JP5430021B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP5430021B2
JP5430021B2 JP2011261150A JP2011261150A JP5430021B2 JP 5430021 B2 JP5430021 B2 JP 5430021B2 JP 2011261150 A JP2011261150 A JP 2011261150A JP 2011261150 A JP2011261150 A JP 2011261150A JP 5430021 B2 JP5430021 B2 JP 5430021B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011261150A
Other languages
Japanese (ja)
Other versions
JP2012043814A (en
Inventor
英郎 坂田
房次 喜多
久美子 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2011261150A priority Critical patent/JP5430021B2/en
Publication of JP2012043814A publication Critical patent/JP2012043814A/en
Application granted granted Critical
Publication of JP5430021B2 publication Critical patent/JP5430021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高容量で、充放電サイクル特性に優れ、安全性などの信頼性の高い非水二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery having high capacity, excellent charge / discharge cycle characteristics, and high reliability such as safety.

近年、二次電池は、パソコンや携帯電話などの電源として、あるいは電気自動車や電力貯蔵用の電源として、なくてはならない重要な構成要素の一つとなっている。   2. Description of the Related Art In recent years, secondary batteries have become one of the essential components that are indispensable as power sources for personal computers and mobile phones, and as power sources for electric vehicles and power storage.

特に、携帯型コンピュータや携帯情報端末(Personal Digital Assistant)といった移動体通信用途において、さらなる小型化、軽量化が要求されている。しかし、液晶表示パネルのバックライトや描画制御によって消費される電力が高いことや、二次電池の容量が現状ではまだ不充分であることなどから、システムのコンパクト化、軽量化が難しい状況にある。特にパソコンにおいては、DVD(デジタルバーサタイルディスク)搭載などによる多機能化が進み、消費電力が増加する傾向にある。そのため、電力容量、特に単電池の電圧が3.3V以上における放電容量の増大が急務となっている。   In particular, in mobile communication applications such as portable computers and personal digital assistants, further miniaturization and weight reduction are required. However, it is difficult to make the system compact and lightweight because the power consumed by the backlight and drawing control of the liquid crystal display panel is high and the capacity of the secondary battery is still insufficient. . Particularly in personal computers, power consumption tends to increase due to multi-functionalization due to DVD (digital versatile disk) mounting. Therefore, there is an urgent need to increase the power capacity, particularly the discharge capacity when the voltage of the unit cell is 3.3 V or higher.

更に、地球環境問題の高まりとともに、排ガスや騒音を出さない電気自動車が関心を集めている。最近ではブレーキ時の回生エネルギーを電池に蓄えて有効利用したり、あるいはスタート時に電池に蓄えた電気エネルギーを使用して効率を挙げるなどのシステムを採用したパラレルハイブリッド電気自動車(HEV)に人気が集まっている。しかし、現状の電池では電力容量が低いために、電池の本数を多くして電圧を稼がなければならず、そのため、車内のスペースが狭くなったり、車体の安定性が悪くなるなどの問題が生じている。   Furthermore, with the growing global environmental problems, electric vehicles that emit no exhaust gas or noise are attracting attention. Recently, parallel hybrid electric vehicles (HEVs) have been gaining popularity because they use a system in which regenerative energy at the time of braking is stored in a battery for effective use, or electric energy stored in the battery is used at the start to increase efficiency. ing. However, because the current battery has a low power capacity, it is necessary to increase the number of batteries to increase the voltage, which causes problems such as a narrow space in the vehicle and poor vehicle stability. ing.

二次電池の中でも、非水電解液を用いたリチウム二次電池は、電圧が高く、かつ軽量で、高エネルギー密度が期待できることから注目を集めている。特に特許文献1で開示されているLiCoOに代表されるリチウム含有遷移金属酸化物を正極活物質として、金属リチウムを負極活物質として用いたリチウム二次電池では、4V以上の起電力を有することから、高エネルギー密度の達成が期待できる。 Among secondary batteries, a lithium secondary battery using a non-aqueous electrolyte is attracting attention because of its high voltage, light weight, and high energy density. In particular, a lithium secondary battery using a lithium-containing transition metal oxide typified by LiCoO 2 disclosed in Patent Document 1 as a positive electrode active material and metal lithium as a negative electrode active material has an electromotive force of 4 V or more. Therefore, high energy density can be expected.

しかし、現在のLiCoOを正極活物質として、負極活物質として黒鉛などの炭素材料を用いたLiCoO系二次電池では、その充電終止電圧は通常4.2V以下であり、この充電条件ではLiCoOの理論容量の約6割の充電量に留まっている。充電終止電圧を4.2Vよりも高くすることにより電力容量の増加を図ることは可能であるが、充電量の増加に伴い、LiCoOの結晶構造が崩壊して充放電サイクル寿命が短くなったり、LiCoOの結晶構造が安定性を欠くようになるため、熱的安定性が低下するなどの問題を生じることになる。 However, the current LiCoO 2 as the positive electrode active material, a LiCoO 2 based secondary battery using a carbon material such as graphite as the negative electrode active material, the charge voltage is usually 4.2V or less, in the charging condition LiCoO The charge amount is about 60% of the theoretical capacity of 2 . Although it is possible to increase the power capacity by making the end-of-charge voltage higher than 4.2 V, as the amount of charge increases, the LiCoO 2 crystal structure collapses and the charge / discharge cycle life is shortened. Since the crystal structure of LiCoO 2 becomes less stable, there arises a problem that the thermal stability is lowered.

この問題を解決するためにLiCoOに異種金属元素を添加する試みが多く行われている(特許文献2〜5)。 In order to solve this problem, many attempts have been made to add dissimilar metal elements to LiCoO 2 (Patent Documents 2 to 5).

また、電池を4.2V以上の高電圧領域で用いる試みも多く行われている(特許文献6〜8)。   Many attempts have been made to use the battery in a high voltage region of 4.2 V or more (Patent Documents 6 to 8).

特開昭55−136131号公報JP-A-55-136131 特開平4−171659号公報Japanese Patent Laid-Open No. 4-171659 特開平3−201368号公報Japanese Patent Laid-Open No. 3-201368 特開平7−176202号公報Japanese Unexamined Patent Publication No. 7-176202 特開2001−167763号公報Japanese Patent Laid-Open No. 2001-167663 特開2004−296098号公報JP 2004-296098 A 特開2001−176511号公報JP 2001-176511 A 特開2002−270238号公報JP 2002-270238 A

今後、二次電池に対しては、これまで以上の高容量化に加えて、従来以上の高い信頼性が要求される。通常、電極中の活物質含有比率を増加させたり、電極密度、特に正極合剤層密度を高めることで、電池容量を大きく改善することができるが、一方で、このような高容量化方法では電池の貯蔵特性などの信頼性が徐々に低下する問題がある。   In the future, secondary batteries will be required to have higher reliability than ever before, in addition to higher capacities. Usually, the battery capacity can be greatly improved by increasing the active material content ratio in the electrode or by increasing the electrode density, particularly the positive electrode mixture layer density. There is a problem that reliability such as storage characteristics of a battery gradually decreases.

従って、高電力容量化の要求に応えるためには、LiCoOよりも高い起電力(電圧領域)でも、安全にかつ可逆性良く充放電を行うことができる結晶構造の安定な材料を用い、かつ、正極合剤層の高密度化を行っても、貯蔵時における電池膨れが生じないなどの信頼性を満足する電池が望まれている。 Therefore, in order to meet the demand for higher power capacity, a stable material with a crystal structure that can be charged and discharged safely and with good reversibility even with an electromotive force (voltage range) higher than that of LiCoO 2 , and Thus, there is a demand for a battery that satisfies the reliability such that the battery does not swell during storage even when the density of the positive electrode mixture layer is increased.

また、従来のLiCoO正極活物質電池では、放電終止電圧を3.2Vよりも高くすると、放電末期における電位低下が大きいため完全放電をすることができず、充電に対する放電電気量効率が著しく低下する。そして、完全放電ができないために、LiCoOの結晶構造が崩壊しやすくなり、充放電サイクル寿命が短くなる。この現象は上記の高電圧領域ではより顕著に現れる。 In addition, in the conventional LiCoO 2 positive electrode active material battery, when the discharge end voltage is higher than 3.2 V, the potential drop at the end of discharge is large, so that complete discharge cannot be performed, and the discharge electricity efficiency with respect to charging is significantly reduced. To do. And since complete discharge cannot be performed, the crystal structure of LiCoO 2 tends to collapse, and the charge / discharge cycle life is shortened. This phenomenon appears more prominently in the above high voltage region.

更に、満充電時の終止電圧を4.2V以上にする充電条件では、正極活物質の結晶構造の崩壊による充放電サイクル寿命や熱的安定性の低下以外にも、正極活物質の活性点の増加により、電解液(溶媒)が酸化分解して正極表面に不働態皮膜を形成し、内部抵抗が増加して負荷特性が悪くなる場合がある。   Furthermore, under the charging conditions where the final voltage at full charge is 4.2 V or more, in addition to the decrease in charge / discharge cycle life and thermal stability due to the collapse of the crystal structure of the positive electrode active material, the active point of the positive electrode active material Due to the increase, the electrolytic solution (solvent) may be oxidatively decomposed to form a passive film on the surface of the positive electrode, resulting in an increase in internal resistance and poor load characteristics.

本発明は上記事情に鑑みてなされたものであり、その目的は、高容量で、充放電サイクル特性および貯蔵特性に優れた非水二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous secondary battery having a high capacity and excellent charge / discharge cycle characteristics and storage characteristics.

上記目的を達成し得た本発明の非水二次電池は、正極合剤層を有する正極、負極および非水電解質を備えた非水二次電池であって、上記正極は、活物質として、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素を含有するリチウム含有遷移金属酸化物を有しており、上記正極合剤層は、密度が3.5g/cm以上であり、上記非水電解質が、分子内にニトリル基を2以上有する化合物を含有していることを特徴とするものである。 The non-aqueous secondary battery of the present invention capable of achieving the above object is a non-aqueous secondary battery comprising a positive electrode having a positive electrode mixture layer, a negative electrode and a non-aqueous electrolyte, wherein the positive electrode is used as an active material, It has a lithium-containing transition metal oxide containing at least one metal element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al and Sn, and the positive electrode mixture layer has a density It is 3.5 g / cm 3 or more, and the nonaqueous electrolyte contains a compound having two or more nitrile groups in the molecule.

本発明の非水二次電池では、正極に係る正極合剤層の密度を特定値以上として、正極合剤層における正極活物質の充填量を高めると共に、高電圧での充電状態においても安定性の高い、特定の金属元素を含有するリチウム含有遷移金属酸化物を正極活物質に使用することで、高電圧での充電を可能としており、これらによって高容量化を達成している。   In the non-aqueous secondary battery of the present invention, the density of the positive electrode mixture layer related to the positive electrode is set to a specific value or more to increase the filling amount of the positive electrode active material in the positive electrode mixture layer and to be stable even in a charged state at a high voltage. High-voltage lithium-containing transition metal oxides containing specific metal elements are used as the positive electrode active material, thereby enabling charging at a high voltage, thereby achieving high capacity.

また、上記の通り、本発明の非水二次電池に係る正極活物質は、優れた安定性を有しているため、電池の充放電を繰り返しても正極活物質の崩壊などが抑制される。これにより、本発明の非水二次電池では、優れた充放電サイクル特性を確保している。   In addition, as described above, the positive electrode active material according to the non-aqueous secondary battery of the present invention has excellent stability, so that the collapse of the positive electrode active material is suppressed even when the battery is repeatedly charged and discharged. . Thereby, in the non-aqueous secondary battery of this invention, the outstanding charge / discharge cycle characteristic is ensured.

更に、本発明の非水二次電池は、非水電解質に、分子内にニトリル基を2以上有する化合物を含有しているが、かかる化合物は、正極の表面に作用して正極と非水電解質との直接の接触を防止する機能を有しており、これにより正極と非水電解質との反応を抑制して、該反応に伴う電池内でのガス発生を抑えることができる。よって、本発明の非水二次電池では、上記のニトリル化合物による正極と非水電解質との反応抑制作用と、安定性の高い正極活物質との使用による作用とを相乗的に機能させることで、充電状態の電池を例えば高温で貯蔵した場合の電池膨れを抑え、その貯蔵特性を高めている。   Furthermore, the non-aqueous secondary battery of the present invention contains a compound having two or more nitrile groups in the molecule in the non-aqueous electrolyte. Such a compound acts on the surface of the positive electrode to act as the positive electrode and the non-aqueous electrolyte. It is possible to suppress the reaction between the positive electrode and the non-aqueous electrolyte, thereby suppressing the generation of gas in the battery due to the reaction. Therefore, in the non-aqueous secondary battery of the present invention, the above-mentioned nitrile compound can function synergistically to suppress the reaction between the positive electrode and the non-aqueous electrolyte and to use the highly stable positive electrode active material. For example, when a battery in a charged state is stored at a high temperature, swelling of the battery is suppressed, and its storage characteristics are improved.

本発明によれば、高容量で、充放電サイクル特性および貯蔵特性に優れた非水二次電池を提供できる。本発明の非水二次電池は、例えば、正極電位がLi(リチウム)基準電位で4.35〜4.6Vとなるような高電圧充電が可能であり、より高出力が要求される用途に適用できる。   According to the present invention, it is possible to provide a non-aqueous secondary battery having a high capacity and excellent charge / discharge cycle characteristics and storage characteristics. The non-aqueous secondary battery of the present invention can be charged at a high voltage such that the positive electrode potential is 4.35 to 4.6 V at the Li (lithium) reference potential, and is used for applications that require higher output. Applicable.

本発明の非水二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically an example of the non-aqueous secondary battery of this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. 図1に示す非水二次電池の斜視図である。It is a perspective view of the non-aqueous secondary battery shown in FIG.

本発明の非水二次電池は、例えば、正極合剤層を有する正極と負極とが、セパレータを介して重ねられた積層構造の電極体や、これを更に渦巻状に巻回した巻回構造の電極体などを、非水電解質と共に外装体内に封入した構成を有するものである。   The non-aqueous secondary battery of the present invention includes, for example, an electrode body having a laminated structure in which a positive electrode and a negative electrode having a positive electrode mixture layer are stacked with a separator interposed therebetween, and a winding structure in which this is further wound in a spiral shape The electrode body and the like are sealed together with the non-aqueous electrolyte in the exterior body.

本発明の非水二次電池において、非水電解質としては、例えば、電気特性や取り扱い易さから、有機溶媒などの非水系溶媒にリチウム塩などの電解質塩を溶解させた非水溶媒系の電解液が好ましく用いられるが、ポリマー電解質、ゲル電解質であっても問題なく用いることができる。   In the non-aqueous secondary battery of the present invention, as the non-aqueous electrolyte, for example, non-aqueous solvent-based electrolysis in which an electrolyte salt such as a lithium salt is dissolved in a non-aqueous solvent such as an organic solvent from the viewpoint of electrical characteristics and ease of handling. A liquid is preferably used, but even a polymer electrolyte or gel electrolyte can be used without any problem.

非水電解液の溶媒としては特に限定されないが、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピオンカーボネートなどの鎖状エステル;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの誘電率の高い環状エステル;鎖状エステルと環状エステルの混合溶媒;などが挙げられ、鎖状エステルを主溶媒とした環状エステルとの混合溶媒が特に適している。   Although it does not specifically limit as a solvent of nonaqueous electrolyte solution, For example, dielectric constants, such as chain esters, such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propion carbonate; ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate High cyclic ester; mixed solvent of chain ester and cyclic ester; and the like, and a mixed solvent with a cyclic ester having a chain ester as a main solvent is particularly suitable.

また、溶媒としては、上記エステル以外にも、例えば、リン酸トリメチルなどの鎖状リン酸トリエステル、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどのエーテル類、ニトリル類、ジニトリル類、イソシアネート類、ハロゲン含有溶媒なども用いることができる。さらに、アミン系またはイミド系有機溶媒やスルホランなどのイオウ系有機溶媒なども用いることができる。   In addition to the above esters, examples of the solvent include chain phosphate triesters such as trimethyl phosphate, 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether, and the like. These ethers, nitriles, dinitriles, isocyanates, halogen-containing solvents, and the like can also be used. Further, amine-based or imide-based organic solvents, sulfur-based organic solvents such as sulfolane, and the like can also be used.

非水電解液の調製にあたって溶媒に溶解させる電解質塩としては、例えば、LiClO 、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO)、LiN(RfSO)(Rf′SO)、 LiC(RfSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfとRf′はフルオロアルキル基]などが挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。上記の電解質塩の中でも、炭素数2以上の含フッ素有機リチウム塩が特に好ましい。上記含フッ素有機リチウム塩はアニオン性が大きく、かつイオン分離しやすいので上記溶媒に溶解し易いからである。非水電解液中における電解質塩の濃度は特に限定されないが、例えば、0.3mol/l以上、より好ましくは0.4mol/l以上であって、1.7mol/l以下、より好ましくは1.5mol/l以下であることが望ましい。 As the non-aqueous electrolyte electrolyte salt to be dissolved in a solvent In the preparation of, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (RfSO 2 ) (Rf′SO 2 ), LiC (RfSO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [ Here, Rf and Rf ′ are fluoroalkyl groups, etc., and these may be used alone or in combination of two or more. Among the above electrolyte salts, fluorine-containing organic lithium salts having 2 or more carbon atoms are particularly preferable. This is because the fluorine-containing organolithium salt is highly anionic and easily ion-separated, so that it is easily dissolved in the solvent. The concentration of the electrolyte salt in the nonaqueous electrolytic solution is not particularly limited, but is, for example, 0.3 mol / l or more, more preferably 0.4 mol / l or more, and 1.7 mol / l or less, more preferably 1. 5 mol / l or less is desirable.

なお、本発明に係る非水電解液(非水電解質)では、分子内にニトリル基を2以上有する化合物を含有させることが必要である。   In the nonaqueous electrolyte solution (nonaqueous electrolyte) according to the present invention, it is necessary to contain a compound having two or more nitrile groups in the molecule.

上記のニトリル化合物は、電池の充電中(特に初期充電中)に正極活物質の表面に表面保護皮膜を形成する機能を有しており、かかる表面保護皮膜によって、正極と非水電解質との直接の接触が抑制される。そのため、分子内にニトリル基を2以上有する化合物を含有する非水電解質を有する本発明の電池は、充電状態で、例えば85℃程度の高温下で貯蔵しても、上記の表面保護皮膜による正極と非水電解質との直接の接触を抑制する作用によって、正極と非水電解質との反応が抑制されるため、かかる反応による電池内でのガス発生を抑えることができる。電池内における正極と非水電解質との反応によって生じるガスは、電池の膨れの原因となり、正負極間の距離を広げてしまうなどして、電池特性の低下を引き起こすが、本発明の電池は、上記ガスによる貯蔵時の電池膨れの発生を抑えることが可能であり、優れた貯蔵特性を有するものとなる。   The nitrile compound has a function of forming a surface protective film on the surface of the positive electrode active material during battery charging (particularly during initial charging), and the surface protective film allows direct contact between the positive electrode and the nonaqueous electrolyte. Contact is suppressed. Therefore, the battery of the present invention having a non-aqueous electrolyte containing a compound having two or more nitrile groups in the molecule is a positive electrode made of the above surface protective film even when stored in a charged state, for example, at a high temperature of about 85 ° C. Since the reaction between the positive electrode and the non-aqueous electrolyte is suppressed by the action of suppressing the direct contact between the electrode and the non-aqueous electrolyte, gas generation in the battery due to such reaction can be suppressed. The gas generated by the reaction between the positive electrode and the non-aqueous electrolyte in the battery causes the battery to swell, causing the distance between the positive and negative electrodes to widen and causing a decrease in battery characteristics. Generation | occurrence | production of the battery swelling at the time of the storage by the said gas can be suppressed, and it has the outstanding storage characteristic.

分子内にニトリル基を2以上有する化合物としては、例えば、分子内にニトリル基を2つ有するジニトリル化合物、分子内にニトリル基を3つ有するトリニトリル化合物などが挙げられる。これらの中でも、上記の作用(正極活物質表面での表面保護皮膜形成による正極と非水電解質との反応抑制作用)がより良好である点で、ジニトリル化合物(すなわち、分子内にニトリル基を2つ有する化合物)が好ましく、一般式NC−R−CN(ただし、Rは炭素数1〜10の直鎖または分岐の炭化水素鎖)で表されるジニトリル化合物がより好ましい。また、上記一般式におけるRは、炭素数1〜10の直鎖状の、または分岐を有するアルキレン鎖であることが更に好ましい。   Examples of the compound having two or more nitrile groups in the molecule include a dinitrile compound having two nitrile groups in the molecule and a trinitrile compound having three nitrile groups in the molecule. Among these, a dinitrile compound (that is, a nitrile group having 2 nitrile groups in the molecule) is preferable in that the above-described action (reaction inhibiting action between the positive electrode and the nonaqueous electrolyte due to the formation of a surface protective film on the positive electrode active material surface) is better. A dinitrile compound represented by the general formula NC-R-CN (wherein R is a linear or branched hydrocarbon chain having 1 to 10 carbon atoms). R in the general formula is more preferably a linear or branched alkylene chain having 1 to 10 carbon atoms.

上記一般式で表されるジニトリル化合物の具体例としては、例えば、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、1,4−ジシアノヘプタン、1,5−ジシアノペンタン、1,6−ジシアノヘキサン、1,7−ジシアノヘプタン、2,6−ジシアノヘプタン、1,8−ジシアノオクタン、2,7−ジシアノオクタン、1,9−ジシアノノナン、2,8−ジシアノノナン、1,10−ジシアノデカン、1,6−ジシアノデカン、2,4−ジメチルグルタロニトリルなどが挙げられる。   Specific examples of the dinitrile compound represented by the above general formula include, for example, malononitrile, succinonitrile, glutaronitrile, adiponitrile, 1,4-dicyanoheptane, 1,5-dicyanopentane, 1,6-dicyanohexane, 1,7-dicyanoheptane, 2,6-dicyanoheptane, 1,8-dicyanooctane, 2,7-dicyanooctane, 1,9-dicyanononane, 2,8-dicyanononane, 1,10-dicyanodecane, 1,6 -Dicyanodecane, 2,4-dimethylglutaronitrile, etc. are mentioned.

分子内にニトリル基を2以上有する化合物を含有する非水電解液の調製方法については、特に制限はなく、例えば、上記例示の溶媒に、分子内にニトリル基を2以上有する化合物と上記例示の電解質塩とを、常法に従って溶解させればよい。   There are no particular restrictions on the method for preparing the non-aqueous electrolyte containing a compound having two or more nitrile groups in the molecule. For example, a compound having two or more nitrile groups in the molecule and a compound having the above examples in the above exemplified solvent. What is necessary is just to melt | dissolve electrolyte salt in accordance with a conventional method.

分子内にニトリル基を2以上有する化合物の添加量は、これらの化合物の添加による作用をより有効に発揮させる観点から、非水電解液全量中、好ましくは0.005質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上である。ただし、分子内にニトリル基を2以上有する化合物の添加量が多すぎると、電池の貯蔵特性は改善されるものの、充放電サイクル特性が低下する傾向にあるため、これらの化合物の添加量は、非水電解液全量中、好ましくは1質量%以下、より好ましくは0.75質量%以下、更に好ましくは0.5%質量以下である。   The amount of the compound having two or more nitrile groups in the molecule is preferably 0.005% by mass or more, more preferably in the total amount of the non-aqueous electrolyte, from the viewpoint of more effectively exerting the action of the addition of these compounds. It is 0.01 mass% or more, More preferably, it is 0.05 mass% or more. However, if the amount of the compound having two or more nitrile groups in the molecule is too large, the storage characteristics of the battery are improved, but the charge / discharge cycle characteristics tend to deteriorate. In the total amount of the non-aqueous electrolyte, it is preferably 1% by mass or less, more preferably 0.75% by mass or less, and still more preferably 0.5% by mass or less.

更に、非水電解液(非水電解質)には、分子内にニトリル基を2以上有する化合物以外の添加剤も含有させることができる。このような添加剤としては、非イオン性の芳香族化合物が挙げられる。具体的には、シクロヘキシルベンゼン、イソプロピルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、オクチルベンゼン、トルエン、キシレンなどのように芳香環にアルキル基が結合した化合物;フルオロベンゼン、ジフルオロベンゼン、トリフルオロベンゼン、クロロベンゼンなどのように芳香環にハロゲン基が結合した化合物;アニソール、フルオロアニソール、ジメトキシベンゼン、ジエトキシベンゼンなどのように芳香環にアルコキシ基が結合した化合物;フタル酸エステル(ジブチルフタレート、ジ-2−エチルヘキシルフタレートなど)、安息香酸エステルなどの芳香族カルボン酸エステル;メチルフェニルカーボネート、ブチルフェニルカーボネート、ジフェニルカーボネートなどのフェニル基を有する炭酸エステル;プロピオン酸フェニル;ビフェニル;などを例示することができる。中でも、芳香環にアルキル基が結合した化合物が好ましく、シクロヘキシルベンゼンが特に好ましく用いられる。   Furthermore, the non-aqueous electrolyte (non-aqueous electrolyte) can also contain additives other than the compound having two or more nitrile groups in the molecule. Such additives include nonionic aromatic compounds. Specifically, compounds in which an alkyl group is bonded to an aromatic ring such as cyclohexylbenzene, isopropylbenzene, t-butylbenzene, t-amylbenzene, octylbenzene, toluene, xylene; fluorobenzene, difluorobenzene, trifluorobenzene Compounds having a halogen group bonded to an aromatic ring, such as chlorobenzene; Compounds having an alkoxy group bonded to an aromatic ring, such as anisole, fluoroanisole, dimethoxybenzene, diethoxybenzene; phthalic acid ester (dibutyl phthalate, di- 2-ethylhexyl phthalate, etc.), aromatic carboxylic acid esters such as benzoic acid esters; carbonates having a phenyl group such as methyl phenyl carbonate, butyl phenyl carbonate, diphenyl carbonate; Examples include phenyl lopionate; biphenyl; and the like. Among them, a compound in which an alkyl group is bonded to an aromatic ring is preferable, and cyclohexylbenzene is particularly preferably used.

これらの芳香族化合物も、電池内において正極または負極の活物質表面に皮膜を形成することのできる化合物である。これらの芳香族化合物は1種のみを単独で用いてもよいが、2種以上を併用することにより優れた効果が発揮され、特に、芳香環にアルキル基が結合した化合物と、それより低い電位で酸化されるビフェニルなどの芳香族化合物とを併用することにより、電池の安全性向上において特に好ましい効果が得られる。   These aromatic compounds are also compounds that can form a film on the surface of the active material of the positive electrode or the negative electrode in the battery. These aromatic compounds may be used alone or in combination, but when two or more of these aromatic compounds are used in combination, an excellent effect is exhibited. Particularly, a compound in which an alkyl group is bonded to an aromatic ring, and a lower potential than that. By using in combination with an aromatic compound such as biphenyl that is oxidized at a particularly favorable effect in improving the safety of the battery.

非水電解液に芳香族化合物を含有させる方法としては、特に限定はされないが、電池を組み立てる前に予め非水電解液に添加しておく方法が一般的である。   A method for adding an aromatic compound to the nonaqueous electrolytic solution is not particularly limited, but a method of adding the aromatic compound to the nonaqueous electrolytic solution in advance before assembling the battery is common.

非水電解液中の上記芳香族化合物の好適含有量としては、例えば、安全性の点からは4質量%以上であり、負荷特性の点からは10質量%以下である。2種以上の芳香族化合物を併用する場合、その総量が上記範囲内であればよく、特に、芳香環にアルキル基が結合した化合物と、それより低い電位で酸化される化合物とを併用する場合は、芳香環にアルキル基が結合した化合物の非水電解液における含有量は、0.5質量%以上、より好ましくは2質量%以上であって、8質量%以下、より好ましくは5質量%以下であることが望ましい。他方、上述した芳香環にアルキル基が結合した化合物より低い電位で酸化される化合物の非水電解液における含有量は、0.1質量%以上、より好ましくは0.2質量%以上であって、1質量%以下、より好ましくは0.5質量%以下であることが望ましい。   The preferred content of the aromatic compound in the non-aqueous electrolyte is, for example, 4% by mass or more from the viewpoint of safety and 10% by mass or less from the viewpoint of load characteristics. When two or more aromatic compounds are used in combination, the total amount should be within the above range, particularly when a compound in which an alkyl group is bonded to an aromatic ring and a compound that is oxidized at a lower potential are used in combination. The content of the compound in which an alkyl group is bonded to the aromatic ring in the nonaqueous electrolytic solution is 0.5% by mass or more, more preferably 2% by mass or more, and 8% by mass or less, more preferably 5% by mass. The following is desirable. On the other hand, the content in the non-aqueous electrolyte of the compound that is oxidized at a lower potential than the compound in which an alkyl group is bonded to the aromatic ring is 0.1% by mass or more, more preferably 0.2% by mass or more. It is desirable that the content be 1% by mass or less, more preferably 0.5% by mass or less.

更に、非水電解液に、含ハロゲン炭酸エステルなどの有機ハロゲン系溶媒、有機イオウ化合物、含フッ素有機リチウム塩、含リン系有機溶媒、含ケイ素系有機溶媒、上記の分子内にニトリル基を2以上有する化合物以外の含窒素有機化合物などの少なくとも1種の化合物を添加することによっても、電池の初期充電中に正極活物質の表面に表面保護皮膜を形成することができる。含フッ素炭酸エステルなどの有機フッ素系溶媒、有機イオウ系溶媒、含フッ素有機リチウム塩などが特に好ましく、具体的には、F−DPC[CCHO(C=O)OCH]、F−DEC[CFCHO(C=O)OCHCF]、HFE7100(COCH)、ブチルサルフェート(COSOOC)、メチルエチレンサルフェート[ (−OCH(CH)CHO−)SO]、ブチルスルフォン(CSO)、ポリマーイミド塩[〔−N(Li)SOOCH(CFCHOSO−〕(ただし、式中のnは2〜100)]、(CSO)NLi、〔(CFCHOSONLiなどが挙げられる。 Further, in the non-aqueous electrolyte, an organic halogen solvent such as halogen-containing carbonate, an organic sulfur compound, a fluorine-containing organic lithium salt, a phosphorus-containing organic solvent, a silicon-containing organic solvent, and 2 nitrile groups in the above molecule. A surface protective film can be formed on the surface of the positive electrode active material during the initial charge of the battery also by adding at least one compound such as a nitrogen-containing organic compound other than the above-described compounds. Organic fluorine-based solvents such as fluorine-containing carbonates, organic sulfur-based solvents, fluorine-containing organic lithium salts and the like are particularly preferable. Specifically, F-DPC [C 2 F 5 CH 2 O (C═O) OCH 2 C 2 F 5], F-DEC [CF 3 CH 2 O (C = O) OCH 2 CF 3], HFE7100 (C 4 F 9 OCH 3), butyl sulfate (C 4 H 9 OSO 2 OC 4 H 9), Methyl ethylene sulfate [(—OCH (CH 3 ) CH 2 O—) SO 2 ], butyl sulfone (C 4 H 9 SO 2 C 4 H 9 ), polymer imide salt [[—N (Li) SO 2 OCH 2 ( CF 2) 4 CH 2 OSO 2 - ] n (where n in formula 2 to 100), and the like (C 2 F 5 SO 2) 2 NLi, [(CF 3) 2 CHOSO 2] 2 NLi Et That.

このような添加剤は、それぞれ単独で用いることができるが、有機フッ素系溶媒と含フッ素有機リチウム塩とを併用することが特に好ましい。その添加量は、非水電解液全量中、0.1質量%以上、より好ましくは2質量%以上、更に好ましくは5質量%以上であって、30質量%以下、より好ましくは10質量%以下であることが望ましい。これは、添加量が多すぎると電気特性が低下する虞があり、少なすぎると良好な皮膜形成が難しくなるからである。   Such additives can be used alone, but it is particularly preferable to use an organic fluorine-based solvent and a fluorine-containing organic lithium salt in combination. The amount of addition is 0.1% by mass or more, more preferably 2% by mass or more, further preferably 5% by mass or more, and 30% by mass or less, more preferably 10% by mass or less, based on the total amount of the non-aqueous electrolyte. It is desirable that This is because if the addition amount is too large, the electrical characteristics may be lowered, and if it is too small, it is difficult to form a good film.

上記の添加剤を含有する非水電解液を有する電池を充電(特に高電圧充電)することにより、正極活物質表面にF(フッ素)またはS(硫黄)を含有する表面保護皮膜が形成される。この表面保護皮膜は、FまたはSを単独で含有するものであってもよいが、FとSの両者を含有する皮膜であることがより好ましい。   By charging (particularly, high voltage charging) a battery having a non-aqueous electrolyte containing the above additives, a surface protective film containing F (fluorine) or S (sulfur) is formed on the surface of the positive electrode active material. . The surface protective film may contain F or S alone, but is more preferably a film containing both F and S.

正極活物質の表面に形成される上記表面保護皮膜におけるSの原子比率は、0.5原子%以上であることが好ましく、1原子%以上であることがより好ましく、3原子%以上であることが更に好ましい。ただし、正極活物質の表面におけるSの原子比率が多すぎると、電池の放電特性が低下する傾向にあるので、そのS原子比率は、20原子%以下であることが好ましく、10原子%以下であることが好ましく、6原子%以下であることが更に好ましい。また、正極活物質の表面に形成される上記表面保護皮膜におけるFの原子比率は、15原子%以上であることが好ましく、20原子%以上であることがより好ましく、25原子%以上であることが更に好ましい。ただし、正極活物質の表面におけるFの原子比率が多すぎると、電池の放電特性が低下する傾向にあるので、そのF原子比率は、50原子%以下であることが好ましく、40原子%以下であることが好ましく、30原子%以下であることが更に好ましい。   The atomic ratio of S in the surface protective film formed on the surface of the positive electrode active material is preferably 0.5 atomic% or more, more preferably 1 atomic% or more, and 3 atomic% or more. Is more preferable. However, if the atomic ratio of S on the surface of the positive electrode active material is too large, the discharge characteristics of the battery tend to deteriorate. Therefore, the S atomic ratio is preferably 20 atomic% or less, and preferably 10 atomic% or less. It is preferable that it is 6 atomic% or less. Further, the atomic ratio of F in the surface protective film formed on the surface of the positive electrode active material is preferably 15 atomic% or more, more preferably 20 atomic% or more, and 25 atomic% or more. Is more preferable. However, if the atomic ratio of F on the surface of the positive electrode active material is too large, the discharge characteristics of the battery tend to deteriorate. Therefore, the F atomic ratio is preferably 50 atomic% or less, and 40 atomic% or less. It is preferable that it is 30 atomic% or less.

また、電池の充放電サイクル特性改善のためには、非水電解液中に、(−OCH=CHO−)C=O、(−OCH=C(CH)O−)C=O、(−OC(CH)=C(CH)O−)C=Oなどのビニレンカーボネートもしくはその誘導体;ビニルエチレンカーボネート(−OCH−CH(−CH=CH)O−)C=Oのようなビニル基を有する環状炭酸エステル;(−OCH−CHFO−)C=O、(−OCHF−CHFO−)C=Oなどのフッ素置換エチレンカーボネート;の少なくとも1種を加えることが好ましい。その添加量としては、非水電解液全量中、0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは2質量%以上であることが望ましい。なお、上記の添加剤の含有量が多すぎると、電池の負荷特性が低下する傾向にあるため、その非水電解液全量中の含有量は、10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下であることが望ましい。 In order to improve the charge / discharge cycle characteristics of the battery, (—OCH═CHO—) C═O, (—OCH═C (CH 3 ) O—) C═O, (− Vinylene carbonate or derivatives thereof such as OC (CH 3 ) ═C (CH 3 ) O—) C═O; such as vinyl ethylene carbonate (—OCH 2 —CH (—CH═CH 2 ) O—) C═O It is preferable to add at least one kind of cyclic carbonate having a vinyl group; fluorine-substituted ethylene carbonate such as (—OCH 2 —CHFO—) C═O and (—OCHF—CHFO—) C═O. The amount added is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 2% by mass or more in the total amount of the non-aqueous electrolyte. In addition, since there exists a tendency for the load characteristic of a battery to fall when there is too much content of said additive, content in the nonaqueous electrolyte solution whole quantity is 10 mass% or less, More preferably, it is 5 mass% or less. More preferably, the content is 3% by mass or less.

本発明において、非水電解質としては、上記の非水電解液以外にも、ゲル状ポリマー電解質を用いることができる。そのようなゲル状ポリマー電解質は、上記非水電解液をゲル化剤によってゲル化したものに相当する。非水電解液のゲル化にあたっては、例えば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリロニトリルなどの直鎖状ポリマーまたはそれらのコポリマー;紫外線や電子線などの活性光線の照射によりポリマー化する多官能モノマー(例えば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートなどの四官能以上のアクリレートおよび上記アクリレートと同様の四官能以上のメタクリレートなど);などが用いられる。ただし、モノマーの場合、モノマーそのものが電解液をゲル化させるのではなく、上記モノマーをポリマー化したポリマーがゲル化剤として作用する。   In the present invention, as the non-aqueous electrolyte, a gel polymer electrolyte can be used in addition to the above non-aqueous electrolyte. Such a gel polymer electrolyte corresponds to a gel obtained by gelling the non-aqueous electrolyte with a gelling agent. For gelation of the non-aqueous electrolyte, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or a copolymer thereof; a polyfunctional monomer that is polymerized by irradiation with actinic rays such as ultraviolet rays or electron beams ( For example, tetrafunctional or higher acrylates such as pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hydroxypentaacrylate, dipentaerythritol hexaacrylate, and tetrafunctional or higher methacrylates similar to the above acrylates. Etc.); etc. are used. However, in the case of a monomer, the monomer itself does not gel the electrolyte solution, but a polymer obtained by polymerizing the monomer acts as a gelling agent.

上記のように多官能モノマーを用いて非水電解液をゲル化させる場合、必要であれば、重合開始剤として、例えば、ベンゾイル類、ベンゾインアルキルエーテル類、ベンゾフェノン類、ベンゾイルフェニルフォスフィンオキサイド類、アセトフェノン類、チオキサントン類、アントラキノン類などを使用することができ、更に重合開始剤の増感剤としてアルキルアミン類、アミノエステルなども使用することもできる。   When the non-aqueous electrolyte is gelled using a polyfunctional monomer as described above, if necessary, as a polymerization initiator, for example, benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, Acetophenones, thioxanthones, anthraquinones and the like can be used, and alkylamines and aminoesters can also be used as a sensitizer for the polymerization initiator.

また、本発明においては、非水電解質として、上記非水電解液やゲル状ポリマー電解質以外に、固体電解質も用いることができる。その固体電解質としては、無機系固体電解質、有機系固体電解質のいずれも用いることができる。   In the present invention, a solid electrolyte can also be used as the non-aqueous electrolyte in addition to the non-aqueous electrolyte and the gel polymer electrolyte. As the solid electrolyte, either an inorganic solid electrolyte or an organic solid electrolyte can be used.

本発明に係る正極としては、正極活物質などを含有する正極合剤層を、例えば集電体の片面または両面に形成してなる構造のものを用いることができる。   As the positive electrode according to the present invention, a positive electrode mixture layer containing a positive electrode active material or the like can be used, for example, having a structure formed on one side or both sides of a current collector.

本発明に係る正極合剤層は、その密度が、3.5g/cm以上、好ましくは3.6g/cm以上、より好ましくは3.8g/cm以上である。本発明の電池では、正極に係る正極合剤層を上記のように高密度とすることで、正極活物質の充填量を高めて高容量化を達成している。ただし、正極合剤層の密度が高すぎると、非水電解質の濡れ性が低下するので、その密度は、例えば、4.6g/cm以下であることが好ましく、4.4g/cm以下であることがより好ましく、4.2g/cm以下であることが更に好ましい。 Positive electrode mixture layer according to the present invention, its density, 3.5 g / cm 3 or more, preferably 3.6 g / cm 3 or more, more preferably 3.8 g / cm 3 or more. In the battery of the present invention, the positive electrode mixture layer related to the positive electrode has a high density as described above, thereby increasing the filling amount of the positive electrode active material and achieving a high capacity. However, if the density of the positive electrode mixture layer is too high, the wettability of the non-aqueous electrolyte is lowered. Therefore, the density is preferably 4.6 g / cm 3 or less, for example, 4.4 g / cm 3 or less. It is more preferable that it is 4.2 g / cm 3 or less.

なお、本明細書でいう正極合剤層の密度は、以下の測定方法により求められる値である。正極を所定面積で切り取り、その重量を、最小目盛り1mgの電子天秤を用いて測定し、この重量から集電体の重量を差し引いて正極合剤層の重量を算出する。また、正極の全厚を最小目盛り1μmのマイクロメーターで10点測定し、この厚みから集電体の厚みを差し引いた値の平均値と面積から正極合剤層の体積を算出し、この体積で上記の正極合剤層の重量を割ることにより、正極合剤層の密度を算出する。   In addition, the density of the positive mix layer as used in this specification is a value calculated | required with the following measuring methods. The positive electrode is cut out in a predetermined area, the weight thereof is measured using an electronic balance having a minimum scale of 1 mg, and the weight of the positive electrode mixture layer is calculated by subtracting the weight of the current collector from this weight. Further, the total thickness of the positive electrode was measured at 10 points with a micrometer having a minimum scale of 1 μm, and the volume of the positive electrode mixture layer was calculated from the average value and the area obtained by subtracting the thickness of the current collector from this thickness. The density of the positive electrode mixture layer is calculated by dividing the weight of the positive electrode mixture layer.

正極合剤層が含有する正極活物質は、その少なくとも一部が、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素を含有するリチウム含有遷移金属酸化物である。上記のような金属元素を有するリチウム含有遷移金属酸化物は、その安定性(特に高電圧での充電状態における安定性)が良好であることから、電池の充放電サイクルを繰り返したときの崩壊などが抑制されるため、かかるリチウム含有遷移金属酸化物を用いることによって電池の充放電サイクル特性を高めることができる。また、上記の金属元素を有するリチウム含有遷移金属酸化物では、その安定性が向上することから、電池の貯蔵特性や安全性などの信頼性を向上させることもできる。   The positive electrode active material contained in the positive electrode mixture layer is a lithium-containing transition in which at least a part thereof contains at least one metal element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al, and Sn. It is a metal oxide. Lithium-containing transition metal oxides having the above metal elements have good stability (especially stability in a charged state at a high voltage), so that the battery collapses after repeated charge / discharge cycles, etc. Therefore, the charge / discharge cycle characteristics of the battery can be improved by using such a lithium-containing transition metal oxide. Moreover, since the stability of the lithium-containing transition metal oxide having the above metal element is improved, reliability such as storage characteristics and safety of the battery can be improved.

また、正極活物質は、下記の平均粒子径測定法により得られる粒度分布曲線において、d10とd90との中点dよりも大きな粒径に粒度頻度ピークを有することが好ましい。このような粒度分布を有する正極活物質とするには、平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物を用いることが好ましい。平均粒子径の大きなリチウム含有遷移金属酸化物と、平均粒子径の小さなリチウム含有遷移金属酸化物とを併用することで、正極合剤層において、粒子径の大きなリチウム含有遷移金属酸化物同士の隙間に、粒子径の小さなリチウム含有遷移金属酸化物を充填することができるようになるため、上記のように高密度の正極合剤層を容易に形成できる。 Also, the positive electrode active material, the particle size distribution curve obtained by the average particle size measurement method described below, preferably has a particle size frequency peak to a larger diameter than the middle point d M of the d 10 and d 90. In order to obtain a positive electrode active material having such a particle size distribution, it is preferable to use two or more lithium-containing transition metal oxides having different average particle diameters. By using together a lithium-containing transition metal oxide having a large average particle size and a lithium-containing transition metal oxide having a small average particle size, a gap between lithium-containing transition metal oxides having a large particle size can be obtained in the positive electrode mixture layer. In addition, since a lithium-containing transition metal oxide having a small particle diameter can be filled, a high-density positive electrode mixture layer can be easily formed as described above.

なお、本明細書でいうリチウム含有遷移金属酸化物の「平均粒子径」とは、日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」を用いて測定した粒度分布の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(d50)メディアン径である。また、同様に、d10は10%径、d90は90%径である。 The “average particle size” of the lithium-containing transition metal oxide referred to in this specification refers to obtaining an integrated volume from particles having a small particle size distribution measured using a microtrack particle size distribution measuring device “HRA9320” manufactured by Nikkiso Co., Ltd. In this case, the 50% diameter value (d 50 ) median diameter in the volume-based integrated fraction. Similarly, d 10 10% diameter, d 90 is the 90% size.

上記の「平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物」は、上記の通り、これらの混合物の粒度分布曲線において、d10とd90との中点dより大きな粒径に粒度頻度ピークを有することが好ましい(以下、粒度頻度ピークの存在する粒径をdとする)。より好ましくは、d/dが1.05以上、更に好ましくはd/dが1.2以上、特に好ましくはd/dが1.3以上である。また、d/dは、1.6以下がより好ましく、1.5以下が更に好ましく、1.45以下が特に好ましい。更に、より好ましいのは、この粒度分布曲線において、2つ以上のピークが存在している場合であり、例えば、同じd/d=1.3の場合でも、粒度分布曲線において2つ以上のピークを有することで、正極合剤層の密度が0.1g/cm以上向上する。なお、このような粒度分布曲線の場合には、一般的なピーク分離方法を用いて、大きな粒径の粒子の分布と、小さな粒径の粒子の分布とに分割し、その粒径と積算体積から、リチウム含有遷移金属酸化物の各平均粒子径(d50)と、その混合比率を求めることができる。 As described above, the “two or more lithium-containing transition metal oxides having different average particle diameters” have a particle size larger than the midpoint d M between d 10 and d 90 in the particle size distribution curve of these mixtures. It is preferable to have a particle size frequency peak (hereinafter, the particle size where the particle size frequency peak exists is d p ). More preferably, d p / d M is 1.05 or more, further preferably d p / d M is 1.2 or more, and particularly preferably d p / d M is 1.3 or more. Further, d p / d M is more preferably 1.6 or less, further preferably 1.5 or less, and particularly preferably 1.45 or less. More preferably, there are two or more peaks in the particle size distribution curve. For example, even when the same d p / d M = 1.3, two or more peaks are present in the particle size distribution curve. The density of the positive electrode mixture layer is improved by 0.1 g / cm 3 or more. In the case of such a particle size distribution curve, a general peak separation method is used to divide the particle size distribution into a large particle size distribution and a small particle size distribution. From the above, the average particle diameter (d 50 ) of the lithium-containing transition metal oxide and the mixing ratio thereof can be determined.

正極に用いるリチウム含有遷移金属酸化物のうち、最大の平均粒子径を有するもの[以下、「正極活物質(A)」という]の平均粒子径をA、最小の平均粒子径を有するもの[以下、「正極活物質(B)」という]の平均粒子径をBとしたとき、Aに対するBの比率B/Aは、0.15以上0.6以下であることが好ましい。最大の平均粒子径を有する正極活物質(A)の平均粒子径と、最小の平均粒子径を有する正極活物質(B)の平均粒子径との比がこのような値である場合には、正極合剤層の密度をより容易に高めることができる。   Among lithium-containing transition metal oxides used for the positive electrode, those having the largest average particle diameter [hereinafter referred to as “positive electrode active material (A)”] having the average particle diameter A and those having the smallest average particle diameter [below When the average particle diameter of the “positive electrode active material (B)” is B, the ratio B / A to A is preferably 0.15 or more and 0.6 or less. When the ratio between the average particle diameter of the positive electrode active material (A) having the maximum average particle diameter and the average particle diameter of the positive electrode active material (B) having the minimum average particle diameter is such a value, The density of the positive electrode mixture layer can be increased more easily.

なお、正極活物質(A)については、その平均粒子径が、例えば、5μm以上であることが好ましく、8μm以上であることがより好ましく、11μm以上であることが更に好ましい。正極活物質(A)の平均粒子径が小さすぎると、正極合剤層の密度を高め難くなる場合がある。他方、正極活物質(A)の平均粒子径が大きすぎると、電池特性が低下する傾向にあることから、その平均粒子径は、例えば、25μm以下であることが好ましく、20μm以下であることがより好ましく、18μm以下であることが更に好ましい。   In addition, about a positive electrode active material (A), it is preferable that the average particle diameter is 5 micrometers or more, for example, it is more preferable that it is 8 micrometers or more, and it is still more preferable that it is 11 micrometers or more. If the average particle size of the positive electrode active material (A) is too small, it may be difficult to increase the density of the positive electrode mixture layer. On the other hand, if the average particle size of the positive electrode active material (A) is too large, the battery characteristics tend to deteriorate. For example, the average particle size is preferably 25 μm or less, and preferably 20 μm or less. More preferably, it is 18 μm or less.

また、正極活物質(B)については、その平均粒子径が、例えば、10μm以下であることが好ましく、7μm以下であることがより好ましく、5μm以下であることが更に好ましい。正極活物質(B)の平均粒子径が大きすぎると、正極合剤層において、粒子径の大きなリチウム含有遷移金属酸化物粒子同士の隙間に正極活物質(B)を充填し難くなくなるため、正極合剤層の密度を高め難くなる場合がある。他方、正極活物質(B)の平均粒子径が小さすぎると、小さい粒子間の空隙体積が大きくなるため、密度を高くし難くなる傾向にあることから、その平均粒子径は、例えば、2μm以上であることが好ましく、3μm以上であることがより好ましく、4μm以上であることが更に好ましい。   Moreover, about the positive electrode active material (B), it is preferable that the average particle diameter is 10 micrometers or less, for example, it is more preferable that it is 7 micrometers or less, and it is still more preferable that it is 5 micrometers or less. If the average particle diameter of the positive electrode active material (B) is too large, it is difficult to fill the gap between the lithium-containing transition metal oxide particles having a large particle diameter in the positive electrode mixture layer. It may be difficult to increase the density of the mixture layer. On the other hand, if the average particle diameter of the positive electrode active material (B) is too small, the void volume between the small particles increases, and therefore the density tends to be difficult to increase. For example, the average particle diameter is 2 μm or more. Preferably, it is 3 μm or more, more preferably 4 μm or more.

また正極活物質には、上記正極活物質(A)と上記正極活物質(B)のみの場合のように、平均粒子径の異なる2種のリチウム含有遷移金属酸化物のみを用いる他、平均粒子径の異なる3種以上(例えば、3種、4種、5種など)のリチウム含有遷移金属酸化物を用いることもできる。平均粒子径の異なるリチウム含有遷移金属酸化物を3種以上用いる場合には、例えば、平均粒子径が、正極活物質(A)の平均粒子径と正極活物質(B)の平均粒子径の間にあるリチウム含有遷移金属酸化物を、正極活物質(A)および(B)と共に用いればよい。   As the positive electrode active material, only two kinds of lithium-containing transition metal oxides having different average particle diameters are used, as in the case of only the positive electrode active material (A) and the positive electrode active material (B). Three or more (for example, three, four, five, etc.) lithium-containing transition metal oxides having different diameters can also be used. When three or more lithium-containing transition metal oxides having different average particle sizes are used, for example, the average particle size is between the average particle size of the positive electrode active material (A) and the average particle size of the positive electrode active material (B). The lithium-containing transition metal oxide may be used together with the positive electrode active materials (A) and (B).

正極の有するリチウム含有遷移金属酸化物のうち、平均粒子径が最小の正極活物質(B)の含有量は、例えば、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましい。正極活物質(B)が上記の量で含有されていると、粒子径の大きなリチウム含有遷移金属酸化物粒子同士の隙間を埋め易く、正極合剤層の高密度化が容易となる。他方、正極の有するリチウム含有遷移金属酸化物中の正極活物質(B)の含有量が多すぎると、却って正極合剤層の密度を高め難くなるため、その含有量は、例えば、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが更に好ましい。   Of the lithium-containing transition metal oxide of the positive electrode, the content of the positive electrode active material (B) having the smallest average particle size is, for example, preferably 5% by mass or more, and more preferably 10% by mass or more. Preferably, it is 20 mass% or more. When the positive electrode active material (B) is contained in the above amount, the gaps between the lithium-containing transition metal oxide particles having a large particle diameter can be easily filled, and the density of the positive electrode mixture layer can be easily increased. On the other hand, when the content of the positive electrode active material (B) in the lithium-containing transition metal oxide of the positive electrode is too large, it is difficult to increase the density of the positive electrode mixture layer. Therefore, the content is, for example, 60% by mass. Or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less.

よって、例えば、正極の有するリチウム含有遷移金属酸化物が、上記の正極活物質(A)と正極活物質(B)のみである場合には、全リチウム含有遷移金属酸化物中、正極活物質(A)の含有量は、例えば、40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上であって、95質量%以下、好ましくは90質量%以下、より好ましくは80質量%以下であることが望ましい。   Therefore, for example, when the lithium-containing transition metal oxide of the positive electrode is only the positive electrode active material (A) and the positive electrode active material (B), the positive electrode active material ( The content of A) is, for example, 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more, and 95% by mass or less, preferably 90% by mass or less, more preferably 80% by mass. The following is desirable.

なお、正極の有するリチウム含有遷移金属酸化物のうち、正極活物質(B)は、例えば上記の平均粒子径を有しているが、このように粒子径の小さなリチウム含有遷移金属酸化物は、例えば高電圧での充電状態において、安定性が悪く、電池の貯蔵特性、安全性などの信頼性や、充放電サイクル特性を損なう原因となる。   Of the lithium-containing transition metal oxides possessed by the positive electrode, the positive electrode active material (B) has, for example, the above average particle diameter. For example, in a charged state at a high voltage, the stability is poor, and reliability such as battery storage characteristics and safety, and charge / discharge cycle characteristics are impaired.

そこで、平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物を用いる場合には、少なくとも、平均粒子径が最小のリチウム含有遷移金属酸化物である正極活物質(B)に、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素Mを含有しているものを用いることが好ましい。これにより、粒径の小さな正極活物質(B)の安定性を高めて、充放電サイクル特性をより確実に向上させることができ、また、電池の貯蔵特性や安全性などの信頼性をより高めることもできる。 Therefore, when two or more lithium-containing transition metal oxides having different average particle diameters are used, at least the positive electrode active material (B) that is the lithium-containing transition metal oxide having the smallest average particle diameter is added to Mg, Ti , Zr, Ge, Nb, it is preferable to use those containing at least one metal element M 2 selected from the group consisting of Al and Sn. As a result, the stability of the positive electrode active material (B) having a small particle size can be improved, and the charge / discharge cycle characteristics can be improved more reliably, and the reliability such as the storage characteristics and safety of the battery can be further improved. You can also.

なお、平均粒子径が異なる2種以上のリチウム含有遷移金属酸化物を使用する場合、これらリチウム含有遷移金属酸化物のうち、平均粒子径が最小の正極活物質(B)が上記の金属元素Mを含有していることが好ましいが、正極活物質(B)以外のリチウム含有遷移金属酸化物[最大の平均粒子径を有する正極活物質(A)や、正極活物質(A)および正極活物質(B)とは異なる平均粒子径を有するリチウム含有遷移金属酸化物]も、上記金属元素Mを含有していることがより好ましい。正極活物質(B)以外のリチウム含有遷移金属酸化物が金属元素Mを含有している場合には、その安定性(特に高電圧での充電状態での安定性)が向上するため、例えば電池の充放電サイクル特性や、貯蔵特性、安全性などの信頼性を更に向上させることができる。 When two or more kinds of lithium-containing transition metal oxides having different average particle diameters are used, the positive electrode active material (B) having the smallest average particle diameter among these lithium-containing transition metal oxides is the metal element M described above. 2 is preferable, but the lithium-containing transition metal oxide other than the positive electrode active material (B) [the positive electrode active material (A) having the largest average particle diameter, the positive electrode active material (A), and the positive electrode active material) lithium-containing transition metal oxides having different average particle size and material (B)] also, and more preferably contains the metallic element M 2. When the positive electrode active material (B) lithium-containing transition metal oxide other than that containing the metal element M 2, in order to improve its stability (particularly stability in a charged state at a high voltage), for example, Reliability such as charge / discharge cycle characteristics, storage characteristics, and safety of the battery can be further improved.

正極活物質(B)としては、下記一般式(1)で表されるリチウム含有遷移金属酸化物が好ましい。
Li (1)
As the positive electrode active material (B), a lithium-containing transition metal oxide represented by the following general formula (1) is preferable.
Li x M 1 y M 2 z M 3 v O 2 (1)

ここで、上記一般式(1)中、Mは、Co、NiまたはMnのうちの少なくとも1種の遷移金属元素、Mは、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素、Mは、Li、MおよびM以外の元素であり、0.97≦x<1.02、0.8≦y<1.02、0.002≦z≦0.05、0≦v≦0.05である。なお、zについては、0.004以上がより好ましく、0.006以上が更に好ましく、また、0.02未満がより好ましく、0.01未満が更に好ましい。これは、zが小さすぎると、電池の充放電サイクル特性などの向上効果が十分でなく、大きすぎると、電池の電気特性の低下が起こり始めるからである。 Here, in the general formula (1), M 1 is at least one transition metal element of Co, Ni, or Mn, and M 2 is made of Mg, Ti, Zr, Ge, Nb, Al, and Sn. At least one metal element selected from the group, M 3, is an element other than Li, M 1 and M 2 , and 0.97 ≦ x <1.02, 0.8 ≦ y <1.02, 0 .002 ≦ z ≦ 0.05, 0 ≦ v ≦ 0.05. Note that z is more preferably 0.004 or more, further preferably 0.006 or more, more preferably less than 0.02, and still more preferably less than 0.01. This is because if z is too small, the effect of improving the charge / discharge cycle characteristics of the battery is not sufficient, and if it is too large, the electrical characteristics of the battery begin to deteriorate.

また、正極活物質(B)以外のリチウム含有遷移金属酸化物[正極活物質(A)を含む]としては、下記一般式(2)で表されるリチウム含有遷移金属酸化物が好ましい。
Li (2)
Moreover, as lithium containing transition metal oxides other than a positive electrode active material (B) [a positive electrode active material (A) is included], the lithium containing transition metal oxide represented by following General formula (2) is preferable.
Li a M 4 b M 5 c M 6 d O 2 (2)

ここで、上記一般式(2)中、Mは、Co、NiまたはMnのうちの少なくとも1種の遷移金属元素、Mは、Mg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素、Mは、Li、MおよびM以外の元素であり、0.97≦a<1.02、0.8≦b<1.02、0≦c≦0.02、0≦d≦0.02である。なお、M、M、MとM、M、Mとについて、選択する元素種や構成比率は、平均粒子径の異なる活物質毎に異なっていても良い。例えば、正極活物質(B)では、MがMg、Ti、Alであり、他方、正極活物質(A)では、MがMg、Tiである、といった組み合わせでも良い。ただし、この例でも示したように、上記一般式(1)におけるMと上記一般式(2)におけるMとで共通の元素が少なくとも1種あることが好ましく、MとMとの共通元素は、2種以上であることがより好ましく、3種以上であることが更に好ましい。 Here, in the general formula (2), M 4 is at least one transition metal element of Co, Ni, or Mn, and M 5 is made of Mg, Ti, Zr, Ge, Nb, Al, and Sn. At least one metal element selected from the group, M 6 is an element other than Li, M 4, and M 5 , and 0.97 ≦ a <1.02, 0.8 ≦ b <1.02, 0 ≦ c ≦ 0.02 and 0 ≦ d ≦ 0.02. In addition, regarding M 1 , M 2 , M 3 and M 4 , M 5 , M 6 , the selected element type and composition ratio may be different for each active material having a different average particle diameter. For example, in the positive electrode active material (B), M 2 may be Mg, Ti, or Al, while in the positive electrode active material (A), M 5 may be Mg or Ti. However, as also shown in this example, it is preferable that the common element is at least one between M 5 in M 2 and the general formula (2) in the general formula (1), the M 2 and M 5 The common element is more preferably 2 or more, and still more preferably 3 or more.

なお、正極活物質(A)の場合、cは、より好ましくは0.0002以上、更に好ましくは0.001以上であって、より好ましくは0.005未満、更に好ましくは0.0025未満である。また、正極活物質(A)の場合、dは、より好ましくは0.0002以上、更に好ましくは0.001以上であって、より好ましくは0.005未満、更に好ましくは0.0025未満である。これは、正極活物質(A)の粒径が大きいため、Mなどの添加量がより少なくても効果が得られるが、多すぎると電池の電気特性が低下する傾向にあるからである。 In the case of the positive electrode active material (A), c is more preferably 0.0002 or more, further preferably 0.001 or more, more preferably less than 0.005, still more preferably less than 0.0025. . In the case of the positive electrode active material (A), d is more preferably 0.0002 or more, further preferably 0.001 or more, more preferably less than 0.005, still more preferably less than 0.0025. . This is because a large particle size of the positive electrode active material (A), although the addition amount of such M 5 is an effect can be obtained even fewer, if too much electrical characteristics of the battery because tends to decrease.

リチウム含有遷移金属酸化物は、Coおよび/またはNiが遷移金属元素の主成分であることが好ましく、例えば、CoとNiとの合計量が、リチウム含有遷移金属酸化物が含有する全遷移金属元素中、50モル%以上であることが好ましい。   In the lithium-containing transition metal oxide, it is preferable that Co and / or Ni is a main component of the transition metal element. For example, the total amount of Co and Ni is all the transition metal elements contained in the lithium-containing transition metal oxide. Among these, it is preferable that it is 50 mol% or more.

また、リチウム含有遷移金属酸化物におけるCo比率が高いほど、正極合剤層の密度を高め得ることから好ましい。例えば、上記一般式(1)および上記一般式(2)における遷移金属元素M中のCo比率は、30モル%以上が好ましく、65モル%以上がより好ましく、95モル%以上が更に好ましい。 In addition, the higher the Co ratio in the lithium-containing transition metal oxide, the higher the density of the positive electrode mixture layer, which is preferable. For example, Co ratio of the transition metal element M in 1 in the general formula (1) and the general formula (2) is preferably not less than 30 mol%, more preferably at least 65 mol%, more preferably more than 95 mol%.

上記一般式(1)におけるx、および上記一般式(2)におけるaは、電池の充放電によって変化するが、電池製造時には、0.97以上1.02未満であることが好ましい。xおよびaは、より好ましくは0.98以上、更に好ましくは0.99以上であって、より好ましくは1.01以下、更に好ましくは1.00以下である。   X in the general formula (1) and a in the general formula (2) vary depending on the charge / discharge of the battery, but are preferably 0.97 or more and less than 1.02 when the battery is manufactured. x and a are more preferably 0.98 or more, further preferably 0.99 or more, more preferably 1.01 or less, and further preferably 1.00 or less.

上記一般式(1)におけるy、および上記一般式(2)におけるbは、好ましくは0.8以上、より好ましくは0.98以上、更に好ましくは0.99以上であって、好ましくは1.02未満、より好ましくは1.01未満、更に好ましくは1.0未満である。   Y in the general formula (1) and b in the general formula (2) are preferably 0.8 or more, more preferably 0.98 or more, and still more preferably 0.99 or more. It is less than 02, more preferably less than 1.01, and still more preferably less than 1.0.

上記一般式(1)で表される正極活物質(B)、および上記一般式(2)で表される正極活物質(B)以外のリチウム含有遷移金属酸化物では、電池の安全性向上がより効果的であることから、MおよびMとしては、Mgを含有することが好ましい。そして、上記一般式(1)で表される正極活物質(B)、および上記一般式(2)で表される正極活物質(B)以外のリチウム含有遷移金属酸化物では、MおよびMとして、Mgと共にTi、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素を含有していることが好ましく、この場合には、高電圧での充電状態での、これらリチウム含有遷移金属酸化物の安定性がより向上する。 With the positive electrode active material (B) represented by the general formula (1) and the lithium-containing transition metal oxide other than the positive electrode active material (B) represented by the general formula (2), battery safety is improved. Since it is more effective, it is preferable to contain Mg as M 2 and M 5 . And in lithium-containing transition metal oxides other than the positive electrode active material (B) represented by the general formula (1) and the positive electrode active material (B) represented by the general formula (2), M 2 and M 5 , it is preferable to contain at least one metal element selected from the group consisting of Ti, Zr, Ge, Nb, Al and Sn together with Mg. In this case, in a charged state at a high voltage The stability of these lithium-containing transition metal oxides is further improved.

なお、正極活物質(B)においては、Mgを含有することによる効果をより有効に発揮させる観点から、その含有量は、例えば、M(例えば、Co)の含有量に対して、0.1モル%以上であることが好ましく、0.15モル%以上であることがより好ましく、0.2モル%以上であることが更に好ましい。 In the positive electrode active material (B), from the viewpoint of more effectively exerting the effect of containing Mg, the content thereof is, for example, 0. 0 with respect to the content of M 1 (for example, Co). It is preferably 1 mol% or more, more preferably 0.15 mol% or more, and further preferably 0.2 mol% or more.

また、正極活物質(B)が、Ti、Zr、GeまたはNbを含有する場合には、これらを含有させることによる上記効果をより有効に発揮させる観点から、その合計量が、M(例えば、Co)に対して、0.05モル%以上であることが好ましく、0.08モル%以上であることがより好ましく、0.1モル%以上であることが更に好ましい。更に、正極活物質(B)が、AlまたはSnを含有する場合には、これらを含有させることによる上記効果をより有効に発揮させる観点から、その合計量が、M(例えば、Co)に対して、0.1モル%以上であることが好ましく、0.15モル%以上であることがより好ましく、0.2モル%以上であることが更に好ましい。 Further, when the positive electrode active material (B) contains Ti, Zr, Ge, or Nb, the total amount thereof is M 1 (for example, from the viewpoint of more effectively exerting the above-described effect by containing them. , Co) is preferably 0.05 mol% or more, more preferably 0.08 mol% or more, still more preferably 0.1 mol% or more. Furthermore, when the positive electrode active material (B) contains Al or Sn, the total amount thereof is M 1 (for example, Co) from the viewpoint of more effectively exerting the above-described effect by containing these. On the other hand, it is preferably 0.1 mol% or more, more preferably 0.15 mol% or more, and further preferably 0.2 mol% or more.

しかし、正極活物質(B)において、Mgの含有量が多すぎると、電池の負荷特性が低下する傾向にあることから、その含有量は、例えば、M(例えば、Co)の含有量に対して、2モル%未満であることが好ましく、1モル%未満であることがより好ましく、0.5モル%未満であることが更に好ましく、0.3モル%未満であることが特に好ましい。 However, in the positive electrode active material (B), if the content of Mg is too large, the load characteristics of the battery tend to be reduced. Therefore, the content is, for example, the content of M 1 (for example, Co). On the other hand, it is preferably less than 2 mol%, more preferably less than 1 mol%, still more preferably less than 0.5 mol%, and particularly preferably less than 0.3 mol%.

また、正極活物質(B)において、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素の含有量が多すぎると、電池の容量向上効果が小さくなることがある。そのため、正極活物質(B)が、Ti、Zr、GeまたはNbを含有する場合には、その合計量が、M(例えば、Co)に対して、0.5モル%未満であることが好ましく、0.25モル%未満であることがより好ましく、0.15モル%未満であることが更に好ましい。また、正極活物質(B)が、AlまたはSnを含有する場合には、その合計量が、M(例えば、Co)に対して、1モル%未満であることが好ましく、0.5モル%未満であることがより好ましく、0.3モル%未満であることが更に好ましい。 In addition, if the content of at least one metal element selected from the group consisting of Ti, Zr, Ge, Nb, Al, and Sn is too large in the positive electrode active material (B), the battery capacity improvement effect is reduced. Sometimes. Therefore, when the positive electrode active material (B) contains Ti, Zr, Ge, or Nb, the total amount thereof may be less than 0.5 mol% with respect to M 1 (for example, Co). Preferably, it is less than 0.25 mol%, more preferably less than 0.15 mol%. When the positive electrode active material (B) contains Al or Sn, the total amount thereof is preferably less than 1 mol% with respect to M 1 (for example, Co), and 0.5 mol % Is more preferable, and it is still more preferable that it is less than 0.3 mol%.

更に、正極活物質(A)においては、Mgを含有することによる効果をより有効に発揮させる観点から、その含有量は、例えば、M(例えば、Co)の含有量に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましく、0.07モル%以上であることが更に好ましい。 Furthermore, in the positive electrode active material (A), from the viewpoint of more effectively exerting the effect of containing Mg, the content thereof is, for example, 0. 0 with respect to the content of M 4 (eg, Co). It is preferably at least 01 mol%, more preferably at least 0.05 mol%, and even more preferably at least 0.07 mol%.

また、正極活物質(A)が、Ti、Zr、GeまたはNbを含有する場合には、これらを含有させることによる上記効果をより有効に発揮させる観点から、その合計量が、M(例えば、Co)に対して、0.005モル%以上であることが好ましく、0.008モル%以上であることがより好ましく、0.01モル%以上であることが更に好ましい。更に、正極活物質(A)が、AlまたはSnを含有する場合には、これらを含有させることによる上記効果をより有効に発揮させる観点から、その合計量が、M(例えば、Co)に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましく、0.07モル%以上であることが更に好ましい。 Further, when the positive electrode active material (A) contains Ti, Zr, Ge, or Nb, the total amount thereof is M 4 (for example, from the viewpoint of more effectively exerting the above-described effect by containing these). , Co) is preferably 0.005 mol% or more, more preferably 0.008 mol% or more, and still more preferably 0.01 mol% or more. Furthermore, in the case where the positive electrode active material (A) contains Al or Sn, the total amount thereof is M 4 (for example, Co) from the viewpoint of more effectively exerting the above-described effects by containing these. On the other hand, it is preferably 0.01 mol% or more, more preferably 0.05 mol% or more, and further preferably 0.07 mol% or more.

しかし、正極活物質(A)においても、Mgの含有量が多すぎると電池の負荷特性が低下する傾向にあることから、その含有量は、例えば、M(例えば、Co)の含有量に対して、0.5モル%未満であることが好ましく、0.2モル%未満であることがより好ましく、0.1モル%未満であることが更に好ましい。 However, even in the positive electrode active material (A), if the content of Mg is too large, the load characteristics of the battery tend to be lowered. Therefore, the content is, for example, the content of M 4 (for example, Co). On the other hand, it is preferably less than 0.5 mol%, more preferably less than 0.2 mol%, and still more preferably less than 0.1 mol%.

また、正極活物質(A)においても、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素の含有量が多すぎると、電池の容量向上効果が小さくなることがある。そのため、正極活物質(A)が、Ti、Zr、GeまたはNbを含有する場合には、その合計量が、M(例えば、Co)に対して、0.3モル%未満であることが好ましく、0.1モル%未満であることがより好ましく、0.05モル%未満であることが更に好ましい。また、正極活物質(A)が、AlまたはSnを含有する場合には、その合計量が、M(例えば、Co)に対して、0.5モル%未満であることが好ましく、0.2モル%未満であることがより好ましく、0.1モル%未満であることが更に好ましい。 Also, in the positive electrode active material (A), if the content of at least one metal element selected from the group consisting of Ti, Zr, Ge, Nb, Al and Sn is too large, the battery capacity improvement effect is small. May be. Therefore, when the positive electrode active material (A) contains Ti, Zr, Ge, or Nb, the total amount thereof may be less than 0.3 mol% with respect to M 4 (for example, Co). Preferably, it is less than 0.1 mol%, more preferably less than 0.05 mol%. Further, when the positive electrode active material (A) contains Al or Sn, the total amount is preferably less than 0.5 mol% with respect to M 4 (for example, Co). More preferably, it is less than 2 mol%, and still more preferably less than 0.1 mol%.

加えて、正極活物質(A)および正極活物質(B)以外のリチウム含有遷移金属酸化物を使用する場合には、かかるリチウム含有遷移金属酸化物においては、Mgを含有することによる効果をより有効に発揮させる観点から、その含有量は、例えば、M(例えば、Co)の含有量に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましく、0.07モル%以上であることが更に好ましい。 In addition, when a lithium-containing transition metal oxide other than the positive electrode active material (A) and the positive electrode active material (B) is used, the lithium-containing transition metal oxide is more effective in containing Mg. From the viewpoint of exhibiting effectively, the content thereof is preferably 0.01 mol% or more, and 0.05 mol% or more, for example, with respect to the content of M 4 (for example, Co). More preferably, it is more preferably 0.07 mol% or more.

また、正極活物質(A)および正極活物質(B)以外のリチウム含有遷移金属酸化物が、Ti、Zr、GeまたはNbを含有する場合には、これらを含有させることによる上記効果をより有効に発揮させる観点から、その合計量が、M(例えば、Co)に対して、0.005モル%以上であることが好ましく、0.008モル%以上であることがより好ましく、0.01モル%以上であることが更に好ましい。更に、正極活物質(A)および正極活物質(B)以外のリチウム含有遷移金属酸化物が、AlまたはSnを含有する場合には、これらを含有させることによる上記効果をより有効に発揮させる観点から、その合計量が、M(例えば、Co)に対して、0.01モル%以上であることが好ましく、0.05モル%以上であることがより好ましく、0.07モル%以上であることが更に好ましい。 In addition, when the lithium-containing transition metal oxide other than the positive electrode active material (A) and the positive electrode active material (B) contains Ti, Zr, Ge, or Nb, the above-described effects due to the inclusion thereof are more effective. The total amount is preferably 0.005 mol% or more, more preferably 0.008 mol% or more with respect to M 4 (for example, Co), More preferably, it is at least mol%. Further, when the lithium-containing transition metal oxide other than the positive electrode active material (A) and the positive electrode active material (B) contains Al or Sn, the viewpoint of more effectively exerting the above-described effect by containing them. Therefore, the total amount is preferably 0.01 mol% or more, more preferably 0.05 mol% or more, and more preferably 0.07 mol% or more with respect to M 4 (for example, Co). More preferably it is.

しかし、正極活物質(A)および正極活物質(B)以外のリチウム含有遷移金属酸化物においても、Mgの含有量が多すぎると電池の負荷特性が低下する傾向にあることから、その含有量は、例えば、M(例えば、Co)の含有量に対して、2モル%未満であることが好ましく、1モル%未満であることがより好ましく、0.5モル%未満であることが更に好ましく、0.3モル%未満であることが特に好ましい。 However, even in lithium-containing transition metal oxides other than the positive electrode active material (A) and the positive electrode active material (B), if the content of Mg is too large, the load characteristics of the battery tend to deteriorate. Is, for example, preferably less than 2 mol%, more preferably less than 1 mol%, and even more preferably less than 0.5 mol% with respect to the content of M 4 (eg, Co). Preferably, it is particularly preferably less than 0.3 mol%.

また、正極活物質(A)および正極活物質(B)以外のリチウム含有遷移金属酸化物においても、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素の含有量が多すぎると、電池の容量向上効果が小さくなることがある。そのため、正極活物質(A)および正極活物質(B)以外のリチウム含有遷移金属酸化物が、Ti、Zr、GeまたはNbを含有する場合には、その合計量が、M(例えば、Co)に対して、0.5モル%未満であることが好ましく、0.25モル%未満であることがより好ましく、0.15モル%未満であることが更に好ましい。また、正極活物質(A)および正極活物質(B)以外のリチウム含有遷移金属酸化物が、AlまたはSnを含有する場合には、その合計量が、M(例えば、Co)に対して、1モル%未満であることが好ましく、0.5モル%未満であることがより好ましく、0.3モル%未満であることが更に好ましい。 Also, in the lithium-containing transition metal oxide other than the positive electrode active material (A) and the positive electrode active material (B), at least one metal element selected from the group consisting of Ti, Zr, Ge, Nb, Al, and Sn If the content of is too large, the effect of improving the battery capacity may be reduced. Therefore, when the lithium-containing transition metal oxide other than the positive electrode active material (A) and the positive electrode active material (B) contains Ti, Zr, Ge, or Nb, the total amount is M 4 (for example, Co ) Is preferably less than 0.5 mol%, more preferably less than 0.25 mol%, and even more preferably less than 0.15 mol%. When the lithium-containing transition metal oxide other than the positive electrode active material (A) and the positive electrode active material (B) contains Al or Sn, the total amount is based on M 4 (for example, Co). It is preferably less than 1 mol%, more preferably less than 0.5 mol%, and even more preferably less than 0.3 mol%.

正極活物質(B)およびその他のリチウム含有遷移金属酸化物において、金属元素MおよびMの含有の仕方は特に制限は無く、例えば、その粒子上に存在していればよく、活物質内に均一に固溶して存在していても、活物質の内部に濃度分布を持って偏在していても、表面に化合物として層を形成していてもよいが、均一に固溶していることが好ましい。 In the positive electrode active material (B) and other lithium-containing transition metal oxides, the way of containing the metal elements M 2 and M 5 is not particularly limited, and may be present on the particles, for example, within the active material. Even if it exists in a solid solution evenly, it may be unevenly distributed with a concentration distribution inside the active material, or a layer as a compound may be formed on the surface, but it is uniformly dissolved It is preferable.

正極活物質(B)を表す上記一般式(1)に係る元素Mは、Li、MおよびM以外の元素であり、正極活物質(B)以外のリチウム含有遷移金属酸化物を表す上記一般式(2)に係る元素Mは、Li、MおよびM以外の元素である。正極活物質(B)は、上記一般式(1)に係る元素Mを、本発明の効果を損なわない範囲で含有していてもよく、含有していなくてもよく、また、正極活物質(B)以外のリチウム含有遷移金属酸化物は、上記一般式(2)に係る元素Mを、本発明の効果を損なわない範囲で含有していてもよく、含有していなくてもよい。 The element M 3 according to the general formula (1) representing the positive electrode active material (B) is an element other than Li, M 1 and M 2 and represents a lithium-containing transition metal oxide other than the positive electrode active material (B). element M 6 according to the above general formula (2) is, Li, an element other than M 4 and M 5. The positive electrode active material (B) may or may not contain the element M 3 according to the general formula (1) as long as the effects of the present invention are not impaired. (B) other than the lithium-containing transition metal oxide of the element M 6 according to the above general formula (2) may contain within a range not to impair the effects of the present invention may not contain.

元素Mおよび元素Mとしては、例えば、Li以外のアルカリ金属(Na、K、Rbなど)、Mg以外のアルカリ土類金属(Be、Ca、Sr、Baなど)、IIIa族金属(Sc、Y、Laなど)、Ti、Zr以外のIVa族金属(Hfなど)、Nb以外のVa族金属(V、Taなど)、 VIa族金属(Cr、Mo、Wなど)、Mn以外のVIIb族金属(Tc、Reなど)、Co、Niを除くVIII族金属(Fe、Ru、Rhなど)、Ib族金属(Cu、Ag、Auなど)、Zn、Al以外のIIIb族金属(B、Ca、Inなど)、Sn、Pb以外のIVb族金属(Siなど)、P、Biなどが挙げられる。 Examples of the element M 3 and the element M 6 include alkali metals other than Li (Na, K, Rb, etc.), alkaline earth metals other than Mg (Be, Ca, Sr, Ba, etc.), group IIIa metals (Sc, Y, La, etc.), Group IVa metals other than Ti, Zr (Hf, etc.), Group Va metals other than Nb (V, Ta, etc.), Group VIa metals (Cr, Mo, W, etc.), Group VIIb metals other than Mn (Tc, Re, etc.), Group VIII metals (Fe, Ru, Rh, etc.) excluding Co and Ni, Group Ib metals (Cu, Ag, Au, etc.), Group IIIb metals other than Zn, Al (B, Ca, In) Etc.), IVb group metals other than Sn and Pb (Si etc.), P, Bi and the like.

なお、金属元素MおよびMは、リチウム含有遷移金属酸化物の安定性向上には寄与するものの、その含有量が多すぎると、Liイオンを吸蔵放出する作用を損なうため、電池特性を低下させることがある。最小の平均粒子径の有する正極活物質(B)は、粒子径が小さく、より安定性が低いために、安定化元素であるMの含有量がある程度高いことが好ましく、また、正極活物質(B)は、粒径が小さく表面積が大きいために、活性が高く、Mの含有によっても、Liイオンの吸蔵放出作用に対する影響が小さい。 The metal elements M 2 and M 5 contribute to improving the stability of the lithium-containing transition metal oxide. However, if the content of the metal elements M 2 and M 5 is too large, the function of occluding and releasing Li ions is impaired, so that the battery characteristics are deteriorated. There are things to do. Since the positive electrode active material (B) having the smallest average particle size has a small particle size and lower stability, the content of M 2 as a stabilizing element is preferably high to some extent, and the positive electrode active material Since (B) has a small particle size and a large surface area, the activity is high, and the effect on the occlusion and release action of Li ions is small even when M 2 is contained.

これに対し、比較的粒径の大きなリチウム含有遷移金属酸化物[正極活物質(B)以外のリチウム含有遷移金属酸化物]は、正極活物質(B)に比べると安定性が高いために、正極活物質(B)に係るMほどMの含有の必要がない一方で、正極活物質(B)に比べて表面積が小さく活性が低いため、Mの含有によってLiイオンの吸蔵放出作用が損なわれ易い。 On the other hand, the lithium-containing transition metal oxide having a relatively large particle size [lithium-containing transition metal oxide other than the positive electrode active material (B)] has higher stability than the positive electrode active material (B). while there is no need for inclusion of M 2 as M 5 of the positive electrode active material (B), since there is less smaller active surface area than the positive electrode active material (B), storage and release action of Li ions by the inclusion of M 5 Is easily damaged.

そのため、最小の平均粒子径を有する正極活物質(B)の金属元素Mの含有量は、正極活物質(B)以外のリチウム含有遷移金属酸化物のMの含有量よりも多いことが好ましい。 Therefore, the content of the metal element M 2 of the positive electrode active material (B) having the smallest average particle size be greater than the content of M 5 of the lithium-containing transition metal oxide other than the positive electrode active material (B) preferable.

すなわち、上記一般式(1)におけるzと、上記一般式(2)におけるcとは、z>cの関係を満足することが好ましい。zは、cの1.5倍以上であることがより好ましく、2倍以上であることが更に好ましく、3倍以上であることが特に好ましい。他方、cに対してzが大きすぎると、電池の負荷特性が低下する傾向にあるので、zは、cの5倍未満であることがより好ましく、4倍未満であることが更に好ましく、3.5倍未満であることが特に好ましい。   That is, it is preferable that z in the general formula (1) and c in the general formula (2) satisfy the relationship of z> c. z is more preferably 1.5 times or more of c, further preferably 2 times or more, and particularly preferably 3 times or more. On the other hand, if z is too large with respect to c, the load characteristics of the battery tend to deteriorate. Therefore, z is more preferably less than 5 times c, more preferably less than 4 times. It is particularly preferable that the ratio is less than 5 times.

正極に係るリチウム含有遷移金属酸化物として、3種以上の平均粒子径を有するものを用いる場合、最小の平均粒子径を有する正極活物質(B)以外のリチウム含有遷移金属酸化物について、最大の平均粒子径を有する正極活物質(A)と、それ以外のリチウム含有遷移金属酸化物との間では、MおよびMの含有量の関係には特に制限は無く、前者の方がMを後者のMよりも多く含有していてもよく、後者の方がMを前者のMよりも多く含有していてもよく、前者のMと後者のMとの含有量が同じであってもよい。より好ましくは、平均粒子径の小さいリチウム含有遷移金属酸化物ほど、MおよびMの含有量が多くなる態様である。すなわち、例えば、3種の平均粒子径を有するリチウム含有遷移金属酸化物を使用する場合では、最小の平均粒子径を有する正極活物質(B)のM含有量が最も多く、次いで、正極活物質(A)と正極活物質(B)の間の平均粒子径を有するリチウム含有金属酸化物のM含有量が多く、最大の平均粒子径を有する正極活物質(A)のM含有量が最も少ない態様がより好ましい。 When the lithium-containing transition metal oxide according to the positive electrode has three or more average particle diameters, the lithium-containing transition metal oxide other than the positive electrode active material (B) having the minimum average particle diameter There is no particular limitation on the relationship between the content of M 2 and M 5 between the positive electrode active material (A) having an average particle diameter and the other lithium-containing transition metal oxides, and the former is M 2. the may contain more than the latter M 5, may be the latter is contained more than the former M 2 and M 5, the content of the M 2 and the latter M 5 of the former It may be the same. More preferably, the lithium-containing transition metal oxide having a smaller average particle diameter has a higher M 2 and M 5 content. That is, for example, in the case of using a lithium-containing transition metal oxide having three types of average particle sizes, the positive electrode active material (B) having the smallest average particle size has the largest M 2 content, and then the positive electrode active material substances mean many M 5 content of the lithium-containing metal oxide having a particle size, M 5 content of the positive electrode active material (a) having a maximum average particle size of between (a) and the positive electrode active material (B) The aspect with the least amount is more preferable.

また、平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物を用いる場合、平均粒子径の異なるもの同士が同じ組成を有していてもよく、平均粒子径の異なるもの毎に、異なる組成を有するものであってもよい。例えば、リチウム含有遷移金属酸化物が、最小の平均粒子径を有する正極活物質(B)と最大の平均粒子径を有する正極活物質(A)である場合、正極活物質(A)がLiCo0.998Mg0.0008Ti0.0004Al0.0008で、正極活物質(B)がLiCo0.334Ni0.33Mn0.33Mg0.0024Ti0.0012Al0.0024、というような組み合わせであっても構わない。 In addition, when two or more types of lithium-containing transition metal oxides having different average particle sizes are used, those having different average particle sizes may have the same composition, and compositions having different average particle sizes have different compositions. It may have. For example, when the lithium-containing transition metal oxide is a positive electrode active material (B) having a minimum average particle size and a positive electrode active material (A) having a maximum average particle size, the positive electrode active material (A) is LiCo 0. .998 Mg 0.0008 Ti 0.0004 Al 0.0008 O 2 and the positive electrode active material (B) is LiCo 0.334 Ni 0.33 Mn 0.33 Mg 0.0024 Ti 0.0012 Al 0.0024 O 2 may be combined.

上記正極活物質(リチウム含有遷移金属酸化物)は、特定の合成工程と特定の電池の製造工程を経て形成される。例えば、遷移金属元素MおよびMとしてCoを含有するリチウム含有遷移金属酸化物で、異種の粒径のものを得るためには、一般的には、Coの酸性水溶液にNaOHなどのアルカリを滴下しCo(OH)として沈殿させる。均一な沈殿を得るために異種元素との共沈化合物とした後、焼成しCoを作製することもできる。沈殿を作製する時間をコントロールすることで沈殿の粒径制御が可能であり、焼成後のCoの粒径もこのときの沈殿物の粒径が支配要因である。 The positive electrode active material (lithium-containing transition metal oxide) is formed through a specific synthesis process and a specific battery manufacturing process. For example, in order to obtain lithium-containing transition metal oxides containing Co as the transition metal elements M 1 and M 4 and having different particle sizes, generally an alkali such as NaOH is added to an acidic aqueous solution of Co. Add dropwise and precipitate as Co (OH) 2 . In order to obtain a uniform precipitate, a coprecipitated compound with a different element can be used, followed by firing to produce Co 3 O 4 . The particle size of the precipitate can be controlled by controlling the time for producing the precipitate, and the particle size of the precipitate at this time is the dominant factor in the particle size of Co 3 O 4 after firing.

正極活物質の合成にあたっては、特定の混合条件と焼成温度、焼成雰囲気、焼成時間、出発原料と特定の電池製造条件の選択が必要である。正極活物質の合成の混合条件は、例えば、エタノールまたは水を原料粉末に加えて、遊星ボールミルで0.5時間以上混合することが好ましく、エタノールと水を50:50の容積比で、遊星ボールミルで20時間以上混合することが、より好ましい。この混合工程により、原料粉末は充分に粉砕、混合され、均一な分散液を調製することができる。これをスプレードライヤーなどにより均一性を保ったまま乾燥させる。好ましい焼成温度は750〜1050℃であり、より好ましい焼成温度は950〜1030℃である。また、好ましい焼成雰囲気は空気中である。好ましい焼成時間は10〜60時間であり、より好ましい焼成時間は20〜40時間である。   In synthesizing the positive electrode active material, it is necessary to select specific mixing conditions, baking temperature, baking atmosphere, baking time, starting material, and specific battery manufacturing conditions. As for the mixing conditions for the synthesis of the positive electrode active material, for example, ethanol or water is preferably added to the raw material powder and mixed for 0.5 hour or more in a planetary ball mill, and ethanol and water are mixed at a volume ratio of 50:50 and the planetary ball mill is mixed. It is more preferable to mix for at least 20 hours. By this mixing step, the raw material powder can be sufficiently pulverized and mixed to prepare a uniform dispersion. This is dried with a spray dryer or the like while maintaining uniformity. A preferable baking temperature is 750 to 1050 ° C, and a more preferable baking temperature is 950 to 1030 ° C. A preferable firing atmosphere is in the air. A preferable baking time is 10 to 60 hours, and a more preferable baking time is 20 to 40 hours.

上記正極活物質に関して、Li源としてはLiCOが好ましく、Mg、Ti、Ge、Zr、Nb、Al、Snなどの異種金属源としてはそれらの金属の硝酸塩、水酸化物または1μm以下の粒径の酸化物が好ましく、水酸化物の共沈体を用いると異種元素は活物質に均一に分布しやすくなるので、より好ましい。 Regarding the above positive electrode active material, Li 2 CO 3 is preferable as the Li source, and different metal sources such as Mg, Ti, Ge, Zr, Nb, Al, and Sn are nitrates, hydroxides, or 1 μm or less of those metals. An oxide having a particle size is preferable, and using a hydroxide coprecipitate is more preferable because different elements are easily distributed uniformly in the active material.

正極合剤層における正極活物質中の金属元素量は、誘導結合プラズマ(ICP)分析により、各元素量を測定することで求められる。また、Li量については、別途原子吸光などを用いて測定することができる。なお、通常、電極(正極)の状態では、粒子径の異なる正極活物質について、大粒径の活物質粒子と小粒径の活物質粒子とを、それぞれ分離して元素量を測定することは難しい。そのため、混合量が既知の活物質混合物を標準にして、EPMA(電子線微小部解析装置)などで小粒径の粒子および大粒径の粒子中の元素の含有量や含有量比の比較を行っても良い。また、電極(正極)をN−メチル−2−ピロリドン(NMP)などで処理し、活物質粒子を電極からはがして粒子を沈殿させてから、洗浄、乾燥後、得られた粒子の粒度分布を測定したり、粒度分布のピーク分離を行い、2種以上の粒度を有していると判定した場合には、大粒径の粒子と小粒径の粒子とに分級し、それぞれの粒子群の点か元素量をICPで測定しても良い。   The amount of metal element in the positive electrode active material in the positive electrode mixture layer is determined by measuring the amount of each element by inductively coupled plasma (ICP) analysis. Further, the amount of Li can be separately measured using atomic absorption or the like. Normally, in the state of the electrode (positive electrode), for the positive electrode active materials having different particle diameters, it is possible to separate the large active material particles and the small active material particles from each other and measure the element amount. difficult. Therefore, using an active material mixture with a known mixing amount as a standard, EPMA (electron beam microanalysis device) etc. is used to compare the content and content ratio of elements in small and large particles. You can go. Further, the electrode (positive electrode) is treated with N-methyl-2-pyrrolidone (NMP) or the like, the active material particles are peeled off from the electrode to precipitate the particles, and after washing and drying, the particle size distribution of the obtained particles is determined. When measuring or performing peak separation of particle size distribution and determining that it has two or more particle sizes, the particles are classified into large particles and small particles. The point or element amount may be measured by ICP.

なお、本明細書における正極活物質中の金属元素量を測定するためのICP分析では、活物質を約5g精秤して200mlビーカーに入れ、王水100mlを加え、液量が約20〜25mlになるまで加熱濃縮し、冷却した後、アドバンテック株式会社製の定量濾紙「No.5B」で固形物を分離し、濾液および洗液を100mlメスフラスコに入れて定容希釈した後、日本ジャーレル・アッシュ社製のシーケンシャル型ICP分析装置「IPIS1000」を用いて測定する方法を採用している。   In the ICP analysis for measuring the amount of metal element in the positive electrode active material in this specification, about 5 g of the active material is precisely weighed and put into a 200 ml beaker, 100 ml of aqua regia is added, and the liquid volume is about 20 to 25 ml. After heating and concentrating until cooled, the solids were separated with a quantitative filter paper “No. 5B” manufactured by Advantech Co., Ltd., and the filtrate and washings were placed in a 100 ml volumetric flask and diluted to a constant volume. A method of measurement using a sequential type ICP analyzer “IPIS1000” manufactured by Ash Corporation is adopted.

正極合剤層の有する上記平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物のうち、最小の平均粒子径を有するリチウム含有遷移金属酸化物について、上記のICPにより分析されるMg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素の含有率(I)と、最小の平均粒子径を有するリチウム含有遷移金属酸化物以外のリチウム含有遷移金属酸化物について、上記のICPにより分析されるMg、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素の含有率であって、上記含有率(I)に係る金属元素と同一の金属元素の含有率(II)との比(I)/(II)は、上述の、上記一般式(1)におけるzと上記一般式(2)におけるcとの関係に相当するものであり、(I)/(II)の値は、1.5以上であることがより好ましく、2以上であることが更に好ましく、3以上であることが特に好ましい。他方、cに対してzが大きすぎると、電池の負荷特性が低下する傾向にあるので、(I)/(II)の値は、5未満であることがより好ましく、4未満であることが更に好ましく、3.5未満であることが特に好ましい。   Among the two or more types of lithium-containing transition metal oxides having different average particle diameters of the positive electrode mixture layer, the lithium-containing transition metal oxides having the minimum average particle diameter are analyzed by the above ICP, Mg, Ti Lithium-containing transition metals other than lithium-containing transition metal oxides having a content (I) of at least one metal element selected from the group consisting of Zr, Ge, Nb, Al and Sn and a minimum average particle size Concerning the oxide, the content of at least one metal element selected from the group consisting of Mg, Ti, Zr, Ge, Nb, Al and Sn analyzed by the above ICP, the content (I) The ratio (I) / (II) between the metal element and the content (II) of the same metal element is the relationship between z in the general formula (1) and c in the general formula (2). Equivalent to The value of (I) / (II) is more preferably 1.5 or more, further preferably 2 or more, and particularly preferably 3 or more. On the other hand, if z is too large with respect to c, the load characteristics of the battery tend to deteriorate. Therefore, the value of (I) / (II) is more preferably less than 5, and preferably less than 4. More preferably, it is particularly preferably less than 3.5.

正極は、例えば以下の方法で作製される。まず、正極活物質であるリチウム含有遷移金属酸化物に、必要に応じて、導電助剤(例えば、黒鉛、カーボンブラック、アセチレンブラックなど)を添加し、更にバインダー(例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなど)を添加して正極合剤を調製する。この正極合剤を、溶剤を用いてペースト状にし(なお、バインダーは予め溶剤に溶解させておいてから正極活物質などと混合してもよい)、正極合剤含有ペーストを調製する。得られた正極合剤含有ペーストをアルミニウム箔などからなる正極集電体に塗布し、乾燥して正極合剤層を形成し、必要に応じて圧延する工程を経ることによって正極とする。なお、正極活物質に、平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物[例えば、正極活物質(A)と正極活物質(B)]を用いる場合には、これらのリチウム含有遷移金属酸化物を所定の質量比で混合し、この混合物に上記の導電助剤やバインダーを添加して調製した正極合剤を、その後の工程に供すればよい。ただし、正極の作製方法は、上記例示のものに限られることなく、他の方法によってもよい。   The positive electrode is produced, for example, by the following method. First, if necessary, a conductive additive (eg, graphite, carbon black, acetylene black, etc.) is added to the lithium-containing transition metal oxide that is the positive electrode active material, and further a binder (eg, polyvinylidene fluoride, polytetrafluoroethylene, etc.). A positive electrode mixture is prepared by adding fluoroethylene or the like). This positive electrode mixture is made into a paste using a solvent (the binder may be dissolved in a solvent in advance and then mixed with the positive electrode active material) to prepare a positive electrode mixture-containing paste. The obtained positive electrode mixture-containing paste is applied to a positive electrode current collector made of aluminum foil or the like, dried to form a positive electrode mixture layer, and rolled as necessary to obtain a positive electrode. When two or more kinds of lithium-containing transition metal oxides having different average particle diameters [for example, positive electrode active material (A) and positive electrode active material (B)] are used as the positive electrode active material, these lithium-containing transitions are used. What is necessary is just to use for the subsequent process the positive electrode mixture prepared by mixing a metal oxide at a predetermined mass ratio and adding the conductive assistant and binder to the mixture. However, the method for manufacturing the positive electrode is not limited to the above-described examples, and other methods may be used.

正極合剤層の厚みは、例えば、30〜200μmであることが好ましい。また、正極に用いる集電体の厚みは、例えば、8〜20μmであることが好ましい。   The thickness of the positive electrode mixture layer is preferably, for example, 30 to 200 μm. Moreover, it is preferable that the thickness of the electrical power collector used for a positive electrode is 8-20 micrometers, for example.

そして、正極合剤層においては、活物質であるリチウム含有遷移金属酸化物の含有量は、96質量%以上、より好ましくは97質量%以上、更に好ましくは97.5質量%以上であって、99質量%以下、より好ましくは98質量%以下であることが望ましい。また、正極合剤層中のバインダーの含有量は、例えば、1質量%以上、より好ましくは1.3質量%以上、更に好ましくは1.5質量%以上であって、4質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下であることが望ましい。そして、正極合剤層中の導電助剤の含有量は、例えば、1質量%以上、より好ましくは1.1質量%以上、更に好ましくは1.2質量%以上であって、3質量%以下、より好ましくは2質量%以下、更に好ましくは1.5質量%以下であることが望ましい。   In the positive electrode mixture layer, the content of the lithium-containing transition metal oxide as the active material is 96% by mass or more, more preferably 97% by mass or more, and further preferably 97.5% by mass or more, It is desirable that it is 99 mass% or less, More preferably, it is 98 mass% or less. Further, the content of the binder in the positive electrode mixture layer is, for example, 1% by mass or more, more preferably 1.3% by mass or more, still more preferably 1.5% by mass or more, and 4% by mass or less. Preferably it is 3 mass% or less, More preferably, it is 2 mass% or less. And content of the conductive support agent in a positive mix layer is 1 mass% or more, for example, More preferably, it is 1.1 mass% or more, More preferably, it is 1.2 mass% or more, Comprising: 3 mass% or less More preferably, it is 2% by mass or less, and further preferably 1.5% by mass or less.

これは、正極合剤層中の活物質の割合が少ないと高容量化を達成し難く、正極合剤層の密度も高くし難いからであり、一方で多すぎると、抵抗が高くなったり、正極の形成性が損なわれる場合があるからである。また、正極合剤層中のバインダーの含有量が多すぎると高容量化が困難となり、少なすぎると集電体との密着性が低下し、電極の粉落ちなどの可能性が出てくるので上記の好適組成とすることが望ましい。更に、正極合剤層中の導電助剤の含有量は、多すぎると正極合剤層の密度を十分に高くし難く、高容量化が困難となることがあり、少なすぎると導電がうまく取れずに電池の充放電サイクル特性や負荷特性の低下につながるからである。   This is because if the proportion of the active material in the positive electrode mixture layer is small, it is difficult to achieve high capacity, and the density of the positive electrode mixture layer is also difficult to increase. This is because the formability of the positive electrode may be impaired. Also, if the content of the binder in the positive electrode mixture layer is too large, it will be difficult to increase the capacity, and if it is too small, the adhesiveness with the current collector will be reduced, and the possibility of electrode dusting will occur. It is desirable to have the above preferred composition. Furthermore, if the content of the conductive additive in the positive electrode mixture layer is too large, it is difficult to sufficiently increase the density of the positive electrode mixture layer, and it may be difficult to increase the capacity. This is because it leads to deterioration of charge / discharge cycle characteristics and load characteristics of the battery.

本発明の非水二次電池は、上記の非水電解質および上記の正極を有していればよく、その他の構成要素や構造については特に制限は無く、従来公知の非水二次電池で採用されている各種構成要素や構造が適用できる。   The non-aqueous secondary battery of the present invention only needs to have the above-described non-aqueous electrolyte and the above-described positive electrode, and there are no particular restrictions on other components and structures, and it is adopted in a conventionally known non-aqueous secondary battery. Various components and structures are applicable.

負極に係る負極活物質としては、Liイオンをドープ・脱ドープできるものであればよく、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などの炭素材料が挙げられる。また、Si、Sn、Inなどの合金、またはLiに近い低電位で充放電できるSi、Snなどの酸化物、Li2.6Co0.4NなどのLiとCoの窒化物などの化合物も負極活物質として用いることができる。さらに、黒鉛の一部をLiと合金化し得る金属や酸化物などと置き換えることもできる。負極活物質として黒鉛を用いた場合には、満充電時の電圧をLi基準で約0.1Vとみなすことができるため、電池電圧に0.1Vを加えた電圧で正極の電位を便宜上計算することができることから、正極の充電電位が制御しやすく好ましい。 The negative electrode active material for the negative electrode is not particularly limited as long as it can be doped / undoped with Li ions. For example, graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbons Examples of the carbon material include microbeads, carbon fibers, and activated carbon. Also, alloys such as Si, Sn, In, etc., oxides such as Si, Sn that can be charged and discharged at a low potential close to Li, and compounds such as Li and Co nitrides such as Li 2.6 Co 0.4 N are also available. It can be used as a negative electrode active material. Furthermore, a part of graphite can be replaced with a metal or oxide that can be alloyed with Li. When graphite is used as the negative electrode active material, the voltage at the time of full charge can be regarded as about 0.1 V on the basis of Li. Therefore, the potential of the positive electrode is calculated for convenience by adding 0.1 V to the battery voltage. Therefore, it is preferable that the charge potential of the positive electrode is easy to control.

黒鉛の形態としては、例えば、002面の面間隔(d002 )が0.338nm以下であることが好ましい。これは、結晶性が高い方が負極(後記の負極合剤層)を高密度にし易いからである。しかし、d002が大きすぎると、高密度の負極では放電特性や負荷特性が低下する場合があるので、d002は、0.335nm以上であることが好ましく、0.3355nm以上であることが更に好ましい。 As a form of graphite, for example, it is preferable that an interplanar spacing (d 002 ) of the 002 plane is 0.338 nm or less. This is because the higher the crystallinity, the easier it is to make the negative electrode (negative electrode mixture layer described later) dense. However, if d 002 is too large, the discharge characteristics and load characteristics of the high-density negative electrode may be deteriorated. Therefore, d 002 is preferably 0.335 nm or more, and more preferably 0.3355 nm or more. preferable.

また、黒鉛のc軸方向の結晶子サイズ(Lc)については、70nm以上が好ましく、80nm以上がより好ましく、90nm以上が更に好ましい。これは、Lcが大きいほうが、充電カーブが平坦になり正極の電位を制御し易く、また、容量を大きくできるためである。他方、Lcが大きすぎると、高密度の負極では電池容量が低下する傾向があるので、Lcは200nm未満であることが好ましい。   Further, the crystallite size (Lc) in the c-axis direction of graphite is preferably 70 nm or more, more preferably 80 nm or more, and still more preferably 90 nm or more. This is because the larger the Lc, the flatter the charging curve, the easier to control the positive electrode potential, and the larger the capacity. On the other hand, if Lc is too large, the battery capacity tends to decrease in a high-density negative electrode, so Lc is preferably less than 200 nm.

更に、黒鉛の比表面積は、0.5m/g以上であることが好ましく、1m/g以上であることがより好ましく、2m/g以上であることが更に好ましく、また、6m/g以下であることが好ましく、5m/g以下であることがより好ましい。黒鉛の比表面積がある程度大きくないと特性が低下する傾向にあり、他方、大きすぎると非水電解質との反応の影響が出易くなるためである。 Furthermore, the specific surface area of the graphite is preferably at 0.5 m 2 / g or more, more preferably 1 m 2 / g or more, further preferably 2m 2 / g or more,, 6 m 2 / g or less is preferable, and 5 m 2 / g or less is more preferable. This is because if the specific surface area of graphite is not large to some extent, the characteristics tend to deteriorate, while if it is too large, the influence of the reaction with the nonaqueous electrolyte tends to occur.

負極に用いる黒鉛は、天然黒鉛を原料としたものであることが好ましく、表面結晶性の異なる2種以上の黒鉛を混合したものが、高容量化の点からより好ましい。天然黒鉛は安価かつ高容量であることから、これによりコストパフォーマンスの高い負極とすることができる。通常天然黒鉛は、負極の高密度化によって電池容量が低下し易いが、表面処理によって表面の結晶性が低下した黒鉛を混合して用いることで、電池容量の低下を小さくすることができる。   The graphite used for the negative electrode is preferably made of natural graphite as a raw material, and a mixture of two or more types of graphite having different surface crystallinity is more preferable from the viewpoint of increasing the capacity. Since natural graphite is inexpensive and has a high capacity, it can be a negative electrode with high cost performance. Normally, natural graphite is likely to have a reduced battery capacity due to densification of the negative electrode. However, a decrease in battery capacity can be reduced by mixing and using graphite whose surface crystallinity has been reduced by surface treatment.

黒鉛の表面の結晶性はラマンスペクトル分析によって判断することができる。波長514.5nmのアルゴンレーザーで黒鉛を励起させた時のラマンスペクトルのR値〔R=I1350/I1580(1350cm−1付近のラマン強度と1580cm−1付近のラマン強度との比)]が0.01以上であれば、表面の結晶性は天然黒鉛に比べ若干低下しているといえる。よって、表面処理により表面の結晶性が低下した黒鉛としては、例えば、R値が、0.01以上、より好ましくは0.1以上であって、0.5以下、より好ましくは0.3以下、更に好ましくは0.15以下のものを使用することが好ましい。上記の表面の結晶性が低下した黒鉛の含有割合は、負極の高密度化のためには100質量%であることが好ましいが、電池容量の低下防止のためには、全黒鉛中の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、85質量%以上であることが特に好ましい。 The crystallinity of the surface of graphite can be determined by Raman spectrum analysis. R value of Raman spectrum when excited graphite in argon laser with a wavelength of 514.5nm is [R = I 1350 / I 1580 (the ratio of the Raman intensity and 1580cm Raman intensity at around -1 around 1350 cm -1)] If it is 0.01 or more, it can be said that the crystallinity of the surface is slightly lower than that of natural graphite. Therefore, as the graphite whose surface crystallinity is reduced by the surface treatment, for example, the R value is 0.01 or more, more preferably 0.1 or more, and 0.5 or less, more preferably 0.3 or less. More preferably, it is preferably 0.15 or less. The content ratio of the graphite whose surface crystallinity is reduced is preferably 100% by mass in order to increase the density of the negative electrode, but in order to prevent a decrease in battery capacity, 50% by mass in the total graphite. % Or more, more preferably 70% by mass or more, and particularly preferably 85% by mass or more.

また、黒鉛の平均粒子径は、小さすぎると不可逆容量が大きくなるので、5μm以上であることが好ましく、12μm以上であることがより好ましく、18μm以上であることが更に好ましい。また、負極の高密度化の観点からは、黒鉛の平均粒子径は、30μm以下であることが好ましく、25μm以下であることがより好ましく、20μm以下であることが更に好ましい。   Moreover, since the irreversible capacity | capacitance will become large if the average particle diameter of graphite is too small, it is preferable that it is 5 micrometers or more, it is more preferable that it is 12 micrometers or more, and it is still more preferable that it is 18 micrometers or more. From the viewpoint of increasing the density of the negative electrode, the average particle diameter of graphite is preferably 30 μm or less, more preferably 25 μm or less, and further preferably 20 μm or less.

負極は、例えば、以下の方法で作製できる。上記負極活物質に、必要に応じてバインダーなどを加え、混合して負極合剤を調製し、それを溶剤に分散させてペーストにする。なお、バインダーは予め溶剤に溶解させておいてから負極活物質などと混合しておくのが好ましい。上記の負極合剤含有ペーストを銅箔などからなる負極集電体に塗布し、乾燥して負極合剤層を形成し、加圧処理工程を経ることによって負極を得ることができる。なお、負極の作製方法は、上記の方法に限定される訳ではなく、他の方法を採用しても構わない。   The negative electrode can be produced, for example, by the following method. If necessary, a binder or the like is added to the negative electrode active material and mixed to prepare a negative electrode mixture, which is dispersed in a solvent to obtain a paste. The binder is preferably dissolved in a solvent in advance and then mixed with the negative electrode active material or the like. The negative electrode mixture-containing paste is applied to a negative electrode current collector made of a copper foil or the like, dried to form a negative electrode mixture layer, and a negative electrode can be obtained through a pressure treatment step. Note that the method for manufacturing the negative electrode is not limited to the above method, and other methods may be adopted.

なお、負極合剤層の密度(加圧処理工程後の密度)は、1.70g/cm以上であることが好ましく、1.75g/cm以上であることがより好ましい。黒鉛の理論密度から、負極合剤層の密度の上限は2.1〜2.2g/cmであるが、非水電解質との親和性の観点からは、負極合剤層の密度は、2.0g/cm以下であることがより好ましく、1.9g/cm以下であることが更に好ましい。なお、上記の加圧処理工程においては、負極をより均一にプレスできることから、一回の加圧処理よりも、複数回の加圧処理を施すことが好ましい。 The density of the negative electrode mixture layer (the density after the pressure treatment step) is preferably 1.70 g / cm 3 or more, and more preferably 1.75 g / cm 3 or more. From the theoretical density of graphite, the upper limit of the density of the negative electrode mixture layer is 2.1 to 2.2 g / cm 3 , but from the viewpoint of affinity with the nonaqueous electrolyte, the density of the negative electrode mixture layer is 2 more preferably .0g / cm 3 or less, further preferably 1.9 g / cm 3 or less. In the above pressure treatment step, since the negative electrode can be pressed more uniformly, it is preferable to perform a plurality of pressure treatments rather than a single pressure treatment.

負極に用いるバインダーは特に限定されないが、活物質比率を高めて容量を大きくする観点から、使用量を極力少なくすることが好ましく、このような理由から、水に溶解または分散する性質を有する水系樹脂とゴム系樹脂との混合物が好適である。水系樹脂は少量でも黒鉛の分散に寄与し、ゴム系樹脂は電池の充放電サイクル時の電極の膨張・収縮による負極合剤層の集電体からの剥離を防止することができるからである。   The binder used in the negative electrode is not particularly limited, but from the viewpoint of increasing the active material ratio and increasing the capacity, it is preferable to reduce the amount used as much as possible, and for this reason, an aqueous resin having the property of being dissolved or dispersed in water. A mixture of styrene and a rubber-based resin is preferred. This is because the water-based resin contributes to the dispersion of the graphite even in a small amount, and the rubber-based resin can prevent the negative electrode mixture layer from peeling from the current collector due to the expansion and contraction of the electrode during the charge / discharge cycle of the battery.

水系樹脂としては、カルボキシメチルセルロース、ヒドロキシプロピルセルロースなどのセルロース樹脂、ポリビニルピロリドン、ポリエピクロルヒドリン、ポリビニルピリジン、ポリビニルアルコール、ポリエチレンオキシド、ポリエチレングリコールなどのポリエーテル系樹脂などが挙げられる。ゴム系樹脂としては、ラテックス、ブチルゴム、フッ素ゴム、スチレンブタジエンゴム、ニトリルブタジエン共重合体ゴム、エチレン−プロピレン−ジエン共重合体、ポリブタジエン、エチレン−プロピレン−ジエン共重合体(EPDM)などが挙げられる。例えば、カルボキシメチルセルロースなどのセルロースエーテル化合物とスチレンブタジエンゴムなどのブタジエン共重合体系ゴムとを併用することが、上記黒鉛の分散や剥離防止の観点からより好ましい。カルボキシメチルセルロースとスチレンブタジエンゴム、ニトリルブタジエン共重合体ゴムなどのブタジエン共重合体系ゴムとを併用することが特に好ましい。これは、カルボキシメチルセルロースなどのセルロースエーテル化合物が、主として負極合剤含有ペーストに対して増粘作用を発揮し、スチレン・ブタジエン共重合体ゴムなどのゴム系バインダーが、負極合剤に対して結着作用を発揮するからである。このように、カルボキシメチルセルロースなどのセルロースエーテル化合物とスチレンブタジエンゴムなどのゴム系バインダーとを併用する場合、両者の比率としては質量比で1:1〜1:15が好ましい。   Examples of the water-based resin include cellulose resins such as carboxymethyl cellulose and hydroxypropyl cellulose, and polyether resins such as polyvinyl pyrrolidone, polyepichlorohydrin, polyvinyl pyridine, polyvinyl alcohol, polyethylene oxide, and polyethylene glycol. Examples of the rubber resin include latex, butyl rubber, fluorine rubber, styrene butadiene rubber, nitrile butadiene copolymer rubber, ethylene-propylene-diene copolymer, polybutadiene, and ethylene-propylene-diene copolymer (EPDM). . For example, it is more preferable to use a cellulose ether compound such as carboxymethyl cellulose in combination with a butadiene copolymer rubber such as styrene butadiene rubber from the viewpoint of dispersion of the graphite and prevention of peeling. It is particularly preferred to use carboxymethyl cellulose in combination with a butadiene copolymer rubber such as styrene butadiene rubber or nitrile butadiene copolymer rubber. This is because cellulose ether compounds such as carboxymethyl cellulose exert a thickening action mainly on the negative electrode mixture-containing paste, and rubber binders such as styrene / butadiene copolymer rubber bind to the negative electrode mixture. This is because the effect is exhibited. Thus, when using together cellulose ether compounds, such as carboxymethylcellulose, and rubber-type binders, such as a styrene butadiene rubber, as a ratio of both, 1: 1-1: 15 are preferable by mass ratio.

負極合剤層の厚みは、例えば、40〜200μmであることが好ましい。また、負極に用いる集電体の厚みは、例えば、5〜30μmであることが好ましい。   The thickness of the negative electrode mixture layer is preferably 40 to 200 μm, for example. Moreover, it is preferable that the thickness of the electrical power collector used for a negative electrode is 5-30 micrometers, for example.

そして、負極合剤層においては、バインダーの含有量(複数種を併用する場合には、その合計量)は、1.5質量%以上、より好ましくは1.8質量%以上、更に好ましくは2.0質量%以上であって、5質量%未満、より好ましくは3質量%未満、更に好ましくは2.5質量%未満であることが望ましい。負極合剤層中のバインダー量が多すぎると放電容量が低下することがあり、少なすぎると粒子同士の接着力が低下するからである。なお、負極合剤層における負極活物質の含有量は、例えば、95質量%を超え、98.5質量%以下であることが好ましい。   In the negative electrode mixture layer, the content of the binder (the total amount when a plurality of types are used in combination) is 1.5% by mass or more, more preferably 1.8% by mass or more, and further preferably 2%. It is desirable that it is 0.0 mass% or more, less than 5 mass%, more preferably less than 3 mass%, and still more preferably less than 2.5 mass%. This is because if the amount of the binder in the negative electrode mixture layer is too large, the discharge capacity may decrease, and if it is too small, the adhesion between the particles decreases. In addition, it is preferable that content of the negative electrode active material in a negative mix layer exceeds 95 mass%, and is 98.5 mass% or less, for example.

本発明に係るセパレータは、引張強度に方向性を有し、かつ、絶縁性を良好に保ち、また、熱収縮を小さくする観点から、その厚みは、5μm以上、より好ましくは10μm以上、更に好ましくは12μm以上であって、25μm未満、より好ましくは20μm未満、更に好ましくは18μm未満であることが望ましい。また、セパレータの透気度は、例えば、500秒/100ml以下であることが好ましく、300秒/100ml以下であることがより好ましく、120秒/100ml以下であることが更に好ましい。なお、セパレータの透気度は、小さいほど負荷特性が向上するが、内部短絡を生じ易くなることから、その透気度は、50秒/100ml以上とすることが好ましい。セパレータのTD方向の熱収縮率は、小さいほど温度上昇時の内部短絡が発生し難くなるため、できるだけ熱収縮率の小さいセパレータを用いるのが好ましく、例えば、熱収縮率が10%以下であるものがより好ましく、5%以下であるものが更に好ましい。また、熱収縮を抑えるため、あらかじめ100〜125℃程度の温度で熱処理を施したセパレータを用いることが好ましい。このような熱収縮率のセパレータを本発明に係る正極材料と組み合わせて電池を構成することで、より高温での挙動が安定することから推奨される。   The separator according to the present invention has directionality in tensile strength, maintains good insulation, and reduces thermal shrinkage, and the thickness thereof is 5 μm or more, more preferably 10 μm or more, and still more preferably. Is preferably 12 μm or more, less than 25 μm, more preferably less than 20 μm, and still more preferably less than 18 μm. Further, the air permeability of the separator is, for example, preferably 500 seconds / 100 ml or less, more preferably 300 seconds / 100 ml or less, and further preferably 120 seconds / 100 ml or less. The smaller the air permeability of the separator, the better the load characteristics. However, since the internal short circuit easily occurs, the air permeability is preferably 50 seconds / 100 ml or more. As the heat shrinkage rate in the TD direction of the separator is smaller, an internal short circuit is less likely to occur when the temperature rises. Therefore, it is preferable to use a separator having a heat shrinkage rate as low as possible. For example, the heat shrinkage rate is 10% or less. Is more preferable, and 5% or less is still more preferable. In order to suppress thermal shrinkage, it is preferable to use a separator that has been heat-treated at a temperature of about 100 to 125 ° C. in advance. It is recommended that a battery having such a heat shrinkage rate be combined with the positive electrode material according to the present invention to stabilize the behavior at a higher temperature.

なお、セパレータのTD方向の熱収縮率は、30mm角のセパレータを105℃で8時間静置した場合の、TD方向において最大に収縮した部分の収縮率を意味している。   The thermal contraction rate in the TD direction of the separator means the contraction rate of the portion contracted to the maximum in the TD direction when a 30 mm square separator is allowed to stand at 105 ° C. for 8 hours.

また、セパレータの強度は、MD方向の引張強度として、例えば、6.8×10N/m以上であることが好ましく、9.8×10N/m以上であることがより好ましい。また、TD方向の引張強度はMD方向に比べて小さいことが好ましく、例えば、MD方向の引張強度に対するTD方向の引張強度の比(TD方向引張強度/MD方向引張強度)が、0.95以下であることがより好ましく、0.9以下であることが更に好ましく、また、0.1以上であることがより好ましい。なお、TD方向とは、セパレータ製造におけるフィルム樹脂の引き取り方向(MD方向)と直交する方向のことである。 Further, the strength of the separator is, for example, preferably 6.8 × 10 7 N / m 2 or more, more preferably 9.8 × 10 7 N / m 2 or more as the tensile strength in the MD direction. . The tensile strength in the TD direction is preferably smaller than that in the MD direction. For example, the ratio of the tensile strength in the TD direction to the tensile strength in the MD direction (TD tensile strength / MD tensile strength) is 0.95 or less. Is more preferable, 0.9 or less is further preferable, and 0.1 or more is more preferable. In addition, TD direction is a direction orthogonal to the take-up direction (MD direction) of film resin in separator manufacture.

更に、セパレータの突き刺し強度は、2.0N以上であることが好ましく、2.5N以上であることがより好ましい。この値が高いほど、電池が短絡しにくくなる。ただし、その上限値は、通常はセパレータの構成材料によってほぼ決定され、例えば、ポリエチレン製のセパレータの場合は10N程度が上限値となる。   Furthermore, the piercing strength of the separator is preferably 2.0 N or more, and more preferably 2.5 N or more. The higher this value is, the more difficult the battery is short-circuited. However, the upper limit value is generally almost determined by the constituent material of the separator. For example, in the case of a polyethylene separator, the upper limit value is about 10N.

従来の非水二次電池では、正極電位がLi基準で4.35V以上の高い電圧で充電し、3.2Vよりも高い電圧終止で放電を行うと、正極活物質の結晶構造が崩壊して容量低下を引き起こしたり、熱安定性が低下して電池が発熱するなどの支障が生じ、実用性を欠いていた。例えば、MgやTiなどの異種元素を添加した正極活物質を用いても、安全性や充放電サイクルに伴う容量低下が軽減できるようにはなるが、未だ不十分である。また正極の充填性が不十分で電池の膨れが生じやすい。   In the conventional non-aqueous secondary battery, when the positive electrode potential is charged at a high voltage of 4.35 V or more on the basis of Li and discharged at a voltage termination higher than 3.2 V, the crystal structure of the positive electrode active material collapses. This has been impractical due to problems such as a decrease in capacity and a problem that heat stability is reduced and the battery generates heat. For example, even if a positive electrode active material to which a different element such as Mg or Ti is added can be reduced in safety and capacity reduction due to charge / discharge cycles, it is still insufficient. Moreover, the filling property of the positive electrode is insufficient, and the battery tends to swell.

これに対し、本発明は、上記構成の採用により、高容量特性、充放電サイクル特性、安全性および膨れ抑制(貯蔵特性)の各効果を高めた非水二次電池であり、通常の充電電圧(電池電圧で4.2V)でも効果は得られるが、更にLi基準で正極を4.35V(電池電圧で4.25V)の高い電圧まで充電し、電池電圧で3.2V以上の高い電圧で放電を終了しても、正極活物質の結晶構造がより安定であり、容量低下や熱安定性の低下が抑制される。   On the other hand, the present invention is a non-aqueous secondary battery that improves the effects of high capacity characteristics, charge / discharge cycle characteristics, safety, and swelling suppression (storage characteristics) by adopting the above-described configuration. (Even if the battery voltage is 4.2V), the effect is obtained, but the positive electrode is charged to a high voltage of 4.35V (battery voltage of 4.25V) on the basis of Li, and the battery voltage is higher than 3.2V. Even after the discharge is finished, the crystal structure of the positive electrode active material is more stable, and the capacity reduction and the thermal stability are suppressed.

また、従来の非水二次電池に係る正極活物質では、平均電圧が低いため、単電池の充電終止電圧がLi基準で4.35V以上の条件下で充放電サイクル試験を繰り返すと、正極が多量のLiイオンを出し入れする。これは、電池を過充電条件で充放電サイクル試験することと同じである。従って、このような苛酷な条件では、従来の正極活物質を用いると結晶構造を維持することができず、熱安定性が低下したり、充放電サイクル寿命が短いなどの不都合が生じていた。これに対し、本発明の電池に係る正極活物質を用いれば、そのような不都合が解消できるため、満充電時の正極電位が、Li基準電位で4.35〜4.6Vとなるような高電圧下でも可逆的に充放電が可能な非水二次電池を提供することができる。   In addition, since the positive electrode active material related to the conventional non-aqueous secondary battery has a low average voltage, when the charge / discharge cycle test is repeated under the condition that the end-of-charge voltage of the unit cell is 4.35 V or more on the basis of Li, the positive electrode Put in and out a large amount of Li ions. This is the same as a charge / discharge cycle test of the battery under overcharge conditions. Therefore, under such severe conditions, when a conventional positive electrode active material is used, the crystal structure cannot be maintained, resulting in inconveniences such as a decrease in thermal stability and a short charge / discharge cycle life. On the other hand, if the positive electrode active material according to the battery of the present invention is used, such inconvenience can be eliminated, so that the positive electrode potential at the time of full charge is high such that the Li reference potential is 4.35 to 4.6V. A non-aqueous secondary battery that can be reversibly charged and discharged even under voltage can be provided.

なお、上記の「満充電」とは、0.2Cの電流値で所定の電圧まで定電流充電を行い、続いて、該所定の電圧で定電圧充電を行って、該定電流充電と該定電圧充電との合計時間を8時間とする条件での充電をいう。また、例えば、本発明の非水二次電池が、満充電時のLi基準電位が0.1Vとなる黒鉛負極(黒鉛を負極活物質として含有する負極)を有する場合、電池電圧を4.45V以上で充電することは、実質的に正極電位が4.35V以上となる充電であるとみなされる。   The above “full charge” means that constant current charging is performed up to a predetermined voltage at a current value of 0.2 C, and then constant voltage charging is performed at the predetermined voltage, so that the constant current charging and the constant charging are performed. Charging under the condition that the total time with voltage charging is 8 hours. For example, when the non-aqueous secondary battery of the present invention has a graphite negative electrode (a negative electrode containing graphite as a negative electrode active material) having a Li reference potential of 0.1 V when fully charged, the battery voltage is 4.45 V. Charging with the above is considered to be charging in which the positive electrode potential is substantially 4.35V or more.

本発明の非水二次電池は、上記のような高電圧、高容量で、かつ貯蔵特性が良好であるという特徴を生かして、例えば、ノートパソコン、ペン入力パソコン、ポケットパソコン、ノート型ワープロ、ポケットワープロ、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャ、ハンディターミナル、携帯コピー、電子手帳、電卓、液晶テレビ、電気シェーバー、電動工具、電子翻訳機、自動車電話、トランシーバ、音声入力機器、メモリカード、バックアップ電源、テープレコーダー、ラジオ、ヘッドフォンステレオ、携帯プリンタ、ハンディクリーナー、ポータブルCD、ビデオムービー、ナビゲーションシステムなどの機器用の電源や、冷蔵庫、エアコン、テレビ、ステレオ、温水器、オーブン電子レンジ、食器洗い器、洗濯機、乾燥機、ゲーム機器、照明機器、玩具、センサー機器、ロードコンディショナー、医療機器、自動車、電気自動車、ゴルフカート、電動カート、セキュリティシステム、電力貯蔵システムなどの電源として使用することができる。また、民生用途の他、宇宙用途にも用いることができる。特に、小形携帯機器では高容量化の効果が高くなり、重量3kg以下の携帯機器に使用することが望ましく、1kg以下の携帯機器に使用することがより望ましい。また携帯機器重量の下限については特に限定されないが、ある程度の効果を得るためには、電池の重量と同程度、たとえば10g以上であることが望ましい。   The non-aqueous secondary battery of the present invention takes advantage of the above-described features of high voltage, high capacity, and good storage characteristics, for example, notebook computers, pen input computers, pocket computers, notebook type word processors, Pocket word processor, electronic book player, mobile phone, cordless phone, pager, handy terminal, portable copy, electronic notebook, calculator, LCD TV, electric shaver, electric tool, electronic translator, car phone, transceiver, voice input device, Power supplies for devices such as memory cards, backup power supplies, tape recorders, radios, headphone stereos, portable printers, handy cleaners, portable CDs, video movies, navigation systems, refrigerators, air conditioners, TVs, stereos, water heaters, oven microwaves , Dishwasher, washing Machine, dryer, a game machine, lighting equipment, can be used toys, sensor devices, load conditioners, medical equipment, automobiles, electric automobiles, golf carts, electric carts, security system, as a power source, such as a power storage system. In addition to consumer use, it can also be used for space use. In particular, a small portable device is highly effective in increasing the capacity, and is desirably used for a portable device having a weight of 3 kg or less, and more desirably for a portable device having a weight of 1 kg or less. Further, the lower limit of the weight of the portable device is not particularly limited, but in order to obtain a certain degree of effect, it is preferably about the same as the battery weight, for example, 10 g or more.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
<正極の作製>
LiCo0.998Mg0.0008Ti0.0004Al0.0008[平均粒子径12μm、正極活物質(A)]とLiCo0.994Mg0.0024Ti0.0012Al0.0024[平均粒子径5μm、正極活物質(B)]を質量比65:35で混合したもの:97.3質量部、および導電助剤としての炭素材料:1.5質量部を、粉体供給装置である定量フィーダ内に投入し、また、10質量%濃度のポリフッ化ビニリデン(PVDF)のNMP溶液の投入量を調整し、混練時の固形分濃度が常に94質量%になるように調整した材料を、単位時間あたり所定の投入量になるように制御しつつ二軸混練押出機に投入して混練を行い、正極合剤含有ペーストを調製した。
Example 1
<Preparation of positive electrode>
LiCo 0.998 Mg 0.0008 Ti 0.0004 Al 0.0008 O 2 [average particle size 12 μm, positive electrode active material (A)] and LiCo 0.994 Mg 0.0024 Ti 0.0012 Al 0.0024 O 2 A powder supply apparatus comprising 97.3 parts by mass of [average particle diameter of 5 μm, positive electrode active material (B)] mixed at a mass ratio of 65:35, and 1.5 parts by mass of carbon material as a conductive auxiliary agent. In addition, the amount of the NMP solution of polyvinylidene fluoride (PVDF) having a concentration of 10% by mass was adjusted so that the solid content concentration during kneading was always 94% by mass. Was fed into a twin-screw kneader-extruder while being controlled so as to be a predetermined amount per unit time, and kneaded to prepare a positive electrode mixture-containing paste.

また、別途上記の正極活物質(A)と正極活物質(B)をそれぞれ王水に溶解し、含有される元素の比率をICP分析と原子吸光分析で確認し、それぞれ上記組成式であることも確認した。   Separately, the positive electrode active material (A) and the positive electrode active material (B) are separately dissolved in aqua regia, and the ratio of contained elements is confirmed by ICP analysis and atomic absorption analysis, respectively, and each of the above composition formulas. Also confirmed.

次に、得られた正極合剤含有ペーストをプラネタリーミキサー内に投入し、10質量%濃度のPVDFのNMP溶液とNMPとを加えて希釈し、塗布可能な粘度に調整した。この希釈後の正極合剤含有ペーストを70メッシュの網を通過させて大きな含有物を取り除いた後、厚みが15μmのアルミニウム箔からなる正極集電体の両面に均一に塗布し、乾燥して膜状の正極合剤層を形成した。乾燥後の正極合剤層の固形分比率は、正極活物質:導電助剤:PVDF質量比で97.3:1.5:1.2である。その後、加圧処理し、所定のサイズに切断後、アルミニウム製のリード体を溶接して、シート状の正極を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.86g/cmであり、正極合剤層の厚み(両面の厚み、すなわち、正極の総厚みから正極集電体のアルミニウム箔の厚みを引いた厚み、以下同じ)は135μmであった。 Next, the obtained positive electrode mixture-containing paste was put into a planetary mixer, diluted with an NMP solution of PVDF having a concentration of 10% by mass and NMP, and adjusted to a coatable viscosity. The diluted positive electrode mixture-containing paste is passed through a 70-mesh net to remove large inclusions, and then uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm and dried to form a film. A positive electrode mixture layer was formed. The solid content ratio of the positive electrode mixture layer after drying is 97.3: 1.5: 1.2 in terms of positive electrode active material: conductive auxiliary agent: PVDF mass ratio. Then, after pressurizing and cutting to a predetermined size, an aluminum lead body was welded to produce a sheet-like positive electrode. The density of the positive electrode mixture layer after the pressure treatment (positive electrode density) is 3.86 g / cm 3 , and the thickness of the positive electrode mixture layer (the thickness of both surfaces, that is, the total thickness of the positive electrode, the aluminum of the positive electrode current collector). The thickness obtained by subtracting the thickness of the foil (hereinafter the same) was 135 μm.

正極活物質(A)および(B)の混合物の粒度分布を、日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」を用いて測定した結果、粒径5μmと12μmに2つのピークが確認できた。また、d値はdより大きく、d/dは1.4であった。 As a result of measuring the particle size distribution of the mixture of the positive electrode active materials (A) and (B) using a microtrack particle size distribution measuring apparatus “HRA9320” manufactured by Nikkiso Co., Ltd., two peaks were confirmed at particle diameters of 5 μm and 12 μm. . Further, d p value is greater than d M, d p / d M was 1.4.

ここで、正極活物質(A)は、Coに対して、Mgが0.08モル%であり、Tiが0.04モル%であり、Alが0.08モル%である。また粒子の断面の金属元素Mの濃度を、島津製作所株式会社製の電子線微小部解析装置「EPMA1600」を用いて測定したところ、表面部と中心部でMg、Ti、Alとも濃度差は観察できなかった。 Here, in the positive electrode active material (A), Mg is 0.08 mol%, Ti is 0.04 mol%, and Al is 0.08 mol% with respect to Co. The concentration of the metal element M 2 of a cross section of the particles was measured using a Shimadzu electron beam microanalysis analyzer Co., Ltd. "EPMA1600", Mg in the surface portion and the central portion, Ti, Al with a concentration difference I could not observe.

また、正極活物質(B)は、Coに対して、Mgが0.24モル%であり、Tiが0.12モル%であり、Alが0.24モル%であり、正極活物質(A)と同様に粒子の断面の金属元素Mを測定したが、表面部と中心部でMg、Ti、Alとも濃度差は観察できなかった。また、金属元素Mの含有量と金属元素Mの含有量とに関して、正極活物質(B)は、正極活物質(A)に対して、モル基準で、Mgが3倍、Tiが3倍、Alが3倍であった。 Further, the positive electrode active material (B) has Mg of 0.24 mol%, Ti of 0.12 mol%, and Al of 0.24 mol% with respect to Co, and the positive electrode active material (A ) and was measured metal elements M 2 of a cross section of a likewise particles, but density difference Mg, Ti, with Al in the surface portion and the central portion was not observed. Further, regarding the content of the metal element M 2 and the content of the metal element M 5 , the positive electrode active material (B) is 3 times as much as Mg and 3 as Ti on a molar basis with respect to the positive electrode active material (A). Doubled and Al tripled.

<負極の作製>
負極活物質として黒鉛系炭素材料(A)[純度99.9%以上、平均粒子径18μm、002面の面間距離(d002)=0.3356nm、c軸方向の結晶子の大きさ(Lc)=100nm、R値(波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルにおける1350cm−1付近のピーク強度と1580cm−1付近のピーク強度との比〔R=I1350/I1580〕)=0.18]:70質量部と、黒鉛系炭素材料(B)[純度99.9%以上、平均粒子径21μm、d002=0.3363nm、Lc=60nm、R値=0.11]:30質量部とを混合し、この混合物98質量部と、カルボキシメチルセルロース:1質量部とスチレンブタジエンゴム1質量部とを、水の存在下で混合してスラリー状の負極合剤含有ぺーストを調製した。得られた負極合剤含有ぺーストを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥して負極合剤層を形成し、ローラーで負極合剤層の密度が1.75g/cmになるまで加圧処理し、所定のサイズに切断後、ニッケル製のリード体を溶接して、シート状の負極を作製した。
<Production of negative electrode>
Graphite-based carbon material (A) as a negative electrode active material [purity 99.9% or more, average particle diameter 18 μm, inter-surface distance (d 002 ) = 0.3356 nm, crystallite size in the c-axis direction (Lc ) = 100 nm, R value (ratio of peak intensity around 1350 cm −1 and peak intensity around 1580 cm −1 in the Raman spectrum when excited by an argon laser with a wavelength of 514.5 nm [R = I 1350 / I 1580 ] ) = 0.18]: 70 parts by mass and graphite-based carbon material (B) [purity 99.9% or more, average particle diameter 21 μm, d 002 = 0.3363 nm, Lc = 60 nm, R value = 0.11. 30 parts by mass, and 98 parts by mass of this mixture, 1 part by mass of carboxymethylcellulose, and 1 part by mass of styrene butadiene rubber are mixed in the presence of water to form a slurry. A negative electrode mixture containing paste was prepared in the. The obtained negative electrode mixture-containing paste was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and the density of the negative electrode mixture layer was 1 with a roller. A pressure treatment was performed until the pressure became 0.75 g / cm 3, and after cutting into a predetermined size, a nickel lead was welded to prepare a sheet-like negative electrode.

<非水電解液の調製>
メチルエチルカーボネートとジエチルカーボネートとエチレンカーボネートとを体積比1:3:2で混合した混合溶媒に、LiPFを1.4mol/lの濃度になるように溶解し、これにスクシノニトリル0.2質量%、ビニレンカーボネート(VC)3質量%を加えて非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 was dissolved in a mixed solvent in which methyl ethyl carbonate, diethyl carbonate, and ethylene carbonate were mixed at a volume ratio of 1: 3: 2 to a concentration of 1.4 mol / l, and succinonitrile 0.2 was added thereto. A non-aqueous electrolyte was prepared by adding 3% by mass and 3% by mass of vinylene carbonate (VC).

<非水二次電池の作製>
上記正極と負極を微孔性ポリエチレンフィルムからなるセパレータ[空孔率53%、MD方向引張強度:2.1×10N/m、TD方向引張強度:0.28×10N/m、厚さ16μm、透気度80秒/100ml、105℃×8時間後のTD方向の熱収縮率3%、突き刺し強度:3.5N(360g)]を介して渦巻状に巻回し、巻回構造の電極体にした後、角形の電池ケース内に挿入するために加圧して扁平状巻回構造の電極体にした。それをアルミニウム合金製で角形の電池ケース内に挿入し、正・負極リード体の溶接と蓋板の電池ケースへの開口端部へのレーザー溶接を行い、封口用蓋板に設けた注入口から上記の非水電解液を電池ケース内に注入し、非水電解液をセパレータなどに十分に浸透させた後、部分充電を行い、部分充電で発生したガスを排出後、注入口を封止して密閉状態にした。その後、充電、エイジングを行い、図1に示すような構造で図2に示すような外観を有し、幅が34.0mmで、厚みが4.0mmで、高さが50.0mmの角形の非水二次電池を得た。
<Production of non-aqueous secondary battery>
The positive electrode and the negative electrode are made of a microporous polyethylene film [porosity 53%, MD direction tensile strength: 2.1 × 10 8 N / m 2 , TD direction tensile strength: 0.28 × 10 8 N / m 2. Thickness 16 μm, air permeability 80 seconds / 100 ml, thermal shrinkage 3% in TD direction after 105 ° C. × 8 hours, puncture strength: 3.5 N (360 g)] After forming the electrode structure with a round structure, the electrode body was pressed to be inserted into a rectangular battery case to obtain an electrode body with a flat winding structure. Insert it into a rectangular battery case made of aluminum alloy, weld the positive and negative electrode lead bodies and laser weld the open end of the lid plate to the battery case, and then insert it from the inlet on the lid plate for sealing. After injecting the above non-aqueous electrolyte into the battery case, fully infiltrating the non-aqueous electrolyte into the separator, etc., perform partial charging, discharge the gas generated by partial charging, and seal the injection port And sealed. Thereafter, charging and aging are performed, the structure shown in FIG. 1 has the appearance shown in FIG. 2, the width is 34.0 mm, the thickness is 4.0 mm, and the height is 50.0 mm. A non-aqueous secondary battery was obtained.

ここで図1および図2に示す電池について説明すると、正極1と負極2は上記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体6として、角形の電池ケース4に非水電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。   Here, the battery shown in FIGS. 1 and 2 will be described. The positive electrode 1 and the negative electrode 2 are wound in a spiral shape through the separator 3 as described above, and then pressed so as to become a flat shape. The electrode laminate 6 having a structure is accommodated in a rectangular battery case 4 together with a non-aqueous electrolyte. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution, and the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 are not illustrated.

電池ケース4はアルミニウム合金製で電池の外装材の主要部分を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリテトラフルオロエチレンシートからなる絶縁体5が配置され、上記正極1、負極2およびセパレータ3からなる扁平状巻回構造の電極積層体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。   The battery case 4 is made of an aluminum alloy and constitutes the main part of the battery exterior material. The battery case 4 also serves as a positive electrode terminal. An insulator 5 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 4, and the flat electrode structure 6 made of the positive electrode 1, the negative electrode 2, and the separator 3 has the positive electrode 1 and A positive electrode lead body 7 and a negative electrode lead body 8 connected to one end of the negative electrode 2 are drawn out. A stainless steel terminal 11 is attached to the aluminum lid plate 9 that seals the opening of the battery case 4 via an insulating packing 10 made of polypropylene, and the terminal 11 is made of stainless steel via an insulator 12. A steel lead plate 13 is attached.

そして、この蓋板9は上記電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に電解液注入口14が設けられており、この電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図1および図2の電池では、実際には、電解液注入口14は、電解液注入口と封止部材であるが、説明を容易にするために、電解液注入口14として示している)。更に.蓋板9には、防爆ベント15が設けられている。   And this cover plate 9 is inserted in the opening part of the said battery case 4, and the opening part of the battery case 4 is sealed by welding the junction part of both, and the inside of a battery is sealed. Further, in the battery of FIG. 1, an electrolyte solution inlet 14 is provided in the lid plate 9, and the electrolyte solution inlet 14 is welded and sealed by, for example, laser welding or the like with a sealing member inserted. Thus, the sealing property of the battery is ensured (therefore, in the battery of FIGS. 1 and 2, the electrolyte inlet 14 is actually the electrolyte inlet and the sealing member, but the explanation is easy. In order to achieve this, it is shown as an electrolyte inlet 14). Furthermore. The cover plate 9 is provided with an explosion-proof vent 15.

この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.

図2は、図1に示す電池の外観を模式的に示す斜視図であり、この図2は上記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池構成部材のうち特定のものを示している。   FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1, and this FIG. 2 is shown for the purpose of showing that the battery is a square battery. Fig. 1 schematically shows a battery, and shows a specific battery component.

実施例2
非水電解液に、スクシノニトリルに代えてグルタロニトリルを添加した以外は、実施例1と同様にして非水二次電池を作製した。
Example 2
A nonaqueous secondary battery was produced in the same manner as in Example 1 except that glutaronitrile was added to the nonaqueous electrolyte instead of succinonitrile.

実施例3
非水電解液に、スクシノニトリルに代えてアジポニトリルを添加した以外は、実施例1と同様にして非水二次電池を作製した。
Example 3
A nonaqueous secondary battery was produced in the same manner as in Example 1 except that adiponitrile was added to the nonaqueous electrolyte instead of succinonitrile.

実施例4
非水電解液におけるスクシノニトリルの添加量を、0.5質量%に変更した以外は、実施例1と同様にして非水二次電池を作製した。
Example 4
A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the amount of succinonitrile added in the nonaqueous electrolytic solution was changed to 0.5% by mass.

実施例5
非水電解液におけるスクシノニトリルの添加量を、1.0質量%に変更した以外は、実施例1と同様にして非水二次電池を作製した。
Example 5
A non-aqueous secondary battery was produced in the same manner as in Example 1 except that the amount of succinonitrile added in the non-aqueous electrolyte was changed to 1.0% by mass.

実施例6
正極活物質(A)をLiCo0.9988Mg0.0008Ti0.0004(平均粒径12μm)、正極活物質(B)をLiCo0.9964Mg0.0024Ti0.0012(平均粒径5μm)に変更したこと以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.79g/cmであった。また、金属元素Mの含有量と金属元素Mの含有量とに関して、正極活物質(B)は、正極活物質(A)に対して、モル基準で、Mgが3倍、Tiが3倍、Alが3倍であった。
Example 6
The positive electrode active material (A) was LiCo 0.9988 Mg 0.0008 Ti 0.0004 O 2 (average particle size 12 μm), and the positive electrode active material (B) was LiCo 0.9964 Mg 0.0024 Ti 0.0012 O 2 ( A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the average particle size was changed to 5 μm. The density of the positive electrode mixture layer after the pressure treatment (the density of the positive electrode) was 3.79 g / cm 3 . Further, regarding the content of the metal element M 2 and the content of the metal element M 5 , the positive electrode active material (B) is 3 times as much as Mg and 3 as Ti on a molar basis with respect to the positive electrode active material (A). Doubled and Al tripled.

実施例7
正極活物質(A)と正極活物質(B)の混合比を、(A):(B)=90:10(質量比)に変更したこと以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.75g/cmであった。
Example 7
The non-aqueous solution is the same as in Example 1 except that the mixing ratio of the positive electrode active material (A) and the positive electrode active material (B) is changed to (A) :( B) = 90: 10 (mass ratio). A secondary battery was produced. The density of the positive electrode mixture layer after the pressure treatment (the density of the positive electrode) was 3.75 g / cm 3 .

実施例8
正極活物質に、LiCo0.998Mg0.0008Ti0.0004Al0.0008[平均粒径12μm、正極活物質(A)]と、LiCo0.994Mg0.0024Ti0.0012Al0.0024[平均粒径5μm、正極活物質(B)]を、正極活物質(A):正極活物質(B)=50:50(質量比)で混合したものを用いたこと以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.76g/cmであった。また、金属元素Mの含有量と金属元素Mの含有量とに関して、正極活物質(B)は、正極活物質(A)に対して、モル基準で、Mgが3倍、Tiが3倍、Alが3倍であった。
Example 8
For the positive electrode active material, LiCo 0.998 Mg 0.0008 Ti 0.0004 Al 0.0008 O 2 [average particle size 12 μm, positive electrode active material (A)] and LiCo 0.994 Mg 0.0024 Ti 0.0012 A mixture of Al 0.0024 O 2 [average particle size 5 μm, positive electrode active material (B)] at a positive electrode active material (A): positive electrode active material (B) = 50: 50 (mass ratio) was used. A nonaqueous secondary battery was produced in the same manner as in Example 1 except for the above. The density of the positive electrode mixture layer after the pressure treatment (the density of the positive electrode) was 3.76 g / cm 3 . Further, regarding the content of the metal element M 2 and the content of the metal element M 5 , the positive electrode active material (B) is 3 times as much as Mg and 3 as Ti on a molar basis with respect to the positive electrode active material (A). Doubled and Al tripled.

実施例9
正極活物質(A)をLiCo0.998Mg0.0008Ti0.0004Sn0.0008(平均粒径14μm)に、および正極活物質(B)をLiCo0.994Mg0.0024Ti0.0012Sn0.0024(平均粒径6μm)に変更したこと以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.76g/cmであった。また、金属元素Mの含有量と金属元素Mの含有量とに関して、正極活物質(B)は、正極活物質(A)に対して、モル基準で、Mgが3倍、Tiが3倍、Snが3倍であった。
Example 9
The positive electrode active material (A) was changed to LiCo 0.998 Mg 0.0008 Ti 0.0004 Sn 0.0008 O 2 (average particle size 14 μm), and the positive electrode active material (B) was changed to LiCo 0.994 Mg 0.0024 Ti. A non-aqueous secondary battery was produced in the same manner as in Example 1 except that the content was changed to 0.0012 Sn 0.0024 O 2 (average particle size 6 μm). The density of the positive electrode mixture layer after the pressure treatment (the density of the positive electrode) was 3.76 g / cm 3 . Further, regarding the content of the metal element M 2 and the content of the metal element M 5 , the positive electrode active material (B) is 3 times as much as Mg and 3 as Ti on a molar basis with respect to the positive electrode active material (A). And Sn was 3 times.

実施例10
正極活物質(A)をLiCo0.998Mg0.0008Zr0.0004Al0.0008(平均粒径13μm)に、および正極活物質(B)をLiCo0.994Mg0.0024Zr0.0012Al0.0024(平均粒径5μm)に変更したこと以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.8g/cmであった。また、金属元素Mの含有量と金属元素Mの含有量とに関して、正極活物質(B)は、正極活物質(A)に対して、モル基準で、Mgが3倍、Zrが3倍、Alが3倍であった。
Example 10
The positive electrode active material (A) was changed to LiCo 0.998 Mg 0.0008 Zr 0.0004 Al 0.0008 O 2 (average particle size 13 μm), and the positive electrode active material (B) was changed to LiCo 0.994 Mg 0.0024 Zr. A non-aqueous secondary battery was produced in the same manner as in Example 1 except that the content was changed to 0.0012 Al 0.0024 O 2 (average particle size 5 μm). The density of the positive electrode mixture layer after the pressure treatment (positive electrode density) was 3.8 g / cm 3 . Further, regarding the content of the metal element M 2 and the content of the metal element M 5 , the positive electrode active material (B) is 3 times as much as Mg and 3% as Zr on a molar basis with respect to the positive electrode active material (A). Doubled and Al tripled.

実施例11
正極活物質(A)をLiCo0.998Mg0.0008Ge0.0004Al0.0008(平均粒径12μm)に、および正極活物質(B)をLiCo0.994Mg0.0024Ge0.0012Al0.0024(平均粒径6μm)に変更したこと以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.79g/cmであった。また、金属元素Mの含有量と金属元素Mの含有量とに関して、正極活物質(B)は、正極活物質(A)に対して、モル基準で、Mgが3倍、Geが3倍、Alが3倍であった。
Example 11
The positive electrode active material (A) is LiCo 0.998 Mg 0.0008 Ge 0.0004 Al 0.0008 O 2 (average particle size 12 μm), and the positive electrode active material (B) is LiCo 0.994 Mg 0.0024 Ge. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the content was changed to 0.0012 Al 0.0024 O 2 (average particle diameter 6 μm). The density of the positive electrode mixture layer after the pressure treatment (the density of the positive electrode) was 3.79 g / cm 3 . Further, regarding the content of the metal element M 2 and the content of the metal element M 5 , the positive electrode active material (B) is 3 times as much as the Mg and 3 as the Ge based on the molar basis of the positive electrode active material (A). Doubled and Al tripled.

実施例12
正極活物質(B)をLiCo0.334Ni0.33Mn0.33Mg0.0024Ti0.0012Al0.0024(平均粒径5μm)に変更したこと以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.72g/cmであった。また、金属元素Mの含有量と金属元素Mの含有量とに関して、正極活物質(B)は、正極活物質(A)に対して、モル基準で、Mgが3倍、Tiが3倍、Alが3倍であった。
Example 12
Example 1 except that the positive electrode active material (B) was changed to LiCo 0.334 Ni 0.33 Mn 0.33 Mg 0.0024 Ti 0.0012 Al 0.0024 O 2 (average particle size 5 μm) A non-aqueous secondary battery was produced in the same manner. The density of the positive electrode mixture layer after the pressure treatment (the density of the positive electrode) was 3.72 g / cm 3 . Further, regarding the content of the metal element M 2 and the content of the metal element M 5 , the positive electrode active material (B) is 3 times as much as Mg and 3 as Ti on a molar basis with respect to the positive electrode active material (A). Doubled and Al tripled.

比較例1
正極活物質をLiCo0.998Mg0.0008Ti0.0004Al0.0008(平均粒径12μm、d/d=1.0)のみに変更し、非水電解液にスクシノニトリルを添加しなかった以外は、実施例1と同様にして非水二次電池を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.7g/cmであった。本比較例は実施例1における大粒径の活物質[正極活物質(A)]のみを用い、非水電解液に、分子内にニトリル基を2以上有する化合物を添加しなかった例である。
Comparative Example 1
The positive electrode active material was changed to only LiCo 0.998 Mg 0.0008 Ti 0.0004 Al 0.0008 O 2 (average particle size 12 μm, d p / d M = 1.0), and succino was added to the non-aqueous electrolyte. A nonaqueous secondary battery was produced in the same manner as in Example 1 except that nitrile was not added. The density of the positive electrode mixture layer after the pressure treatment (the density of the positive electrode) was 3.7 g / cm 3 . This comparative example is an example in which only the active material having a large particle size [positive electrode active material (A)] in Example 1 was used, and a compound having two or more nitrile groups in the molecule was not added to the nonaqueous electrolytic solution. .

実施例1〜12および比較例1の非水二次電池について、下記の特性評価を行った。   The following characteristic evaluation was performed about the non-aqueous secondary battery of Examples 1-12 and Comparative Example 1.

<充放電サイクル後の放電容量>
実施例1〜12および比較例1の各電池について、室温で1CmAで3.0Vまで放電させた後、1Cで4.2Vまでの定電流充電と、その後4.2Vでの定電圧充電を行い(定電流充電と定電圧充電との総充電時間2.5時間)、0.2CmAで3.0Vまで放電させ、そのときの放電容量を求めた。上記と同じ条件での充放電を5回繰り返し、5サイクル目の放電容量を、充放電サイクル後の放電容量として評価した。結果を表1に示すが、これらの表では、各電池について得られた充放電サイクル後の放電容量を、比較例1の電池の充放電サイクル時の放電容量を100としたときの相対値で示す。
<Discharge capacity after charge / discharge cycle>
About each battery of Examples 1-12 and Comparative Example 1, after discharging to 3.0 V at 1 CmA at room temperature, constant current charging up to 4.2 V at 1 C and then constant voltage charging at 4.2 V were performed. (Total charge time of constant current charge and constant voltage charge 2.5 hours), was discharged to 3.0 V at 0.2 CmA, the discharge capacity at that time was determined. The charge / discharge under the same conditions as described above was repeated 5 times, and the discharge capacity at the fifth cycle was evaluated as the discharge capacity after the charge / discharge cycle. The results are shown in Table 1. In these tables, the discharge capacity after the charge / discharge cycle obtained for each battery is a relative value when the discharge capacity at the charge / discharge cycle of the battery of Comparative Example 1 is 100. Show.

<貯蔵特性評価>
実施例1〜12および比較例1の各電池について、1Cで4.2Vまでの定電流充電と、その後4.2Vでの定電圧充電を行い(定電流充電と定電圧充電との総充電時間2.5時間)、1CmAで3.0Vまで放電させた。その後、1Cで4.2Vまでの定電流充電と、その後4.2Vでの定電圧充電を行い(定電流充電と定電圧充電との総充電時間2.5時間)、電池の厚み(貯蔵前厚み)を測定した。厚み測定後の各電池を85℃の恒温槽に24時間貯蔵し、恒温槽から取り出して4時間放置した後に、再び電池の厚み(貯蔵後厚み)を測定した。上記の貯蔵前厚みと貯蔵後厚みから、下記式に従って、貯蔵による電池の厚み変化率を求めた。結果を表1に併記する。
厚み変化率(%)=(貯蔵後厚み)÷(貯蔵前厚み)×100−100
<Storage characteristics evaluation>
For each of the batteries of Examples 1 to 12 and Comparative Example 1, constant current charging up to 4.2 V at 1 C and constant voltage charging at 4.2 V were performed thereafter (total charging time between constant current charging and constant voltage charging) 2.5 hours) and discharged to 3.0 V at 1 CmA. Thereafter, constant current charging up to 4.2 V at 1 C and constant voltage charging at 4.2 V are then performed (total charging time of constant current charging and constant voltage charging is 2.5 hours), and the battery thickness (before storage) Thickness) was measured. Each battery after thickness measurement was stored in a thermostatic bath at 85 ° C. for 24 hours, taken out of the thermostatic bath and allowed to stand for 4 hours, and then the thickness of the battery (thickness after storage) was measured again. From the thickness before storage and the thickness after storage, the rate of change in thickness of the battery due to storage was determined according to the following formula. The results are also shown in Table 1.
Thickness change rate (%) = (thickness after storage) ÷ (thickness before storage) × 100-100

Figure 0005430021
Figure 0005430021

表1に示す結果から明らかなように、実施例の非水二次電池では、比較例の非水二次電池に比べて、放電容量、充放電サイクル特性および貯蔵特性が優れていた。   As is clear from the results shown in Table 1, the nonaqueous secondary battery of the example was superior in discharge capacity, charge / discharge cycle characteristics, and storage characteristics as compared with the nonaqueous secondary battery of the comparative example.

1 正極
2 負極
3 セパレータ
1 Positive electrode 2 Negative electrode 3 Separator

Claims (2)

正極合剤層を有する正極、負極および非水電解質を備えた非水二次電池であって、
上記正極は、活物質として、平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物を用いており、
上記平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物のうち、最小の平均粒子径を有するものが、下記一般式(1)で表されるリチウム含有遷移金属酸化物であり、
上記平均粒子径の異なる2種以上のリチウム含有遷移金属酸化物のうち、最小の平均粒子径を有するリチウム含有遷移金属酸化物以外のものが、下記一般式(2)で表されるリチウム含有遷移金属酸化物であり、
上記最小の平均粒子径を有するリチウム含有遷移金属酸化物の下記一般式(1)における金属元素M の含有量が、最小の平均粒子径を有するリチウム含有遷移金属酸化物以外のリチウム含有遷移金属酸化物の下記一般式(2)における金属元素M の含有量よりも多く
上記正極合剤層は、密度が3.5g/cm以上であり、
上記非水電解質が、スクシノニトリルを含有していることを特徴とする非水二次電池。
Li (1)
ここで、上記一般式(1)中、Mは、Co、NiまたはMnのうちの少なくとも1種の遷移金属元素、Mは、Mgと、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素とであり、Mは、Li、MおよびM以外の元素であり、0.97≦x<1.02、0.8≦y<1.02、0.002≦z≦0.05、0≦v≦0.05である。
Li (2)
ここで、上記一般式(2)中、Mは、Co、NiまたはMnのうちの少なくとも1種の遷移金属元素、Mは、Mgと、Ti、Zr、Ge、Nb、AlおよびSnよりなる群から選択される少なくとも1種の金属元素とであり、Mは、Li、MおよびM以外の元素であり、0.97≦a<1.02、0.8≦b<1.02、0.0002≦c≦0.02、0≦d≦0.02である。
A non-aqueous secondary battery comprising a positive electrode having a positive electrode mixture layer, a negative electrode and a non-aqueous electrolyte,
The positive electrode uses, as an active material, two or more lithium-containing transition metal oxides having different average particle sizes,
Among the two or more types of lithium-containing transition metal oxides having different average particle diameters, the lithium-containing transition metal oxide represented by the following general formula (1) is the one having the smallest average particle diameter.
Among the two or more types of lithium-containing transition metal oxides having different average particle diameters, those other than the lithium-containing transition metal oxide having the smallest average particle diameter are represented by the following general formula (2). A metal oxide,
The lithium-containing transition metal oxide other than the lithium-containing transition metal oxide in which the content of the metal element M 2 in the following general formula (1) of the lithium-containing transition metal oxide having the minimum average particle diameter has the minimum average particle diameter More than the content of the metal element M 5 in the following general formula (2) of the oxide ,
The positive electrode mixture layer has a density of 3.5 g / cm 3 or more,
The nonaqueous secondary battery, wherein the nonaqueous electrolyte contains succinonitrile.
Li x M 1 y M 2 z M 3 v O 2 (1)
Here, in the general formula (1), M 1 is at least one transition metal element of Co, Ni, or Mn, and M 2 is Mg, Ti, Zr, Ge, Nb, Al, and Sn. At least one metal element selected from the group consisting of: M 3 is an element other than Li, M 1 and M 2 , and 0.97 ≦ x <1.02, 0.8 ≦ y <1 0.02, 0.002 ≦ z ≦ 0.05, 0 ≦ v ≦ 0.05.
Li a M 4 b M 5 c M 6 d O 2 (2)
Here, in the general formula (2), M 4 is at least one transition metal element of Co, Ni, or Mn, and M 5 is Mg, Ti, Zr, Ge, Nb, Al, and Sn. At least one metal element selected from the group consisting of: M 6 is an element other than Li, M 4 and M 5 , and 0.97 ≦ a <1.02, 0.8 ≦ b <1 0.02, 0.0002 ≦ c ≦ 0.02, and 0 ≦ d ≦ 0.02.
非水電解質が更にビニレンカーボネートを含有している請求項に記載の非水二次電池。 The non-aqueous secondary battery according to claim 1 , wherein the non-aqueous electrolyte further contains vinylene carbonate.
JP2011261150A 2011-11-30 2011-11-30 Non-aqueous secondary battery Active JP5430021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261150A JP5430021B2 (en) 2011-11-30 2011-11-30 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261150A JP5430021B2 (en) 2011-11-30 2011-11-30 Non-aqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006290637A Division JP4936440B2 (en) 2006-10-26 2006-10-26 Non-aqueous secondary battery

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2013047558A Division JP5279101B2 (en) 2013-03-11 2013-03-11 Non-aqueous secondary battery
JP2013143213A Division JP5435760B2 (en) 2013-07-09 2013-07-09 Non-aqueous secondary battery
JP2013143211A Division JP5435759B2 (en) 2013-07-09 2013-07-09 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2012043814A JP2012043814A (en) 2012-03-01
JP5430021B2 true JP5430021B2 (en) 2014-02-26

Family

ID=45899831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261150A Active JP5430021B2 (en) 2011-11-30 2011-11-30 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5430021B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978024B2 (en) * 2012-06-21 2016-08-24 日立マクセル株式会社 Non-aqueous secondary battery
JP6271146B2 (en) * 2013-04-11 2018-01-31 Ykk Ap株式会社 Step relief member and joinery
WO2020250394A1 (en) * 2019-06-13 2020-12-17 昭和電工マテリアルズ株式会社 Secondary battery
US20220367852A1 (en) * 2019-09-27 2022-11-17 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP7405655B2 (en) * 2020-03-17 2023-12-26 パナソニックホールディングス株式会社 Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319652A (en) * 2000-05-11 2001-11-16 Sony Corp Positive active material and non-aqueous electrolyte battery, and their manufacturing method
TWI302760B (en) * 2004-01-15 2008-11-01 Lg Chemical Ltd Electrochemical device comprising aliphatic nitrile compound
JP4172423B2 (en) * 2004-05-26 2008-10-29 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2012043814A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP4936440B2 (en) Non-aqueous secondary battery
JP5342552B2 (en) Non-aqueous secondary battery and electronic equipment
JP5110556B2 (en) Non-aqueous secondary battery and method of using the same
KR101370675B1 (en) Non-aqueous secondary battery and method of using the same
JP5545790B2 (en) Non-aqueous secondary battery and electronic device using the same
JP5117730B2 (en) Non-aqueous secondary battery and method of using the same
JP2009110942A (en) Nonaqueous secondary battery and apparatus using the same
JP5435760B2 (en) Non-aqueous secondary battery
JP5430021B2 (en) Non-aqueous secondary battery
JP5072248B2 (en) Non-aqueous secondary battery and method of using the same
JP2009110943A (en) Nonaqueous secondary battery
JP5213151B2 (en) Non-aqueous secondary battery and method of using the same
JP5290819B2 (en) Non-aqueous secondary battery
JP2009110949A (en) Nonaqueous secondary battery
JP5279101B2 (en) Non-aqueous secondary battery
JP5117729B2 (en) Non-aqueous secondary battery and method of using the same
JP5435759B2 (en) Non-aqueous secondary battery
JP2010218983A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5430021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250