JP5431033B2 - Contactless power transmission and communication system - Google Patents

Contactless power transmission and communication system Download PDF

Info

Publication number
JP5431033B2
JP5431033B2 JP2009137102A JP2009137102A JP5431033B2 JP 5431033 B2 JP5431033 B2 JP 5431033B2 JP 2009137102 A JP2009137102 A JP 2009137102A JP 2009137102 A JP2009137102 A JP 2009137102A JP 5431033 B2 JP5431033 B2 JP 5431033B2
Authority
JP
Japan
Prior art keywords
coil
communication
power
power transmission
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009137102A
Other languages
Japanese (ja)
Other versions
JP2010284058A (en
Inventor
直樹 若生
裕司 小野
和政 牧田
利昭 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009137102A priority Critical patent/JP5431033B2/en
Publication of JP2010284058A publication Critical patent/JP2010284058A/en
Application granted granted Critical
Publication of JP5431033B2 publication Critical patent/JP5431033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池を内蔵した携帯型電子機器や接触による給電が難しい環境下で用いられる電子機器に、電磁誘導により非接触で電力を送受信する機能を有する非接触電力伝送及び通信システムに関し、特に非接触で効率良く電力を送受信することができるようにした非接触電力伝送及び通信システムに関するものである。なお、本明細書において、システムとは、複数の装置により構成される装置群全体を表わすものとする。   The present invention relates to a non-contact power transmission and communication system having a function of transmitting and receiving power in a non-contact manner by electromagnetic induction to a portable electronic device having a built-in secondary battery and an electronic device used in an environment where power supply by contact is difficult. In particular, the present invention relates to a non-contact power transmission and communication system that can efficiently transmit and receive power without contact. In the present specification, the term system refers to the entire device group composed of a plurality of devices.

近年、電子部品の小型化に伴い、携帯電話や携帯型音楽プレーヤ等に代表される携帯電子機器は、小型化や軽量化が図られ、広く普及してきている。更に近年、携帯電子機器は多機能化及び高速処理化が図られ、それに伴い電子機器が必要とする電力量が増加傾向にある。しかし、一般に、携帯電子機器は、専用のアダプターを内蔵せず、内蔵した二次電池に充電した電力により駆動しており、二次電池の電力が不足する度に二次電池を充電しなければならない。   In recent years, along with the downsizing of electronic components, portable electronic devices typified by mobile phones and portable music players have been widely spread due to the reduction in size and weight. Furthermore, in recent years, portable electronic devices have been made multifunctional and high-speed processing, and accordingly, the amount of power required by the electronic devices has been increasing. However, in general, portable electronic devices do not have a dedicated adapter and are driven by the power charged in the built-in secondary battery, and the secondary battery must be charged each time the power of the secondary battery is insufficient. Don't be.

一般に、携帯電子機器の二次電池への充電は、携帯電子機器の充電端子と充電台(クレードル)の充電端子を接触させ、電気的に接続し、充電台から電力を供給して内蔵する二次電池に充電する。   In general, charging of a secondary battery of a portable electronic device is performed by bringing the charging terminal of the portable electronic device and the charging terminal of the charging stand (cradle) into contact with each other, electrically connecting them, and supplying power from the charging stand. Charge the next battery.

しかしながら、充電端子同士を接触して接続する充電方式では、充電端子の汚れや、充電端子間への異物侵入により充電ができない場合があり、最近は電磁誘導の原理を利用した非接触の電力供給事例、すなわち非接触電力伝送装置の需要が増加している。   However, in the charging method in which the charging terminals are in contact with each other, charging may not be possible due to dirt on the charging terminals or intrusion of foreign matter between the charging terminals. Recently, contactless power supply using the principle of electromagnetic induction There is an increasing demand for cases, that is, contactless power transmission devices.

非接触電力伝送の効率や安全性を確保する為、電力受信側の要求電力や異常時の電力送信停止等の情報を第1のコイル及び第2のコイル間で通信を行う必要が有る。電力伝送と通信を確実に行うには、それぞれ電力専用と通信専用のコイルを設けて実施する方法がある(例えば、特許文献1)。   In order to ensure the efficiency and safety of non-contact power transmission, it is necessary to perform communication between the first coil and the second coil on information such as required power on the power receiving side and power transmission stoppage in the event of an abnormality. In order to reliably perform power transmission and communication, there is a method in which coils dedicated for power and communication are provided, respectively (for example, Patent Document 1).

一方、部品点数の削減及び構成の簡素化を考慮すると、通信用のコイルと非接触電力伝送用のコイルを共通化して使用することが開示されている(例えば、特許文献2)。この場合、通信と電力送信及び電力受信を同時に行うことも可能となる。   On the other hand, considering the reduction in the number of parts and the simplification of the configuration, it is disclosed to use a communication coil and a non-contact power transmission coil in common (for example, Patent Document 2). In this case, communication, power transmission and power reception can be performed simultaneously.

登録実用新案第3108034号公報Registered Utility Model No. 31008034 特開平11−274989号公報Japanese Patent Application Laid-Open No. 11-27489

しかしながら、特許文献1のように、電力専用と通信専用のコイルを設けるようにした場合、製品のコストが高くなったり、サイズが大きくなってしまう問題があった。   However, when a coil exclusively for power and communication is provided as in Patent Document 1, there is a problem that the cost of the product increases or the size increases.

また、特許文献2のように、通信用コイルと非接触伝送用コイルを共通にした場合、通信側の等価負荷抵抗(約1.8kΩ)と電力受信側の負荷抵抗(約数10Ω)の数値が異なる為、通信検出を優先すると電力損失や電力効率が悪くなっていた。一方、電力伝送を優先すると、負荷変調に伴う電圧変調波形を検出することが難しくなる問題があった。   In addition, as in Patent Document 2, when the communication coil and the non-contact transmission coil are used in common, numerical values of the communication side equivalent load resistance (about 1.8 kΩ) and the power reception side load resistance (about several tens of Ω). Therefore, if communication detection is prioritized, power loss and power efficiency deteriorate. On the other hand, when power transmission is prioritized, there is a problem that it is difficult to detect a voltage modulation waveform accompanying load modulation.

本発明は、このような状況に鑑みてなされたものであり、通信と非接触送受信が同時に実行可能であり、効率良く電力を送受信することができる非接触電力伝送及び通信システムを提供することにある。   The present invention has been made in view of such a situation, and provides a non-contact power transmission and communication system capable of performing communication and non-contact transmission / reception at the same time and efficiently transmitting / receiving power. is there.

本発明は、上記の課題を解決するためになされたものであり、通信用コイルと非接触電力送信コイル及び通信用コイルと非接触電力受信コイルをそれぞれ共通化することで、通信と非接触電力送受信が同時に実行可能な非接触電力伝送及び通信システムを実現したものである。   The present invention has been made in order to solve the above-described problems, and by communicating the communication coil and the non-contact power transmitting coil, and the communication coil and the non-contact power receiving coil, respectively, the communication and the non-contact power are achieved. A non-contact power transmission and communication system capable of simultaneously performing transmission and reception are realized.

本発明によれば、分離可能な交流磁界を発生させる第1のコイル及び交流磁界を受ける第2のコイルを備え、前記第1のコイルと前記第2のコイルは磁界を介して互いに電磁結合しており、前記第1のコイルが前記第2のコイルへの非接触電力送信及びデータ通信を同一交流周波数で行う電力送信・通信装置と、前記第2のコイルが前記第1のコイルからの非接触電力受信及びデータ通信を同一交流周波数で行う電力受信・通信装置とからなり、前記電力受信・通信装置は、受信電力情報及び非接触ICカード情報の送信を制御する第2の通信制御手段を備え、前記電力送信・通信装置は、前記第2のコイルから送信される受信電力情報に対し、前記第1のコイルの両端電圧に差を生じさせることにより、前記第1のコイルから送信る非接触電力を制御するとともに、前記非接触ICカード情報の通信を制御する第1の通信制御手段とを備え、さらに前記第1のコイルの両端電圧振幅を送信データのデジタル信号に同期して変化させるスイッチを備え、前記スイッチをON/OFFすることにより、前記第1のコイルの両端に接続された電力スイッチング素子の導通を前記デジタル信号に同期させ、前記第1のコイルのインピーダンスを変化させ、前記第1のコイルの両端電圧振幅を変化させるよう構成したことを特徴とする非接触電力伝送及び通信システムが得られる。 According to the present invention, the first coil for generating a separable AC magnetic field and the second coil for receiving the AC magnetic field are provided, and the first coil and the second coil are electromagnetically coupled to each other via the magnetic field. A power transmission / communication device in which the first coil performs non-contact power transmission and data communication to the second coil at the same AC frequency, and the second coil is connected to the second coil from the first coil. The power reception / communication device performs contact power reception and data communication at the same AC frequency, and the power reception / communication device includes second communication control means for controlling transmission of reception power information and contactless IC card information. wherein the power transmission and communication apparatus to the reception power information transmitted from said second coil, by generating a difference in voltage across said first coil, that sends from the first coil Non-contact Controls the power switch to the a first communication control means for controlling the communication of the non-contact IC card information, changing and further synchronize across voltage amplitude of the first coil into a digital signal of the transmission data And by turning on / off the switch, the conduction of the power switching element connected to both ends of the first coil is synchronized with the digital signal, the impedance of the first coil is changed, and the first coil Thus , a non-contact power transmission and communication system characterized in that the voltage amplitude at both ends of one coil is changed can be obtained.

また、本発明によれば、前記電力受信・通信装置は、前記第のコイルの両端電圧振幅を、前記電力受信・通信装置からの送信データに同期して変化させる複数のスイッチを有することを特徴とする上記の非接触電力伝送及び通信システムが得られる。 Further, according to the present invention, the power receiving-communication device, the voltage across amplitude of said first coil, to have a plurality of switches which changes in synchronization with the transmission data from the power receiving and communication device The above contactless power transmission and communication system can be obtained.

また、本発明によれば、前記複数のスイッチをON/OFFすることにより前記電力受信・通信装置抵抗又はインピーダンスの変化による負荷変動に同期させて、前記のコイルの両端電圧振幅を変化させることを特徴とする上記の非接触電力伝送及び通信システムが得られる。
また、前記複数のスイッチは、送信する信号の変調を行うスイッチと、前記送信する信号の変調を行うスイッチに同期させる、電力を充電する回路における抵抗制御を行うスイッチとで構成されたことを特徴とする上記の非接触電力伝送及び通信システムが得られる。
Further, according to the present invention, by turning ON / OFF the plurality of switches, in synchronism with the load variation caused by the resistance or impedance changes of the power reception and communication device, the voltage across amplitude of the first coil The contactless power transmission and communication system described above can be obtained.
Further, the plurality of switches are configured by a switch that modulates a signal to be transmitted and a switch that performs resistance control in a circuit that charges power in synchronization with the switch that modulates the signal to be transmitted. The above non-contact power transmission and communication system can be obtained.

また、本発明によれば、上記の非接触電力伝送及び通信システムに用いられ、前記第1の通信制御手段を備えたことを特徴とする電力送信・通信装置が得られる。   Further, according to the present invention, there is obtained a power transmission / communication apparatus that is used in the above-described contactless power transmission and communication system and includes the first communication control means.

また、本発明によれば、上記の非接触電力伝送及び通信システムに用いられ、前記第2の通信制御手段を備えたことを特徴とする電力受信・通信装置が得られる。   In addition, according to the present invention, there is obtained a power receiving / communication device that is used in the above contactless power transmission and communication system and includes the second communication control means.

即ち、本発明による非接触電力伝送及び通信システムは、分離可能な交流磁界を発生させる第1のコイル及び交流磁界を受ける第2のコイルを備え、前記第1のコイルと前記第2のコイルは磁界を介して互いに電磁結合しており、前記第1のコイルは前記第2のコイルへの非接触電力送信及びデータ通信を同一交流周波数で行う電力送信・通信装置と、前記第2のコイルは前記第1のコイルからの非接触電力受信及びデータ通信を同一交流周波数で行う電力受信・通信装置とからなり、前記第2のコイルを備えた電力受信・通信装置は、受信電力情報及び非接触ICカード情報の送信を制御する通信制御手段と、前記第1のコイルを備えた電力送信・通信装置は、前記第2のコイルから送信されてくる受信電力情報に対し、送信電力を制御する通信制御手段と非接触ICカード情報の通信を制御する通信制御手段とを備えたことを特徴とする。   That is, the non-contact power transmission and communication system according to the present invention includes a first coil that generates a separable AC magnetic field and a second coil that receives the AC magnetic field, and the first coil and the second coil are A power transmission / communication device that performs non-contact power transmission and data communication to the second coil at the same AC frequency, and the second coil is electromagnetically coupled to each other via a magnetic field. A power receiving / communication device that performs non-contact power reception and data communication from the first coil at the same AC frequency, and the power receiving / communication device including the second coil includes received power information and non-contact information. The communication control means for controlling the transmission of the IC card information and the power transmission / communication device including the first coil control the transmission power with respect to the reception power information transmitted from the second coil. Characterized by comprising a communication control means for controlling the communication of the communication control unit and the non-contact IC card information.

また、前記送信電力を制御する手段として、前記第1のコイルの両端電圧に差を生じさせることを特徴とする。 Further, the means for controlling the transmission power is characterized in that a difference is generated in the voltage across the first coil .

また、前記第1のコイルから第2のコイルへデータ通信を行う手段として、前記第1のコイルの両端電圧振幅を送信データのデジタル信号の“0”及び“1”に同期して変化させる手段を、前記第1のコイルを備えた電力送信・通信装置が持つことを特徴とする。   Further, as means for performing data communication from the first coil to the second coil, means for changing the voltage amplitude across the first coil in synchronization with digital signals “0” and “1” of transmission data. Is provided in a power transmission / communication apparatus including the first coil.

また、前記第2のコイルから第1のコイルへデータ通信を行う手段として、前記第2のコイルの両端電圧振幅を送信データのデジタル信号の“0”及び“1”に同期して変化させる手段を、前記第2のコイルを備えた電力受信・通信装置が持つことを特徴とする。   Further, as means for performing data communication from the second coil to the first coil, means for changing the voltage amplitude at both ends of the second coil in synchronization with “0” and “1” of the digital signal of the transmission data Is provided in a power receiving / communication device including the second coil.

本発明による非接触電力伝送及び通信システムは、上記のように第1のコイルと第2のコイル間で非接触電力送受信と通信を行うことが可能で、通信データは電力波形に重畳する形式である。通信データは電力情報と非接触ICカード情報の両方可能な形式であり、非接触電力送受信時は電力情報を、それ以外の場合は非接触ICカードとしての利用が主となる。非接触電力送受信時は、前記通信データの電力情報を元に送信電力を制御し、より効率的な非接触電力送受信が可能となり、非接触で効率良く電力を送受信することができる。   The contactless power transmission and communication system according to the present invention can perform contactless power transmission / reception and communication between the first coil and the second coil as described above, and communication data is superimposed on the power waveform. is there. The communication data is in a format capable of both power information and contactless IC card information. Power information is used mainly when transmitting and receiving contactless power, and it is mainly used as a contactless IC card in other cases. At the time of non-contact power transmission / reception, transmission power is controlled based on the power information of the communication data to enable more efficient non-contact power transmission / reception, and power can be efficiently transmitted / received without contact.

本発明の非接触電力伝送及び通信システムにおける一実施の形態の基本構成を示すブロック図。The block diagram which shows the basic composition of one Embodiment in the non-contact electric power transmission and communication system of this invention. 本発明の非接触電力伝送及び通信システムの電力送信及び通信時における通信データ波形及び通信変調波形を示す図。The figure which shows the communication data waveform and communication modulation waveform at the time of the electric power transmission and communication of non-contact electric power transmission of this invention, and a communication system. 本発明の非接触電力伝送及び通信システムの通信のみを実施する際の通信データ波形及び通信変調波形を示す図。The figure which shows the communication data waveform and communication modulation waveform at the time of implementing only the communication of non-contact electric power transmission and a communication system of this invention.

図1は、本発明の非接触電力伝送及び通信システムにおける一実施の形態の基本構成を示すブロック図である。図1に示すように、本発明の非接触電力伝送及び通信システムは、非接触による、電力送信・通信装置としての電力送信側装置31と、電力受信・通信装置としての電力受信側装置32とからなっている。   FIG. 1 is a block diagram showing a basic configuration of an embodiment of a contactless power transmission and communication system according to the present invention. As shown in FIG. 1, the non-contact power transmission and communication system of the present invention is a non-contact power transmission side device 31 as a power transmission / communication device, and a power reception side device 32 as a power reception / communication device. It is made up of.

電力送信側装置31は、交流の磁界を発生させる第1のコイル1と、これを励磁するための電力送信回路と、電力送信回路に信号を重畳し、電力受信側装置32からの信号を検出する為の信号送受信回路とからなり、電力送信回路は、第1のコイル1に直列接続されたコンデンサ2、インダクタ3、コンデンサ4及び電圧駆動型スイッチング半導体などの電力スイッチング素子5で構成され、インダクタ3は、電力スイッチング素子5と電力送信側電源6とに直列接続されている。又、信号送受信回路は、電力送信側信号送信変調用Loadスイッチ14及び信号送受信制御回路15で構成されている。   The power transmission side device 31 detects a signal from the power reception side device 32 by superimposing a signal on the first coil 1 that generates an alternating magnetic field, a power transmission circuit for exciting the coil 1, and a power transmission circuit. The power transmission circuit includes a capacitor 2, an inductor 3, a capacitor 4, and a power switching element 5 such as a voltage-driven switching semiconductor connected in series to the first coil 1. 3 is connected in series with the power switching element 5 and the power transmission side power source 6. The signal transmission / reception circuit includes a power transmission side signal transmission modulation load switch 14 and a signal transmission / reception control circuit 15.

電力受信側装置32は、第1のコイル1からの交流磁界を受ける第2のコイル7と、第2のコイル7で非接触受信を行った電力を二次電池24に充電する為の電力受信回路と、電力受信側装置32から電力送信側装置31へ充電情報や非接触ICカード情報等の情報を伝達する為の通信回路からなる。又、通信回路は、通信受信回路用直列抵抗8、通信受信回路用並列コンデンサ9、電力受信側信号送信変調用Loadスイッチ16、信号受信回路17、信号制御回路18及び信号変調負荷抵抗制御回路19で構成されている。又、電力受信回路は、整流回路用並列コンデンサ10、整流回路用平滑コンデンサ11、整流回路20、DC/DCコンバータ21、電池充電制御回路22、電力充電回路負荷抵抗制御用Loadスイッチ23及び二次電池24で構成されている。   The power receiving side device 32 receives the alternating current magnetic field from the first coil 1, and the power reception for charging the secondary battery 24 with the power that has been contactlessly received by the second coil 7. And a communication circuit for transmitting information such as charging information and contactless IC card information from the power receiving side device 32 to the power transmitting side device 31. The communication circuit includes a communication receiving circuit series resistor 8, a communication receiving circuit parallel capacitor 9, a power receiving side signal transmission modulation load switch 16, a signal receiving circuit 17, a signal control circuit 18, and a signal modulation load resistance control circuit 19. It consists of The power receiving circuit includes a rectifying circuit parallel capacitor 10, a rectifying circuit smoothing capacitor 11, a rectifying circuit 20, a DC / DC converter 21, a battery charging control circuit 22, a power charging circuit load resistance control load switch 23, and a secondary. The battery 24 is configured.

図2は、本発明の非接触電力伝送及び通信システムの電力送信及び通信時における通信データ波形及び通信変調波形を示す図であり、非接触電力送信と通信を同時に行っている場合の第1のコイル1の両端電圧波形及び通信データである。電力送受信及び通信を行っている状態では、第1のコイル1はコンデンサ2及びコンデンサ4で電圧共振回路が構成され、その共振周波数で電力スイッチング素子5をスイッチングさせている。   FIG. 2 is a diagram showing a communication data waveform and a communication modulation waveform at the time of non-contact power transmission and communication system power transmission and communication according to the present invention. It is the voltage waveform of both ends of the coil 1 and communication data. In the state where power transmission / reception and communication are performed, the first coil 1 includes a capacitor 2 and a capacitor 4 to form a voltage resonance circuit, and the power switching element 5 is switched at the resonance frequency.

図1、図2に示すように、第1のコイル1の両端電圧波形に通信信号を重畳するために、通信データの“0”及び“1”に対応してLoadスイッチ14をON/OFFさせる。Loadスイッチ14はGND電位に対しショート及びオープンを繰り返し行う動作である。通信データが“0”、すなわちLoadスイッチ14がオープンの場合、電力送信の共振回路は第1のコイル1、コンデンサ2及びコンデンサ4で構成される。   As shown in FIG. 1 and FIG. 2, in order to superimpose a communication signal on the voltage waveform across the first coil 1, the load switch 14 is turned on / off corresponding to “0” and “1” of the communication data. . The load switch 14 is an operation of repeatedly shorting and opening the GND potential. When the communication data is “0”, that is, when the load switch 14 is open, the power transmission resonance circuit includes the first coil 1, the capacitor 2, and the capacitor 4.

一方、通信データが“1”すなわちLoadスイッチ14がショートの場合、電力送信回路の共振回路は第1のコイル1及びコンデンサ4で構成される。   On the other hand, when the communication data is “1”, that is, when the load switch 14 is short, the resonance circuit of the power transmission circuit includes the first coil 1 and the capacitor 4.

通信データ“0”の場合と“1”で共振回路が異なり、結果それぞれの共振周波数が異なる為、図2に示すように通信データ“0”及び“1”において、第1のコイル1の両端電圧に差が生じる。結果、通信データに応じ振幅を変える振幅変調を行っている。   Since the resonance circuit differs between the case of communication data “0” and “1” and the resonance frequency of each result is different, both ends of the first coil 1 in communication data “0” and “1” as shown in FIG. There is a difference in voltage. As a result, amplitude modulation is performed to change the amplitude according to the communication data.

非接触電力伝送を継続して行う場合は、データ通信が終了しても引き続き電力のスイッチング回路12を動作させれば、電力伝送が継続される。   When non-contact power transmission is continuously performed, power transmission is continued if the power switching circuit 12 is continuously operated even after the data communication is completed.

図3は、本発明の非接触電力伝送及び通信システムの通信のみを実施する際の通信データ波形及び通信変調波形を示す図であり、通信のみを行っている場合の第1のコイル1の両端電圧波形及び通信データである。非接触電力送信と通信を同時に行っている場合と同様に、第1のコイル1はコンデンサ2及びコンデンサ4で電圧共振回路が構成され、その共振周波数で電力スイッチング素子5をスイッチングさせている。   FIG. 3 is a diagram showing a communication data waveform and a communication modulation waveform when only contactless power transmission and communication of the communication system of the present invention are performed, and both ends of the first coil 1 when only communication is performed. It is a voltage waveform and communication data. As in the case of performing contactless power transmission and communication simultaneously, the first coil 1 includes a capacitor 2 and a capacitor 4 to form a voltage resonance circuit, and the power switching element 5 is switched at the resonance frequency.

第1のコイル1の両端電圧波形に通信信号を重畳するために、非接触電力送信と通信を同時に行っている場合と同様に、通信データの“0”及び“1”に対応してLoadスイッチ14をON/OFFさせる。Loadスイッチ14はGND電位に対しショート及びオープンを繰り返し行う動作である。通信データが“0”、すなわちLoadスイッチ14がオープンの場合、電力送信の共振回路は第1のコイル1、コンデンサ2及びコンデンサ4で構成される。   In order to superimpose the communication signal on the voltage waveform across the first coil 1, the load switch corresponding to “0” and “1” of the communication data, as in the case where non-contact power transmission and communication are performed simultaneously. 14 is turned ON / OFF. The load switch 14 is an operation of repeatedly shorting and opening the GND potential. When the communication data is “0”, that is, when the load switch 14 is open, the power transmission resonance circuit includes the first coil 1, the capacitor 2, and the capacitor 4.

一方、通信データが“1”すなわちLoadスイッチ14がショートの場合、電力送信回路の共振回路は第1のコイル1及びコンデンサ4で構成される。   On the other hand, when the communication data is “1”, that is, when the load switch 14 is short, the resonance circuit of the power transmission circuit includes the first coil 1 and the capacitor 4.

通信データ“0”の場合と“1”で共振回路が異なり、結果それぞれの共振周波数が異なる為、図2に示すように通信データ“0”及び“1”において、第1のコイル1の両端電圧に差が生じる。その結果、通信データに応じ振幅を変える振幅変調を行っている。   Since the resonance circuit differs between the case of communication data “0” and “1” and the resonance frequency of each result is different, both ends of the first coil 1 in communication data “0” and “1” as shown in FIG. There is a difference in voltage. As a result, amplitude modulation is performed to change the amplitude according to the communication data.

通信のみの場合は、データ通信の終了と同時にスイッチング回路12の動作を停止することにより、第1のコイルの励磁を停止する。   In the case of communication only, the excitation of the first coil is stopped by stopping the operation of the switching circuit 12 simultaneously with the end of the data communication.

電力受信側装置32は、第1のコイル1の交流磁界を第2のコイル7で受け、電力受信回路と通信回路に分岐する。交流磁界にデータが変調されている場合は、そのデータを信号受信回路17及び信号制御回路18で復調し、通信データを処理すると同時に電力受信回路で電力を充電する。   The power receiving side device 32 receives the alternating magnetic field of the first coil 1 by the second coil 7 and branches to a power receiving circuit and a communication circuit. When the data is modulated by the AC magnetic field, the data is demodulated by the signal receiving circuit 17 and the signal control circuit 18, and the communication data is processed, and at the same time, the power is charged by the power receiving circuit.

交流磁界がデータ通信のみの場合は、そのデータを信号受信回路17及び信号制御回路18で復調する。電力受信回路は、DC/DCコンバータ21及び電池充電制御回路22が停止状態にすることにより二次電池24への充電を行わないようにする。   When the AC magnetic field is only for data communication, the data is demodulated by the signal receiving circuit 17 and the signal control circuit 18. The power receiving circuit prevents the secondary battery 24 from being charged when the DC / DC converter 21 and the battery charging control circuit 22 are stopped.

電力受信側装置32から電力送信側装置31へデータ通信を行う為には、図2及び図3と同様に第1のコイル1の両端電圧が電力受信側装置32からのデータによって変調を受ける構成にする必要があり、変調を行う手段としてLoadスイッチ16及びLoadスイッチ23を用いる。   In order to perform data communication from the power receiving side device 32 to the power transmitting side device 31, the voltage across the first coil 1 is modulated by the data from the power receiving side device 32 as in FIGS. 2 and 3. The load switch 16 and the load switch 23 are used as means for performing modulation.

非接触電力送信を行っている状態で、電力受信側装置32のLoadスイッチ16及びLoadスイッチ23をON/OFFさせる、すなわち電力受信側装置の負荷抵抗ないし負荷インピーダンスを変化させると、電力受信側装置の負荷変動と同期して電力送信側装置の非接触送信電力が変化し、第1のコイル1の両端電圧が変化する。   When the load switch 16 and the load switch 23 of the power receiving side device 32 are turned on / off in a state where contactless power transmission is performed, that is, when the load resistance or load impedance of the power receiving side device is changed, the power receiving side device The non-contact transmission power of the power transmission side device changes in synchronization with the load fluctuation of the first coil 1, and the voltage across the first coil 1 changes.

非接触電力送信を行っている状態でLoadスイッチ16のみをON/OFFさせる場合、Loadスイッチ16がGNDに対するショート及びオープンの場合は問題が無いが、非接触ICカードと同様に等価負荷抵抗を変化させる場合(例えば約1.8kΩ→約1kΩ)。電力受信側装置の等価抵抗に比べ(例えば5V/0.1A出力の場合、等価抵抗50Ω)桁違いに大きく、その結果電力受信側装置の負荷抵抗が殆ど変化せずに、データ変調を掛けることができない。   When only the load switch 16 is turned on / off in a state where non-contact power transmission is performed, there is no problem if the load switch 16 is shorted or opened to GND, but the equivalent load resistance is changed in the same manner as the non-contact IC card. (For example, about 1.8 kΩ to about 1 kΩ). Compared with the equivalent resistance of the power receiving side device (for example, equivalent resistance of 50Ω in the case of 5V / 0.1A output), the load resistance of the power receiving side device hardly changes, and as a result, data modulation is applied. I can't.

その為、電力受信回路の等価負荷抵抗も変える必要が有り、非接触電力送信を行っている状態で電力受信側装置32から電力送信側装置31へデータ通信を行う為にはLoadスイッチ23によって電力受信回路の等価負荷抵抗もLoadスイッチ16と同期して変える構成とする。   Therefore, it is also necessary to change the equivalent load resistance of the power receiving circuit, and in order to perform data communication from the power receiving side device 32 to the power transmitting side device 31 in a state where non-contact power transmission is performed, power is loaded by the load switch 23. The equivalent load resistance of the receiving circuit is also changed in synchronization with the load switch 16.

その結果、図2と同様に通信データと同期した振幅変調が生じ、電力送信側装置31の信号送受信制御回路15で復調及びデータ処理を行うことにより、電力受信側装置32から電力送信側装置31へのデータ送信が可能となる。   As a result, amplitude modulation synchronized with the communication data occurs as in FIG. 2, and demodulation and data processing are performed by the signal transmission / reception control circuit 15 of the power transmission side device 31, so that the power transmission side device 32 performs power demodulation. Data transmission to can be performed.

データ通信のみの場合も同様で、電力送信側装置31からデータ通信が行われている期間中に電力受信側装置32のLoadスイッチ16及びLoadスイッチ23をON/OFFさせる、すなわち電力受信側装置の負荷抵抗ないし負荷インピーダンスを変化させることにより電力受信側装置32から電力送信側装置31へのデータ送信が可能となる。但し、データ通信のみの場合は電力受信を行っていない状態であり、すなわち電力受信回路の負荷抵抗が大きい状態の為、Loadスイッチ16のみ動作でもデータ通信は可能である。   The same applies to the case of data communication only, and the load switch 16 and the load switch 23 of the power reception side device 32 are turned on / off during the period in which the data transmission from the power transmission side device 31 is performed. By changing the load resistance or load impedance, data transmission from the power reception side device 32 to the power transmission side device 31 becomes possible. However, in the case of only data communication, power reception is not performed, that is, since the load resistance of the power reception circuit is large, data communication is possible even when only the load switch 16 is operated.

通信するデータの内容であるが、非接触電力伝送を安定して動作させるための情報、例えば電力受信側装置の充電状態や充電状況は勿論であるが、この構成の場合は非接触電力伝送を行いながら非接触ICカード等の情報をやり取りすることも可能である。   The content of data to be communicated is information for stable operation of non-contact power transmission, for example, the charging state and charging status of the power receiving side device. It is also possible to exchange information such as a non-contact IC card while performing it.

又、本発明のシステムにおいては、データ通信を行っている最中も第1のコイル1から第2のコイル7への非接触電力伝送が可能であり、電力受信側装置32の二次電池24の充電時間を、データ通信と電力伝送を時分割で行う方法に比べ短縮することが可能である。   In the system of the present invention, non-contact power transmission from the first coil 1 to the second coil 7 is possible even during data communication, and the secondary battery 24 of the power receiving side device 32 is capable of transmitting data. It is possible to shorten the charging time compared to a method in which data communication and power transmission are performed in a time-sharing manner.

なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。   The embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

以上においては、本発明を非接触電力伝送と二次電池を有する携帯端末とから構成されるシステムに適用した実施の形態について説明したが、本発明は、磁界を発生するコイルを備えたリーダライタ機能を有する通信装置と、磁界を電流に変換するコイルと充電可能なバッテリとを備えたデジタルカメラや携帯型音楽プレーヤなどの通信端末または非接触ICカードとから構成される通信システムなどに適用することができる。   In the above description, the embodiment in which the present invention is applied to a system including a non-contact power transmission and a portable terminal having a secondary battery has been described. However, the present invention is not limited to a reader / writer provided with a coil that generates a magnetic field. The present invention is applied to a communication system including a communication device having a function, a communication terminal such as a digital camera or a portable music player, or a contactless IC card, which includes a coil that converts a magnetic field into a current and a rechargeable battery. be able to.

1 第1のコイル
2、4 コンデンサ
3 インダクタ
5 電力スイッチング素子
6 電力送信側電源
7 第2のコイル
8 通信受信回路用直列抵抗
9 通信受信回路用並列コンデンサ
10 整流回路用並列コンデンサ
11 整流回路用平滑コンデンサ
12 スイッチング回路
13 電力制御回路
14 (電力送信側信号送信変調用)Loadスイッチ
15 信号送受信制御回路
16 (電力受信側信号送信変調用)Loadスイッチ
17 信号受信回路
18 信号制御回路
19 信号変調負荷抵抗制御回路
20 整流回路
21 DC/DCコンバータ
22 電池充電制御回路
23 (電力充電回路負荷抵抗制御用)Loadスイッチ
24 二次電池
31 電力送信側装置
32 電力受信側装置
DESCRIPTION OF SYMBOLS 1 1st coil 2, 4 Capacitor 3 Inductor 5 Power switching element 6 Power transmission side power supply 7 Second coil 8 Serial resistor for communication receiving circuit 9 Parallel capacitor for communication receiving circuit 10 Parallel capacitor for rectifying circuit 11 Smoothing for rectifying circuit Capacitor 12 Switching circuit 13 Power control circuit 14 (For power transmission side signal transmission modulation) Load switch 15 Signal transmission / reception control circuit 16 (For power reception side signal transmission modulation) Load switch 17 Signal reception circuit 18 Signal control circuit 19 Signal modulation load resistance Control circuit 20 Rectifier circuit 21 DC / DC converter 22 Battery charge control circuit 23 (for power charging circuit load resistance control) Load switch 24 Secondary battery 31 Power transmission side device 32 Power reception side device

Claims (6)

分離可能な交流磁界を発生させる第1のコイル及び交流磁界を受ける第2のコイルを備え、前記第1のコイルと前記第2のコイルは磁界を介して互いに電磁結合しており、前記第1のコイルが前記第2のコイルへの非接触電力送信及びデータ通信を同一交流周波数で行う電力送信・通信装置と、前記第2のコイルが前記第1のコイルからの非接触電力受信及びデータ通信を同一交流周波数で行う電力受信・通信装置とからなり、前記電力受信・通信装置は、受信電力情報及び非接触ICカード情報の送信を制御する第2の通信制御手段を備え、前記電力送信・通信装置は、前記第2のコイルから送信される受信電力情報に対し、前記第1のコイルの両端電圧に差を生じさせることにより、前記第1のコイルから送信る非接触電力を制御するとともに、前記非接触ICカード情報の通信を制御する第1の通信制御手段とを備え、さらに前記第1のコイルの両端電圧振幅を送信データのデジタル信号に同期して変化させるスイッチを備え、前記スイッチをON/OFFすることにより、前記第1のコイルの両端に接続された電力スイッチング素子の導通を前記デジタル信号に同期させ、前記第1のコイルのインピーダンスを変化させ、前記第1のコイルの両端電圧振幅を変化させるよう構成したことを特徴とする非接触電力伝送及び通信システム。 A first coil for generating a separable alternating magnetic field and a second coil for receiving the alternating magnetic field, wherein the first coil and the second coil are electromagnetically coupled to each other via the magnetic field; A power transmission / communication device that performs non-contact power transmission and data communication to the second coil at the same AC frequency, and non-contact power reception and data communication from the first coil by the second coil. A power receiving / communication device that performs transmission at the same AC frequency, and the power receiving / communication device includes a second communication control unit that controls transmission of received power information and contactless IC card information. communication device, to receive power information transmitted from said second coil, by generating a difference in voltage across said first coil, and controls the non-contact power that sends from the first coil Both a switch to the a first communication control means for controlling the communication of the non-contact IC card information, is changed further in synchronism with the voltage across amplitude of said first coil into a digital signal of the transmission data, wherein By turning the switch ON / OFF, the conduction of the power switching element connected to both ends of the first coil is synchronized with the digital signal, the impedance of the first coil is changed, and the first coil A non-contact power transmission and communication system characterized in that the voltage amplitude at both ends is changed . 前記電力受信・通信装置は、前記第のコイルの両端電圧振幅を、前記電力受信・通信装置からの送信データに同期して変化させる複数のスイッチを有することを特徴とする請求項1記載の非接触電力伝送及び通信システム。 Wherein the power receiver and communication device according to claim 1, characterized in that to have a plurality of switches for the voltage across amplitude of said first coil, it is changed in synchronization with the transmission data from the power receiving and communication device serial mounting non-contact power transmission and communication systems. 前記複数のスイッチをON/OFFすることにより前記電力受信・通信装置抵抗又はインピーダンスの変化による負荷変動に同期させて、前記のコイルの両端電圧振幅を変化させることを特徴とする請求項記載の非接触電力伝送及び通信システム。 By ON / OFF the plurality of switches, wherein said in synchronism with the load variation caused by the resistance or impedance of the change in power reception and communication device, and wherein the changing the voltage across amplitude of the first coil Item 3. A contactless power transmission and communication system according to Item 2 . 前記複数のスイッチは、送信する信号の変調を行うスイッチと、前記送信する信号の変調を行うスイッチに同期させる、電力を充電する回路における抵抗制御を行うスイッチとで構成されたことを特徴とする請求項2又は3記載の非接触電力伝送及び通信システム。 The plurality of switches are configured by a switch that modulates a signal to be transmitted and a switch that performs resistance control in a circuit that charges power and is synchronized with the switch that modulates the signal to be transmitted. The contactless power transmission and communication system according to claim 2 or 3 . 請求項1〜のいずれかに記載の非接触電力伝送及び通信システムに用いられ、前記第1の通信制御手段を備えたことを特徴とする電力送信・通信装置。 Non-contact power transmission and used in a communication system, power transmission and communication apparatus characterized by comprising said first communication control means according to any one of claims 1-4. 請求項1〜のいずれかに記載の非接触電力伝送及び通信システムに用いられ、前記第2の通信制御手段を備えたことを特徴とする電力受信・通信装置。 Non-contact power transmission and used in communication systems, power reception and communication apparatus characterized by comprising said second communication control means according to any one of claims 1-4.
JP2009137102A 2009-06-08 2009-06-08 Contactless power transmission and communication system Expired - Fee Related JP5431033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137102A JP5431033B2 (en) 2009-06-08 2009-06-08 Contactless power transmission and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137102A JP5431033B2 (en) 2009-06-08 2009-06-08 Contactless power transmission and communication system

Publications (2)

Publication Number Publication Date
JP2010284058A JP2010284058A (en) 2010-12-16
JP5431033B2 true JP5431033B2 (en) 2014-03-05

Family

ID=43540286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137102A Expired - Fee Related JP5431033B2 (en) 2009-06-08 2009-06-08 Contactless power transmission and communication system

Country Status (1)

Country Link
JP (1) JP5431033B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809811B1 (en) 2013-07-19 2017-12-15 인텔 코포레이션 Apparatus, system and method of multiple device wireless power transfer
US10008874B2 (en) 2013-07-19 2018-06-26 Intel Corporation Apparatus, system and method of wireless power transfer
US11757490B2 (en) 2018-08-02 2023-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V Data transmission from a user terminal to another apparatus
US12096167B2 (en) 2019-01-30 2024-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Bidirectional configuration of sensor nodes with mobile phone with no extension

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677875B2 (en) * 2011-03-16 2015-02-25 日立マクセル株式会社 Non-contact power transmission system
KR101203735B1 (en) 2011-04-08 2012-11-22 재단법인 포항산업과학연구원 Transmitter and receiver of data and power
KR101305713B1 (en) 2011-07-27 2013-09-09 엘지이노텍 주식회사 A wireless power transmission device, receiving device and trnasmission method
JP5780894B2 (en) 2011-09-16 2015-09-16 株式会社半導体エネルギー研究所 Contactless power supply system
JP5276755B1 (en) * 2011-09-22 2013-08-28 Necトーキン株式会社 Power transmission device, power receiving device, non-contact power transmission system, and control method of transmitted power in non-contact power transmission system
US9246357B2 (en) 2011-12-07 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Contactless power feeding system
KR101259509B1 (en) * 2011-12-09 2013-05-06 전자부품연구원 Wireless power transmission apparatus and wireless chargeable device performing wireless communication and charging with single coil
US9847675B2 (en) 2011-12-16 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and power feeding system
JP5986404B2 (en) * 2012-03-21 2016-09-06 アイホン株式会社 Intercom system
US9641223B2 (en) 2012-03-26 2017-05-02 Semiconductor Enegry Laboratory Co., Ltd. Power receiving device and power feeding system
JP2015220816A (en) * 2014-05-15 2015-12-07 Necトーキン株式会社 Non-contact signaling device, and non-contact power reception device
WO2016167123A1 (en) 2015-04-15 2016-10-20 ソニー株式会社 Power reception device, power reception method and power supply system
JP6550914B2 (en) * 2015-05-13 2019-07-31 セイコーエプソン株式会社 Control device, electronic device and non-contact power transmission system
JP6540216B2 (en) 2015-05-13 2019-07-10 セイコーエプソン株式会社 Control device, electronic device and contactless power transmission system
JP6609986B2 (en) 2015-05-13 2019-11-27 セイコーエプソン株式会社 Control device, electronic device and non-contact power transmission system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696300A (en) * 1992-09-14 1994-04-08 Masuo Ikeuchi Non-contact type ic card by electromagnetic induction coupling and reader/writer
JP4649430B2 (en) * 2007-03-20 2011-03-09 セイコーエプソン株式会社 Non-contact power transmission device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809811B1 (en) 2013-07-19 2017-12-15 인텔 코포레이션 Apparatus, system and method of multiple device wireless power transfer
US10008874B2 (en) 2013-07-19 2018-06-26 Intel Corporation Apparatus, system and method of wireless power transfer
US10020684B2 (en) 2013-07-19 2018-07-10 Intel Corporation Apparatus, system and method of multiple device wireless power transfer
US11757490B2 (en) 2018-08-02 2023-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V Data transmission from a user terminal to another apparatus
US12096167B2 (en) 2019-01-30 2024-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Bidirectional configuration of sensor nodes with mobile phone with no extension

Also Published As

Publication number Publication date
JP2010284058A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5431033B2 (en) Contactless power transmission and communication system
JP5551465B2 (en) Contactless power transmission and communication system
CN103580300B (en) The method of receiver and the operation of execution receiver
CN1920847B (en) Inductive coupling reader comprising means for extracting a power supply voltage
CN104967194B (en) Radio bearers are modulated
EP3158622B1 (en) Wireless power transfer method, apparatus and system
US10340739B2 (en) Power receiving device, power transmission device, and power feeding system
US8129942B2 (en) Contactless charging method for charging battery
CN101796703B (en) Intelligent device and power source interaction
CN103178622A (en) Apparatus for detecting signal and wireless power transmitting apparatus having the same
CN105379053B (en) The system and method for power capability for extended wireless charger
EP3288149A1 (en) Systems and methods for enabling a universal back-cover wireless charging solution
CN109417309A (en) The wireless charging system of in-band communications
EP3479457B1 (en) Apparatus and method for wireless power charging of subsequent receiver
CN106357011A (en) Wireless power transmitter
CN104067477A (en) Wireless power control system
JP2010288431A5 (en) Battery built-in device and charging stand, battery built-in device, circuit, and control circuit
CN101944780A (en) Noncontact power receiving apparatus and method of reseptance thereof and noncontact electric power supply system
WO2013031589A1 (en) Battery charger, and charging station
JP2013198214A (en) Power feeder, power receiver, power feeding method, power receiving method, and program
CN108574343A (en) Non-contact electric power transmitting device and contactless power transmission device
JP5750960B2 (en) Detection apparatus and detection method
EP3664253A1 (en) Device and method for wireless power transfer
CN105518971A (en) Position deviation detection device and electronic apparatus
CN105122589A (en) Wireless power transfer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5431033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees