JP5428427B2 - Uninterruptible power supply system - Google Patents

Uninterruptible power supply system Download PDF

Info

Publication number
JP5428427B2
JP5428427B2 JP2009065790A JP2009065790A JP5428427B2 JP 5428427 B2 JP5428427 B2 JP 5428427B2 JP 2009065790 A JP2009065790 A JP 2009065790A JP 2009065790 A JP2009065790 A JP 2009065790A JP 5428427 B2 JP5428427 B2 JP 5428427B2
Authority
JP
Japan
Prior art keywords
power supply
uninterruptible power
switching
circuit
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009065790A
Other languages
Japanese (ja)
Other versions
JP2010220424A (en
Inventor
一喜 梅沢
剛 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009065790A priority Critical patent/JP5428427B2/en
Publication of JP2010220424A publication Critical patent/JP2010220424A/en
Application granted granted Critical
Publication of JP5428427B2 publication Critical patent/JP5428427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92542Energy, power, electric current or voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Description

この発明は、並列運転した複数台の無停電電源、または単機運転の無停電電源からなる無停電電源系統を2組備え、この2組の無停電電源系統の何れか一方から対応する負荷への給電を行う切換盤を複数台備えてなる無停電電源システムに関する。   The present invention comprises two uninterruptible power supply systems consisting of a plurality of uninterruptible power supplies operated in parallel or a single-machine uninterruptible power supply, and either one of the two uninterruptible power supply systems is connected to a corresponding load. The present invention relates to an uninterruptible power supply system including a plurality of switching boards for supplying power.

図5は、下記特許文献1の構成も含む、この種の無停電電源システムの従来例を示す回路構成図である。   FIG. 5 is a circuit configuration diagram showing a conventional example of this type of uninterruptible power supply system, including the configuration of Patent Document 1 below.

この図において、10は商用電力系統などと自家発電設備とからなる1系電力系統、11〜13は1系無停電電源装置を形成する無停電電源(以下、UPS11〜UPS13と称するとともに、これらを総称して1系UPSとも称する)、14は回路遮断器15〜17で形成される1系母線盤であり、この1系UPSと1系母線盤とにより1系無停電電源系統を形成している。同様に、20は商用電力系統などと自家発電設備とからなる2系電力系統、21〜23は2系無停電電源装置を形成する無停電電源(以下、UPS21〜UPS23と称するとともに、これらを総称して2系UPSとも称する)、24は回路遮断器25〜27で形成される2系母線盤であり、この2系UPSと2系母線盤とにより2系無停電電源系統を形成している。また、31はこの無停電電源システム全体の運転システムを司るシステム制御回路である。   In this figure, 10 is a 1-system power system composed of a commercial power system and private power generation facilities, and 11 to 13 are uninterruptible power supplies (hereinafter referred to as UPS 11 to UPS 13) that form a 1-system uninterruptible power supply. 14 is a 1-system bus board formed by circuit breakers 15 to 17, and the 1-system UPS and 1-system bus board form a 1-system uninterruptible power system. Yes. Similarly, 20 is a two-system power system composed of a commercial power system and private power generation facilities, and 21 to 23 are uninterruptible power supplies forming a two-system uninterruptible power supply (hereinafter referred to as UPS21 to UPS23, and these are generic names) , 24 is a 2-system bus board formed by circuit breakers 25-27, and the 2-system UPS and 2-system bus board form a 2-system uninterruptible power system. . Reference numeral 31 denotes a system control circuit that controls the operation system of the entire uninterruptible power supply system.

この1系無停電電源系統において、UPS11〜UPS13それぞれには1系電力系統10から直送給電を行うバイパス回路を備えているとともに、回路遮断器15〜17を閉路させたときには、互いに並列運転する機能を備えている。同様に、2系無停電電源系統において、UPS21〜UPS23それぞれには2系電力系統20から直送給電を行うバイパス回路を備えているとともに、回路遮断器25〜27を閉路させたときには、互いに並列運転する機能を備えている。   In this 1-system uninterruptible power supply system, each of the UPS 11 to UPS 13 includes a bypass circuit that performs direct power feeding from the 1-system power system 10 and functions to operate in parallel with each other when the circuit breakers 15 to 17 are closed. It has. Similarly, in the 2 system uninterruptible power system, each of the UPS 21 to UPS 23 is provided with a bypass circuit that performs direct power feeding from the 2 system power system 20, and when the circuit breakers 25 to 27 are closed, they are operated in parallel with each other. It has a function to do.

また、高速切換盤40は高速スイッチとしてのサイリスタスイッチ41,42と切換指令回路43とから形成され、負荷A(100)への給電を、システム制御回路31から切換指令回路43への指令により、1系無停電電源系統、または2系無停電電源系統から行うための機能を有する。同様に、高速切換盤50は高速スイッチとしてのサイリスタスイッチ51,52と切換指令回路53とから形成され、負荷B(200)への給電を、システム制御回路31から切換指令回路53への指令により、1系無停電電源系統、または2系無停電電源系統から行うための機能を有する。同様に、高速切換盤60は高速スイッチとしてのサイリスタスイッチ61,62と切換指令回路43とから形成され、負荷C(300)への給電を、システム制御回路31から切換指令回路63への指令により、1系無停電電源系統、または2系無停電電源系統から行うための機能を有する。   The high-speed switching panel 40 is formed of thyristor switches 41 and 42 as high-speed switches and a switching command circuit 43, and supplies power to the load A (100) by a command from the system control circuit 31 to the switching command circuit 43. It has a function to perform from the 1 system uninterruptible power system or the 2 system uninterruptible power system. Similarly, the high-speed switching board 50 is formed of thyristor switches 51 and 52 as high-speed switches and a switching command circuit 53, and supplies power to the load B (200) by a command from the system control circuit 31 to the switching command circuit 53. It has a function to perform from the 1 system uninterruptible power system or the 2 system uninterruptible power system. Similarly, the high-speed switching board 60 is formed of thyristor switches 61 and 62 as high-speed switches and a switching command circuit 43, and supplies power to the load C (300) by a command from the system control circuit 31 to the switching command circuit 63. It has a function to perform from the 1 system uninterruptible power system or the 2 system uninterruptible power system.

なお、高速切換盤40,50,60の何れかにおいて、例えば、1系無停電電源系統から2系無停電電源系統に対応する負荷の給電切換えを、図示のサイリスタスイッチを用いて、高速且つショックレスに行うために、前記無停電電源系統それぞれの出力電圧は互いに位相同期させている。   In any of the high-speed switching boards 40, 50, 60, for example, the power supply switching of the load corresponding to the system 2 uninterruptible power system from the system 1 uninterruptible power system can be performed at high speed and shock using the thyristor switch shown in the figure. Therefore, the output voltages of the uninterruptible power supply systems are phase-synchronized with each other.

上述のために、図5に示した無停電電源システムにおける構成要素それぞれは、周知の技術を用いて形成されている。
特開2007−306643号公報
For the above, each component in the uninterruptible power supply system shown in FIG. 5 is formed using a well-known technique.
JP 2007-306643 A

この種の無停電電源システムにおいて、例えば、それぞれの負荷への給電を停止することなく、それぞれの無停電電源などのメンテナンスを行うためには、高速切換盤の何れかにおいて、例えば、1系無停電電源系統から2系無停電電源系統に対応する負荷の給電を切換えることが要求される。   In this type of uninterruptible power supply system, for example, in order to perform maintenance of each uninterruptible power supply without stopping power supply to each load, for example, one system It is required to switch the power supply of the load corresponding to the uninterruptible power system 2 from the uninterruptible power system.

しかしながら、図5に示した無停電電源システムでは、高速切換盤40,50,60それぞれにおいて、負荷100,200,300の総消費電流値を把握する機能を備えていないために、操作員が目視にて、総消費電流値を確認しつつ、例えば、1系無停電電源系統から2系無停電電源系統に対応する負荷の給電経路を切換えることとなり、その結果、切換え後の無停電電源系統が過負荷状態に陥ることがあった。また、この過負荷状態を回避できるか否かを判定するためには、この無停電電源システムを熟知した操作員が対応することが必要であった。   However, in the uninterruptible power supply system shown in FIG. 5, the high-speed switching panels 40, 50, 60 do not have a function of grasping the total current consumption values of the loads 100, 200, 300. Thus, while confirming the total current consumption value, for example, the power supply path of the load corresponding to the system 2 uninterruptible power system is switched from the system 1 uninterruptible power system. As a result, the uninterruptible power system after switching There was an overload condition. Further, in order to determine whether or not this overload state can be avoided, an operator who is familiar with this uninterruptible power supply system needs to respond.

この発明の目的は、上記問題点を解消した無停電電源システムを提供することにある。   An object of the present invention is to provide an uninterruptible power supply system that solves the above problems.

の発明は、並列運転する複数台の無停電電源、または単機運転の無停電電源からなる無停電電源系統を2組備え、この2組の無停電電源系統の何れか一方から対応する負荷への給電を行う切換盤を複数台備え、前記無停電電源系統それぞれの出力電圧は互いに位相同期させてなる無停電電源システムにおいて、
前記それぞれの切換盤により、一方の無停電電源系統から他方の無停電電源系統に対応する負荷の給電経路を切換える際に、この切換え後に前記他方の無停電電源系統が過負荷状態に陥るか否かを、前以て判定する切換判定手段を備え、
前記切換判定手段は、
切換先の無停電電源系統での前記切換え前の負荷電流の総和値と、切換元での対応する負荷電流値とに基づいて、切換え後の負荷電流推定値を演算する推定値演算手段と、
この負荷電流推定値と、切換先の無停電電源系統の現在の定格出力電流値との比較演算を行う比較演算手段とから形成されている、
ことを特徴とする。
The inventions of this, an uninterruptible power supply a plurality of parallel operation or single machine consisting uninterruptible power operating an uninterruptible power supply system 2 Kumisonae, any corresponding load from one of the two pairs of uninterruptible power supply system, In the uninterruptible power supply system comprising a plurality of switching boards for supplying power to each other, the output voltages of the uninterruptible power supply systems being phase-synchronized with each other,
Wherein the respective switching換盤, or when switching the power supply path from one of the uninterruptible power supply system to the other load corresponding to the uninterruptible power supply system, an uninterruptible power supply system of the other after the switching from falling into an overload state A switching determination means for determining whether or not in advance,
The switching determination means is
Estimated value calculation means for calculating the load current estimated value after switching based on the total value of the load current before switching in the uninterruptible power supply system at the switching destination and the corresponding load current value at the switching source;
The load current estimated value is formed from a comparison calculation means for performing a comparison calculation between the current rated output current value of the uninterruptible power supply system to be switched to,
It is characterized by that.

この発明によれば、無停電電源システムに前記切換判定機能を備えたことにより、メンテナンス時のみならず、通常時の負荷への給電経路を切換える際にも無停電電源系統が過負荷状態に陥るか否かを、前以て自動的に判定することが可能になり、従って、動作信頼性の高い無停電電源システムを提供することができる。   According to the present invention, since the uninterruptible power supply system is provided with the switching determination function, the uninterruptible power supply system falls into an overload state not only at the time of maintenance but also when switching the power supply path to the load at the normal time. Whether or not can be automatically determined in advance, and therefore, an uninterruptible power supply system with high operational reliability can be provided.

図1は、この発明の実施例を示す無停電電源システムの回路構成図であり、図5に示した従来例構成と同一機能を有するものには同一符号を付している。   FIG. 1 is a circuit configuration diagram of an uninterruptible power supply system showing an embodiment of the present invention. Components having the same functions as those in the conventional configuration shown in FIG. 5 are denoted by the same reference numerals.

すなわち図1において、1系UPSを形成するUPS11a〜UPS13aは、従来のUPS11〜UPS13の機能の他に、負荷に給電しているときには、「給電」の信号を送出することができる。また、1系母線盤18には回路遮断器15〜17の他に、信号を中継する中継回路19が追加されている。同様に、2系UPSを形成するUPS21a〜UPS23aは、従来のUPS21〜UPS23の機能の他に、負荷に給電しているときには、「給電」の信号を送出することができる。また、2系母線盤28には回路遮断器25〜27の他に、後述の「信号1〜信号8」を中継する機能を有する中継回路29が追加されている。また、32はこの無停電電源システム全体の運転システムを司るシステム制御回路である。なお、UPS11a〜UPS13aおよびUPS21〜UPS23は、全て同一仕様,同一容量のUPSであり、UPSそれぞれの出力電圧は互いに位相同期させている。また、図では、高速スイッチの1例としてサイリスタスイッチ41,42,51,52,61,62を示しているが、高速スイッチは、サイリスタと並列に遮断器を接続したハイブリットでもよいし、IGBTとしてもよい。   That is, in FIG. 1, the UPS 11 a to UPS 13 a forming the 1-system UPS can send a “power supply” signal when supplying power to the load in addition to the functions of the conventional UPS 11 to UPS 13. In addition to the circuit breakers 15 to 17, a relay circuit 19 that relays signals is added to the 1-system bus board 18. Similarly, the UPS 21a to UPS 23a forming the 2-system UPS can send a “power supply” signal when supplying power to the load in addition to the functions of the conventional UPS 21 to UPS 23. In addition to the circuit breakers 25 to 27, a relay circuit 29 having a function of relaying “signal 1 to signal 8” described later is added to the 2-system bus board 28. Reference numeral 32 denotes a system control circuit that controls the operation system of the entire uninterruptible power supply system. The UPS 11a to UPS 13a and the UPS 21 to UPS 23 are all UPS having the same specifications and the same capacity, and the output voltages of the UPSs are phase-synchronized with each other. In the figure, the thyristor switches 41, 42, 51, 52, 61, 62 are shown as an example of the high-speed switch. However, the high-speed switch may be a hybrid in which a circuit breaker is connected in parallel with the thyristor, or as an IGBT. Also good.

さらに、高速切換盤44はサイリスタスイッチ41,42と電流を検出する変流器等のCT45,47と切換制御回路46,48とから形成され、負荷A(100)への給電を、システム制御回路32から切換制御回路46または切換制御回路48への指令により、1系無停電電源系統、または2系無停電電源系統から行うための高速スイッチの機能を有する。同様に、高速切換盤54はサイリスタスイッチ51,52と電流を検出する変流器等のCT55,57と切換制御回路56,58とから形成され、負荷B(200)への給電を、システム制御回路32から切換制御回路56または切換制御回路58への指令により、1系無停電電源系統、または2系無停電電源系統から行うための高速スイッチの機能を有する。同様に、高速切換盤64はサイリスタスイッチ61,62と電流を検出する変流器等のCT65,67と切換制御回路66,68とから形成され、負荷C(300)への給電を、システム制御回路32から切換制御回路66または切換制御回路68への指令により、1系無停電電源系統、または2系無停電電源系統から行うための高速スイッチの機能を有する。   Further, the high-speed switching board 44 is formed of thyristor switches 41 and 42, CTs 45 and 47 such as current transformers for detecting current, and switching control circuits 46 and 48, and supplies power to the load A (100) to the system control circuit. 32 has a function of a high-speed switch for performing the operation from the 1-system uninterruptible power supply system or the 2-system uninterruptible power supply system according to a command from 32 to the switching control circuit 46 or the switching control circuit 48. Similarly, the high-speed switching board 54 is formed of thyristor switches 51 and 52, CTs 55 and 57 such as current transformers for detecting a current, and switching control circuits 56 and 58, and power supply to the load B (200) is controlled by the system. According to a command from the circuit 32 to the switching control circuit 56 or the switching control circuit 58, it has a function of a high-speed switch for performing from the 1-system uninterruptible power system or the 2-system uninterruptible power system. Similarly, the high-speed switching board 64 is formed of thyristor switches 61 and 62, CTs 65 and 67 such as current transformers for detecting current, and switching control circuits 66 and 68, and supplies power to the load C (300) for system control. According to a command from the circuit 32 to the switching control circuit 66 or the switching control circuit 68, it has a function of a high-speed switch for performing from the 1-system uninterruptible power supply system or the 2-system uninterruptible power supply system.

図2は、図1に示した無停電電源システムの1系無停電電源系統側の中継回路19、切換制御回路46,56,66に係る詳細回路構成図である。   FIG. 2 is a detailed circuit configuration diagram relating to the relay circuit 19 and the switching control circuits 46, 56, 66 on the system 1 uninterruptible power system side of the uninterruptible power system shown in FIG.

この中継回路19において、「信号1」は、UPS11aが給電しているときにはアクティブとなり、「信号2」は、UPS12aが給電しているときにはアクティブとなり、「信号3」は、UPS13aが給電しているときにはアクティブとなる。また、「信号4,信号5」は切換制御回路46,56,66それぞれから送出され、負荷A〜負荷Cに1系無停電電源系統から流れる電流に基づく電流が流れている。さらに、「信号6」は、切換制御回路46を介して負荷Aに1系無停電電源系統から給電中のときにアクティブとなる。同様に、「信号7」は、切換制御回路56を介して負荷Bに1系無停電電源系統から給電中のときにアクティブとなる。同様に、「信号8」は、切換制御回路66を介して負荷Cに1系無停電電源系統から給電中のときにアクティブとなる。なお、「信号9」は、1系無停電電源系統の切換制御回路46,56,66それぞれから同一の高速切換盤44,54,64内の2系無停電電源系統の切換制御回路48,58,68にそれぞれ接続され、負荷A〜負荷Cに2系無停電電源系統から流れる電流に基づく電流が流れている。   In this relay circuit 19, “signal 1” is active when the UPS 11a is supplying power, “signal 2” is active when the UPS 12a is supplying power, and “signal 3” is supplied by the UPS 13a. Sometimes it becomes active. "Signal 4 and signal 5" are sent from the switching control circuits 46, 56 and 66, respectively, and a current based on the current flowing from the 1-system uninterruptible power system flows through the loads A to C. Furthermore, “signal 6” becomes active when power is being supplied to the load A from the 1-system uninterruptible power supply system via the switching control circuit 46. Similarly, “signal 7” becomes active when power is being supplied to the load B from the 1-system uninterruptible power supply system via the switching control circuit 56. Similarly, “signal 8” becomes active when power is being supplied to the load C from the 1-system uninterruptible power supply system via the switching control circuit 66. Note that “signal 9” is a switching control circuit 48, 58 of the 2-system uninterruptible power system in the same high-speed switching panel 44, 54, 64 from the switching control circuit 46, 56, 66 of the 1-system uninterruptible power system. , 68, and a current based on a current flowing from the uninterruptible power supply system 2 flows through loads A to C.

なお、2系無停電電源系統側の中継回路29も図2と同様の回路構成である。   Note that the relay circuit 29 on the second uninterruptible power supply system side has the same circuit configuration as that of FIG.

図3は、図1に示した切換制御回路46,48,56,58,66,68に係る詳細回路構成図である。   FIG. 3 is a detailed circuit configuration diagram relating to the switching control circuits 46, 48, 56, 58, 66 and 68 shown in FIG.

この図において、71は高速切換盤44,54,64に設置されたCT45,47,55,57,65,67の何れかの2次電流を入力電流する補助CTである。この補助CT71の2次側にはスイッチ72,73,74それぞれの一端と、この2次側の解放を防止するダイオード回路75とが接続されている。スイッチ72の他端は同一無停電電力系統の「信号4,5」に接続されている。また、スイッチ73の他端は「信号9」により同一高速切換盤の他の切換制御回路のスイッチ73に接続されている。   In this figure, reference numeral 71 denotes an auxiliary CT that inputs a secondary current of any one of CTs 45, 47, 55, 57, 65, and 67 installed in the high-speed switching boards 44, 54, and 64. The secondary side of the auxiliary CT 71 is connected to one end of each of the switches 72, 73, 74 and a diode circuit 75 for preventing the secondary side from being released. The other end of the switch 72 is connected to “signals 4 and 5” of the same uninterruptible power system. The other end of the switch 73 is connected to a switch 73 of another switching control circuit of the same high-speed switching panel by “signal 9”.

さらに、スイッチ74の他端は分流抵抗76,77を介して補助CT78の一次側の接続されている。この補助CT78の2次側は、図示の抵抗79と演算増幅素子80とからなる電流−電圧変換回路に接続されている。すなわち、この電流−電圧変換回路により補助CT78の一次電流に比例した交流電圧に変換される。この交流電圧は実効値演算回路81のより実効値に変換される。従って、実効値演算回路81は補助CT78の一次電流に比例した実効値が出力される。   Further, the other end of the switch 74 is connected to the primary side of the auxiliary CT 78 via the shunt resistors 76 and 77. The secondary side of the auxiliary CT 78 is connected to a current-voltage conversion circuit including a resistor 79 and an operational amplifier element 80 shown in the figure. That is, the current-voltage conversion circuit converts the AC voltage into an AC voltage proportional to the primary current of the auxiliary CT 78. This AC voltage is converted into an effective value by the effective value calculation circuit 81. Therefore, the effective value calculation circuit 81 outputs an effective value proportional to the primary current of the auxiliary CT 78.

また、この切換制御回路には他に、乗算演算器82と、まだ給電していない状態のサイリスタスイッチがオンして負荷に給電した場合にどのような電流値になるかを算定するための模擬運転1台分を加算するためのスイッチ83と、加算演算器84と、UPS1台当たりの容量を予め設定する設定器85と、乗算演算器86と、比較素子87と、サイリスタスイッチにオン・オフ信号を与える高速スイッチ駆動回路90と、負荷に対して給電中であることを出力する信号出力回路91と、同一系統の信号出力回路91の信号6〜7に基づいて給電中の同一系統のサイリスタスイッチの運転台数を算定する設定回路92と、同一系統のUPSの信号1〜3に基づいて給電中の同一系統のUPSの運転台数を算定する設定器93と、システム制御回路32からの「切換準備指令」を受けて「給電容量確認要求」を指令する指令回路94とを備えている。   In addition to this switching control circuit, there is also a simulation for calculating the current value when the multiplication calculator 82 and the thyristor switch in a state where power is not yet supplied are turned on to supply power to the load. A switch 83 for adding one operation unit, an addition calculator 84, a setting unit 85 for presetting the capacity per UPS, a multiplication calculator 86, a comparison element 87, and a thyristor switch are turned on / off. A high-speed switch driving circuit 90 for supplying a signal, a signal output circuit 91 for outputting that power is being supplied to a load, and a thyristor of the same system that is being fed based on signals 6 to 7 of the signal output circuit 91 of the same system A setting circuit 92 for calculating the number of operating switches, a setting unit 93 for calculating the number of operating UPSs of the same system that is being fed based on UPS signals 1 to 3 of the same system, and system control In response to "switching preparation command" from the road 32 and a command circuit 94 for commanding the "feeding capacity confirmation request".

なお、図3に示した回路構成では無停電電源系統の1相分を示しており、従って、無停電電源系統が3相出力の場合には、構成素子71〜87までが3組必要であり、この場合は、3組の比較素子87それぞれの出力信号を論理積演算した信号が高速スイッチ駆動回路90に出力される。   Note that the circuit configuration shown in FIG. 3 shows one phase of the uninterruptible power supply system. Therefore, when the uninterruptible power supply system has a three-phase output, three sets of components 71 to 87 are required. In this case, a signal obtained by ANDing the output signals of the three sets of comparison elements 87 is output to the high-speed switch drive circuit 90.

以下に、高速切換盤の何れかにおいて、例えば、一方の無停電電源系統から他方の無停電電源系統に対応する負荷の給電を切換えるときの動作について説明する。   Hereinafter, an operation when, for example, one of the uninterruptible power supply systems switches the power supply of a load corresponding to the other uninterruptible power supply system in any of the high-speed switching panels will be described.

図4は、図1に示した無停電電源システムにおいて、1例として、負荷Aが2系無停電電源系統から給電され、負荷B,Cが1系無停電電源系統から給電されている状態から、負荷Aの給電を切換元である2系無停電電源系統から切換先である1系無停電電源系統に切換えるときの動作を説明するための部分詳細回路構成図である。   FIG. 4 shows an example of the uninterruptible power supply system shown in FIG. 1 in which the load A is supplied from the 2-system uninterruptible power system and the loads B and C are supplied from the 1-system uninterruptible power system. FIG. 4 is a partial detailed circuit configuration diagram for explaining an operation when power supply of a load A is switched from a 2-system uninterruptible power supply system that is a switching source to a 1-system uninterruptible power supply system that is a switching destination.

図4に示した回路の動作を、図3に示した切換制御回路の詳細構成を参照しつつ、以下に説明する。   The operation of the circuit shown in FIG. 4 will be described below with reference to the detailed configuration of the switching control circuit shown in FIG.

すなわち、高速切換盤44では、切換制御回路48によりサイリスタスイッチ42がオン状態にあり、切換制御回路46によりサイリスタスイッチ41がオフ状態にあり、このときには、切換制御回路48におけるスイッチ72,73,74が全てオンしており、切換制御回路46におけるスイッチ72,73がオフし、スイッチ74がオンした状態になっている。従って、負荷Aは2系無停電電源系統から給電されている。   That is, in the high-speed switching board 44, the thyristor switch 42 is turned on by the switching control circuit 48, and the thyristor switch 41 is turned off by the switching control circuit 46. At this time, the switches 72, 73, 74 in the switching control circuit 48 are switched. Are turned on, the switches 72 and 73 in the switching control circuit 46 are turned off, and the switch 74 is turned on. Therefore, the load A is supplied with power from the 2-system uninterruptible power supply system.

この負荷Aの給電経路を1系無停電電源系統に切換えるときには、システム制御回路32からの「切換準備指令」が切換制御回路46,48の指令回路94に発せられ、「給電容量確認要求」となる。   When switching the power supply path of the load A to the 1-system uninterruptible power supply system, a “switching preparation command” is issued from the system control circuit 32 to the command circuit 94 of the switching control circuits 46 and 48, and a “power supply capacity check request” is issued. Become.

この「給電容量確認要求」に基づいて、切換制御回路46におけるスイッチ72,73がオフからオンに変わり、このオン動作の完了動作時限を経て、切換制御回路48におけるスイッチ72,74がオンからオフに変わる。   Based on this “power supply capacity confirmation request”, the switches 72 and 73 in the switching control circuit 46 are changed from OFF to ON, and after the ON operation is completed, the switches 72 and 74 in the switching control circuit 48 are turned from ON to OFF. Changes to.

その結果、切換制御回路46における分流抵抗76,77と補助CT78の1次側の経路には、1系母線盤18の中継回路19の「信号4,5」を介した負荷B,Cの電流に基づく電流と、切換制御回路48から「信号9」を介した負荷Aの電流に基づく電流とを平均化した電流が分流することになる。従って、切換制御回路46の実効値演算回路81には補助CT78の一次電流に比例した実効値、すなわち、前記平均化した電流の実効値が出力される。   As a result, the currents of the loads B and C via the “signals 4 and 5” of the relay circuit 19 of the system 1 bus board 18 are routed to the primary path of the shunt resistors 76 and 77 and the auxiliary CT 78 in the switching control circuit 46. And the current obtained by averaging the current based on the current of the load A via the “signal 9” from the switching control circuit 48 are shunted. Therefore, an effective value proportional to the primary current of the auxiliary CT 78, that is, an effective value of the averaged current is output to the effective value calculation circuit 81 of the switching control circuit 46.

この時点では、サイリスタスイッチ41はオンしていないので、切換制御回路46の信号出力回路91を介した「信号6」はアクティブでないことから、設定回路92からは「信号7,8」による「2」が出力され、この「2」と、前記「給電容量確認要求」に基づいて、オンしたスイッチ83による「1」とが加算された加算演算器84の出力値は「3」となる。この「3」と実効値演算回路81の出力値とが乗算される乗算演算器82により負荷A〜Cの総消費電流の推定値が「負荷電流推定値」として出力される。   At this time, since the thyristor switch 41 is not turned on, the “signal 6” via the signal output circuit 91 of the switching control circuit 46 is not active, and the setting circuit 92 receives “2” according to “signals 7 and 8”. ”Is output, and the output value of the addition computing unit 84 obtained by adding“ 2 ”and“ 1 ”by the turned on switch 83 based on the“ power supply capacity confirmation request ”is“ 3 ”. An estimated value of the total current consumption of the loads A to C is output as a “load current estimated value” by a multiplication calculator 82 that multiplies “3” by the output value of the effective value calculation circuit 81.

一方、設定回路93では、例えば、UPS11a〜UPS13aがともに並列運転しつつ、「給電」状態にあるときには、「3」が出力される。また、設定器85からはUPS11a〜UPS13aの1台当たりの定格出力電流値が出力されることから、乗算演算器86は、1系無停電電源系統の現在の「定格出力電流値」が出力される。   On the other hand, in the setting circuit 93, for example, when the UPSs 11a to 13a are both in parallel operation and are in the “power supply” state, “3” is output. Since the setter 85 outputs the rated output current value per UPS 11a to UPS13a, the multiplier 86 outputs the current “rated output current value” of the 1-system uninterruptible power supply system. The

なお、この設定回路93では、例えば、UPS11a〜UPS13aが並列冗長運転しつつ、「給電」状態にあるときには、「2」が出力される。また、設定器85からはUPS11a〜UPS13aの1台当たりの定格出力電流値が出力されることから、乗算演算器86は、1系無停電電源系統の現在の「定格出力電流値」が出力される。   In this setting circuit 93, for example, when the UPS 11 a to UPS 13 a are in the “power supply” state while performing the parallel redundant operation, “2” is output. Since the setter 85 outputs the rated output current value per UPS 11a to UPS13a, the multiplier 86 outputs the current “rated output current value” of the 1-system uninterruptible power supply system. The

その結果、比較素子87では「定格出力電流値」と「負荷電流推定値」との大小比較を行い、「定格出力電流値」≧「負荷電流推定値」のときには「切換可」を高速スイッチ駆動回路90とシステム制御回路32とに伝達し、「定格出力電流値」<「負荷電流推定値」のときには「切換不可」を高速スイッチ駆動回路90とシステム制御回路32とに伝達する。   As a result, the comparison element 87 compares the “rated output current value” with the “load current estimated value”, and when “rated output current value” ≧ “load current estimated value”, “switchable” is driven at high speed. This is transmitted to the circuit 90 and the system control circuit 32, and when “rated output current value” <“load current estimated value”, “not switchable” is transmitted to the high-speed switch drive circuit 90 and the system control circuit 32.

この「切換可」を受信したシステム制御回路32では、新たに、切換制御回路48には「サイリスタスイッチOFF指令」を発信し、切換制御回路46には「サイリスタスイッチON指令」を発信する。   The system control circuit 32 that has received this “switchable” newly transmits a “thyristor switch OFF command” to the switch control circuit 48 and a “thyristor switch ON command” to the switch control circuit 46.

この「サイリスタスイッチOFF指令」を受信した切換制御回路48では、高速スイッチ駆動回路90を介してサイリスタスイッチ42をオン→オフに変えるとともに、「切換準備指令」が解除されて、切換制御回路48におけるスイッチ72,73がオフし、スイッチ74がオンした状態になり、また、信号出力回路91を介して中継回路29の「信号6」の状態を変える。一方、前記「サイリスタスイッチON指令」を受信した切換制御回路46では、高速スイッチ駆動回路90を介してサイリスタスイッチ41をオフ→オンに変えるとともに、「切換準備指令」が解除されて、切換制御回路46におけるスイッチ72,73,74が全てオン状態となり、また、信号出力回路91を介して中継回路19の「信号6」をアクティブ状態に変えることで、この切換動作は完了する。   In the switching control circuit 48 that has received this “thyristor switch OFF command”, the thyristor switch 42 is changed from on to off via the high-speed switch drive circuit 90, and the “switching preparation command” is canceled, and the switching control circuit 48 The switches 72 and 73 are turned off and the switch 74 is turned on, and the state of the “signal 6” of the relay circuit 29 is changed via the signal output circuit 91. On the other hand, in the switching control circuit 46 that has received the “thyristor switch ON command”, the thyristor switch 41 is changed from OFF to ON via the high-speed switch drive circuit 90, and the “switching preparation command” is canceled, so that the switching control circuit The switches 72, 73 and 74 in 46 are all turned on, and the switching operation is completed by changing the “signal 6” of the relay circuit 19 to the active state via the signal output circuit 91.

また、前記「切換不可」を受信したシステム制御回路32では、「切換準備指令」解除されて、この無停電電源システムは直前の動作状態を続行するとともに、外部にこの「切換不可」を伝達する。   Further, in the system control circuit 32 that has received the “non-switchable”, the “switching preparation command” is canceled, and the uninterruptible power supply system continues the previous operation state and transmits this “non-switchable” to the outside. .

この発明の無停電電源システムによれば、切換制御回路46,48,56,58,66,68を備えたことにより、メンテナンス時のみならず、通常時の負荷への給電経路を切換える際にも無停電電源系統が過負荷状態に陥るか否かを、前以て自動的に判定することが可能になり、従って、過負荷保護などの動作信頼性の高い無停電電源システムを提供することができる。   According to the uninterruptible power supply system of the present invention, since the switching control circuits 46, 48, 56, 58, 66, and 68 are provided, not only at the time of maintenance but also at the time of switching the power supply path to the load at the normal time. It is possible to automatically determine in advance whether or not the uninterruptible power supply system will fall into an overload state. Therefore, it is possible to provide an uninterruptible power supply system with high operational reliability such as overload protection. it can.

この発明の実施例を示す無停電電源システムの回路構成図Circuit configuration diagram of an uninterruptible power supply system showing an embodiment of the present invention 図1の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図1の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図1の動作を説明する部分詳細回路構成図FIG. 1 is a partial detailed circuit diagram illustrating the operation of FIG. 従来例を示す無停電電源システムの回路構成図Circuit diagram of uninterruptible power supply system showing conventional example

10…1系電力系統、11〜13,11a〜13a…無停電電源、14,18…1系母線盤、15〜17…回路遮断器、19…中継回路、20…2系電力系統、21〜23,21a〜23a…無停電電源、24,28…2系母線盤、25〜27…回路遮断器、29…中継回路、31,32…システム制御回路、40,44…高速切換盤、41,42…サイリスタスイッチ、43…切換指令回路、45,47…CT、46,48…切換制御回路、50,54…高速切換盤、51,52…サイリスタスイッチ、53…切換指令回路、55,57…CT、56,88…切換制御回路、60,64…高速切換盤、61,62…サイリスタスイッチ、63…切換指令回路、65,67…CT、66,68…切換制御回路、71,78…補助CT、72〜74,83…スイッチ、75…ダイオード回路、76,77…分流抵抗、79…抵抗、80…演算素子、81…実効値演算回路、82,86…乗算演算器82、83…加算演算器、85…設定器、87…比較素子、90…高速スイッチ駆動回路、91…信号出力回路、93,93…設定回路、94…指令回路。   DESCRIPTION OF SYMBOLS 10 ... 1 system power system, 11-13, 11a-13a ... Uninterruptible power supply, 14, 18 ... 1 system bus-bar board, 15-17 ... Circuit breaker, 19 ... Relay circuit, 20 ... 2 system power system, 21- 23, 21a to 23a ... uninterruptible power supply, 24, 28 ... 2 system busbar board, 25-27 ... circuit breaker, 29 ... relay circuit, 31, 32 ... system control circuit, 40, 44 ... high speed switching board, 41, 42 ... Thyristor switch, 43 ... Switching command circuit, 45, 47 ... CT, 46, 48 ... Switching control circuit, 50, 54 ... High-speed switching panel, 51, 52 ... Thyristor switch, 53 ... Switching command circuit, 55, 57 ... CT, 56, 88 ... switching control circuit, 60, 64 ... high speed switching board, 61, 62 ... thyristor switch, 63 ... switching command circuit, 65, 67 ... CT, 66, 68 ... switching control circuit, 71, 78 ... auxiliary CT, 72 ~ 4, 83 ... switch, 75 ... diode circuit, 76, 77 ... shunt resistor, 79 ... resistor, 80 ... arithmetic element, 81 ... effective value arithmetic circuit, 82, 86 ... multiplication arithmetic unit 82, 83 ... addition arithmetic unit, 85 ... Setting device, 87... Comparison element, 90... High-speed switch drive circuit, 91... Signal output circuit, 93 and 93.

Claims (1)

並列運転する複数台の無停電電源、または単機運転の無停電電源からなる無停電電源系統を2組備え、この2組の無停電電源系統の何れか一方から対応する負荷への給電を行う切換盤を複数台備え、前記無停電電源系統それぞれの出力電圧は互いに位相同期させてなる無停電電源システムにおいて、
前記それぞれの切換盤により、一方の無停電電源系統から他方の無停電電源系統に対応する負荷の給電経路を切換える際に、この切換え後に前記他方の無停電電源系統が過負荷状態に陥るか否かを、前以て判定する切換判定手段を備え、
前記切換判定手段は、
切換先の無停電電源系統での前記切換え前の負荷電流の総和値と、切換元での対応する負荷電流値とに基づいて、切換え後の負荷電流推定値を演算する推定値演算手段と、
この負荷電流推定値と、切換先の無停電電源系統の現在の定格出力電流値との比較演算を行う比較演算手段とから形成されている、
ことを特徴とする無停電電源システム。
Two sets of uninterruptible power supply systems consisting of multiple uninterruptible power supplies operating in parallel or single-unit uninterruptible power supplies, and switching to supply power to the corresponding load from either one of these two uninterruptible power supply systems In the uninterruptible power supply system comprising a plurality of panels, the output voltages of the uninterruptible power supply systems being phase-synchronized with each other,
Wherein the respective switching換盤, or when switching the power supply path from one of the uninterruptible power supply system to the other load corresponding to the uninterruptible power supply system, an uninterruptible power supply system of the other after the switching from falling into an overload state A switching determination means for determining whether or not in advance,
The switching determination means is
Estimated value calculation means for calculating the load current estimated value after switching based on the total value of the load current before switching in the uninterruptible power supply system at the switching destination and the corresponding load current value at the switching source;
The load current estimated value is formed from a comparison calculation means for performing a comparison calculation between the current rated output current value of the uninterruptible power supply system to be switched to,
An uninterruptible power supply system.
JP2009065790A 2009-03-18 2009-03-18 Uninterruptible power supply system Active JP5428427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065790A JP5428427B2 (en) 2009-03-18 2009-03-18 Uninterruptible power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065790A JP5428427B2 (en) 2009-03-18 2009-03-18 Uninterruptible power supply system

Publications (2)

Publication Number Publication Date
JP2010220424A JP2010220424A (en) 2010-09-30
JP5428427B2 true JP5428427B2 (en) 2014-02-26

Family

ID=42978642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065790A Active JP5428427B2 (en) 2009-03-18 2009-03-18 Uninterruptible power supply system

Country Status (1)

Country Link
JP (1) JP5428427B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314361B (en) * 2021-06-11 2023-07-25 中煤科工集团信息技术有限公司 Cable rapid alternating power supply replacement device and method suitable for multiple equipment groups

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047458B2 (en) * 1990-11-13 2000-05-29 株式会社明電舎 System switching device for uninterruptible power supply system
JP2007104838A (en) * 2005-10-06 2007-04-19 Toshiba Corp Non-short break system switching device

Also Published As

Publication number Publication date
JP2010220424A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
US20090072623A1 (en) Uninterruptible power supply system and controlling method thereof
JP2004521802A (en) Electric load management center
JP6418109B2 (en) Uninterruptible power supply system
JP2008228449A (en) Switch control system of charging/discharging circuit for battery
KR20200019986A (en) Uninterruptible power system
EP2639918A2 (en) Control architecture for power switching controller
JP5391825B2 (en) Uninterruptible power supply system
JP5428427B2 (en) Uninterruptible power supply system
JP2005033923A (en) Parallel operation control system for uninterruptible power supply unit
JP3864858B2 (en) Parallel operation inverter voltage correction circuit
JP7028672B2 (en) Power supply
JP2014108010A (en) Power compensation system
JP2010148297A (en) Uninterruptible power supply system
JP3690158B2 (en) Uninterruptible power supply system and power supply method thereof
JP3906864B2 (en) Uninterruptible power supply system
JP4687177B2 (en) Power supply system and input current balancing control method
JP7278800B2 (en) power supply system
JP4379608B2 (en) Control method of uninterruptible power supply system
JP4626619B2 (en) Uninterruptible power supply system and system switching method for uninterruptible power supply
JP5376860B2 (en) Power supply system
JP2017041919A (en) Power conversion system
CN112703657A (en) Power supply device and power supply system
US20050207082A1 (en) Dual bus static tie switch
JP6607156B2 (en) Phase loss detection circuit for three-phase AC power supply
JP3956794B2 (en) Parallel operation current detector for uninterruptible power supply and current detection method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250