と外調機91に流入する冷水Cの流量とが等しくなるように、中温冷水ポンプ13及び低温冷水ポンプ33の回転速度を調節することで、ドライコイル81に供給する中温冷水CMの系統と、外調機91に供給する低温冷水CLの系統とを、配管で接続して統合していながら分離して構成されたように運転することができる。このような運転をベースとして、熱源システム1は、各冷凍機10、30の運転を最適化(例えば、最も消費エネルギーが小さくなる(COPが高くなる)、あるいは最も運転費が安くなる等の観点から見たときの最適な運転容量(処理冷水負荷)の配分)するべく、以下のように運転することが可能である。   As described above, the heat source system 1 is configured so that the flow rate of the medium-temperature cold water CMS flowing into the medium-temperature cold header 21 is equal to the flow rate of the cold water C flowing into the dry coil 81, and preferably in the low-temperature cold header 41. Supplied to the dry coil 81 by adjusting the rotational speeds of the medium temperature chilled water pump 13 and the low temperature chilled water pump 33 so that the flow rate of the flowing cold water CLS and the flow rate of the chilled water C flowing into the air conditioner 91 are equal. The system of the medium temperature cold water CM to be performed and the system of the low temperature cold water CL supplied to the external air conditioner 91 can be operated as separated from each other while being connected and integrated by piping. Based on such operation, the heat source system 1 optimizes the operation of each of the refrigerators 10 and 30 (for example, the viewpoint of the lowest energy consumption (COP becomes higher) or the lowest operation cost). In order to achieve an optimal operating capacity (distribution of treated chilled water load) when viewed from the above, it is possible to operate as follows.

例えば、ドライコイル81及び外調機91のそれぞれの空気負荷が定格(100%)よりも小さく、中温冷凍機10及び低温冷凍機30が定格よりも小さい冷水負荷で運転している場合に、中温冷水ポンプ13の回転速度を上げることによって中温冷凍機10で冷却する中温冷水CMの流量を増加する。すると、ドライコイル81に供給する中温冷水CMの系統は上述の基本的な運転状況のように流れる一方で、中温冷凍機10で製造された中温往冷水CMSの増加分(中温冷凍機10で製造された中温往冷水CMSの流量から中温供給管23に流入する中温往冷水CMSの流量を差し引いた流量分)が、低温冷水還管32に向かって流れる。他方、外調機91に供給する低温冷水CLの系統は、低温戻り管44から中温連通管25に流入した低温冷水CLの一部が中温還ヘッダ22に向かって流れるようになる。中温連通管25から中温還ヘッダ22に流入した低温冷水CLは、中温戻り管24から中温還ヘッダ22に流入した中温冷水CMと混合して中温還冷水CMRとして中温冷凍機10に流入し、中温度の中温往冷水CMSとなる。そして、中温冷凍機10で製造されて中温冷水往管11から中温往ヘッダ21に流入した中温往冷水CMSは、ドライコイル81に供給される分以外の余剰分が、中温連通管25から流入した低温冷水CLと混合して、低温還冷水CLRとして低温冷凍機30に流入する。このとき中温往ヘッダ21で混合される中温往冷水CMS(本実施の形態では13℃)は、中温連通管25から流入してきた低温冷水CL(本実施の形態では17℃)よりも温度が低い。このため、低温冷水還管32を流れる低温還冷水CLRは、全量が中温連通管25から流れてきた場合に比べて温度が低くなり、低温冷凍機30が処理すべき冷水負荷が軽減される。このような運転とすることで、仮にドライコイル81に供給する中温冷水CMの系統と外調機91に供給する低温冷水CLの系統とが分離していてそれぞれ独立して最適化運転をした結果、中温冷凍機10及び低温冷凍機30のそれぞれが定格よりも小さい冷水負荷で運転するような状況の場合に、低温冷凍機30で処理すべき冷水負荷の一部を中温冷凍機10に配分することで、熱源システム1全体の運転効率を上げることが可能となる。例えば、中間期など冷却水の温度を低温にして運転した場合に運転COPが顕著に高いインバータ式ターボ冷凍機を中温冷凍機10として採用している場合は、より省エネルギーとなる。熱源システム1は、上述のように中温冷水ポンプ13の流量を変えることによって、低温戻り管44から中温連通管25に流入した低温冷水CLの、中温往ヘッダ21に向かう流量と中温還ヘッダ22に向かう流量との按分を変えることができるように、各配管のサイズや各ポンプの揚程が設計されている。なお、このような制御は、中温冷凍機10及び低温冷凍機30の定格冷凍能力が、全負荷運転時に外調機91で処理される空気負荷の一部を中温冷凍機10が負担するように決定されている場合(例えば図2の例2、3、5のような関係の場合)でも、同様に適用することができる。つまり、全負荷運転時にも低温戻り管44から中温連通管25に流入した冷水Cが中温往ヘッダ21に向かう流れと中温還ヘッダ22に向かう流れとに分配されつつ、部分負荷運転時にはそれぞれのヘッダ21、22に向かう冷水Cの流量配分が変わるような制御とすることもできる。   For example, when the air load of each of the dry coil 81 and the external air conditioner 91 is smaller than the rating (100%) and the medium temperature refrigerator 10 and the low temperature refrigerator 30 are operated with a cold water load smaller than the rating, the medium temperature By increasing the rotation speed of the cold water pump 13, the flow rate of the medium temperature cold water CM cooled by the medium temperature refrigerator 10 is increased. Then, while the system of the medium-temperature cold water CM supplied to the dry coil 81 flows as in the above-described basic operation situation, an increase in the medium-temperature cold water CMS produced by the medium-temperature refrigerator 10 (manufactured by the medium-temperature refrigerator 10). A flow rate obtained by subtracting the flow rate of the medium-temperature cold water CMS flowing into the medium-temperature supply pipe 23 from the flow rate of the medium-temperature cold-cooled water CMS) flows toward the low-temperature cold water return pipe 32. On the other hand, in the system of the low-temperature cold water CL supplied to the external air conditioner 91, a part of the low-temperature cold water CL that flows into the intermediate-temperature communication pipe 25 from the low-temperature return pipe 44 flows toward the intermediate-temperature return header 22. The low-temperature cold water CL that has flowed into the medium-temperature return header 22 from the medium-temperature communication pipe 25 is mixed with the medium-temperature cold water CM that has flowed into the medium-temperature return header 22 from the medium-temperature return pipe 24 and flows into the medium-temperature refrigerator 10 as medium-temperature return cold water CMR. It becomes medium temperature cold water CMS of temperature. And, the intermediate temperature cold water CMS manufactured by the intermediate temperature refrigerator 10 and flowing into the intermediate temperature header 21 from the intermediate temperature cold water outer pipe 11 flows from the intermediate temperature communication pipe 25 except for the amount supplied to the dry coil 81. It mixes with the low temperature cold water CL and flows into the low temperature refrigerator 30 as the low temperature return cold water CLR. At this time, the medium temperature cold water CMS (13 ° C. in the present embodiment) mixed in the medium temperature header 21 has a temperature lower than the low temperature cold water CL (17 ° C. in the present embodiment) flowing in from the medium temperature communication pipe 25. . For this reason, the temperature of the low-temperature return chilled water CLR flowing through the low-temperature chilled water return pipe 32 is lower than that when the entire amount flows from the intermediate temperature communication pipe 25, and the chilled water load to be processed by the low-temperature refrigerator 30 is reduced. As a result of such an operation, the system of the intermediate temperature cold water CM supplied to the dry coil 81 and the system of the low temperature cold water CL supplied to the external air conditioner 91 are separated, and the optimization operation is performed independently of each other. In a situation where each of the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 is operated with a cold water load smaller than the rating, a part of the cold water load to be processed by the low temperature refrigerator 30 is distributed to the intermediate temperature refrigerator 10. As a result, the operation efficiency of the entire heat source system 1 can be increased. For example, when an inverter type turbo chiller having a remarkably high operation COP is employed as the intermediate temperature chiller 10 when the cooling water is operated at a low temperature such as in an intermediate period, the energy is further saved. The heat source system 1 changes the flow rate of the low temperature cold water CL flowing into the intermediate temperature communication pipe 25 from the low temperature return pipe 44 to the intermediate temperature return header 21 and the intermediate temperature return header 22 by changing the flow rate of the intermediate temperature cold water pump 13 as described above. The size of each pipe and the head of each pump are designed so that the apportionment with the going flow rate can be changed. Note that such control is performed so that the rated refrigeration capacity of the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 bears a part of the air load processed by the external air conditioner 91 during full load operation. Even if it is determined (for example, in the case of the relationship of Examples 2, 3, and 5 in FIG. 2), it can be similarly applied. That is, the chilled water C flowing into the intermediate temperature communication pipe 25 from the low temperature return pipe 44 is distributed to the flow toward the intermediate temperature return header 21 and the flow toward the intermediate temperature return header 22 even during full load operation, and each header during partial load operation. It is also possible to perform control such that the flow rate distribution of the cold water C toward 21 and 22 changes.

加えて、制御装置60が、外調機91で処理される空気負荷に対して中温冷凍機10で冷却された中温往冷水CMSが保有する冷熱量で充当される分と低温冷凍機30で冷却された低温往冷水CMSが保有する冷熱量で充当される分との配分の複数のパターン(例えば、中間期に中温冷凍機10を優先的に運転するパターンや低温冷凍機30の運転負荷率をなるべく高めに維持するパターン等)が所定の外部条件に応じてあらかじめ複数のモードとして所定の選定条件ごとに記憶されており、この複数のモードから所定の選定条件に照らして採用するモードを選定し、選定されたモードに従って中温冷凍機10及び低温冷凍機30を運転させるように構成されていてもよい。所定の外部条件としては、季節、外気条件、運転時刻、冷凍機冷水負荷等が挙げられ、所定の選定条件としては、省エネ性、低ランニングコスト性、低CO排出量性等が挙げられる。このように構成すると、所定の外部条件と運転モードとの組み合わせの対照表や判定図等が所定の選定条件ごとにあらかじめ記憶されていて、記憶された複数のモードから中温冷凍機10及び低温冷凍機30を運転させるモードを選定することができ、比較的簡易な構成で熱源システム1の適切な運転を行うことができる。このとき、制御装置60が、上記複数のモードのそれぞれについて上述の所定の選定条件に照らした指標となる値を演算する演算部としての運転シミュレータ(不図示)を有し、運転シミュレータ(不図示)における演算により得られた指標値を比較して上述の所定の選定条件に最も適合するモードを選定するように構成されていてもよい。このように構成すると、所定の選定条件に適合する精度を高めることができ、より適切な運転を行うことができる。また、制御装置60は、選択されたモードによる運転における上述の所定の選定条件の適合の度合いを検出し、検出された適合の度合いをデータ化して蓄積するデータベース(不図示)を有していてもよい。このように構成すると、実際の運転における所定の選定条件の適合度合いをデータベース化して蓄積することができ、より高精度な制御を行うためにフィードバックすることができる。なお、データベース(不図示)は制御装置60と一体に構成されていてもよく、分離して構成されていてもよい。このほか、制御装置60は、運転シミュレータ(不図示)により中温冷凍機10と低温冷凍機30との冷水負荷配分の最適な値を直接探索し、探索結果を最適化制御の目標値として採用するように構成されていてもよい。この場合、最適値の探索は、局所探索と全体探索とを組み合わせて実行してもよい。例えば、現設定値に対して所定の増減値と現状値との比較を局所探索として実施し、局所探索による結果を最適化制御の設定目標値として採用しつつ、併せて、局所探索では探索範囲とはならない範囲の仮想設定値を適宜ピックアップする全体探索を実施して、定周期的に局所探索による結果と比較して仮想設定値に局所最適化の傾向があれば現設定値の自動又は手動による更新を行い、この更新した値について改めて局所探索を行うような制御である。このようにすると、熱源システム1に対して多変数を扱う最適化運転の制御について、最適化精度の向上、運転制御の安定性、並びにシステム構築及び実運転での制御の簡素化を確保することができる。このほか、制御装置60は、各冷凍機10、30の冷水温度や冷却水量の設定についても運転モードの選定や最適値の探索を行ってもよい。 In addition, the control device 60 cools the air load processed by the external air conditioner 91 with the amount of cold heat held by the medium temperature cold water CMS cooled by the medium temperature refrigerator 10 and the low temperature refrigerator 30. A plurality of distribution patterns (for example, a pattern for preferentially operating the intermediate temperature refrigerator 10 in the intermediate period and an operation load factor of the low temperature refrigerator 30). A pattern that is maintained as high as possible) is stored in advance as a plurality of modes for each predetermined selection condition in accordance with a predetermined external condition, and a mode to be adopted in light of the predetermined selection condition is selected from the plurality of modes. The intermediate temperature refrigerator 10 and the low temperature refrigerator 30 may be operated according to the selected mode. Predetermined external conditions include seasons, outside air conditions, operation time, refrigerator cold water load, and the like. Predetermined selection conditions include energy saving, low running cost, low CO 2 emission, and the like. If comprised in this way, the comparison table of the combination of a predetermined | prescribed external condition and an operation mode, a judgment figure, etc. will be memorize | stored beforehand for every predetermined | prescribed selection condition, and the intermediate temperature refrigerator 10 and low temperature freezing from the memorize | stored several mode will be carried out. The mode for operating the machine 30 can be selected, and the heat source system 1 can be appropriately operated with a relatively simple configuration. At this time, the control device 60 has a driving simulator (not shown) as a calculation unit that calculates a value serving as an index in light of the above-described predetermined selection condition for each of the plurality of modes. The index value obtained by the calculation in (2) may be compared to select a mode that best suits the above-described predetermined selection condition. If comprised in this way, the precision which adapts to a predetermined selection condition can be raised, and more suitable driving | operation can be performed. Further, the control device 60 has a database (not shown) that detects the degree of conformity of the above-described predetermined selection condition in the operation in the selected mode, and converts the detected degree of conformity into data and accumulates it. Also good. If comprised in this way, the adaptation degree of the predetermined | prescribed selection conditions in an actual driving | operation can be accumulated in a database, and it can feed back in order to perform more highly accurate control. The database (not shown) may be configured integrally with the control device 60 or may be configured separately. In addition, the control device 60 directly searches for an optimum value of the cold water load distribution between the intermediate temperature refrigerator 10 and the low temperature refrigerator 30 by an operation simulator (not shown), and adopts the search result as a target value for optimization control. It may be configured as follows. In this case, the search for the optimum value may be executed by combining a local search and an overall search. For example, a comparison between a predetermined increase / decrease value and the current value is performed as a local search with respect to the current set value, and the result of the local search is adopted as a set target value for optimization control. Perform an overall search that picks up the virtual setting values in a range that does not become appropriate, and if the virtual setting values tend to be locally optimized compared to the results of local search periodically, the current setting values are automatically or manually In this control, the local search is performed again for the updated value. If it does in this way, about control of the optimization operation which handles multivariable with respect to heat source system 1, improvement of optimization accuracy, stability of operation control, and simplification of control in system construction and actual operation are secured. Can do. In addition, the control device 60 may select an operation mode or search for an optimum value for the setting of the chilled water temperature and the chilled water amount of each of the refrigerators 10 and 30.

次に図3を参照して、本発明の第2の実施の形態に係る熱源システム2を説明する。図3は、熱源システム2の模式的系統図である。熱源システム2の、熱源システム1(図1参照)と異なる点は、中温冷凍機10又は低温冷凍機30が故障した際のバックアップ機となるバックアップ冷凍機(バックアップ熱源機)としての補助冷凍機50を備えている点である。すなわち、熱源システム2の構成は、熱源システム1(図1参照)の構成に加えてさらに、補助冷凍機50及びこれに付帯するものを備えている。   Next, with reference to FIG. 3, the heat source system 2 which concerns on the 2nd Embodiment of this invention is demonstrated. FIG. 3 is a schematic system diagram of the heat source system 2. The heat source system 2 is different from the heat source system 1 (see FIG. 1) in that an auxiliary refrigerator 50 as a backup refrigerator (backup heat source machine) serving as a backup machine when the intermediate temperature refrigerator 10 or the low temperature refrigerator 30 fails. It is a point equipped with. That is, the configuration of the heat source system 2 further includes an auxiliary refrigerator 50 and an accessory attached thereto in addition to the configuration of the heat source system 1 (see FIG. 1).

補助冷凍機50は、中温冷凍機10及び低温冷凍機30と同様の水冷式あるいは空冷式の熱源装置であって典型的には、ターボ冷凍機、吸収式冷凍機、チリングユニット等が用いられる。補助冷凍機50は、不図示の冷媒が冷凍サイクルを行い(蒸発と凝縮を交互に行う)、冷媒が蒸発する際に、補助冷凍機50内を通過する冷水Cから熱を奪う(冷却する)ことで冷水Cを冷却する機器である。補助冷凍機50は、制御装置60から受信した制御信号に応じて、製造後の冷水C(冷却された冷水C)の温度の設定を適宜変えることができるように構成されており、設定温度に応じて中温度の冷水C又は低温度の冷水Cを製造することができるように構成されている。   The auxiliary refrigerator 50 is a water-cooled or air-cooled heat source device similar to the medium temperature refrigerator 10 and the low temperature refrigerator 30, and typically a turbo refrigerator, an absorption refrigerator, a chilling unit, or the like is used. In the auxiliary refrigerator 50, a refrigerant (not shown) performs a refrigeration cycle (evaporation and condensation are alternately performed), and when the refrigerant evaporates, it takes heat from the cold water C passing through the auxiliary refrigerator 50 (cools). This is a device for cooling the cold water C. The auxiliary refrigerator 50 is configured to be able to appropriately change the temperature setting of the chilled water C (cooled chilled water C) after manufacture in accordance with the control signal received from the control device 60. Accordingly, it is configured so that cold water C having a medium temperature or cold water C having a low temperature can be produced.

補助冷凍機50には、冷却した冷水Cを導出するバックアップ導出管としての補助冷水往管51と、冷却しようとする冷水Cを導入するバックアップ導入管としての補助冷水還管52とが接続されている。補助冷水往管51の他端は、本実施の形態では、中温往ヘッダ21に、中温冷水往管11の接続位置と低温冷水還管32の接続位置との間で接続されている。補助冷水還管52の他端は、本実施の形態では、中温還ヘッダ22に、中温戻り管24の接続位置と中温連通管25の接続位置との間で接続されている。補助冷水還管52には、冷水Cを圧送する補助冷水ポンプ53が挿入配置されている。補助冷水ポンプ53は、インバータを設けて吐出流量を可変にすることができるように構成されていてもよい。低温バイパス管26の中温往ヘッダ21への接続位置は、本実施の形態では、低温冷水還管32に対して補助冷水往管51の接続位置の反対側となっている(換言すれば補助冷水往管51と低温バイパス管26との間で低温冷水還管32が中温往ヘッダ21に接続されている。)が、中温冷水往管11との接続部よりも低温冷水還管32側に位置していればよい。熱源システム2では、低温バイパス管26は、定常運転時に低温往ヘッダ41に流入する冷水Cの流量と外調機91に流入する冷水Cの流量との差を吸収する機能を有するほか、低温冷凍機30の故障時には補助冷凍機50で製造された冷水Cを外調機91側に送るバイパス管として機能する。   An auxiliary chiller 50 is connected to an auxiliary chilled water outgoing pipe 51 serving as a backup derivation pipe for extracting cooled chilled water C, and an auxiliary chilled water return pipe 52 serving as a backup introduction pipe for introducing the chilled water C to be cooled. Yes. In the present embodiment, the other end of the auxiliary cold water outgoing pipe 51 is connected to the intermediate temperature outgoing header 21 between the connection position of the intermediate temperature cold water outgoing pipe 11 and the connection position of the low temperature cold water return pipe 32. In the present embodiment, the other end of the auxiliary cold water return pipe 52 is connected to the intermediate temperature return header 22 between the connection position of the intermediate temperature return pipe 24 and the connection position of the intermediate temperature communication pipe 25. An auxiliary cold water pump 53 for pumping the cold water C is inserted into the auxiliary cold water return pipe 52. The auxiliary chilled water pump 53 may be configured to be variable in the discharge flow rate by providing an inverter. In the present embodiment, the connection position of the low temperature bypass pipe 26 to the medium temperature header 21 is opposite to the connection position of the auxiliary cold water return pipe 51 with respect to the low temperature cold water return pipe 32 (in other words, auxiliary cold water). The low temperature cold water return pipe 32 is connected to the intermediate temperature forward header 21 between the outgoing pipe 51 and the low temperature bypass pipe 26.) is positioned closer to the low temperature cold water return pipe 32 than the connecting portion with the intermediate temperature cold water outgoing pipe 11. If you do. In the heat source system 2, the low-temperature bypass pipe 26 has a function of absorbing the difference between the flow rate of the cold water C flowing into the low-temperature forward header 41 and the flow rate of the cold water C flowing into the external air conditioner 91 during steady operation. When the machine 30 breaks down, it functions as a bypass pipe that sends the cold water C produced by the auxiliary refrigerator 50 to the external air conditioner 91 side.

上述のように構成された熱源システム2は、例えば中温冷凍機10が故障した場合は、中温冷水ポンプ13を停止して補助冷水ポンプ53を起動すると共に、設定温度を中温度として補助冷凍機50を起動する。このようにすることで、補助冷凍機50を中温冷凍機10の代替機器として、熱源システム1(図1参照)の作用として説明した運転を行うことが可能になる。また、低温冷凍機30が故障した場合は、低温冷水ポンプ33を停止して補助冷水ポンプ53を起動すると共に、設定温度を低温度として補助冷凍機50を起動する。このようにすることで、補助冷凍機50を低温冷凍機30の代替機器として運転を行うことができる。熱源システム2は、中温冷凍機10及びドライコイル81の系統と低温冷凍機30及び外調機91の系統とが独立して構成されているシステムに対して共通のバックアップ機を設ける場合(図6に破線で例示している)に比べて流路を切り替える制御弁や配管等の構成が少なくて済み、より簡易な構成で冷凍機故障時のバックアップを行うことができる。なお、補助冷凍機50は、バックアップ専用として設けるほかに、中温冷凍機10を並列に複数台設置した場合の一部(典型的には1台)を充当することとしてもよい。この場合、典型的には最も低温冷水還管32の近くで中温往ヘッダ21に接続された中温冷水往管11に冷水Cを導出する中温冷凍機10が補助冷凍機50として機能すると共に、この補助冷凍機50兼中温冷凍機10は、非常時以外は中温冷凍機10として定常運転に供される。   In the heat source system 2 configured as described above, for example, when the intermediate temperature refrigerator 10 fails, the intermediate temperature cold water pump 13 is stopped and the auxiliary cold water pump 53 is started, and the set temperature is set to the intermediate temperature. Start up. By doing in this way, it becomes possible to perform the operation | movement demonstrated as an effect | action of the heat source system 1 (refer FIG. 1) by using the auxiliary refrigerator 50 as an alternative apparatus of the intermediate temperature refrigerator 10. FIG. Further, when the low-temperature refrigerator 30 breaks down, the low-temperature cold water pump 33 is stopped and the auxiliary cold water pump 53 is started, and the auxiliary refrigerator 50 is started with the set temperature being low. Thus, the auxiliary refrigerator 50 can be operated as an alternative device for the low-temperature refrigerator 30. The heat source system 2 is provided with a common backup machine for a system in which the system of the intermediate temperature refrigerator 10 and the dry coil 81 and the system of the low temperature refrigerator 30 and the external conditioner 91 are configured independently (FIG. 6). The configuration of control valves and pipes for switching the flow path is less than that of a broken line as compared with the example shown in FIG. In addition, the auxiliary refrigerator 50 may be provided for backup purposes, and a part (typically one) when a plurality of medium temperature refrigerators 10 are installed in parallel may be used. In this case, typically, the intermediate temperature refrigerator 10 that leads the cold water C to the intermediate temperature cold water outlet pipe 11 connected to the intermediate temperature header 21 near the coldest cold water return pipe 32 functions as the auxiliary refrigerator 50, and The auxiliary refrigerator 50 and the intermediate temperature refrigerator 10 are subjected to steady operation as the intermediate temperature refrigerator 10 except in an emergency.

以上の説明では、説明の便宜のために、主として中温冷凍機10及び低温冷凍機30がそれぞれ1台で構成されているとしたが、上述の説明で言及したように、それぞれ複数台が並列又は直列に配列されて構成されていてもよい。この場合、典型的には、並列に接続された冷凍機まわりのそれぞれに、冷水往管と、冷水ポンプが配設された冷水還管とが設置されることとなる。なお、冷凍機が直列に配置されている場合は、直列に配置された冷凍機全体を、1台の冷凍機と考えるとよい。   In the above description, for convenience of explanation, it is assumed that the medium temperature refrigerator 10 and the low temperature refrigerator 30 are each constituted by one unit. However, as mentioned in the above description, a plurality of units are arranged in parallel or They may be arranged in series. In this case, typically, a chilled water outgoing pipe and a chilled water return pipe provided with a chilled water pump are installed around the refrigerators connected in parallel. In addition, when the refrigerator is arrange | positioned in series, it is good to consider the whole refrigerator arrange | positioned in series as one refrigerator.

以上の説明では、熱源システム1、2が、精密空調を行う負荷側機器81、91に供給する冷水Cを製造することとして説明したが、例えば対流式の空調を行うための空調用機器(例えばエアハンドリングユニットやファンコイルユニット等)よりも高い温度の冷水を導入すれば足りる輻射冷房用の機器に供給する中温冷水CMと、エアハンドリングユニット等の空調用機器に供給する低温冷水CLとを製造することとしてもよい。つまり、熱源システム1、2を適用することができるのは、負荷側機器が精密空調を行う機器である場合に限られない。   In the above description, the heat source systems 1 and 2 have been described as producing the cold water C supplied to the load side devices 81 and 91 that perform precision air conditioning. However, for example, an air conditioning device for performing convection air conditioning (for example, Manufacturing medium-temperature chilled water CM supplied to equipment for radiant cooling that only requires introduction of cold water at a higher temperature than air handling units and fan coil units, and low-temperature chilled water CL supplied to air-conditioning equipment such as air handling units It is good to do. That is, the heat source systems 1 and 2 can be applied not only when the load side device is a device that performs precision air conditioning.

次に図4を参照して、本発明の第3の実施の形態に係る熱源システム3を説明する。図4は、熱源システム3の模式的系統図である。熱源システム3は、流動する熱媒体が、状況に応じて冷水及び/又は温水となるように構成されている。熱源システム3の、熱源システム1(図1参照)と異なる点は、小温度差熱源機が小温度差冷温水機310で構成され、大温度差熱源機が大温度差冷温水機330で構成されている点、小温度差往集合部21と小温度差還集合部22とを小温度差冷温水機310を介さずに連通する小温度差バイパス管328が設けられている点、小温度差連通管25に熱媒体の流通を遮断する開閉弁としての小温度差連通遮断弁325vが設けられている点である。以下、熱源システム3から供給された熱媒体の熱を利用する機器について、第1の負荷側機器が放射パネル381であり、第2の負荷側機器が空調機(エアハンドリングユニット)391であるとして説明する。また、熱源システム3を流動する熱媒体に関し、以下の説明では「CH」で始まる符号を付することとする。熱源システム3の、上記以外の構成は、熱源システム1(図1参照)と同様である。以下に、熱源システム3に特有の構成について説明を加える。なお、以下の熱源システム3の説明において、熱源システム1(図1参照)で用いたのと同じ参照符号でありながら異なる呼称を用いているのは、熱源システム1(図1参照)が冷熱の扱いに特化したシステムであるのに対し、熱源システム3が冷熱及び温熱の双方を取り扱い対象にしていることを考慮したものであり、同じ参照符号の機器及び配管類についての物理的な構成は熱源システム1(図1参照)と同様である。   Next, with reference to FIG. 4, the heat source system 3 which concerns on the 3rd Embodiment of this invention is demonstrated. FIG. 4 is a schematic system diagram of the heat source system 3. The heat source system 3 is configured such that the flowing heat medium becomes cold water and / or hot water depending on the situation. The heat source system 3 is different from the heat source system 1 (see FIG. 1) in that the small temperature difference heat source device is configured by the small temperature difference cooling / heating water device 310 and the large temperature difference heat source device is configured by the large temperature difference cooling / heating water device 330. A small temperature difference bypass pipe 328 that connects the small temperature difference collecting portion 21 and the small temperature difference collecting portion 22 without passing through the small temperature difference chiller / heater 310 is provided. The difference communication pipe 25 is provided with a small temperature difference communication cutoff valve 325v as an on-off valve for blocking the flow of the heat medium. Hereinafter, regarding a device that uses the heat of the heat medium supplied from the heat source system 3, the first load side device is the radiation panel 381, and the second load side device is the air conditioner (air handling unit) 391. explain. In addition, regarding the heat medium flowing through the heat source system 3, in the following description, a symbol beginning with “CH” is attached. The other configuration of the heat source system 3 is the same as that of the heat source system 1 (see FIG. 1). Below, description is added about the structure peculiar to the heat-source system 3. FIG. In the following description of the heat source system 3, the same reference numerals as those used in the heat source system 1 (see FIG. 1) but different names are used because the heat source system 1 (see FIG. 1) is cold. It is a system specialized for handling, while considering that the heat source system 3 handles both cold and hot, the physical configuration of equipment and piping with the same reference numerals is This is the same as the heat source system 1 (see FIG. 1).

小温度差冷温水機310及び大温度差冷温水機330は、状況に応じて冷水又は温水を製造することができる機器、換言すれば冷水及び温水の両方を製造することが可能な機器であり、冷温水発生機やヒートポンプチラー等が用いられる。本実施の形態では、小温度差冷温水機310で温度が調節される熱媒体CHを小温度差熱媒体CHMといい、大温度差冷温水機330で温度が調節される熱媒体CHを大温度差熱媒体CHLという。小温度差冷温水機310は、小温度差熱媒体CHMを専ら所定の中温度に温度調節する機器であるが、好ましくは温度の設定を適宜変えることができるように構成され、さらに低温度(冷却時)及び/又は高温度(加熱時)にすることができる能力を有していることが好ましい。大温度差冷温水機330は、大温度差熱媒体CHLを専ら低温度(冷却時)又は高温度(加熱時)に温度調節する機器であるが、温度の設定を適宜変えることができるように構成されていると熱源システム3の省エネルギーを図ることができるため好ましい。ここで「中温度」は、基準温度との差が第1の所定の値である温度である。「低温度」及び「高温度」は、基準温度との差が第2の所定の値である温度である。第2の所定の値は第1の所定の値よりも大きい。また「基準温度」とは、中温度との差よりも、低温度(冷却時)及び高温度(加熱時)との差の方が大きくなる任意の温度であり、例えば中間期の外気温あるいは20℃等とすることができる。   The small temperature difference chiller / heater 310 and the large temperature difference chiller / heater 330 are devices that can manufacture cold water or hot water according to the situation, in other words, devices that can manufacture both cold water and hot water. A cold / hot water generator or a heat pump chiller is used. In the present embodiment, the heat medium CH whose temperature is adjusted by the small temperature difference chiller / heater 310 is called a small temperature difference heat medium CHM, and the heat medium CH whose temperature is adjusted by the large temperature difference chiller / heater 330 is large. It is called temperature difference heat medium CHL. The small temperature difference chiller / heater 310 is a device that exclusively adjusts the temperature of the small temperature difference heat medium CHM to a predetermined medium temperature, but is preferably configured so that the temperature setting can be changed as appropriate. It is preferable to have the ability to achieve a high temperature (during heating) and / or a high temperature (during heating). The large temperature difference chiller / heater 330 is a device that adjusts the temperature of the large temperature difference heat medium CHL exclusively to a low temperature (during cooling) or a high temperature (during heating), but the temperature setting can be changed as appropriate. Since it is possible to save energy of the heat source system 3, it is preferable. Here, the “medium temperature” is a temperature at which the difference from the reference temperature is the first predetermined value. “Low temperature” and “high temperature” are temperatures at which the difference from the reference temperature is a second predetermined value. The second predetermined value is greater than the first predetermined value. The “reference temperature” is an arbitrary temperature at which the difference between the low temperature (during cooling) and the high temperature (during heating) becomes larger than the difference from the medium temperature. It can be set to 20 ° C. or the like.

小温度差バイパス管328は、小温度差連通管25とは別体の管であり、主に小温度差冷温水機310で冷水が製造され、大温度差冷温水機330で温水が製造される場合に用いられる管である。小温度差バイパス管328は、小温度差連通管25及び大温度差導入管32よりも、小温度差導出管11及び小温度差供給管23に近い位置で小温度差往集合部21に接続され、小温度差連通管25よりも小温度差導入管12に近い位置で小温度差還集合部22に接続されている。換言すれば、小温度差往集合部21では、小温度差バイパス管328の接続部と小温度差導出管11の接続部との間に、小温度差連通管25、大温度差バイパス管26、及び大温度差導入管32の接続部が介在せず、小温度差還集合部22では、小温度差バイパス管328の接続部と小温度差導入管12の接続部との間に、小温度差連通管25の接続部が介在しないように構成されている。小温度差バイパス管328には、熱媒体CHMの流通を遮断する小温度差バイパス遮断弁328vが設けられている。小温度差バイパス遮断弁328vは、制御装置60と信号ケーブルで接続されており、制御装置60からの信号を受信して開閉動作をすることができるように構成されている。   The small temperature difference bypass pipe 328 is a separate pipe from the small temperature difference communication pipe 25, and cold water is mainly produced by the small temperature difference cold / hot water machine 310, and hot water is produced by the large temperature difference cold / hot water machine 330. This tube is used when The small temperature difference bypass pipe 328 is connected to the small temperature difference forward collecting section 21 at a position closer to the small temperature difference derivation pipe 11 and the small temperature difference supply pipe 23 than the small temperature difference communication pipe 25 and the large temperature difference introduction pipe 32. The small temperature difference communicating pipe 25 is connected to the small temperature difference collecting portion 22 at a position closer to the small temperature difference introducing pipe 12 than the small temperature difference communicating pipe 25. In other words, in the small temperature difference forward collecting portion 21, the small temperature difference communicating tube 25 and the large temperature difference bypass tube 26 are provided between the connecting portion of the small temperature difference bypass tube 328 and the connecting portion of the small temperature difference deriving tube 11. In the small temperature difference return collecting portion 22, a small temperature difference introducing pipe 32 is connected between the connecting portion of the small temperature difference bypass pipe 328 and the connecting portion of the small temperature difference introducing pipe 12. The connecting portion of the temperature difference communication pipe 25 is configured not to intervene. The small temperature difference bypass pipe 328 is provided with a small temperature difference bypass cutoff valve 328v that blocks the flow of the heat medium CHM. The small temperature difference bypass shut-off valve 328v is connected to the control device 60 via a signal cable, and is configured to receive a signal from the control device 60 and perform an opening / closing operation.

小温度差連通遮断弁325vは、大温度差熱媒体戻り管44から小温度差連通管25に流入した熱媒体CHLの、小温度差還集合部22への流入を遮断することを可能にする弁であり、大温度差熱媒体戻り管44の接続部と小温度差還集合部22との間に設けられている。小温度差連通遮断弁325vは、制御装置60と信号ケーブルで接続されており、制御装置60からの信号を受信して開閉動作をすることができるように構成されている。   The small temperature difference communication cut-off valve 325v makes it possible to block the inflow of the heat medium CHL that has flowed into the small temperature difference communication pipe 25 from the large temperature difference heat medium return pipe 44 into the small temperature difference return collecting section 22. It is a valve and is provided between the connecting portion of the large temperature difference heat medium return pipe 44 and the small temperature difference collecting portion 22. The small temperature difference communication cut-off valve 325v is connected to the control device 60 through a signal cable, and is configured to receive a signal from the control device 60 and to perform an opening / closing operation.

上述のように構成された熱源システム3は、小温度差冷温水機310及び大温度差冷温水機330共に冷却運転を行う場合は、制御装置60によって小温度差連通遮断弁325vが開にされ、小温度差バイパス遮断弁328vが閉にされて、上述の熱源システム1(図1参照)と同様の運転が行われる。   In the heat source system 3 configured as described above, the small temperature difference communication shut-off valve 325v is opened by the control device 60 when both the small temperature difference chiller water heater 310 and the large temperature difference chiller water heater 330 perform the cooling operation. The small temperature difference bypass cutoff valve 328v is closed, and the same operation as that of the heat source system 1 (see FIG. 1) is performed.

熱源システム3の小温度差冷温水機310及び大温度差冷温水機330が共に加熱運転を行う場合も、制御装置60によって小温度差連通遮断弁325vが開にされ、小温度差バイパス遮断弁328vが閉にされる。そして、小温度差熱媒体CHMが小温度差冷温水機310で中温度の温水とされ、大温度差熱媒体CHLが大温度差冷温水機330で高温度の温水とされることとなり、温度差を取る方向が冷却時と異なるものの、熱媒体(温水)CHの流れや流量配分等は冷却時と同様である。加熱時の温度条件の一例を示すと、小温度差熱媒体CHMは、小温度差冷温水機310で35℃に加熱され、放射パネル381で放熱して30℃に温度が低下した後に、再び小温度差冷温水機310に導入されて加熱される。他方、大温度差熱媒体CHLは、大温度差冷温水機330で40℃に加熱され、空調機391で被処理空気(不図示)と熱交換して30℃に温度が低下した後に小温度差連通管25に流入し、小温度差往集合部21に導入され、あるいは小温度差往集合部21及び小温度差還集合部22に適宜分配される。   Even when both the small temperature difference chiller / heater 310 and the large temperature difference chiller / heater 330 of the heat source system 3 perform heating operation, the small temperature difference communication cutoff valve 325v is opened by the control device 60, and the small temperature difference bypass cutoff valve is opened. 328v is closed. Then, the small temperature difference heat medium CHM is changed to medium temperature hot water by the small temperature difference chiller / heater 310, and the large temperature difference heat medium CHL is changed to high temperature hot water by the large temperature difference chiller / heater 330. Although the direction in which the difference is taken is different from that during cooling, the flow of the heat medium (hot water) CH, the flow rate distribution, and the like are the same as those during cooling. An example of the temperature condition at the time of heating is as follows. The small temperature difference heat medium CHM is heated to 35 ° C. by the small temperature difference chiller / heater 310, dissipates heat by the radiating panel 381, and the temperature is lowered to 30 ° C. It is introduced into the small temperature difference cold / hot water machine 310 and heated. On the other hand, the large temperature difference heat medium CHL is heated to 40 ° C. by the large temperature difference chiller / heater 330, heat-exchanged with air to be treated (not shown) by the air conditioner 391, and then the temperature is decreased to 30 ° C. It flows into the differential communication pipe 25 and is introduced into the small temperature difference collecting portion 21 or is appropriately distributed to the small temperature difference collecting portion 21 and the small temperature difference collecting portion 22.

また、熱源システム3は、小温度差冷温水機310で冷却運転を行い、大温度差冷温水機330で加熱運転を行うこともできる。このような運転が行われるのは、例えばOA機器等の発熱のある機器が室内に多数設置されている近年のオフィスビル等で冬季にも冷却負荷がある場合などが挙げられる。さらに補足すれば、例えば所定の絶対湿度にすることができる温度まで空調機391の系統で外気を加熱し、放射パネル381の系統で冷房が必要なオフィス室内の冷却を行う場合にこのような運転が行われることがある。このような冷/暖同時運転が行われる場合、熱源システム3は、制御装置60によって小温度差連通遮断弁325vが閉にされ、小温度差バイパス遮断弁328vが開にされる。小温度差連通遮断弁325vが閉にされることにより、大温度差熱媒体戻り管44から小温度差連通管25に流入した大温度差熱媒体CHLが、小温度差還集合部22に流入せずにすべて小温度差往集合部21に流入することとなる。また、小温度差バイパス遮断弁328vが開にされることにより、小温度差熱媒体CHMについて、小温度差往集合部21に流入する流量が放射パネル381(第1の負荷側機器)に流入する流量よりも多くなる場合に、余剰分が小温度差バイパス管328を介して小温度差還集合部22に導かれることとなる。そして、このような冷/暖同時運転が行われる場合、小温度差熱媒体CHMは小温度差冷温水機310と第1の負荷側機器381との間を循環し、大温度差熱媒体CHLは大温度差冷温水機330と第2の負荷側機器391との間を循環することとなる。つまり、小温度差の系統と大温度差の系統とが独立して運転されることとなる。このように、冷/暖同時運転が行われる場合は小温度差の系統と大温度差の系統との各々で最適な運転を行うことができるに留まる。しかしながら、熱源システム3は、冷却運転又は加熱運転を行う場合は熱源システム1(図1参照)のように最適運転のバリエーションが増加する統合運転を可能にしながら、冷/暖同時運転をも可能にした、用途が拡大したシステムである。   The heat source system 3 can also perform a cooling operation with the small temperature difference chiller / heater 310 and can perform a heating operation with the large temperature difference chiller / heater 330. Such an operation is performed, for example, when a cooling load is applied even in winter in a recent office building or the like in which a large number of devices that generate heat such as OA devices are installed indoors. In addition, for example, when the outside air is heated by the system of the air conditioner 391 to a temperature at which a predetermined absolute humidity can be achieved, and the office room that needs to be cooled is cooled by the system of the radiation panel 381, such an operation is performed. May be performed. When such a cold / warm simultaneous operation is performed, in the heat source system 3, the control device 60 closes the small temperature difference communication shut-off valve 325v and opens the small temperature difference bypass shut-off valve 328v. When the small temperature difference communication shut-off valve 325v is closed, the large temperature difference heat medium CHL that has flowed into the small temperature difference communication pipe 25 from the large temperature difference heat medium return pipe 44 flows into the small temperature difference return collecting section 22. All of them will flow into the small temperature difference gathering part 21 without doing so. Further, when the small temperature difference bypass shut-off valve 328v is opened, the flow rate of the small temperature difference heat medium CHM flowing into the small temperature difference collecting portion 21 flows into the radiation panel 381 (first load side device). When the flow rate exceeds the flow rate, the surplus is led to the small temperature difference collection unit 22 via the small temperature difference bypass pipe 328. When such a cold / warm simultaneous operation is performed, the small temperature difference heat medium CHM circulates between the small temperature difference chiller / heater 310 and the first load side device 381, and the large temperature difference heat medium CHL. Circulates between the large temperature difference chiller / heater 330 and the second load side device 391. That is, the small temperature difference system and the large temperature difference system are operated independently. As described above, when the cold / warm simultaneous operation is performed, the optimum operation can be performed in each of the small temperature difference system and the large temperature difference system. However, when performing the cooling operation or the heating operation, the heat source system 3 enables the integrated operation in which the variation of the optimum operation increases like the heat source system 1 (see FIG. 1), and also enables the simultaneous cooling / heating operation. This is a system with expanded applications.

なお、図5に示すように、冷/暖同時運転を行う可能性がある熱源システム3を構築する場合は、小温度差の系統と大温度差の系統とのそれぞれの独立運転をより確実とするため、換言すれば小温度差熱媒体CHMの大温度差系統への侵入及び大温度差熱媒体CHLの小温度差系統への侵入を抑制するために、小温度差往集合部21に邪魔板21bを設けるとよい。邪魔板21bは、小温度差導出管11と小温度差供給管23と小温度差バイパス管328(図4参照)とが接続された部分と、大温度差導入管32と小温度差連通管25と大温度差バイパス管26(図4参照)とが接続された部分とを部分的に遮断するように、小温度差往集合部21内に設けられる。なお、邪魔板21bは、常設の板状部材とするほか、開閉可能な弁として冷/暖同時運転時には一部又は全部を閉とし、冷却運転又は加熱運転時は全開にすることしてもよい。   In addition, as shown in FIG. 5, when constructing the heat source system 3 that may perform the cold / warm simultaneous operation, the independent operation of the small temperature difference system and the large temperature difference system is more reliably performed. In other words, in order to prevent the small temperature difference heat medium CHM from entering the large temperature difference system and the large temperature difference heat medium CHL from entering the small temperature difference system, the small temperature difference transfer unit 21 is obstructed. A plate 21b may be provided. The baffle plate 21b includes a portion where the small temperature difference derivation pipe 11, the small temperature difference supply pipe 23, and the small temperature difference bypass pipe 328 (see FIG. 4) are connected, a large temperature difference introduction pipe 32, and a small temperature difference communication pipe. 25 and the large temperature difference bypass pipe 26 (see FIG. 4) are provided in the small temperature difference collecting portion 21 so as to be partially cut off. The baffle plate 21b may be a permanent plate-like member, or may be partially or fully closed during simultaneous cooling / heating operation as a valve that can be opened and closed, and fully opened during cooling operation or heating operation.

以上の熱源システム3の説明では、小温度差熱源機及び大温度差熱源機が、状況に応じて冷水又は温水を製造することができる機器であるとしたが、加熱運転のみを行うシステムとする場合は、温水だけを製造することができる機器としてもよい。また、小温度差連通遮断弁325v及び小温度差バイパス遮断弁328vが、自動弁であるとして説明したが、手動弁であってもよい。   In the description of the heat source system 3 described above, the small temperature difference heat source device and the large temperature difference heat source device are devices that can produce cold water or hot water depending on the situation, but only a heating operation is performed. In the case, it is good also as an apparatus which can manufacture only warm water. Moreover, although the small temperature difference communication cutoff valve 325v and the small temperature difference bypass cutoff valve 328v have been described as being automatic valves, they may be manual valves.

また、熱源システム3についても、熱源システム2(図3参照)に倣ってバックアップ熱源機を同様に設けることができることはいうまでもない。この場合、バックアップ熱源機は、小温度差熱源機及び大温度差熱源機と同様の熱源機であることが好ましい。つまり、小温度差熱源機及び大温度差熱源機が冷水及び温水の両方が製造可能な冷温水発生機等である場合は、バックアップ熱源機も冷温水発生機等とすることが好ましく、小温度差熱源機及び大温度差熱源機が冷凍機の場合はバックアップ熱源機も冷凍機で足り、小温度差熱源機及び大温度差熱源機が加熱熱源機である場合はバックアップ熱源機も加熱熱源機で足りる。   Needless to say, the heat source system 3 can also be provided with a backup heat source device similarly to the heat source system 2 (see FIG. 3). In this case, the backup heat source device is preferably a heat source device similar to the small temperature difference heat source device and the large temperature difference heat source device. That is, when the small temperature difference heat source machine and the large temperature difference heat source machine are cold / hot water generators that can produce both cold water and hot water, the backup heat source machine is preferably a cold / hot water generator, etc. If the differential heat source machine and the large temperature difference heat source machine are refrigerators, the backup heat source machine may be a refrigerator. If the small temperature difference heat source machine and the large temperature difference heat source machine are heating heat source machines, the backup heat source machine is also a heating heat source machine. Is enough.

1、2、3 熱源システム
10 中温冷凍機(小温度差熱源機)
11 中温冷水往管(小温度差導出管)
12 中温冷水還管(小温度差導入管)
21 中温往ヘッダ(小温度差往集合部)
22 中温還ヘッダ(小温度差還集合部)
23 中温供給管(小温度差供給管)
25 中温連通管(小温度差連通管)
30 低温冷凍機(大温度差熱源機)
32 低温冷水還管(大温度差導入管)
44 低温戻り管(大温度差熱媒体戻り管)
50 補助冷凍機(バックアップ熱源機)
51 補助冷水往管(バックアップ導出管)
52 補助冷水還管(バックアップ導入管)
81 ドライコイル(第1の負荷側機器)
91 外調機(第2の負荷側機器)
325v 小温度差連通遮断弁(開閉弁)
C 冷水
CLS 低温往冷水(大温度差熱媒体)
CMS 中温往冷水(小温度差熱媒体)
1, 2, 3 Heat source system 10 Medium temperature refrigerator (small temperature difference heat source machine)
11 Medium temperature cold water outlet pipe (small temperature difference derivation pipe)
12 Medium temperature cold water return pipe (small temperature difference introduction pipe)
21 Medium temperature header (small temperature difference collecting part)
22 Medium temperature return header (small temperature return assembly)
23 Medium temperature supply pipe (small temperature difference supply pipe)
25 Medium temperature communication pipe (small temperature difference communication pipe)
30 Low temperature refrigerator (large temperature difference heat source machine)
32 Low temperature cold water return pipe (large temperature difference introduction pipe)
44 Low temperature return pipe (large temperature difference heat medium return pipe)
50 Auxiliary refrigerator (backup heat source machine)
51 Auxiliary cold water outgoing pipe (backup outlet pipe)
52 Auxiliary cold water return pipe (backup introduction pipe)
81 Dry coil (first load side device)
91 External air conditioner (second load side equipment)
325v small temperature difference communication shut-off valve (open / close valve)
C Cold water CLS Low temperature cold water (large temperature difference heat medium)
CMS medium temperature cold water (small temperature difference heat medium)

Claims (6)

基準温度との差が第1の所定の値となるように熱媒体の温度を調節可能な小温度差熱源機と;
前記小温度差熱源機を通過する前記熱媒体を流動させる第1の熱媒体ポンプと;
前記小温度差熱源機で温度調節された熱媒体である小温度差熱媒体を、熱負荷を処理する第1の負荷側機器に供給する前に通過させる小温度差往集合部と;
前記小温度差往集合部に流入する前記小温度差熱媒体の流量を可変にする小温度差熱媒体流量可変手段と;
前記第1の負荷側機器で熱が利用された前記小温度差熱媒体を、前記小温度差熱源機に還す前に集める小温度差還集合部と;
前記小温度差還集合部内の熱媒体を前記小温度差熱源機に導く小温度差導入管と;
前記小温度差往集合部と前記小温度差還集合部とを、前記小温度差熱源機を介さずに連通する小温度差連通管と;
前記基準温度との差が前記第1の所定の値よりも大きい第2の所定の値となるように熱媒体の温度を調節可能な大温度差熱源機と;
前記大温度差熱源機を通過する前記熱媒体を流動させる第2の熱媒体ポンプと;
前記大温度差熱源機で温度調節された熱媒体である大温度差熱媒体の熱を利用して熱負荷を処理する前記第1の負荷側機器とは異なる第2の負荷側機器から導出された前記大温度差熱媒体を、前記小温度差連通管に流入させる大温度差熱媒体戻り管と;
前記小温度差往集合部内の熱媒体を前記大温度差熱源機に導く大温度差導入管とを備え;
前記小温度差熱媒体流量可変手段が、前記第1の熱媒体ポンプにインバータを設けて吐出流量を可変にする構成、及び前記小温度差熱源機を複数台に分割してそれぞれに対応した前記第1の熱媒体ポンプを設けて台数制御を行う構成の少なくとも1つから構成された;
熱源システム。
A small temperature difference heat source device capable of adjusting the temperature of the heat medium so that the difference from the reference temperature becomes a first predetermined value;
A first heat medium pump for flowing the heat medium passing through the small temperature difference heat source machine;
A small temperature difference gathering unit that passes the small temperature difference heat medium, which is a heat medium whose temperature has been adjusted by the small temperature difference heat source apparatus, before supplying it to the first load side device that processes the heat load;
Small temperature difference heat medium flow rate varying means for varying the flow rate of the small temperature difference heat medium flowing into the small temperature difference forward and backward collecting portion;
A small temperature difference collecting unit that collects the small temperature difference heat medium in which heat is used in the first load side device before returning to the small temperature difference heat source unit;
A small temperature difference introducing pipe for guiding the heat medium in the small temperature difference collecting portion to the small temperature difference heat source unit;
A small temperature difference communicating pipe that communicates the small temperature difference collecting portion and the small temperature difference collecting portion without going through the small temperature difference heat source unit;
A large temperature difference heat source device capable of adjusting the temperature of the heat medium such that a difference from the reference temperature becomes a second predetermined value larger than the first predetermined value;
A second heat medium pump for flowing the heat medium passing through the large temperature difference heat source machine;
Derived from a second load-side device different from the first load-side device that processes the heat load using the heat of the large-temperature-difference heat-medium, which is a heat medium whose temperature is adjusted by the large-temperature-difference heat-source device. A large temperature difference heat medium return pipe for flowing the large temperature difference heat medium into the small temperature difference communication pipe;
Bei example a large temperature difference inlet tube for guiding the heat medium of the small temperature Sa往in the set section to the large temperature difference heat source device;
The small temperature difference heat medium flow rate variable means has a configuration in which an inverter is provided in the first heat medium pump to vary the discharge flow rate, and the small temperature difference heat source device is divided into a plurality of units and corresponds to each of them. A first heat medium pump is provided to control the number of units;
Heat source system.
前記小温度差熱源機が、生成する前記小温度差熱媒体の温度の設定を変えることができるように構成された;
請求項1に記載の熱源システム。
The small temperature difference heat source device is configured to change a temperature setting of the small temperature difference heat medium to be generated;
The heat source system according to claim 1.
前記小温度差熱源機で生成された小温度差熱媒体を前記小温度差往集合部に導く小温度差導出管と;
前記小温度差往集合部から前記第1の負荷側機器に向けて供給される熱媒体を前記小温度差往集合部の外に導く小温度差供給管とを備え;
前記小温度差連通管及び前記大温度差導入管が隣接した状態、かつ、前記小温度差導出管及び前記小温度差供給管が隣接した状態で、前記小温度差往集合部に接続された;
請求項1又は請求項2に記載の熱源システム。
A small temperature difference deriving tube for guiding the small temperature difference heat medium generated by the small temperature difference heat source device to the small temperature difference forward assembly portion;
A small temperature difference supply pipe that guides a heat medium supplied from the small temperature difference gathering portion toward the first load side device to the outside of the small temperature difference gathering portion;
The small temperature difference communication pipe and the large temperature difference introduction pipe are adjacent to each other, and the small temperature difference derivation pipe and the small temperature difference supply pipe are adjacent to each other, and are connected to the small temperature difference forward collecting portion. ;
The heat source system according to claim 1 or 2.
前記基準温度との差が前記第1の所定の値となる熱媒体及び前記基準温度との差が前記第2の所定の値となる熱媒体を生成可能なバックアップ熱源機と;
前記バックアップ熱源機を通過する前記熱媒体を流動させる第3の熱媒体ポンプと;
前記小温度差還集合部内の熱媒体を前記バックアップ熱源機に導くバックアップ導入管と;
前記バックアップ熱源機で温度調節された熱媒体を、前記大温度差導入管の接続部と前記小温度差導出管の接続部との間で前記小温度差往集合部に流入させるバックアップ導出管とを備える;
請求項3に記載の熱源システム。
A backup heat source machine capable of generating a heat medium whose difference from the reference temperature is the first predetermined value and a heat medium whose difference from the reference temperature is the second predetermined value;
A third heat medium pump for flowing the heat medium passing through the backup heat source unit;
A backup introduction pipe for guiding the heat medium in the small temperature return collecting section to the backup heat source unit;
A backup lead-out pipe that causes the heat medium adjusted in temperature by the backup heat source unit to flow into the small temperature difference collecting section between the connection part of the large temperature difference introduction pipe and the connection part of the small temperature difference lead-out pipe; Comprising:
The heat source system according to claim 3.
前記第2の負荷側機器で処理される最大熱負荷の一部に相当する熱量が、前記小温度差熱源機で温度調節された前記小温度差熱媒体が保有する熱量で充当されるように、前記小温度差熱源機及び前記大温度差熱源機の定格能力が決定された;
請求項1乃至請求項4のいずれか1項に記載の熱源システム。
The amount of heat corresponding to a part of the maximum heat load processed by the second load side device is applied with the amount of heat held by the small temperature difference heat medium adjusted in temperature by the small temperature difference heat source unit. The rated capacities of the small temperature difference heat source machine and the large temperature difference heat source machine were determined;
The heat source system according to any one of claims 1 to 4.
前記大温度差熱媒体戻り管との接続部と、前記小温度差還集合部と、の間の前記小温度差連通管内の前記熱媒体の流通を遮断可能な開閉弁を備える;
請求項1乃至請求項5のいずれか1項に記載の熱源システム。
An on-off valve capable of blocking the flow of the heat medium in the small temperature difference communication pipe between the connection portion with the large temperature difference heat medium return pipe and the small temperature difference return collecting section;
The heat source system according to any one of claims 1 to 5.
JP2010022278A 2009-04-15 2010-02-03 Heat source system Active JP5433451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022278A JP5433451B2 (en) 2009-04-15 2010-02-03 Heat source system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009098778 2009-04-15
JP2009098778 2009-04-15
JP2010022278A JP5433451B2 (en) 2009-04-15 2010-02-03 Heat source system

Publications (2)

Publication Number Publication Date
JP2010266183A JP2010266183A (en) 2010-11-25
JP5433451B2 true JP5433451B2 (en) 2014-03-05

Family

ID=43363305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022278A Active JP5433451B2 (en) 2009-04-15 2010-02-03 Heat source system

Country Status (1)

Country Link
JP (1) JP5433451B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074269A (en) * 2017-10-17 2019-05-16 三菱重工サーマルシステムズ株式会社 Central air-conditioning facility

Also Published As

Publication number Publication date
JP2010266183A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
CN102865646B (en) Air-conditioning apparatus
CN102121731B (en) Dual-temperature-heat-pipe constant-temperature and constant-humidity air-conditioning unit
JP4832960B2 (en) Control method of water source heat pump unit system
EP2538145A2 (en) Heat Pump and Method for Controlling the Same
JP6119141B2 (en) Air conditioning system
CN105579783A (en) Air conditioning system and control method for same
CN109405365A (en) Coolant circulating system and its control method, conditioner
JP7414958B2 (en) air conditioning system
CN104534600A (en) Heat pipe air conditioner combination device and refrigeration method
CN105637298A (en) Air-conditioning system and control method therefor
CN104251548A (en) Heat exchange system of single air conditioner as well as single air conditioner and control method thereof
CN102213470A (en) Radiation and ventilation combined air-conditioning system
JPWO2017009955A1 (en) Refrigeration system
JP6221198B2 (en) External control device
JP4934413B2 (en) Air conditioner
KR101227751B1 (en) Heat pump type hot water supply system using waste heat
JP5433451B2 (en) Heat source system
JP6024726B2 (en) External control device
JP6213781B2 (en) External controller control method
CN204388272U (en) A kind of heat pipe air conditioner combination unit
CN112128892B (en) Air conditioning system and control method thereof
KR20100096552A (en) Air conditioner
CN211575343U (en) Central air conditioning system for cooling and dehumidifying of variable-frequency multi-connected floor heating air duct machine
JP6048168B2 (en) Secondary refrigerant air conditioning system
JP2878240B2 (en) Heat supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5433451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250