JP5427480B2 - Baking container and baking cart - Google Patents

Baking container and baking cart Download PDF

Info

Publication number
JP5427480B2
JP5427480B2 JP2009139458A JP2009139458A JP5427480B2 JP 5427480 B2 JP5427480 B2 JP 5427480B2 JP 2009139458 A JP2009139458 A JP 2009139458A JP 2009139458 A JP2009139458 A JP 2009139458A JP 5427480 B2 JP5427480 B2 JP 5427480B2
Authority
JP
Japan
Prior art keywords
oxide
baking
firing
heat
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009139458A
Other languages
Japanese (ja)
Other versions
JP2010286153A (en
Inventor
武民 山村
成人 中川
輝美 久行
信夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIURA CORPORATION
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
MIURA CORPORATION
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIURA CORPORATION, Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical MIURA CORPORATION
Priority to JP2009139458A priority Critical patent/JP5427480B2/en
Publication of JP2010286153A publication Critical patent/JP2010286153A/en
Application granted granted Critical
Publication of JP5427480B2 publication Critical patent/JP5427480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

本発明は、省エネルギー、CO削減などの環境低負荷化に多大に寄与する焼成用容器及び焼成用搬送台車に関する。 The present invention relates to a firing container and a firing transport carriage that greatly contribute to the reduction of environmental load such as energy saving and CO 2 reduction.

昨今の化石燃料枯渇や地球温暖化防止のため、あらゆる工業製品の生産工程には、省エネルギー技術、COガス削減に関わる技術が取り込まれている。とりわけ、各種工業製品の中で、金属やセラミックスで構成されている部品のほとんどは、数百〜2000℃の温度領域で製造されている。例えば、金属材料や金属部材の熱処理、浸炭焼き入れ、調質、焼鈍、焼き入れ、焼結、ろう付けは、200〜1200℃の温度範囲で、炭素製品の炭化や黒鉛化処理には1200〜3000℃の温度範囲で、ファインセラミックスの焼成や焼結は700〜2300℃の温度範囲でそれぞれ行われている。そして、これらの殆どのプロセスには、ガスあるいは液体燃料の燃焼炎を熱源として用いる燃焼加熱炉、場合によっては電気炉が使用されている。なお、燃焼加熱炉、電気炉における加熱部や高温暴露部には、耐火性及び保温性を有する煉瓦、アルミナやカーボン等の耐火物が用いられ、熱量の損失が出来るだけ少なくなるように設計されている。ところが、ガス燃焼加熱炉や雰囲気制御加熱炉における最も顕著な熱損失は、高温排ガスによる熱損失である。従って、これらの加熱炉の省エネルギー化を図るためには、高温の排ガスが保有する顕熱(エンタルピー)をいかに多く回収するかが鍵になる。高温排ガスの顕熱を炉内で回収できれば、燃料や電力の節約に直結する省エネルギー化が可能である。 In order to prevent the recent depletion of fossil fuels and global warming, energy-saving technologies and technologies related to CO 2 gas reduction have been incorporated into the production processes of all industrial products. In particular, among various industrial products, most parts made of metal and ceramics are manufactured in a temperature range of several hundred to 2000 ° C. For example, heat treatment, carburizing and quenching, tempering, annealing, quenching, sintering and brazing of metal materials and metal members are performed at a temperature range of 200 to 1200 ° C., and 1200 to carbonization and graphitization of carbon products. In the temperature range of 3000 ° C., firing and sintering of the fine ceramics are performed in a temperature range of 700 to 2300 ° C., respectively. In most of these processes, a combustion heating furnace using a combustion flame of gas or liquid fuel as a heat source, and in some cases an electric furnace is used. In addition, fire-resistant and heat-retaining bricks, refractories such as alumina and carbon, etc. are used for the heating section and high-temperature exposure section in combustion heating furnaces and electric furnaces, and designed to minimize the loss of heat. ing. However, the most prominent heat loss in the gas combustion heating furnace and the atmosphere control heating furnace is the heat loss due to the high-temperature exhaust gas. Therefore, in order to save energy in these heating furnaces, the key is how much sensible heat (enthalpy) possessed by the high-temperature exhaust gas is recovered. If the sensible heat of the high-temperature exhaust gas can be recovered in the furnace, it is possible to save energy that directly leads to saving of fuel and electric power.

その具体的な回収方法として、高温排ガスの流路に熱輻射効率が高く通気性の良い物質、例えば、耐熱性の無機繊維で形成された不織布を貼れば、排ガス顕熱の一部が不織布に伝達され、輻射熱として炉内に放射させて顕熱を回収する等の手段が提案されている。これらの技術に用いられる無機繊維は、ポリカルボシランを前駆体として有機−無機変換プロセスにより作製される炭化ケイ素系連続繊維で、この炭化ケイ素系連続繊維で形成された不織布は、元来、ほぼ理想的な黒体放射を発する機能性を有している。また、熱伝導率が3W/m・K以下であり、比熱が小さいことから断熱性に優れている。更に、不織布という形態のため、急速加熱や急速冷却してもバルク材のように熱衝撃で割れる心配もなく、俯形性にも優れる。このため、ガス燃焼加熱炉の内張あるいは排気口に取付けて、燃焼ガスが不織布を通過する際の顕熱を輻射で炉内へ反射させる熱レフレクター効果と、断熱の熱フィルター効果により、20%以上の燃料節約が可能になるとされている(例えば、特許文献1、2、非特許文献1参照)。 As a specific recovery method, if a non-woven fabric formed of heat-resistant inorganic fibers with high heat radiation efficiency and high air permeability is attached to the flow path of the high-temperature exhaust gas, a part of the exhaust gas sensible heat is transferred to the nonwoven fabric. Means have been proposed in which sensible heat is recovered by being transmitted and radiated into the furnace as radiant heat. The inorganic fiber used in these technologies is a silicon carbide-based continuous fiber produced by an organic-inorganic conversion process using polycarbosilane as a precursor, and the nonwoven fabric formed from this silicon carbide-based continuous fiber is essentially nearly It has the functionality to emit ideal blackbody radiation. In addition, the thermal conductivity is 3 W / m · K or less, and since the specific heat is small, the heat insulation is excellent. Furthermore, since it is a non-woven fabric, there is no fear of cracking due to thermal shock like a bulk material even if it is rapidly heated or cooled, and it has excellent saddle shape. For this reason, it is attached to the lining or exhaust port of a gas combustion heating furnace, 20% due to the heat reflector effect that reflects the sensible heat when the combustion gas passes through the nonwoven fabric into the furnace by radiation and the heat filter effect of heat insulation It is said that the above fuel saving is possible (for example, refer to Patent Documents 1 and 2 and Non-Patent Document 1).

特開平8−210782号公報JP-A-8-210784 特開2008−45150号公報JP 2008-45150 A

鈴木謙爾、他3名「Si−C−(M)−O系繊維不織布マットによるガス燃焼加熱炉の省エネルギー化ならびに高性能化」、工業加熱、(社)日本工業炉協会出版、2007年7月、第44巻、第4号、p.17−25Kengo Suzuki and three others "Energy saving and high performance of gas-fired heating furnaces using Si-C- (M) -O fiber non-woven mats", Industrial Heating, Japan Industrial Furnace Association Publishing, July 2007 Moon, Vol. 44, No. 4, p. 17-25

しかしながら、炭化ケイ素系連続繊維で形成された不織布が1300℃の空気中で長時間加熱されると、不織布を形成している炭化ケイ素系連続繊維が序々に酸化し、表面に酸化ケイ素(SiO)が生成するという問題がある。また、この不織布を高温の燃焼ガス中に長時間曝すと、燃焼ガス中の水蒸気により炭化ケイ素系連続繊維の表面に水酸化物が生成し、この水酸化物は蒸気圧が低いため容易に蒸発することから、炭化ケイ素系連続繊維(SiC)の減肉が進行し長期耐久性が不足するという問題が指摘されている。従って、炭化ケイ素系連続繊維で形成された不織布を、数千時間の連続運転が基本となるガス燃焼加熱炉や雰囲気制御加熱炉で使用する熱フィルターあるいは熱レフレクターとして適用するためには、炭化ケイ素系連続繊維自体に、少なくも数千時間の耐久性が要求される。 However, when a nonwoven fabric formed of silicon carbide-based continuous fibers is heated in air at 1300 ° C. for a long time, the silicon carbide-based continuous fibers forming the nonwoven fabric are gradually oxidized, and silicon oxide (SiO 2) is formed on the surface. ) Will generate. Moreover, when this nonwoven fabric is exposed to high-temperature combustion gas for a long time, hydroxide is generated on the surface of the silicon carbide continuous fiber by the water vapor in the combustion gas, and this hydroxide vaporizes easily due to its low vapor pressure. Therefore, the problem that the thinning of the silicon carbide based continuous fiber (SiC) proceeds and the long-term durability is insufficient is pointed out. Accordingly, in order to apply a nonwoven fabric formed of silicon carbide-based continuous fibers as a heat filter or a heat reflector used in a gas combustion heating furnace or an atmosphere controlled heating furnace based on continuous operation for several thousand hours, silicon carbide The continuous fiber itself is required to have a durability of at least several thousand hours.

一方、各種の焼結金属やセラミックスの部品、鋳鍛造金属材料、鋳鍛造部材、鋳鍛造部品等の熱処理(焼成、溶体化、焼入れ、焼鈍し、ろう付け等)に用いられる高温炉には、被加熱物を連続的に熱処理するための搬送システムが設けられている。そして、搬送システムとしては、1)高温暴露面が耐火煉瓦等の耐火物でライニングされた鉄鋼製の台車に被加熱物を載せて高温炉内に敷設されたレール上を移動させるプッシャー式、2)耐火物製の皿や容器に被加熱部を載せて高温炉内に配設された耐熱性のローラー上を滑らせるローラー式、3)高温炉の長手方向の両側にそれぞれ配置された駆動輪と従動輪により、高温炉の入側と出側の間で耐熱性の金属製メッシュバンドを周回移動させ、この金属製メッシュバンド上に被加熱物を載置し搬送しながら被加熱物を加熱するメッシュベルト式の三つの方式がある。ここで、被加熱物は所定の温度に保持された高温炉内を通過する際に所望の熱処理が施されていくが、例えば燃焼炎により、所望の熱処理が施されるように高温炉内に所定の温度分布を形成するためには数十m以上もの長い炉長が必要とされ、高温炉内に所定の温度分布を維持するために多量の燃料を投入しなければならないという問題がある。 On the other hand, high-temperature furnaces used for heat treatment (firing, solution treatment, quenching, annealing, brazing, etc.) of various sintered metal and ceramic parts, cast forged metal materials, cast forged members, cast forged parts, etc. A conveyance system for continuously heat-treating the object to be heated is provided. As a transport system, 1) a pusher type in which an object to be heated is placed on a steel carriage lined with a refractory material such as a refractory brick and moved on a rail laid in a high temperature furnace. ) Roller type that puts the heated part on a refractory dish or container and slides on a heat-resistant roller arranged in the high temperature furnace. 3) Driving wheels arranged on both sides of the high temperature furnace in the longitudinal direction. And the driven wheel move the heat-resistant metal mesh band between the entrance and exit sides of the high-temperature furnace and heat the object while placing and transporting the object to be heated on the metal mesh band. There are three types of mesh belt type. Here, the object to be heated is subjected to a desired heat treatment when it passes through a high temperature furnace maintained at a predetermined temperature. For example, a desired heat treatment is performed in the high temperature furnace by a combustion flame. In order to form a predetermined temperature distribution, a furnace length as long as several tens of meters is required, and there is a problem that a large amount of fuel has to be put in the high temperature furnace to maintain the predetermined temperature distribution.

本発明はかかる事情に鑑みてなされたもので、焼成炉の高温排ガスが保有する顕熱を効率的に回収して省エネルギー化が可能な焼成用容器及び焼成用搬送台車を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a firing container and a firing transport carriage capable of efficiently recovering sensible heat held in high-temperature exhaust gas of a firing furnace and saving energy. To do.

前記目的に沿う第1の発明に係る焼成用容器は、高温に保持される加熱室と、該加熱室に連接して設けられ、被焼成物を収容して該加熱室からの熱で該被焼成物の焼成を行う焼成室とを有し、更に、該焼成室には、該焼成室からの放熱を抑制する輻射熱反射材からなる遮蔽部材が取付けられている焼成用容器において、
前記輻射熱反射材は、耐熱性を有する非酸化物系の無機繊維が交錯した基材と、該基材を形成している該無機繊維を覆う保護層とを有し、該保護層は耐熱及び耐食性を備えた酸化物、複合酸化物、又は該酸化物及び該複合酸化物からなる混合酸化物のいずれかにより形成されている。
A firing container according to a first aspect of the present invention that meets the above object is provided with a heating chamber maintained at a high temperature, and connected to the heating chamber. The firing container accommodates a material to be fired and is heated by the heat from the heating chamber. A firing chamber having a firing chamber for firing the fired product, and further, in the firing chamber, a shielding member made of a radiant heat reflecting material that suppresses heat radiation from the firing chamber is attached,
The radiant heat reflecting material has a base material in which non-oxide inorganic fibers having heat resistance are mixed, and a protective layer covering the inorganic fibers forming the base material. It is formed of any one of an oxide having a corrosion resistance, a complex oxide, or a mixed oxide composed of the oxide and the complex oxide.

第1の発明に係る焼成用容器において、前記基材は、前記無機繊維の平織り、朱子織り、綾織り、多軸織り、又は三次元織りのいずれかの方法で作製された織物及び前記無機繊維で成形された不織物のいずれか1で形成されていることが好ましい。 In the firing container according to the first invention, the base material is a woven fabric produced by any one of the plain weaving, satin weaving, twill weaving, multiaxial weaving, or three-dimensional weaving of the inorganic fibers and the inorganic fibers. It is preferable that it is formed of any one of the nonwoven fabrics molded in (1).

第1の発明に係る焼成用容器において、Ti,Cr、Fe、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsを第1群、Y、Yb、Er、Ho、及びDyを第2群、Y、Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuを第3群として、前記酸化物は前記第1群から選択される1又は2以上の金属元素の酸化により形成され、前記複合酸化物は、前記第2群から選択される1又は2以上の金属元素をQE、前記第3群から選択される1又は2以上の金属元素をREとして、一般式QESi、QESiO、REAl12、及びREAlOから選択される1又は2以上であり、前記酸化物及び前記複合酸化物のそれぞれの熱膨張係数の値は、前記無機繊維の熱膨張係数の値の±10%の範囲内にあることが好ましい。 In the firing container according to the first invention, Ti, Cr, Fe, Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm , Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Re, and Os in the first group, Y, Yb, Er, Ho, and Dy in the second group, Y, Yb , Er, Ho, Dy, Gd, Sm, Nd, and Lu as a third group, the oxide is formed by oxidation of one or more metal elements selected from the first group, and the composite oxide Are represented by the general formulas QE 2 Si 2 O 7 , QESiO 5 where QE is one or more metal elements selected from the second group, and RE is one or more metal elements selected from the third group. , RE 3 Al 5 O 12, and 1 or 2 or more selected from REAlO 3 , And the value of each coefficient of thermal expansion of the oxide and the composite oxide is preferably within a range of ± 10% of the value of the thermal expansion coefficient of the inorganic fibers.

第1の発明に係る焼成用容器において、Zr、Al、及びTiの金属群から選択される1又は2以上の金属元素をM、その炭化物をMCとして、前記無機繊維は、(1)Si、C、O、及びMを含有する非晶質物質、(2)β−SiC、MC、及びβ−SiCとMCの固溶体で粒子径が700nm以下の結晶質微粒子と、該結晶質微粒子間に存在するSi及びMの酸化物非晶質微粒子との集合体、又は(3)前記非晶質物質と前記集合体の混合物のいずれか1で構成され、前記無機繊維の元素比率は、Siが30〜70質量%、Cが20〜40質量%、Oが0.01〜20質量%、及びMが0.1〜30質量%とすることができる。 In the firing container according to the first aspect of the present invention, one or two or more metal elements selected from the metal group of Zr, Al, and Ti is M, and the carbide is MC, and the inorganic fiber is (1) Si, Amorphous substance containing C, O, and M, (2) β-SiC, MC, and crystalline fine particles having a particle size of 700 nm or less and a solid solution of β-SiC and MC, and present between the crystalline fine particles Or an assembly of amorphous oxide fine particles of Si and M, or (3) a mixture of the amorphous substance and the aggregate, and the element ratio of the inorganic fiber is 30 for Si. -70 mass%, C can be 20-40 mass%, O can be 0.01-20 mass%, and M can be 0.1-30 mass%.

第1の発明に係る焼成用容器において、前記無機繊維は、(1)Si、C、及びOを含有する非晶質物質、(2)粒子径が800nm以下であるβ−SiCの結晶質微粒子と、該結晶質微粒子間に存在するSiの酸化物非晶質微粒子との集合体、又は(3)前記非晶質物質と前記集合体の混合物のいずれか1で構成され、前記無機繊維の元素比率は、Siが40〜70質量%、Cが20〜60質量%、及びOが0.01〜20質量%とすることもできる。 In the firing container according to the first invention, the inorganic fiber includes (1) an amorphous substance containing Si, C, and O, and (2) β-SiC crystalline fine particles having a particle diameter of 800 nm or less. And an aggregate of Si oxide amorphous fine particles existing between the crystalline fine particles, or (3) a mixture of the amorphous substance and the aggregate, The element ratio may be 40 to 70 mass% for Si, 20 to 60 mass% for C, and 0.01 to 20 mass% for O.

前記目的に沿う第2の発明に係る焼成用搬送台車は、第1の発明に係る焼成用容器の底部下面に、耐熱性の車輪を取付けている。 The baking transport cart according to the second aspect of the present invention has a heat-resistant wheel attached to the bottom surface of the bottom of the baking container according to the first aspect.

第1の発明に係る焼成用容器及び第2の発明に係る焼成用搬送台車においては、被焼成物を収容する焼成室に、焼成室からの放熱を抑制する輻射熱反射材からなる遮蔽部材が設けられ、輻射熱反射材は、耐熱性を有する非酸化物系の無機繊維が交錯した基材と、基材を形成している無機繊維を覆う保護層とを有するので、腐食性の高温雰囲気(例えば、水蒸気やバナジウムを含んだ燃焼ガス)においても無機繊維の腐食抵抗を向上させて、遮蔽部材の長寿命化を図ることができる。これにより、遮蔽部材で焼成室の高温雰囲気が保有する顕熱を効率的に回収することができ、焼成室を高温雰囲気に維持するのに必要な燃料や電力の節約に直結する省エネルギー化が可能である。
また、遮蔽部材により焼成室からの放熱が抑制されることから、焼成室内の温度の均一性が向上し、得られる焼成物の品質を均一化することができる。
In the baking container according to the first invention and the baking carriage according to the second invention, a shielding member made of a radiant heat reflecting material that suppresses heat radiation from the baking chamber is provided in the baking chamber that houses the object to be fired. The radiant heat reflecting material has a base material in which non-oxide inorganic fibers having heat resistance are mixed and a protective layer covering the inorganic fibers forming the base material. In addition, the corrosion resistance of inorganic fibers can be improved even in a combustion gas containing water vapor or vanadium), and the life of the shielding member can be extended. As a result, the sensible heat of the high-temperature atmosphere in the firing chamber can be efficiently recovered by the shielding member, and energy saving can be directly linked to saving fuel and power necessary to maintain the firing chamber in the high-temperature atmosphere. It is.
Moreover, since the heat radiation from the firing chamber is suppressed by the shielding member, the uniformity of the temperature in the firing chamber is improved, and the quality of the obtained fired product can be made uniform.

第1の発明に係る焼成用容器において、基材が、無機繊維の平織り、朱子織り、綾織り、多軸織り、又は三次元織りのいずれかの方法で作製された織物及び無機繊維で成形された不織物のいずれか1で形成されている場合、基材が軽量化して遮蔽部材の重量を小さくでき、焼成室に遮蔽部材を設けても、焼成室を高温雰囲気に維持するのに必要な熱負荷(燃料又は電力の使用量)の増加を抑制できる。また、基材が俯形性に優れるため、焼成室の形状に合わせて最適な形状の遮蔽部材を形成することができる。更に、燃焼室内を急速加熱及び急速冷却しても基材が破損することがなく、遮蔽部材の損傷を防止できる。 In the firing container according to the first invention, the base material is formed of a woven fabric and inorganic fibers produced by any of the methods of plain weaving, satin weaving, twill weaving, multiaxial weaving, or three-dimensional weaving of inorganic fibers. In the case of being formed of any one of the non-woven fabrics, the weight of the shielding member can be reduced by reducing the weight of the base material, and even if a shielding member is provided in the firing chamber, it is necessary to maintain the firing chamber in a high temperature atmosphere. An increase in thermal load (amount of fuel or electric power used) can be suppressed. Moreover, since the base material is excellent in saddle shape, it is possible to form a shielding member having an optimal shape in accordance with the shape of the firing chamber. Furthermore, even if the combustion chamber is rapidly heated and cooled rapidly, the base material is not damaged, and the shielding member can be prevented from being damaged.

第1の発明に係る焼成用容器において、酸化物、複合酸化物の組成を選択することで、遮蔽部材が曝される高温雰囲気の性状(温度範囲、腐食性の有無)に合わせて最適な保護層を形成できる。そして、酸化物及び複合酸化物のそれぞれの熱膨張係数の値を無機繊維の熱膨張係数の値の±10%の範囲内にすることで、無機繊維に対して保護層を安定して存在させる(保護層の脱落を防止する)ことができる。 In the firing container according to the first aspect of the invention, by selecting the composition of the oxide and composite oxide, the optimum protection according to the properties of the high-temperature atmosphere (temperature range, presence or absence of corrosiveness) to which the shielding member is exposed Layers can be formed. And by making the value of each thermal expansion coefficient of an oxide and a complex oxide into the range of ± 10% of the value of the thermal expansion coefficient of inorganic fiber, a protective layer is made to exist stably to inorganic fiber. (Can prevent the protective layer from falling off).

第1の発明に係る焼成用容器において、無機繊維がSi−C−M−O(MはZr、Al、及びTiの金属群から選択される1又は2以上の金属元素)系の場合、無機繊維がSi−C−O系の場合、無機繊維にほぼ理想的な黒体放射機能性を持たせることができ、顕熱の効率的な回収が可能になる。 In the firing container according to the first invention, when the inorganic fiber is Si—C—M—O (M is one or more metal elements selected from a metal group of Zr, Al, and Ti), the inorganic fiber is inorganic. When the fiber is Si—C—O, the inorganic fiber can have almost ideal black body radiation functionality, and efficient recovery of sensible heat becomes possible.

本発明の第1の実施の形態に係る焼成用容器の側面図である。It is a side view of the container for baking which concerns on the 1st Embodiment of this invention. (A)は同焼成用容器に設けられた遮蔽部材の部分平面図、(B)は(A)のP−P矢視断面図である。(A) is the fragmentary top view of the shielding member provided in the container for baking, (B) is PP sectional drawing of (A). 遮蔽部材の基材を形成する無機繊維に保護層となる堆積層を形成する電気泳動装置の説明図である。It is explanatory drawing of the electrophoresis apparatus which forms the deposit layer used as a protective layer in the inorganic fiber which forms the base material of a shielding member. (A)は分散溶液中の無機繊維の説明図、(B)は無機繊維に形成された堆積層の説明図、(C)無機繊維に形成された保護層の説明図である。(A) is explanatory drawing of the inorganic fiber in a dispersion solution, (B) is explanatory drawing of the deposition layer formed in the inorganic fiber, (C) It is explanatory drawing of the protective layer formed in the inorganic fiber. 本発明の第2の実施の形態に係る焼成用搬送台車の側面図である。It is a side view of the conveyance cart for baking concerning a 2nd embodiment of the present invention. (A)、(B)、(C)は実施例1の焼成用搬送台車の側面図、背面図、斜視図である。(A), (B), (C) is the side view, rear view, and perspective view of the carrier cart for baking of Example 1. FIG. (A)、(B)、(C)は実施例2の焼成用容器の側面図、背面図、斜視図である。(A), (B), (C) is the side view of the container for baking of Example 2, a rear view, and a perspective view.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の第1の実施の形態に係る焼成用容器10は、例えば、焼成炉11に設けられた加熱手段の一例であるバーナで燃料を燃焼させて発生させた燃焼炎が導入されて高温(例えば、700〜2300℃、又は、800〜1500℃)に保持される加熱室13と、加熱室13に連接して設けられ、被焼成物(図示せず)を収容して加熱室13からの熱で被焼成物の焼成を行う焼成室12とを有し、更に、焼成室12には、焼成室12からの放熱を抑制するために、輻射熱反射材からなる遮蔽部材20が取付けられている。
なお、焼成用容器10は、焼成炉11の入口から装入され、焼成炉11の底部に配設された耐熱性のローラ15上を滑りながら焼成炉11の出口に向けて移動し、焼成用容器10が入口から出口に移動する間に被焼成物の予熱、焼成、冷却が順次行われる。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the firing container 10 according to the first embodiment of the present invention includes, for example, combustion generated by burning fuel with a burner that is an example of heating means provided in the firing furnace 11. A heating chamber 13 in which a flame is introduced and held at a high temperature (for example, 700 to 2300 ° C. or 800 to 1500 ° C.) and a heating chamber 13 connected to the heating chamber 13 and accommodates an object to be fired (not shown). And a firing chamber 12 that fires the object to be fired with heat from the heating chamber 13, and the firing chamber 12 is shielded from a radiant heat reflecting material in order to suppress heat radiation from the firing chamber 12. A member 20 is attached.
The firing container 10 is inserted from the entrance of the firing furnace 11 and moves toward the exit of the firing furnace 11 while sliding on the heat-resistant roller 15 disposed at the bottom of the firing furnace 11. While the container 10 moves from the entrance to the exit, preheating, firing, and cooling of the object to be fired are sequentially performed.

ここで、加熱室12は、例えば、耐熱性の底板16と、底板16の四隅にそれぞれ配置された柱状で耐熱性のベース部材17とを有している。これによって、加熱室12に導入された燃焼炎は加熱室12を自由に通過することができ、加熱室12内が高温に保持される。また、焼成室13は、例えば、各ベース部材17の上面に立設して設けられた耐熱性の柱部材18と、各柱部材18の上端部で支持された耐熱性の梁部材19と、各柱部材18に支持され、被焼成物を載置する図示しない耐熱性の載置台とを有している。そして、遮蔽部材20は、柱部材18及び梁部材19を用いて、焼成室13の側部、上部にそれぞれ取付けられている。
なお、図1では、焼成用容器10の下部に加熱室12を、加熱室12の上方に焼成室13を設けた場合について説明したが、焼成炉の構造により、加熱室と焼成室の位置関係は変化する。例えば、長尺の被焼成物を焼成室に立設して焼成する場合、加熱室は、焼成室の外側に焼成室の長手方向に沿って配置される。そして、加熱室と焼成室の位置関係が変化すると、遮蔽部材の設置部位も変化する。
Here, the heating chamber 12 includes, for example, a heat-resistant bottom plate 16 and columnar and heat-resistant base members 17 disposed at four corners of the bottom plate 16. Thereby, the combustion flame introduced into the heating chamber 12 can freely pass through the heating chamber 12, and the inside of the heating chamber 12 is kept at a high temperature. In addition, the firing chamber 13 includes, for example, a heat-resistant column member 18 erected on the upper surface of each base member 17, a heat-resistant beam member 19 supported by the upper end portion of each column member 18, Each column member 18 is supported by a heat-resistant mounting table (not shown) on which an object to be fired is mounted. And the shielding member 20 is attached to the side part of the baking chamber 13, and the upper part using the column member 18 and the beam member 19, respectively.
In FIG. 1, the case where the heating chamber 12 is provided in the lower portion of the baking container 10 and the baking chamber 13 is provided above the heating chamber 12 has been described. However, the positional relationship between the heating chamber and the baking chamber depends on the structure of the baking furnace. Will change. For example, in the case where a long object to be fired is erected and fired in the firing chamber, the heating chamber is disposed outside the firing chamber along the longitudinal direction of the firing chamber. And if the positional relationship of a heating chamber and a baking chamber changes, the installation site | part of a shielding member will also change.

図2(A)、(B)に示すように、遮蔽部材20を構成する輻射熱反射材は、耐熱性を有する非酸化物系の無機繊維21が交錯した基材22と、基材22を形成している無機繊維21を覆う保護層23とを有し、保護層23は耐熱及び耐食性を備えた酸化物、複合酸化物、又は酸化物及び複合酸化物からなる混合酸化物のいずれかにより形成されている。ここで、基材22を形成している無機繊維21が保護層23で覆われているため、無機繊維21同士の接触が抑制されている。また、基材22は、例えば、無機繊維21の平織物(平織りで作製された織物)を、遮蔽部材20の寸法に合わせて裁断して形成されている。なお、朱子織り、綾織り、多軸織り、又は三次元織りのいずれかの方法で作製された織物、又は無機繊維21で成形された不織物を、遮蔽部材20の寸法に合わせて裁断して形成してもよい。 As shown in FIGS. 2A and 2B, the radiant heat reflecting material constituting the shielding member 20 forms a base material 22 in which non-oxide inorganic fibers 21 having heat resistance are interlaced, and the base material 22. A protective layer 23 covering the inorganic fiber 21 is formed, and the protective layer 23 is formed of either an oxide having a heat resistance and a corrosion resistance, a complex oxide, or a mixed oxide composed of the oxide and the complex oxide. Has been. Here, since the inorganic fibers 21 forming the base material 22 are covered with the protective layer 23, the contact between the inorganic fibers 21 is suppressed. In addition, the base material 22 is formed by cutting a plain woven fabric (woven fabric made of plain weave) of inorganic fibers 21 according to the size of the shielding member 20, for example. A fabric produced by any one of satin weaving, twill weaving, multiaxial weaving, or three-dimensional weaving, or a non-woven fabric formed with inorganic fibers 21 is cut according to the size of the shielding member 20. It may be formed.

無機繊維21には、例えば、炭化ケイ素系(Si−C−M−O系)連続繊維が使用できる。ここで、炭化ケイ素系(Si−C−M−O系)連続繊維は、Zr、Al、及びTiの金属群から選択される1又は2以上の組合せからなる金属元素をM、その炭化物をMCとして、(1)Si、C、O、及びMを含有する非晶質物質、(2)β−SiC、MC、及びβ−SiCとMCの固溶体で粒子径が700nm以下の結晶質微粒子と、結晶質微粒子間に存在するSi及びMの酸化物非晶質微粒子との集合体、又は(3)(1)の非晶質物質と(2)の集合体との混合物のいずれか1で構成され、その元素比率は、Siが30〜70質量%、Cが20〜40質量%、Oが0.01〜20質量%、及びMが0.1〜30質量%となっている。 For the inorganic fiber 21, for example, a silicon carbide (Si—C—M—O) continuous fiber can be used. Here, the silicon carbide-based (Si-C-M-O-based) continuous fiber includes M as the metal element composed of one or a combination of two or more selected from the metal group of Zr, Al, and Ti, and MC as the carbide. (1) amorphous substance containing Si, C, O and M, (2) β-SiC, MC, and crystalline fine particles having a particle size of 700 nm or less with a solid solution of β-SiC and MC, Consists of either an aggregate of Si and M oxide amorphous fine particles present between the crystalline fine particles or a mixture of (3) (1) amorphous substance and (2) aggregate The element ratios of Si are 30 to 70% by mass, C is 20 to 40% by mass, O is 0.01 to 20% by mass, and M is 0.1 to 30% by mass.

また、無機繊維21には、例えば、炭化ケイ素系(Si−C−O系)連続繊維を使用してもよい。ここで、炭化ケイ素系(Si−C−O系)連続繊維は、(1)Si、C、及びOを含有する非晶質物質、(2)粒子径が800nm以下であるβ−SiCの結晶質微粒子と、結晶質微粒子間に存在するSiの酸化物非晶質微粒子との集合体、又は(3)(1)の非晶質物質と(2)の集合体の混合物のいずれか1で構成され、その元素比率は、Siが40〜70質量%、Cが20〜60質量%、及びOが0.01〜20質量%となっている。 Moreover, as the inorganic fiber 21, for example, a silicon carbide (Si—C—O) continuous fiber may be used. Here, the silicon carbide-based (Si—C—O-based) continuous fiber includes (1) an amorphous substance containing Si, C, and O, and (2) a β-SiC crystal having a particle diameter of 800 nm or less. Or an aggregate of Si oxide amorphous fine particles existing between crystalline fine particles or a mixture of (3) (1) amorphous substance and (2) aggregate The element ratio of Si is 40 to 70% by mass, C is 20 to 60% by mass, and O is 0.01 to 20% by mass.

酸化物は、第1遷移元素であるTi、Cr、Fe、Co、Ni、Cu、第2遷移元素であるY、Zr、Nb、Tc、Ru、Rh、Pd、Ag、第3遷移元素であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsから構成される第1群から選択される1又は2以上の金属元素の酸化により形成される。また、複合酸化物は、Y、Yb、Er、Ho、及びDyから構成される第2群から選択される1又は2以上の金属元素をQEとし、Y、Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuから構成される第3群から選択される1又は2以上の金属元素をREとして、一般式QESi、QESiO、REAl12、及びREAlOのいずれか1又は2以上である。 The oxides are the first transition elements Ti, Cr, Fe, Co, Ni, Cu, the second transition elements Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, and the third transition elements. 1 selected from the first group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Re, and Os Alternatively, it is formed by oxidation of two or more metal elements. In addition, the composite oxide has one or more metal elements selected from the second group consisting of Y, Yb, Er, Ho, and Dy as QE, and Y, Yb, Er, Ho, Dy, Gd 1 or 2 or more metal elements selected from the third group consisting of Sm, Nd, and Lu are represented by RE, and the general formulas QE 2 Si 2 O 7 , QESiO 5 , RE 3 Al 5 O 12 , and REAlO Any one of 3 or 2 or more.

そして、保護層23を形成する酸化物及び複合酸化物の熱膨張係数の値は、無機繊維21の熱膨張係数の値の±10%の範囲内である。これによって、遮蔽部材20の温度が変動して無機繊維21の温度が変動しても、無機繊維21と保護層23の界面における熱膨張歪の差を小さくでき、無機繊維21に対して保護層23を安定して存在させる(保護層23の脱落を防止する)ことができる。なお、保護層23の厚さは、0.2μm以上10μm以下であることが好ましい。これによって、遮蔽部材20の温度が変動した際に、保護層23に発生する厚み方向の温度差を小さくして保護層23の熱変形を均一に近づけることができ、保護層23の破損を防止できる。 The value of the thermal expansion coefficient of the oxide and composite oxide forming the protective layer 23 is within a range of ± 10% of the value of the thermal expansion coefficient of the inorganic fiber 21. As a result, even if the temperature of the shielding member 20 varies and the temperature of the inorganic fiber 21 varies, the difference in thermal expansion strain at the interface between the inorganic fiber 21 and the protective layer 23 can be reduced. 23 can exist stably (prevention of the protective layer 23 from falling off). In addition, it is preferable that the thickness of the protective layer 23 is 0.2 to 10 μm. As a result, when the temperature of the shielding member 20 fluctuates, the temperature difference in the thickness direction generated in the protective layer 23 can be reduced, and the thermal deformation of the protective layer 23 can be made uniform, thereby preventing the protective layer 23 from being damaged. it can.

次に、基材22を形成している無機繊維21の表面に保護層23をする方法について説明する。
保護層23は、図3、図4(A)、(B)、(C)に示すように、基材22を、酸化物、複合酸化物、又は混合酸化物のいずれか1の粉末24が分散している分散溶液25中に浸漬して基材22の表面上に電気泳動により粉末24の堆積層26を形成し、形成された堆積層26を熱処理することにより形成される。ここで、分散溶液25は、粉末24を、有機溶媒(例えばアセトン)と水との混合溶媒中に分散(懸濁)させて作製され、混合溶媒には、粉末24の分散性を向上させる分散剤及び形成された堆積層26に強度を賦与するバインダーがそれぞれ所定量だけ添加されている。以下、順次説明する。
Next, a method for forming the protective layer 23 on the surface of the inorganic fiber 21 forming the substrate 22 will be described.
As shown in FIGS. 3, 4 (A), (B), and (C), the protective layer 23 is made of the base material 22 and the powder 24 of any one of oxide, composite oxide, or mixed oxide. It is formed by dipping in the dispersed dispersion solution 25 to form a deposited layer 26 of powder 24 on the surface of the substrate 22 by electrophoresis and heat-treating the formed deposited layer 26. Here, the dispersion solution 25 is prepared by dispersing (suspending) the powder 24 in a mixed solvent of an organic solvent (for example, acetone) and water, and the mixed solvent is a dispersion that improves the dispersibility of the powder 24. A predetermined amount of each of the agent and the binder imparting strength to the deposited layer 26 is added. Hereinafter, description will be made sequentially.

図3に示すように、基材22の外表面上に粉末24の堆積層26を形成する電気泳動装置27は、分散溶液25を貯留する分散溶液槽28と、分散溶液槽28の上端部に掛止される取付け部29、30を備え、基材22を収容して分散溶液槽28内の分散溶液25中に保持する基材保持部材31と、分散溶液25中に浸漬され、分散溶液25中の基材22の両側に隙間を設けてそれぞれ配置された対向電極32、33とを有している。また、電気泳動装置27は、取付け部29、30の一方(図3では取付け部29)と電源ケーブル34を介して陰極側が、対向電極32、33と電源ケーブル35を介して陽極側がそれぞれ接続する直流電源(図示せず)を有している。更に、分散溶液槽28内には、図示しない撹拌機構が設けられ、分散溶液槽28内の分散溶液25は常時撹拌されて、粉末24の沈降が防止されている。 As shown in FIG. 3, the electrophoresis apparatus 27 that forms the deposition layer 26 of the powder 24 on the outer surface of the base material 22 includes a dispersion solution tank 28 that stores the dispersion solution 25, and an upper end portion of the dispersion solution tank 28. A base material holding member 31 that includes mounting portions 29 and 30 to be hooked, accommodates the base material 22 and holds the base material 22 in the dispersion solution 25 in the dispersion solution tank 28, and is immersed in the dispersion solution 25. It has counter electrodes 32 and 33 that are respectively arranged with a gap provided on both sides of the inside base material 22. The electrophoresis apparatus 27 is connected to the cathode side via one of the attachment portions 29 and 30 (attachment portion 29 in FIG. 3) and the power cable 34, and to the anode side via the counter electrodes 32 and 33 and the power cable 35, respectively. A DC power supply (not shown) is included. Further, a stirring mechanism (not shown) is provided in the dispersion solution tank 28, and the dispersion solution 25 in the dispersion solution tank 28 is constantly stirred to prevent the powder 24 from settling.

ここで、図4(A)、(B)に示すように、分散溶液25中の粉末24は正に帯電しているので、例えば、分散溶液槽28の分散溶液25中に浸漬された基材22を、対向電極32、33(分散溶液槽28の分散溶液25)に対して、例えば50〜200Vの負電位に保持することにより、負電位に保たれた基材22を形成している無機繊維21の表面に正に帯電した粉末24を付着させて堆積層26を形成することができる。ここで、堆積層26の厚みは、分散溶液25中の粉末24の濃度、基材22(無機繊維21)に印加する電圧、及び浸漬時間により変化するので、堆積層26の厚みに応じて分散溶液25中の粉末24の濃度、基材22に印加する電圧、及び浸漬時間をそれぞれ調整する。 Here, as shown in FIGS. 4A and 4B, since the powder 24 in the dispersion solution 25 is positively charged, for example, the substrate immersed in the dispersion solution 25 of the dispersion solution tank 28 22 is maintained at a negative potential of, for example, 50 to 200 V with respect to the counter electrodes 32 and 33 (dispersion solution 25 of the dispersion solution tank 28), thereby forming an inorganic material that forms the substrate 22 kept at a negative potential. The deposited layer 26 can be formed by attaching a positively charged powder 24 to the surface of the fiber 21. Here, the thickness of the deposited layer 26 varies depending on the concentration of the powder 24 in the dispersion solution 25, the voltage applied to the base material 22 (inorganic fibers 21), and the immersion time, so that the thickness varies depending on the thickness of the deposited layer 26. The concentration of the powder 24 in the solution 25, the voltage applied to the base material 22, and the immersion time are adjusted.

無機繊維21の表面に粉末24の堆積層26が所定の厚み形成されると、基材22を分散溶液槽28の分散溶液25中から取出し、堆積層26の乾燥(有機溶剤と水の除去)を行った後、炉内が非酸化性雰囲気(例えばアルゴンガス等の不活性ガス雰囲気)に保持された図示しない焼結炉に装入して熱処理を行う。そして、焼結炉内では、堆積層26を形成している粉末24が加熱されて焼結する。その結果、図4(C)に示すように、無機繊維21の表面には粉末24の焼結により形成される焼結層からなる保護層23が形成され、基材22を形成している無機繊維21が保護層23で覆われた状態の遮蔽部材20となる。なお、熱処理の温度は、堆積層26を形成している粉末24の組成及び粒子径を考慮して決定する。 When the deposition layer 26 of the powder 24 is formed on the surface of the inorganic fiber 21 to a predetermined thickness, the base material 22 is taken out from the dispersion solution 25 in the dispersion solution tank 28 and the deposition layer 26 is dried (removal of organic solvent and water). Then, the furnace is charged into a sintering furnace (not shown) in which the inside of the furnace is maintained in a non-oxidizing atmosphere (for example, an inert gas atmosphere such as argon gas) and heat treatment is performed. In the sintering furnace, the powder 24 forming the deposition layer 26 is heated and sintered. As a result, as shown in FIG. 4 (C), a protective layer 23 made of a sintered layer formed by sintering powder 24 is formed on the surface of the inorganic fiber 21, and the inorganic material forming the base material 22 is formed. The shielding member 20 is in a state where the fibers 21 are covered with the protective layer 23. The temperature of the heat treatment is determined in consideration of the composition and particle size of the powder 24 forming the deposited layer 26.

続いて、第1の実施の形態に係る焼成用容器10の作用について説明する。
第1の実施の形態に係る焼成用容器10においては、被焼成物を収容する焼成室13に、輻射熱反射材で構成され、焼成室13からの放熱を抑制する遮蔽部材20が設けられているので、遮蔽部材20で焼成室13内の高温雰囲気が保有する顕熱を効率的に回収することができ、遮蔽部材20を介して回収した顕熱で被焼成物の加熱を行うことができる。これにより、これにより、遮蔽部材20で焼成室13の高温雰囲気が保有する顕熱を効率的に回収することができ、焼成室13を高温雰囲気に維持するのに必要な燃料や電力の節約に直結する省エネルギー化が可能である。また、遮蔽部材20により焼成室13からの放熱が抑制されることから、焼成室13内の温度の均一性が向上し、得られる焼成物の品質を均一化することができる。
Next, the operation of the firing container 10 according to the first embodiment will be described.
In the firing container 10 according to the first embodiment, the firing chamber 13 that houses the object to be fired is provided with a shielding member 20 that is made of a radiant heat reflector and suppresses heat radiation from the firing chamber 13. Therefore, the sensible heat possessed by the high-temperature atmosphere in the baking chamber 13 can be efficiently recovered by the shielding member 20, and the object to be fired can be heated by the sensible heat recovered through the shielding member 20. Thereby, the sensible heat which the high temperature atmosphere of the baking chamber 13 has by this can be efficiently collect | recovered by the shielding member 20, and a fuel and electric power required for maintaining the baking chamber 13 in a high temperature atmosphere are saved. Direct energy saving is possible. Moreover, since the heat release from the baking chamber 13 is suppressed by the shielding member 20, the uniformity of the temperature in the baking chamber 13 is improved, and the quality of the obtained fired product can be made uniform.

ここで、基材22を構成する無機繊維21として、炭化ケイ素系(Si−C−M−O系)連続繊維を使用すると、基材22にほぼ理想的な黒体放射機能性を持たせることができ、顕熱のより効率的な回収が可能になる。更に、基材22を形成している無機繊維21が保護層23で覆われているので、腐食性の高温雰囲気(例えば、水蒸気やバナジウムを含んだ燃焼ガス)における無機繊維21の腐食抵抗を向上させて、無機繊維21の有する高温域での優れた機械的特性(例えば、強度、弾性率等)を維持することができ、遮蔽部材20の信頼性、長寿命化を図ることができる。 Here, when a silicon carbide-based (Si-C-M-O-based) continuous fiber is used as the inorganic fiber 21 constituting the base material 22, the base material 22 should have almost ideal black body radiation functionality. And sensible heat can be recovered more efficiently. Furthermore, since the inorganic fibers 21 forming the base material 22 are covered with the protective layer 23, the corrosion resistance of the inorganic fibers 21 in a corrosive high temperature atmosphere (for example, combustion gas containing water vapor or vanadium) is improved. Thus, excellent mechanical properties (for example, strength, elastic modulus, etc.) in the high temperature range of the inorganic fiber 21 can be maintained, and the reliability and long life of the shielding member 20 can be achieved.

また、基材22を、無機繊維21の平織物で形成することで遮蔽部材20が軽量化されることから、焼成室13に遮蔽部材20を設けても焼成室13内の温度を上げる際の負荷(エネルギー使用量や加熱時間)の増加を抑制できる。更に、基材22が、無機繊維21の平織物で形成されているので、基材22に優れた俯形性を付与することができ、焼成室13の形状に合わせて最適な形状の遮蔽部材20を形成することができると共に、燃焼室13内を急速加熱、急速冷却しても、基材22が破損することがなく、遮蔽部材20の損傷を防止できる。 Moreover, since the shielding member 20 is reduced in weight by forming the base material 22 with the plain fabric of the inorganic fibers 21, the temperature in the firing chamber 13 can be increased even if the shielding member 20 is provided in the firing chamber 13. Increase in load (energy consumption and heating time) can be suppressed. Furthermore, since the base material 22 is formed of a plain woven fabric of the inorganic fibers 21, the base material 22 can be provided with an excellent saddle shape, and a shielding member having an optimum shape according to the shape of the firing chamber 13. 20 can be formed, and even if the inside of the combustion chamber 13 is rapidly heated and rapidly cooled, the base material 22 is not damaged, and the shielding member 20 can be prevented from being damaged.

保護層23を耐熱及び耐食性を備えた酸化物、複合酸化物、又は酸化物及び複合酸化物からなる混合酸化物のいずれかにより形成するので、酸化物、複合酸化物の組成を選択することで、保護層23の耐熱性、耐食性、及び熱膨張係数を調整することができ、酸化物及び複合酸化物の熱膨張係数の値を無機繊維21の熱膨張係数の値の±10%の範囲内にすることで、無機繊維21に対して保護層23を安定して存在させる(保護層23の脱落を防止する)ことができる。 Since the protective layer 23 is formed of either an oxide having a heat resistance and corrosion resistance, a composite oxide, or a mixed oxide composed of an oxide and a composite oxide, the composition of the oxide and the composite oxide can be selected. The heat resistance, corrosion resistance, and thermal expansion coefficient of the protective layer 23 can be adjusted, and the value of the thermal expansion coefficient of the oxide and composite oxide is within ± 10% of the value of the thermal expansion coefficient of the inorganic fiber 21. By making it, the protective layer 23 can be made to exist stably with respect to the inorganic fiber 21 (a fall of the protective layer 23 is prevented).

図5に示すように、本発明の第2の実施の形態に係る焼成用搬送台車36は、第1の実施の形態に係る焼成用容器10の底板16の下面の前後両側に、耐熱性の車輪37を取付けたことが特徴となっている。
このため、焼成用容器10と同一の構成部材には同一の符号を付して、詳細な説明は省略する。また、焼成用搬送台車36が焼成炉内に敷設されたレール38上を移動することを除くと、焼成用搬送台車36の作用は焼成用容器10の作用と同一なので、詳細な説明は省略する。
As shown in FIG. 5, the baking transport carriage 36 according to the second embodiment of the present invention is provided with heat resistant front and rear sides of the bottom surface of the bottom plate 16 of the baking container 10 according to the first embodiment. The wheel 37 is attached.
For this reason, the same code | symbol is attached | subjected to the component same as the container 10 for baking, and detailed description is abbreviate | omitted. Except for the fact that the firing transport carriage 36 moves on the rail 38 laid in the firing furnace, the operation of the firing transport carriage 36 is the same as the action of the firing container 10, so detailed description thereof is omitted. .

(実施例1)
Si−C−Zr−O系の炭化ケイ素系連続繊維を使用した不織布(フェルト)から、幅500×長さ500×厚さ5mmの基材を形成して、複合酸化物の一つであるZrSiOの平均粒子径1μm以下の微粉末を120Vで5分間の条件で電気泳動法によりSi−C−Zr−O系の連続繊維の表面に付着させて堆積層を形成させた。ここで、電気泳動させる懸濁液は、アセトン200部、水10部、ZrSiO微粉末1部、更に分散剤とバインダーとしてポリビニルブチラールを少量添加して、超音波分散して調整した。堆積層が形成された基材を懸濁液から取出し乾燥させた後、1500℃のアルゴン雰囲気中で3時間焼結を行って保護層を形成した。この処理条件で厚さ5μmのZrSiOの保護層がSi−C−Zr−O系の連続繊維の表面に形成されている遮蔽部材が得られた。
Example 1
A non-woven fabric (felt) using Si-C-Zr-O-based silicon carbide continuous fibers is used to form a base material having a width of 500 × length of 500 × thickness of 5 mm, and is one of complex oxides, ZrSiO A fine powder having an average particle diameter of 4 μm or less was adhered to the surface of a Si—C—Zr—O-based continuous fiber by electrophoresis at 120 V for 5 minutes to form a deposited layer. Here, the suspension for electrophoresis was prepared by adding 200 parts of acetone, 10 parts of water, 1 part of ZrSiO 4 fine powder, a small amount of polyvinyl butyral as a dispersant and a binder, and ultrasonically dispersing the suspension. The substrate on which the deposited layer was formed was taken out of the suspension and dried, and then sintered in an argon atmosphere at 1500 ° C. for 3 hours to form a protective layer. Under this treatment condition, a shielding member in which a protective layer of ZrSiO 4 having a thickness of 5 μm was formed on the surface of the Si—C—Zr—O based continuous fiber was obtained.

このZrSiOの保護層を備えた遮蔽部材の耐久性を調べるため、空気中の1300℃で1000時間の熱処理を行い、その前後の重量変化を調べた。また、比較例として、ZrSiOの保護層が形成されていない遮蔽部材についても同様の試験評価を行った。その結果、ZrSiOの保護層が形成されていない遮蔽部材の重量変化は8.5%の増加率を示した。一方のZrSiOの保護層が形成された遮蔽部材では、0.1%の減少率を示した。ZrSiOの保護層が存在しない炭化ケイ素系連続繊維の表面は酸化して酸化ケイ素(SiO)が生成しており、時間の経過とともに成長するため炭化ケイ素系連続繊維自身のSiCが減肉して細ってしまうのに対し、ZrSiOの保護層が存在する炭化ケイ素系連続繊維は極めて優れた熱安定性を示した。 In order to examine the durability of the shielding member provided with the protective layer of ZrSiO 4 , heat treatment was performed in air at 1300 ° C. for 1000 hours, and the change in weight before and after the heat treatment was examined. Further, as a comparative example, the same test evaluation was performed on a shielding member in which a ZrSiO 4 protective layer was not formed. As a result, the weight change of the shielding member in which the protective layer of ZrSiO 4 was not formed showed an increase rate of 8.5%. On the other hand, the shielding member on which the protective layer of ZrSiO 4 was formed showed a reduction rate of 0.1%. The surface of the silicon carbide continuous fiber without the protective layer of ZrSiO 4 is oxidized to produce silicon oxide (SiO 2 ), which grows with time, so the SiC of the silicon carbide continuous fiber itself is thinned. On the other hand, the silicon carbide-based continuous fiber having a ZrSiO 4 protective layer exhibited extremely excellent thermal stability.

次に、瓦を焼成するプッシャー炉(焼成炉)において、図6(A)〜(C)に示すように焼成用搬送台車(幅1000mm×長さ2000mm)において、この台車(焼成室及び加熱室)を構成する4隅に立設された長さ1000mmのアルミナ製の支柱と支柱の上端部で支持された梁を用いて、厚さ5μmのZrSiOの保護層がSi−C−Zr−O系の連続繊維の表面に形成されている遮蔽部材を取付けた。更に、図示しない瓦の載置台上に遮蔽部材を敷き、その上に瓦を崩れないように積み上げた。そして、図6(A)〜(C)に示すように、支柱の対角コーナー部及び台車の中心部に熱電対を設置して温度を測定し、焼成用搬送台車内の温度分布を測定した。なお、焼成用搬送台車の前後左右を図6(C)のように決めて、焼成用搬送台車の前側右上コーナー部を1、前側左下コーナー部を2、後側右上コーナー部を3、後側左下コーナー部を4、中心部(対角線の交わった点)を5としている。 Next, in a pusher furnace (firing furnace) for firing tiles, as shown in FIGS. 6 (A) to (C), in this transporting bogie (width 1000 mm × length 2000 mm), this bogie (firing chamber and heating chamber). The protective layer of ZrSiO 4 having a thickness of 5 μm is made of Si—C—Zr—O using a 1000 mm long alumina support column and a beam supported by the upper end of the support column. A shielding member formed on the surface of the continuous fiber of the system was attached. Further, a shielding member was laid on a tile mounting table (not shown), and the roof tiles were stacked so as not to collapse. And as shown to FIG. 6 (A)-(C), the thermocouple was installed in the diagonal corner part of a support | pillar, and the center part of a trolley | bogie, the temperature was measured, and the temperature distribution in the conveyance trolley | bogie for baking was measured. . The front / rear and left / right sides of the baking transport cart are determined as shown in FIG. 6C. The front upper right corner of the baking transport cart is 1, the front lower left corner is 2, the rear upper right corner is 3, the rear The lower left corner is 4 and the center (the point where diagonals intersect) is 5.

ここで、焼成用搬送台車を移動させる焼成炉の長さは30mで、中央部の10mの領域(焼成ゾーン)の側面には2m間隔でガスバーナーが設置され、瓦の焼成に必要な温度である1200℃付近に保持されている。焼成用搬送台車が焼成炉内の焼成ゾーン内を通過する際に測定した温度を表1に示した。また、比較例として、遮蔽部材を使用していない状態の焼成用搬送台車を焼成炉に装入し、焼成用搬送台車が焼成炉内の焼成ゾーン内を通過する際に測定した温度を表1に合わせて示す。 Here, the length of the baking furnace for moving the baking carriage is 30 m, and gas burners are installed at intervals of 2 m on the side of the central 10 m area (firing zone) at the temperature necessary for baking tiles. It is held around a certain 1200 ° C. Table 1 shows the temperatures measured when the baking carriage passes through the baking zone in the baking furnace. In addition, as a comparative example, the temperature measured when the baking transport cart in a state where no shielding member is used is inserted into the firing furnace and the baking transport cart passes through the firing zone in the firing furnace is shown in Table 1. Shown together.

Figure 0005427480
Figure 0005427480

遮蔽部材を使用することで、焼成用搬送台車の焼成室の均熱性が大幅に改善され、焼成室内全域に瓦を積み上げてもむら無く焼成することができることが確認できた。更に、焼成室の温度分布が改善されたことにより、燃料として用いた天然ガスの消費量が15%削減された。 By using the shielding member, it was confirmed that the heat uniformity in the firing chamber of the firing carriage was greatly improved, and even if tiles were stacked in the entire firing chamber, firing could be performed evenly. Furthermore, due to the improved temperature distribution in the firing chamber, the consumption of natural gas used as fuel was reduced by 15%.

(実施例2)
Si−C−O系の炭化ケイ素系連続繊維を使用した平織物から、幅500×長さ5000×厚さ1mmの基材を形成して、複合酸化物の一つであるYSiOの平均粒子径1μm以下の微粉末を100Vで5分間の条件で電気泳動法によりSi−C−O系の連続繊維の表面に付着させて堆積層を形成させた。電気泳動させる懸濁液は、アセトン200部、水10部、YSiO微粉末1部、更に分散剤とバインダーとしてポリビニルブチラールを少量添加して、超音波分散して調整した。堆積層が形成された基材を懸濁液から取出し乾燥させた後、1500℃のアルゴン雰囲気中で3時間焼結を行って保護層を形成した。この処理条件で厚さ5μmのYSiOの保護層がSi−C−O系の連続繊維の表面に形成されている遮蔽部材が得られた。
(Example 2)
A base material having a width of 500 × length of 5000 × thickness of 1 mm was formed from a plain fabric using Si—C—O-based silicon carbide-based continuous fibers, and Y 2 SiO 5 , which is one of complex oxides, was formed. A fine powder having an average particle size of 1 μm or less was attached to the surface of a Si—C—O-based continuous fiber by electrophoresis at 100 V for 5 minutes to form a deposited layer. The suspension for electrophoresis was prepared by adding 200 parts of acetone, 10 parts of water, 1 part of Y 2 SiO 5 fine powder, and a small amount of polyvinyl butyral as a dispersant and a binder, followed by ultrasonic dispersion. The substrate on which the deposited layer was formed was taken out of the suspension and dried, and then sintered in an argon atmosphere at 1500 ° C. for 3 hours to form a protective layer. Under this treatment condition, a shielding member in which a protective layer of Y 2 SiO 5 having a thickness of 5 μm was formed on the surface of the Si—C—O based continuous fiber was obtained.

このYSiOの保護層を備えた遮蔽部材の耐久性を調べるため、空気中の1300℃で1000時間の熱処理を行い、その前後の重量変化を調べた。また、比較例として、YSiOの保護層が形成されていない遮蔽部材についても同様の試験評価を行った。その結果、YSiOの保護層が形成されていない遮蔽部材の重量変化は8.5%の増加率を示した。一方のYSiOの保護層が形成された遮蔽部材では、0.1%の減少率を示した。YSiOの保護層が存在しない炭化ケイ素系連続繊維の表面は酸化して酸化ケイ素(SiO)が生成しており、時間の経過とともに成長するため炭化ケイ素系連続繊維自身のSiCが減肉して細ってしまうのに対し、YSiOの保護層が存在する炭化ケイ素系連続繊維は極めて優れた熱安定性を示した。 In order to investigate the durability of the shielding member provided with the Y 2 SiO 5 protective layer, heat treatment was performed in air at 1300 ° C. for 1000 hours, and the weight change before and after the heat treatment was examined. As a comparative example, the same test was conducted also evaluated shielding member protective layer of Y 2 SiO 5 is not formed. As a result, the weight change of the shielding member in which the Y 2 SiO 5 protective layer was not formed showed an increase rate of 8.5%. On the other hand, the shielding member in which the Y 2 SiO 5 protective layer was formed showed a reduction rate of 0.1%. The surface of the silicon carbide continuous fiber without the Y 2 SiO 5 protective layer is oxidized to produce silicon oxide (SiO 2 ), which grows with time, so the SiC of the silicon carbide continuous fiber itself decreases. The silicon carbide continuous fiber in which the Y 2 SiO 5 protective layer is present exhibited extremely excellent thermal stability, whereas it was thin and thin.

次に、誘電体等のセラミックスの小物部品を焼成するベルト炉(焼成炉)において、図7(A)〜(C)に示すように焼成用容器(幅300mm×長さ300mm×高さ100mm)の4隅に立設されたアルミナ製の支柱と支柱の上端部で支持された梁を用いて、厚さ5μmのYSiOの保護層がSi−C−O系の連続繊維の表面に形成されている遮蔽部材を取付けた。更に、図示しない小物部品の載置台上に遮蔽部材を敷き、その上に小物部品を崩れないように積み上げた。そして、図7(A)〜(C)に示すように、支柱の対角コーナー部及び焼成用容器の中心部に熱電対を設置して温度を測定し、焼成用容器内の温度分布を測定した。焼成時の炉内設定温度が1050℃の場合、表2に示すように、焼成用容器内の温度は±10℃の範囲に納まるほど良好な均熱性を示した。なお、焼成用容器の前後左右を図7(C)のように決めて、焼成用容器の前側右上コーナー部を1、前側左下コーナー部を2、後側右上コーナー部を3、後側左下コーナー部を4、中心部(対角線の交わった点)を5としている。
また、比較例として、遮蔽部材を使用していない状態の焼成用容器を焼成炉に装入し、焼成用容器内の温度を測定した結果を表2に合わせて示す。遮蔽部材を使用しない場合、焼成用容器内の温度は±45℃の温度分布を示した。
Next, in a belt furnace (firing furnace) for firing small ceramic parts such as dielectrics, a firing container (width 300 mm × length 300 mm × height 100 mm) as shown in FIGS. 5 μm thick Y 2 SiO 5 protective layer is formed on the surface of the Si—C—O-based continuous fiber using alumina pillars erected at the four corners of the beam and beams supported by the upper ends of the pillars. The formed shielding member was attached. Further, a shielding member was laid on a mounting table for small parts (not shown), and the small parts were stacked so as not to collapse. Then, as shown in FIGS. 7A to 7C, thermocouples are installed at the diagonal corners of the support columns and the center of the firing container to measure the temperature, and the temperature distribution in the firing container is measured. did. When the set temperature in the furnace at the time of firing was 1050 ° C., as shown in Table 2, the temperature inside the firing container showed better thermal uniformity as it was within the range of ± 10 ° C. 7C, the front upper right corner of the baking container is 1, the front lower left corner is 2, the rear upper right corner is 3, the rear lower left corner. The part is 4 and the central part (the point where the diagonal lines intersect) is 5.
Further, as a comparative example, Table 2 shows the results of measuring the temperature in the firing container after charging the firing container in a state where the shielding member is not used in the firing furnace. When the shielding member was not used, the temperature in the baking container showed a temperature distribution of ± 45 ° C.

Figure 0005427480
Figure 0005427480

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、焼成室に、焼成室内の被焼成物から発生するガスを焼成室の外部に逃がす開放排気部を形成してもよい。これによって、焼成室内の被焼成物から発生するガスを焼成室の外部に効果的に逃がすことができ、焼成室内の雰囲気を清浄に保つことができ、焼成物の品質を向上させることができる。
また、焼成炉内に焼成用容器又は焼成用搬送台車を静置して焼成する場合、焼成室に被焼成物を加熱する加熱手段、例えばヒータを設置する構成とすることもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, an open exhaust part that allows a gas generated from an object to be fired in the firing chamber to escape to the outside of the firing chamber may be formed in the firing chamber. Thereby, the gas generated from the material to be fired in the firing chamber can be effectively released to the outside of the firing chamber, the atmosphere in the firing chamber can be kept clean, and the quality of the fired product can be improved.
Further, in the case where the baking container or the baking conveying cart is left standing in the baking furnace for baking, a heating means for heating the baking object, for example, a heater may be installed in the baking chamber.

10:焼成用容器、11:焼成炉、12:加熱室、13:焼成室、15:ローラ、16:底板、17:ベース部材、18:柱部材、19:梁部材、20:遮蔽部材、21:無機繊維、22:基材、23:保護層、24:粉末、25:分散溶液、26:堆積層、27:電気泳動装置、28:分散溶液槽、29、30:取付け部、31:基材保持部材、32、33:対向電極、34、35:電源ケーブル、36:焼成用搬送台車、37:車輪、38:レール 10: firing container, 11: firing furnace, 12: heating chamber, 13: firing chamber, 15: roller, 16: bottom plate, 17: base member, 18: column member, 19: beam member, 20: shielding member, 21 : Inorganic fiber, 22: Base material, 23: Protective layer, 24: Powder, 25: Dispersion solution, 26: Deposition layer, 27: Electrophoresis device, 28: Dispersion solution tank, 29, 30: Mounting part, 31: Base Material holding member, 32, 33: counter electrode, 34, 35: power cable, 36: carrier cart for baking, 37: wheel, 38: rail

Claims (6)

高温に保持される加熱室と、該加熱室に連接して設けられ、被焼成物を収容して該加熱室からの熱で該被焼成物の焼成を行う焼成室とを有し、更に、該焼成室には、該焼成室からの放熱を抑制する輻射熱反射材からなる遮蔽部材が取付けられている焼成用容器において、
前記輻射熱反射材は、耐熱性を有する非酸化物系の無機繊維が交錯した基材と、該基材を形成している該無機繊維を覆う保護層とを有し、該保護層は耐熱及び耐食性を備えた酸化物、複合酸化物、又は該酸化物及び該複合酸化物からなる混合酸化物のいずれかにより形成されていることを特徴とする焼成用容器。
A heating chamber that is maintained at a high temperature; and a baking chamber that is connected to the heating chamber, accommodates the material to be fired, and fires the material to be fired with heat from the heating chamber; In the baking container to which the shielding member made of a radiant heat reflecting material that suppresses heat radiation from the baking chamber is attached to the baking chamber,
The radiant heat reflecting material has a base material in which non-oxide inorganic fibers having heat resistance are mixed, and a protective layer covering the inorganic fibers forming the base material. A firing container characterized by being formed of any one of an oxide having a corrosion resistance, a composite oxide, or a mixed oxide comprising the oxide and the composite oxide.
請求項1記載の焼成用容器において、前記基材は、前記無機繊維の平織り、朱子織り、綾織り、多軸織り、又は三次元織りのいずれかの方法で作製された織物及び前記無機繊維で成形された不織物のいずれか1で形成されていることを特徴とする焼成用容器。 2. The firing container according to claim 1, wherein the base material is a woven fabric produced by a method of plain weaving, satin weaving, twill weaving, multiaxial weaving, or three-dimensional weaving of the inorganic fibers and the inorganic fibers. A firing container characterized by being formed of any one of molded nonwoven fabrics. 請求項1及び2のいずれか1項に記載の焼成用容器において、Ti,Cr、Fe、Co、Ni、Cu、Y、Zr、Nb、Tc、Ru、Rh、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、Re、及びOsを第1群、Y、Yb、Er、Ho、及びDyを第2群、Y、Yb、Er、Ho、Dy、Gd、Sm、Nd、及びLuを第3群として、前記酸化物は前記第1群から選択される1又は2以上の金属元素の酸化により形成され、前記複合酸化物は、前記第2群から選択される1又は2以上の金属元素をQE、前記第3群から選択される1又は2以上の金属元素をREとして、一般式QESi、QESiO、REAl12、及びREAlOから選択される1又は2以上であり、前記酸化物及び前記複合酸化物のそれぞれの熱膨張係数の値は、前記無機繊維の熱膨張係数の値の±10%の範囲内にあることを特徴とする焼成用容器。 The firing container according to any one of claims 1 and 2, wherein Ti, Cr, Fe, Co, Ni, Cu, Y, Zr, Nb, Tc, Ru, Rh, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Re, and Os are the first group, and Y, Yb, Er, Ho, and Dy are the first group. With the second group, Y, Yb, Er, Ho, Dy, Gd, Sm, Nd, and Lu as the third group, the oxide is formed by oxidation of one or more metal elements selected from the first group. is formed, the composite oxide, the QE one or more metallic elements selected from the second group, one or more metal element selected from the third group as RE, formula QE 2 from Si 2 O 7, QESiO 5, RE 3 Al 5 O 12, and REAlO 3 The thermal expansion coefficient value of each of the oxide and the composite oxide is within a range of ± 10% of the thermal expansion coefficient value of the inorganic fiber. A firing container. 請求項1〜3のいずれか1項に記載の焼成用容器において、Zr、Al、及びTiの金属群から選択される1又は2以上の金属元素をM、その炭化物をMCとして、前記無機繊維は、(1)Si、C、O、及びMを含有する非晶質物質、(2)β−SiC、MC、及びβ−SiCとMCの固溶体で粒子径が700nm以下の結晶質微粒子と、該結晶質微粒子間に存在するSi及びMの酸化物非晶質微粒子との集合体、又は(3)前記非晶質物質と前記集合体の混合物のいずれか1で構成され、前記無機繊維の元素比率は、Siが30〜70質量%、Cが20〜40質量%、Oが0.01〜20質量%、及びMが0.1〜30質量%であることを特徴とする焼成用容器。 4. The firing container according to claim 1, wherein one or two or more metal elements selected from a metal group of Zr, Al, and Ti are M, and the carbide is MC, and the inorganic fiber. (1) Amorphous substance containing Si, C, O, and M, (2) β-SiC, MC, and crystalline fine particles having a particle size of 700 nm or less in a solid solution of β-SiC and MC, An aggregate of Si and M oxide amorphous fine particles present between the crystalline fine particles, or (3) a mixture of the amorphous substance and the aggregate, and the inorganic fibers The element ratio is such that Si is 30 to 70% by mass, C is 20 to 40% by mass, O is 0.01 to 20% by mass, and M is 0.1 to 30% by mass. . 請求項1〜3のいずれか1項に記載の焼成用容器において、前記無機繊維は、(1)Si、C、及びOを含有する非晶質物質、(2)粒子径が800nm以下であるβ−SiCの結晶質微粒子と、該結晶質微粒子間に存在するSiの酸化物非晶質微粒子との集合体、又は(3)前記非晶質物質と前記集合体の混合物のいずれか1で構成され、前記無機繊維の元素比率は、Siが40〜70質量%、Cが20〜60質量%、及びOが0.01〜20質量%であることを特徴とする焼成用容器。 The firing container according to any one of claims 1 to 3, wherein the inorganic fiber is (1) an amorphous substance containing Si, C, and O, and (2) a particle diameter is 800 nm or less. Either an aggregate of β-SiC crystalline fine particles and Si oxide amorphous fine particles existing between the crystalline fine particles, or (3) a mixture of the amorphous substance and the aggregate. It is comprised, The element ratio of the said inorganic fiber is 40-70 mass% of Si, 20-60 mass% of C, and 0.01-20 mass% of O, The container for baking characterized by the above-mentioned. 請求項1〜5のいずれか1項に記載された焼成用容器の底部下面に、耐熱性の車輪を取付けたことを特徴とする焼成用搬送台車。 A baking transport cart, wherein a heat-resistant wheel is attached to the bottom surface of the bottom of the baking container according to any one of claims 1 to 5.
JP2009139458A 2009-06-10 2009-06-10 Baking container and baking cart Expired - Fee Related JP5427480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009139458A JP5427480B2 (en) 2009-06-10 2009-06-10 Baking container and baking cart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139458A JP5427480B2 (en) 2009-06-10 2009-06-10 Baking container and baking cart

Publications (2)

Publication Number Publication Date
JP2010286153A JP2010286153A (en) 2010-12-24
JP5427480B2 true JP5427480B2 (en) 2014-02-26

Family

ID=43541987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009139458A Expired - Fee Related JP5427480B2 (en) 2009-06-10 2009-06-10 Baking container and baking cart

Country Status (1)

Country Link
JP (1) JP5427480B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972831B2 (en) 2013-06-06 2016-08-17 東洋炭素株式会社 Heat treatment furnace jig

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076046U (en) * 1973-10-16 1975-07-02
JPS5129842B2 (en) * 1973-03-01 1976-08-27
JPS5230746U (en) * 1975-08-27 1977-03-03
JPS5587497U (en) * 1978-12-12 1980-06-17
JPS55164355U (en) * 1979-05-11 1980-11-26
JPS5611255U (en) * 1979-07-09 1981-01-30
JPS6113914Y2 (en) * 1981-04-30 1986-04-30
JPS5851599Y2 (en) * 1981-11-06 1983-11-24 日本碍子株式会社 Cart for ceramic furnace
JPS58186400U (en) * 1982-05-31 1983-12-10 株式会社イナックス Ceramic firing trolley
JPS5993177A (en) * 1982-11-17 1984-05-29 株式会社 アキタ Flame heat barrier
JPS59163172A (en) * 1983-02-21 1984-09-14 山口 逸太 Falling vibration friction preventive and connecting device for article through fluidization and movement in manner thatis bundled by frame for truck or other use or
JPH0356879Y2 (en) * 1986-04-03 1991-12-24
JPH08327252A (en) * 1995-05-31 1996-12-13 Takasago Ind Co Ltd Truck for baking furnace
JP2005344949A (en) * 2004-05-31 2005-12-15 Nidec-Shimpo Corp Kiln for ceramics

Also Published As

Publication number Publication date
JP2010286153A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
Feng et al. Investigation on the ablation performance and mechanism of HfC coating modified with TaC
EP1340735B1 (en) Silicon carbide based porous article
JP6945526B2 (en) Heat permeable tube containing fiber reinforced ceramic matrix composite material
US7157148B2 (en) Heat-resistant coated member
JP2019500564A5 (en)
RU2010132899A (en) SINTERED REFRACTORY MATERIAL BASED ON SILICON CARBIDE WITH SILICON NITRIDE AS A BINDING MATTER
Nguyen et al. Low thermal conductivity Y2Ti2O7 as a candidate material for thermal/environmental barrier coatings
Ju et al. Advanced Al2O3–SiC–SiO2–C refractories with B2O3 addition
JP5427480B2 (en) Baking container and baking cart
Lao et al. In-situ synthesis of mullite-SiCw composite ceramics in Li2O-Al2O3-SiO2 ternary system for solar heat transmission pipeline
JP4273227B2 (en) Manufacturing method of microwave heating element
JP5640123B1 (en) Heat efficiency improvement method for heating equipment and heat efficiency improvement device for heating equipment
PĂUNESCU et al. Comparative analysis of the own experimental techniques of producing the foamed glass-ceramic
JP2017024922A (en) Ceramic composite material and process for producing the same
CN101696119B (en) Method for preparing high-temperature ceramic materials
KR101734472B1 (en) Microwave heating element using silicon carbide fibers and heating device thereof
JP3246632U (en) Heating device
JP2004516629A (en) Resistor element for extreme temperatures
JP6630459B1 (en) Heat storage element, regenerative burner device including the heat storage element, and industrial furnace including the regenerative burner device
JP3340287B2 (en) Thermal storage of thermal storage burner
JPS6212660A (en) Heat transmission member for heat exchanger
Mansurov SHS refractory materials “Furnon” and their practical implementations in Kazakhstan and Russia
JP3346365B2 (en) Method of manufacturing aluminum matrix composite coated steel pipe
JPH0345110Y2 (en)
Majdic Present trends in the field of high-temperature ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees