JP5426605B2 - Highly purified natural rubber and method for producing the same - Google Patents

Highly purified natural rubber and method for producing the same Download PDF

Info

Publication number
JP5426605B2
JP5426605B2 JP2011110559A JP2011110559A JP5426605B2 JP 5426605 B2 JP5426605 B2 JP 5426605B2 JP 2011110559 A JP2011110559 A JP 2011110559A JP 2011110559 A JP2011110559 A JP 2011110559A JP 5426605 B2 JP5426605 B2 JP 5426605B2
Authority
JP
Japan
Prior art keywords
rubber
natural rubber
treatment
latex
highly purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011110559A
Other languages
Japanese (ja)
Other versions
JP2012241066A (en
Inventor
俊明 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011110559A priority Critical patent/JP5426605B2/en
Publication of JP2012241066A publication Critical patent/JP2012241066A/en
Application granted granted Critical
Publication of JP5426605B2 publication Critical patent/JP5426605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、高純度化天然ゴム、その製造方法、該高純度化天然ゴムを用いたタイヤ用ゴム組成物、及び該ゴム組成物を用いた空気入りタイヤに関する。 The present invention relates to a highly purified natural rubber, a production method thereof, a tire rubber composition using the highly purified natural rubber, and a pneumatic tire using the rubber composition.

従来から、タイヤの転がり抵抗を低減して発熱を抑えることによる車両の低燃費化が図られているが、近年、タイヤに対する低燃費化の要請はますます大きくなり、更なる検討が不可欠である。タイヤに汎用される天然ゴムは、スチレンブタジエンゴムに比べて一般に低燃費性能が高いが、昨今スチレンブタジエンゴムの低燃費化が進んでいるため、更なる低燃費化の達成のためには、天然ゴムの低燃費化を進めることが必須である。 Conventionally, vehicle fuel efficiency has been reduced by reducing the rolling resistance of tires and suppressing heat generation, but in recent years, there has been an increasing demand for fuel efficiency reduction for tires, and further studies are indispensable. . Natural rubber, which is widely used for tires, generally has higher fuel efficiency compared to styrene butadiene rubber. However, as styrene butadiene rubber has been fueled recently, it is natural to achieve further fuel efficiency. It is essential to promote fuel efficiency reduction of rubber.

天然ゴムの低燃費化について、例えば、特許文献1には、天然ゴムラテックスをケン化処理し、リン脂質とタンパク質を除去した天然ゴムが提案されている。これにより、低燃費性を改善できるが、未だ充分とはいえず、tanδの更なる低減が望まれている。また、タイヤや原材料の天然ゴムには、低燃費性だけでなく耐熱老化性などの性能も要求されている。 Regarding reduction in fuel consumption of natural rubber, for example, Patent Document 1 proposes natural rubber obtained by saponifying natural rubber latex and removing phospholipids and proteins. As a result, the fuel efficiency can be improved, but it is not yet sufficient, and further reduction of tan δ is desired. In addition, tires and raw material natural rubber are required not only to have low fuel consumption but also performance such as heat aging resistance.

特開2010−138359号公報JP 2010-138359 A

本発明は、前記課題を解決し、低燃費性、耐熱老化性を改善した高純度化天然ゴム、その製造方法、該高純度化天然ゴムを用いたタイヤ用ゴム組成物及び空気入りタイヤを提供することを目的とする。 The present invention solves the above-mentioned problems and provides a highly purified natural rubber having improved fuel economy and heat aging resistance, a method for producing the same, a tire rubber composition using the highly purified natural rubber, and a pneumatic tire. The purpose is to do.

本発明は、天然ゴムラテックスにケン化処理及びタンパク質分解処理を施して調製される改質天然ゴムラテックスを、凝集、洗浄して得られる高純度化天然ゴムに関する。 The present invention relates to a highly purified natural rubber obtained by agglomerating and washing a modified natural rubber latex prepared by subjecting natural rubber latex to a saponification treatment and a proteolysis treatment.

上記高純度化天然ゴムにおいて、上記ケン化処理及び上記タンパク質分解処理は、ケン化処理、タンパク質分解処理の順に行われることが好ましい。ここで、上記ケン化処理後のラテックスをpH11以下に調整した後、タンパク質分解処理が行われることが好ましい。 In the highly purified natural rubber, the saponification treatment and the proteolysis treatment are preferably performed in the order of saponification treatment and proteolysis treatment. Here, it is preferable that the proteolytic treatment is performed after adjusting the latex after the saponification treatment to pH 11 or less.

また、上記高純度化天然ゴムにおいて、上記ケン化処理及び上記タンパク質分解処理は、該タンパク質分解処理、該ケン化処理の順に行われてもよい。 In the highly purified natural rubber, the saponification treatment and the protein degradation treatment may be performed in the order of the protein degradation treatment and the saponification treatment.

上記高純度化天然ゴムにおいて、上記ケン化処理は強アルカリ性化合物、上記タンパク質分解処理は蛋白分解酵素により行われることが好ましい。 In the highly purified natural rubber, the saponification treatment is preferably performed with a strong alkaline compound, and the proteolysis treatment is preferably performed with a proteolytic enzyme.

本発明は、天然ゴムラテックスにケン化処理及びタンパク質分解処理を施して改質天然ゴムラテックスを調製する工程(1)と、上記改質天然ゴムラテックスを凝集させて凝集ゴムを得る工程(2)と、上記凝集ゴムを洗浄する工程(3)とを含む上記高純度化天然ゴムの製造方法に関する。 The present invention includes a step (1) for preparing a modified natural rubber latex by subjecting a natural rubber latex to a saponification treatment and a proteolytic treatment, and a step (2) for aggregating the modified natural rubber latex to obtain an agglomerated rubber. And a method for producing the highly purified natural rubber, comprising the step (3) of washing the agglomerated rubber.

上記製造方法におけるタンパク質分解処理では、上記天然ゴムラテックス中のゴム固形分100質量部に対し、上記蛋白分解酵素が0.001〜10質量部添加されることが好ましい。 In the proteolytic treatment in the above production method, 0.001 to 10 parts by mass of the proteolytic enzyme is preferably added to 100 parts by mass of the rubber solid content in the natural rubber latex.

本発明は、ゴム成分とカーボンブラック及び/又は白色充填剤とを含み、上記ゴム成分100質量%中、上記高純度化天然ゴムの含有量が5質量%以上であるタイヤ用ゴム組成物に関する。
本発明はまた、上記ゴム組成物を用いて作製したタイヤ用部材を有する空気入りタイヤに関する。
The present invention relates to a tire rubber composition comprising a rubber component and carbon black and / or a white filler, wherein the content of the highly purified natural rubber is 5% by mass or more in 100% by mass of the rubber component.
The present invention also relates to a pneumatic tire having a tire member produced using the rubber composition.

本発明によれば、天然ゴムラテックスに対してケン化処理及びタンパク質分解処理の両処理を施して改質天然ゴムラテックスを調製し、続いて該ラテックスを凝集させて調製した凝集ゴムを洗浄して得られる高純度化天然ゴムであるので、ゴム中のタンパク質やリン脂質を充分に低減でき、低燃費性を改善できる。また、該高純度化天然ゴムは、保存中の分子量の低下が抑制されるため、通常の天然ゴム(非改質)と同等の耐熱老化性を有している。従って、低燃費性、耐熱老化性に優れたタイヤ用ゴム組成物及び空気入りタイヤを提供できる。 According to the present invention, natural rubber latex is subjected to both saponification treatment and proteolytic treatment to prepare a modified natural rubber latex, and then the agglomerated rubber prepared by agglomerating the latex is washed. Since it is a highly purified natural rubber obtained, proteins and phospholipids in the rubber can be sufficiently reduced, and fuel efficiency can be improved. In addition, the highly purified natural rubber has a heat aging resistance equivalent to that of a normal natural rubber (non-modified) because a decrease in molecular weight during storage is suppressed. Accordingly, it is possible to provide a tire rubber composition and a pneumatic tire that are excellent in fuel efficiency and heat aging resistance.

〔高純度化天然ゴム〕
本発明の高純度化天然ゴムは、天然ゴムラテックスにケン化処理及びタンパク質分解処理を施して調製される改質天然ゴムラテックスを、凝集、洗浄して得られるものである。
[Purified natural rubber]
The highly purified natural rubber of the present invention is obtained by agglomerating and washing a modified natural rubber latex prepared by subjecting natural rubber latex to saponification treatment and proteolysis treatment.

天然ゴムの低燃費化において、天然ゴムラテックスをケン化処理する方法では、ケン化で分解したタンパク質やリン脂質がゴム凝固時にゴム内部に閉じこめられたり、ゴム表面に強固に吸着された状態で残存してしまうため、水洗ではこれらの成分を充分に低減できない。この点について、ラテックスの酸凝固後のゴム粒子を炭酸ナトリウムなどのアルカリ水溶液中に浸漬することで残存窒素量を0.15%以下に低減して転がり抵抗を低下できるとともに、更に酸処理することでアルカリ処理による耐熱老化性の低下を抑制し、優れた耐熱老化性も得ることもできる。但し、アルカリ、酸、アルカリ、酸による一連の処理を経て調製される高純度ゴムは、多量の薬品を使用する、各処理に多くの時間を要するという欠点がある。 In the method of saponifying natural rubber latex to reduce the fuel consumption of natural rubber, proteins and phospholipids decomposed by saponification are confined inside the rubber during solidification of the rubber, or remain firmly adsorbed on the rubber surface. Therefore, these components cannot be sufficiently reduced by washing with water. In this regard, by immersing the rubber particles after acid coagulation of the latex in an alkaline aqueous solution such as sodium carbonate, the residual nitrogen amount can be reduced to 0.15% or less to reduce rolling resistance, and further acid treatment. Thus, the deterioration of heat aging resistance due to alkali treatment can be suppressed, and excellent heat aging resistance can also be obtained. However, the high-purity rubber prepared through a series of treatments with alkali, acid, alkali, and acid has a drawback in that a large amount of chemicals is used and a lot of time is required for each treatment.

これに対し、本発明の高純度化天然ゴムは、天然ゴムラテックスに対してケン化処理とタンパク質分解処理の両処理を施した後、酸などで凝集させたゴム粒子を洗浄して調製されるものであり、ケン化処理でリン脂質やタンパク質が分解除去するとともに、更にタンパク質分解処理も施すことにより、該ケン化処理だけでは充分に除去又は分解できなかったタンパク質を更に分解し、ゴム粒子表面に残存するタンパク質も分解除去される。具体的には、ケン化処理後のラテックスに酸を添加して蛋白分解酵素が働くpHに調整してゴム表面のタンパク質を分解し、水相に溶解させることにより、残存窒素量を大幅に低減できる。リンについては、ケン化処理でゴム表面中のリン脂質が分解され、また、その分解作用は蛋白分解酵素をケン化時に併用しても影響を受けないので、リン量も充分に低減できる。よって、本発明では、タンパク質やリン脂質が充分に除去され、優れた低燃費性が得られる。 On the other hand, the highly purified natural rubber of the present invention is prepared by washing rubber particles agglomerated with acid after subjecting natural rubber latex to both saponification treatment and proteolysis treatment. The saponification treatment decomposes and removes phospholipids and proteins, and further proteolysis treatment further decomposes proteins that could not be sufficiently removed or decomposed only by the saponification treatment, and the rubber particle surface. The remaining protein is also decomposed and removed. Specifically, by adding acid to the latex after saponification treatment and adjusting the pH at which the proteolytic enzyme works to decompose the protein on the rubber surface and dissolve it in the aqueous phase, the amount of residual nitrogen is greatly reduced. it can. As for phosphorus, saponification treatment decomposes phospholipids on the rubber surface, and the degradation action is not affected even when a proteolytic enzyme is used in combination with saponification, so that the amount of phosphorus can be sufficiently reduced. Therefore, in the present invention, proteins and phospholipids are sufficiently removed, and excellent fuel efficiency is obtained.

なお、ケン化時にアルカリを増量する手法も考えられるが、該手法ではタンパク質除去効果を向上できない。また、タンパク質分解酵素だけではリン脂質除去(分解)効果は不充分である。更に前述のとおり、酸凝固後にアルカリ処理をすることでも窒素量を低減できるが、ケン化処理とタンパク質分解処理の両処理で同様の低減効果が発揮されることは新たに見出した知見であり、本発明では併用により当業者の予測を超える効果を奏している。 A method of increasing the amount of alkali during saponification is also conceivable, but this method cannot improve the protein removal effect. In addition, the phospholipid removal (degradation) effect is insufficient only with proteolytic enzymes. Furthermore, as described above, the amount of nitrogen can also be reduced by performing alkali treatment after acid coagulation, but it is a newly discovered finding that the same reduction effect is exhibited in both saponification treatment and proteolysis treatment, In the present invention, the combined use has an effect exceeding the prediction of those skilled in the art.

また、本発明の高純度化天然ゴムは、酸凝固後に洗浄して調製できるため、通常微酸性雰囲気下にある。そのため、ゴム老化時の分子量変化がTSR(ブロック状天然ゴム)と同程度で、充分な耐熱老化性も有している。よって、酸凝固後のアルカリ処理、更にその後の酸処理を特段施さなくても、優れた低燃費性、耐熱老化性が得られるので、製造工程の簡素化も可能である。更に、アルカリ処理した場合、早期加硫(スコーチ)、ゴム焼けが懸念されるが、本発明のゴムはTSRと同様の加硫速度を有しているため、このような心配もない。 Moreover, since the highly purified natural rubber of the present invention can be prepared by washing after acid coagulation, it is usually in a slightly acidic atmosphere. Therefore, the molecular weight change at the time of rubber aging is similar to that of TSR (block-like natural rubber), and it has sufficient heat aging resistance. Therefore, excellent low fuel consumption and heat aging resistance can be obtained without specially performing alkali treatment after acid coagulation and further acid treatment thereafter, and thus the production process can be simplified. Furthermore, when the alkali treatment is performed, there is a concern about early vulcanization (scorch) and rubber burning, but since the rubber of the present invention has a vulcanization rate similar to that of TSR, there is no such concern.

本発明の高純度化天然ゴムは、例えば、天然ゴムラテックスにケン化処理及びタンパク質分解処理を施して改質天然ゴムラテックスを調製する工程(1)と、前記改質天然ゴムラテックスを凝集させて凝集ゴムを得る工程(2)と、前記凝集ゴムを洗浄する工程(3)とを含む製法により調製できる。 The highly purified natural rubber of the present invention includes, for example, a step (1) of preparing a modified natural rubber latex by subjecting a natural rubber latex to a saponification treatment and a proteolytic treatment, and agglomerating the modified natural rubber latex. It can be prepared by a production method including a step (2) for obtaining agglomerated rubber and a step (3) for washing the agglomerated rubber.

(工程1)
工程(1)では、天然ゴムラテックスに対して、ケン化処理とタンパク質分解処理の両処理が施される。これにより、リン脂質やタンパク質が充分に分解される。
(Process 1)
In step (1), natural rubber latex is subjected to both saponification treatment and proteolysis treatment. Thereby, phospholipid and protein are fully decomposed.

天然ゴムラテックスはヘベア樹などの天然ゴムの樹木の樹液として採取され、ゴム分のほか水、タンパク質、脂質、無機塩類などを含み、ゴム中のゲル分は種々の不純物の複合的な存在に基づくものと考えられている。本発明では、天然ゴムラテックスとして、ヘベア樹をタッピングして出てくる生ラテックス(フィールドラテックス)、遠心分離法やクリーミング法によって濃縮した濃縮ラテックス(精製ラテックス、常法によりアンモニアを添加したハイアンモニアラテックス、亜鉛華とTMTDとアンモニアによって安定化させたLATZラテックスなど)などを使用できる。 Natural rubber latex is collected as sap of natural rubber trees such as Hevea, and contains rubber, water, proteins, lipids, inorganic salts, etc., and the gel content in rubber is based on the complex presence of various impurities. It is considered a thing. In the present invention, as a natural rubber latex, raw latex (field latex) produced by tapping Hevea tree, concentrated latex (purified latex, high ammonia latex to which ammonia is added by a conventional method) concentrated by centrifugation or creaming method , Zinc oxide, TMTD and ammonia stabilized LATZ latex, etc.) can be used.

(1)ケン化処理
ケン化処理の方法としては、例えば、特開2010−138359号公報、特開2010−174169号公報に記載の方法により好適に行うことができ、具体的には下記方法などで実施できる。
(1) Saponification treatment As a saponification treatment method, for example, the method described in JP2010-138359A and JP2010-174169A can be suitably performed. Can be implemented.

ケン化処理は、天然ゴムラテックスに、アルカリと、必要に応じて界面活性剤を添加して所定温度で一定時間、静置することで実施でき、必要に応じて撹拌などを行っても良い。 The saponification treatment can be performed by adding an alkali and, if necessary, a surfactant to natural rubber latex and allowing to stand at a predetermined temperature for a certain period of time. Stirring may be performed as necessary.

ケン化処理に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウムなどの強アルカリ性化合物が好ましい。界面活性剤としては特に限定されず、公知のノニオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤が挙げられるが、ゴムを凝固させず良好にケン化できるという点から、ポリオキシエチレンアルキルエーテル硫酸エステル塩が好適である。 The alkali used for the saponification treatment is preferably a strong alkaline compound such as sodium hydroxide or potassium hydroxide. The surfactant is not particularly limited, and includes known nonionic surfactants, anionic surfactants, and amphoteric surfactants. Polyoxyethylene is used because it can be saponified well without solidifying the rubber. Alkyl ether sulfate salts are preferred.

ケン化処理において、アルカリの添加量は適宜設定すればよいが、天然ゴムラテックス中のゴム固形分100質量部に対して、好ましくは0.1〜10質量部である。また、界面活性剤の添加量は、天然ゴムラテックスのゴム固形分100質量部に対して、好ましくは0.01〜5質量部である。なお、ケン化処理の温度及び時間も適宜設定すればよく、通常は20〜70℃で1〜72時間程度である。 In the saponification treatment, the amount of alkali added may be appropriately set, but is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber solid content in the natural rubber latex. The addition amount of the surfactant is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the rubber solid content of the natural rubber latex. The temperature and time of the saponification treatment may be set as appropriate, and is usually about 20 to 70 ° C. and about 1 to 72 hours.

(2)タンパク質分解処理
天然ゴムラテックスのタンパク質分解処理は、例えば、蛋白分解酵素を用いた処理で行える。蛋白分解酵素としては特に限定されず、従来公知のものを使用でき、なかでも、アルカリプロテアーゼなどが好適である。蛋白分解酵素の由来としては、細菌由来のもの、糸状菌由来のもの、酵母由来のものなど、いずれのものでもよいが、細菌由来のもので、特にBacillus属のものが好ましい。また、リパーゼ、エステラーゼ、アミラーゼ、ラッカーゼ、セルラーゼなどの酵素を併用してもよい。
(2) Proteolytic treatment The proteolytic treatment of natural rubber latex can be performed, for example, by a treatment using a proteolytic enzyme. The proteolytic enzyme is not particularly limited, and conventionally known proteolytic enzymes can be used. Among them, alkaline protease and the like are preferable. The origin of the proteolytic enzyme may be any of those derived from bacteria, those derived from filamentous fungi, those derived from yeast, etc., but those derived from bacteria, particularly those belonging to the genus Bacillus. In addition, enzymes such as lipase, esterase, amylase, laccase and cellulase may be used in combination.

蛋白分解酵素の使用量は、当該酵素の活性に応じて変動するもので、特に限定されないが、一般的には、蛋白分解酵素の添加量を天然ゴムラテックス中のゴム固形分100質量部に対して0.001〜10質量部に調整することが好ましく、0.01〜3質量部に調整することがより好ましい。上記範囲内であると、その活性を保持しつつラテックス中のタンパク質を十分に分解でき、また、使用量に見合った効果を発現する傾向がある。 The amount of proteolytic enzyme used varies depending on the activity of the enzyme and is not particularly limited. In general, the amount of proteolytic enzyme added is 100 parts by mass of rubber solid content in natural rubber latex. It is preferable to adjust to 0.001-10 mass parts, and it is more preferable to adjust to 0.01-3 mass parts. Within the above range, the protein in the latex can be sufficiently decomposed while maintaining its activity, and there is a tendency to exhibit an effect commensurate with the amount used.

天然ゴムラテックスに対するタンパク質の分解処理は、天然ゴムラテックスに蛋白分解酵素を添加し、必要に応じて界面活性剤を所定量添加した後、数十分から1週間程度、好ましくは3時間〜3日程度熟成させて行われる。該熟成処理は、ラテックスを撹拌しながら行ってもよく、静置した状態で行ってもよい。また、必要に応じて温度調整してもよい。酵素の活性を十分なものとするには、好ましくは5〜80℃、より好ましくは5〜70℃に調整する。 The protein degradation treatment for natural rubber latex is performed by adding a proteolytic enzyme to natural rubber latex and adding a predetermined amount of surfactant as necessary, and then for several tens of minutes to about one week, preferably 3 hours to 3 days. Aged to a certain extent. The aging treatment may be performed while stirring the latex, or may be performed in a standing state. Moreover, you may adjust temperature as needed. In order to make enzyme activity sufficient, it is preferably adjusted to 5 to 80 ° C, more preferably 5 to 70 ° C.

ケン化処理、タンパク質分解処理は任意の順で実施でき、例えば、ケン化処理後にタンパク質分解処理を行っても、タンパク質分解処理後にケン化処理を行ってもよい。また、両処理を同時に行うことも可能である。タンパク質分解処理後にケン化処理を施す方法、すなわちラテックス状態のゴムを界面活性剤で安定化させた後、ゴム粒子表面のタンパク質を蛋白分解酵素で分解し、次いでケン化する方法では、ケン化後にゴムを凝固させる段階でゴムが大きく固まり、洗浄が困難になるおそれがある。一方、ケン化処理後に蛋白分解処理を施す方法、すなわちケン化後にタンパク質分解酵素を添加する方法では、洗浄が容易になるため、より好適である。 The saponification treatment and the protein degradation treatment can be performed in any order. For example, the protein degradation treatment may be performed after the saponification treatment, or the saponification treatment may be performed after the protein degradation treatment. It is also possible to perform both processes simultaneously. In the method of saponification after proteolytic treatment, that is, the method in which the rubber in the latex state is stabilized with a surfactant, then the protein on the rubber particle surface is degraded with a proteolytic enzyme, and then saponified. At the stage where the rubber is solidified, the rubber is greatly hardened, which may make cleaning difficult. On the other hand, a method of performing proteolytic treatment after saponification treatment, that is, a method of adding a proteolytic enzyme after saponification is more preferable because washing becomes easy.

ケン化処理後にタンパク質分解処理を施す方法としては、洗浄性の点から、ケン化処理後のラテックスをpH11以下に調整した後、タンパク質分解処理が施されることが好ましい。具体的には、pH13以上のケン化後のラテックスに酸を添加してpH11以下に下げ、酵素が働く状態にしてゴム粒子表面に残存するタンパク質を分解することで、水相に溶かし出すことができる。そのため、洗浄工程でリンや窒素を充分に低減できる。なお、この場合、蛋白分解酵素の添加前に酸の添加が必要となるが、蛋白分解酵素を添加しなくても凝固時に酸の添加が必要であるため、最終的に必要な酸量は変わらない。 As a method of subjecting the proteolytic treatment after the saponification treatment, it is preferable that the proteolytic treatment is performed after adjusting the latex after the saponification treatment to pH 11 or less from the viewpoint of detergency. Specifically, an acid is added to a saponified latex having a pH of 13 or more, and the pH is lowered to 11 or less. By degrading the protein remaining on the rubber particle surface in a state where the enzyme works, it can be dissolved in the aqueous phase. it can. Therefore, phosphorus and nitrogen can be sufficiently reduced in the cleaning process. In this case, it is necessary to add an acid before adding a proteolytic enzyme, but even if no proteolytic enzyme is added, an acid must be added at the time of coagulation. Absent.

ケン化処理後のラテックスはpH11以下に調整されるが、10.5以下に調整されることが好ましい。該pHの下限は、好ましくは8以上、より好ましくは9以上である。pH調整は、公知の酸性化合物で行え、希釈したギ酸、酢酸や硫酸などを添加することで実施できる。 The latex after the saponification treatment is adjusted to pH 11 or less, but is preferably adjusted to 10.5 or less. The lower limit of the pH is preferably 8 or more, more preferably 9 or more. The pH can be adjusted with a known acidic compound, and can be implemented by adding diluted formic acid, acetic acid, sulfuric acid or the like.

ケン化処理やタンパク質分解処理において、必要に応じて老化防止剤をこれらの処理前、処理中又は処理後に添加してもよい。老化防止剤としては、老化防止剤の分散体を使用することが好ましく、例えば、老化防止剤、界面活性剤及び水を含む老化防止剤分散体(水中に老化防止剤を微細に分散させた分散体)を使用できる。このような分散体の使用により、老化防止剤をゴム粒子に吸収(吸着)させることができ、良好な低燃費性、耐熱老化性が得られる。 In the saponification treatment or proteolysis treatment, an anti-aging agent may be added before, during or after these treatments as necessary. As an anti-aging agent, it is preferable to use a dispersion of an anti-aging agent. For example, an anti-aging agent dispersion containing an anti-aging agent, a surfactant and water (a dispersion in which an anti-aging agent is finely dispersed in water). Body). By using such a dispersion, the anti-aging agent can be absorbed (adsorbed) by the rubber particles, and good fuel economy and heat aging resistance can be obtained.

なお、老化防止剤分散体をこれらの処理前に添加する場合は天然ゴムラテックスと混合した後に両処理が施される。また、ケン化処理中に添加する場合はアルカリなどとともに混合され、タンパク質分解処理中に添加する場合は蛋白分解酵素などとともに混合される。これらの処理後に添加する場合は両処理を施して得られた改質天然ゴムラテックスに混合される。 In addition, when adding an anti-aging agent dispersion | distribution before these processes, both processes are performed after mixing with natural rubber latex. Moreover, when adding during a saponification process, it mixes with an alkali etc., and when adding during a proteolytic process, it mixes with a proteolytic enzyme etc. When added after these treatments, it is mixed with the modified natural rubber latex obtained by performing both treatments.

上記老化防止剤分散体において、老化防止剤としては特に限定されないが、容易に使用できるという理由から、フェノール系老化防止剤が好ましい。ここで、フェノール系老化防止剤としては、2,2’−メチレンビス−(4−メチル−6−tert−ブチルフェノール)、2,6−ジ−tert−ブチル−4−メチルフェノール、2,2’−メチレン−ビス−(4−エチル−6−tert−ブチルフェノール)などが挙げられ、また、ρ−クレゾールとジシクロペンタジエンとの縮合物をブチル化した化合物、4−メチルフェノールとジシクロペンタジエンの反応物などのヒンダードフェノール系老化防止剤なども挙げられる。上記老化防止剤分散体に使用できる界面活性剤としては、公知のアニオン系界面活性剤、ノニオン系界面活性剤、マグネシウムアルミニウムシリケートの水和物などを適宜使用できる。 In the anti-aging agent dispersion, the anti-aging agent is not particularly limited, but a phenol-based anti-aging agent is preferable because it can be easily used. Here, as the phenolic antioxidant, 2,2′-methylenebis- (4-methyl-6-tert-butylphenol), 2,6-di-tert-butyl-4-methylphenol, 2,2′- Methylene-bis- (4-ethyl-6-tert-butylphenol) and the like, a compound obtained by butylating a condensate of ρ-cresol and dicyclopentadiene, and a reaction product of 4-methylphenol and dicyclopentadiene And hindered phenolic anti-aging agents such as As the surfactant that can be used in the anti-aging agent dispersion, known anionic surfactants, nonionic surfactants, magnesium aluminum silicate hydrates, and the like can be used as appropriate.

上記老化防止剤分散体は、公知の方法で製造でき、例えば、ボールミル、高速せん断型の撹拌装置、ホモジナイザーなどを用いて調製できる。 The anti-aging agent dispersion can be produced by a known method, and can be prepared using, for example, a ball mill, a high-speed shear type stirring device, a homogenizer, or the like.

老化防止剤の添加量は適宜選択できるが、下限は天然ゴムラテックス中のゴム固形分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上であり、上限は好ましくは5質量部以下、より好ましくは2質量部以下である。また、界面活性剤の添加量は適宜選択できるが、老化防止剤100質量部に対して、好ましくは1〜20質量部である。 Although the addition amount of the antioxidant can be appropriately selected, the lower limit is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, with respect to 100 parts by mass of the rubber solid content in the natural rubber latex. The upper limit is preferably 5 parts by mass or less, more preferably 2 parts by mass or less. Moreover, although the addition amount of surfactant can be selected suitably, it is 1-20 mass parts preferably with respect to 100 mass parts of anti-aging agents.

(工程2)
工程(2)では、前記工程(1)の両処理を施して調製された改質天然ゴムラテックスを、凝集させて凝集ゴムが得られる。
(Process 2)
In step (2), the modified natural rubber latex prepared by performing both treatments in step (1) is agglomerated to obtain an agglomerated rubber.

工程(2)の凝集方法としては、ギ酸、酢酸、硫酸などの酸を添加してpHを調整し、必要に応じて高分子凝集剤を添加する方法などが挙げられる。これにより、大きな凝集塊ではなく、直径3〜20mm程度、好ましくは3〜10mmの粒状ゴムが形成される。上記pHは、好ましくは3.0〜4.8、より好ましくは3.5〜4.5の範囲に調整される。これにより、ゴム粒子の表面積が大幅に増大し、残存不純物を水相中に洗い流すことができる。 Examples of the aggregation method in the step (2) include a method of adjusting pH by adding an acid such as formic acid, acetic acid and sulfuric acid, and adding a polymer flocculant as necessary. Thereby, a granular rubber having a diameter of about 3 to 20 mm, preferably 3 to 10 mm, is formed instead of a large aggregate. The pH is preferably adjusted in the range of 3.0 to 4.8, more preferably 3.5 to 4.5. Thereby, the surface area of the rubber particles is greatly increased, and residual impurities can be washed away in the aqueous phase.

高分子凝集剤としては、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩の重合体などのカチオン性高分子凝集剤、アクリル酸塩の重合体などのアニオン系高分子凝集剤、アクリルアミド重合体などのノニオン性高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートの塩化メチル4級塩−アクリル酸塩の共重合体などの両性高分子凝集剤などが挙げられる。高分子凝集剤の添加量は、適宜選択できる。 Examples of polymer flocculants include cationic polymer flocculants such as methyl chloride quaternary salt polymer of dimethylaminoethyl (meth) acrylate, anionic polymer flocculants such as acrylate polymer, and acrylamide polymer. Nonionic polymer flocculants such as, and amphoteric polymer flocculants such as dimethylaminoethyl (meth) acrylate methyl chloride quaternary salt-acrylate copolymer. The addition amount of the polymer flocculant can be selected as appropriate.

(工程3)
工程(3)では、工程(2)で作製した凝集ゴムに洗浄処理が行われる。洗浄方法としては、例えば、ゴム分を水で希釈して洗浄後、遠心分離する方法、静置してゴムを浮かせ、水相のみを排出してゴム分を取り出す方法が挙げられる。前者の遠心分離は有効な洗浄法であるものの、連続運転時間の制限や清掃によるコスト上昇という問題があることから、後者のゴムを浮かせ、水相のみを排出する方法がより好ましい。具体的には、ゴムに水を入れて1〜5分攪拌し、攪拌終了後ゴムが浮いたら底から水を抜く作業を1〜数回繰り返すことで水相の不純物を数分の1〜数千分の1にすることが可能となる。洗浄処理終了後、乾燥することにより、リン含有量、窒素含有量が充分に低減された高純度化天然ゴムが得られる。
(Process 3)
In step (3), the agglomerated rubber produced in step (2) is washed. Examples of the washing method include a method of diluting a rubber component with water and washing and then centrifuging, and a method of allowing the rubber component to float by standing and discharging only the aqueous phase and taking out the rubber component. Although the former centrifugal separation is an effective cleaning method, there are problems such as limitation of continuous operation time and cost increase due to cleaning. Therefore, the latter method in which only the aqueous phase is discharged by floating the rubber is more preferable. Specifically, water is added to the rubber and stirred for 1 to 5 minutes. After the stirring, when the rubber floats, the operation of draining the water from the bottom is repeated 1 to several times, so that impurities in the aqueous phase are 1 to several times. It becomes possible to make it a thousandth. By drying after completion of the washing treatment, a highly purified natural rubber having a sufficiently reduced phosphorus content and nitrogen content can be obtained.

上記製法などで得られた高純度化天然ゴムのリン含有量は、好ましくは200ppm以下、より好ましくは150ppm以下である。200ppmを超えると、tanδが上昇する傾向があり、低燃費性を改善できないおそれがある。なお、リンはケン化処理によって200ppm以下まで低下できるが、この低減効果はタンパク質分解酵素を併用しても影響を受けず、変化は認められない。 The phosphorus content of the highly purified natural rubber obtained by the above production method is preferably 200 ppm or less, more preferably 150 ppm or less. If it exceeds 200 ppm, tan δ tends to increase, and there is a possibility that the fuel efficiency cannot be improved. Phosphorus can be reduced to 200 ppm or less by saponification treatment, but this reduction effect is not affected even when a proteolytic enzyme is used in combination, and no change is observed.

高純度化天然ゴム中の窒素含有量は、低燃費性の点から、好ましくは0.2質量%以下、より好ましくは0.15質量%以下、更に好ましくは0.1質量%以下である。ケン化処理のみでは窒素量を0.25質量%程度までしか低減できないが、更にタンパク質分解処理を併用することで0.08〜0.15質量%程度まで低減することが可能になる。なお、ゴムが老化防止剤を含む場合、上記窒素含有量はアセトン中に室温(25℃)下で48時間浸漬した後の値で、アセトン抽出でゴム中の老化防止剤を除去した後の値である。 The nitrogen content in the highly purified natural rubber is preferably 0.2% by mass or less, more preferably 0.15% by mass or less, and further preferably 0.1% by mass or less from the viewpoint of low fuel consumption. Although the saponification treatment alone can reduce the nitrogen amount only to about 0.25% by mass, it can be further reduced to about 0.08 to 0.15% by mass by using a proteolytic treatment in combination. In addition, when rubber | gum contains an anti-aging agent, the said nitrogen content is a value after being immersed in acetone at room temperature (25 degreeC) for 48 hours, and the value after removing the anti-aging agent in rubber | gum by acetone extraction. It is.

上記窒素量で充分に転がり抵抗を低減できるが、より低減する必要があれば、洗浄後又は洗浄前に更にアルカリでゴムを処理することで、窒素量を低減できる。但し、工程数が増え、耐熱老化性が悪化する問題もあり、また耐熱老化性の悪化は酸処理で改善できるが、更に1工程増加することになる。
なお、リン含有量、窒素含有量は、後述の実施例に記載の方法により測定できる。
Although the rolling resistance can be sufficiently reduced by the above nitrogen amount, if it is necessary to further reduce, the nitrogen amount can be reduced by further treating the rubber with alkali after washing or before washing. However, there is a problem that the number of steps increases and the heat aging resistance deteriorates, and the deterioration of the heat aging resistance can be improved by the acid treatment, but it further increases one step.
In addition, phosphorus content and nitrogen content can be measured by the method as described in the below-mentioned Example.

〔タイヤ用ゴム組成物〕
本発明のタイヤ用ゴム組成物は、ゴム成分とカーボンブラック及び/又は白色充填剤とを含み、該ゴム成分中に上記高純度化天然ゴムを所定量含む。リン量と窒素量を低減したゴム、カーボンブラックなどを含む混練加硫物の粘弾性を測定すると、窒素量とtanδの間には直線的ではないが、関係性があり、窒素量が減るほどtanδが下がる。よって、窒素量の少ない高純度化天然ゴムを用いることで転がり抵抗の小さいゴムを作製できる。
[Rubber composition for tire]
The rubber composition for tires of the present invention contains a rubber component and carbon black and / or a white filler, and the rubber component contains a predetermined amount of the highly purified natural rubber. When the viscoelasticity of a kneaded vulcanizate containing rubber, carbon black, etc. with reduced phosphorus content and nitrogen content is measured, there is a relationship between the nitrogen content and tan δ, but there is a relationship, the more the nitrogen content decreases. tan δ is lowered. Therefore, a rubber having a low rolling resistance can be produced by using a highly purified natural rubber having a small amount of nitrogen.

本発明のゴム組成物において、ゴム成分100質量%中の高純度化天然ゴムの含有量は、5質量%以上、好ましくは50質量%以上、より好ましくは80質量%である。5質量%未満であると、優れた低燃費性が得られないおそれがある。 In the rubber composition of the present invention, the content of highly purified natural rubber in 100% by mass of the rubber component is 5% by mass or more, preferably 50% by mass or more, and more preferably 80% by mass. If it is less than 5% by mass, excellent fuel efficiency may not be obtained.

高純度化天然ゴム以外に使用できるゴム成分としては、天然ゴム(非改質)(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などが挙げられる。 Rubber components that can be used in addition to highly purified natural rubber include natural rubber (non-modified) (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), and styrene isoprene butadiene rubber (SIBR). ), Ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and the like.

カーボンブラックのチッ素吸着比表面積(NSA)は70m/g以上が好ましく、80m/g以上がより好ましい。70m/g未満であると、充分な補強効果が得られない傾向がある。カーボンブラックのNSAは180m/g以下が好ましく、150m/g以下がより好ましい。180m/gを超えると、低燃費性が低下する傾向がある。
なお、カーボンブラックのチッ素吸着比表面積は、JIS K 6217−2:2001に準拠して測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 70 m 2 / g or more, and more preferably 80 m 2 / g or more. There exists a tendency for sufficient reinforcement effect not to be acquired as it is less than 70 m < 2 > / g. N 2 SA of carbon black is preferably 180 m 2 / g or less, and more preferably 150 m 2 / g or less. If it exceeds 180 m 2 / g, the fuel efficiency tends to decrease.
In addition, the nitrogen adsorption specific surface area of carbon black is a value measured according to JIS K 6217-2: 2001.

白色充填剤としては、ゴム工業で一般的に使用されているもの、例えば、シリカ、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタンなどを使用できる。 As white fillers, those generally used in the rubber industry, for example, mica such as silica, calcium carbonate, sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, talc, alumina, titanium oxide Etc. can be used.

カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上である。該含有量は、好ましくは150質量部以下、より好ましくは100質量部以下である。上記範囲内であると、良好な低燃費性が得られる。 The content of carbon black is preferably 10 parts by mass or more, more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less. Within the above range, good fuel efficiency can be obtained.

本発明のゴム組成物において、カーボンブラック及び白色充填剤の合計含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは30質量部以上である。該含有量は、好ましくは150質量部以下、より好ましくは100質量部以下である。上記範囲内であると、良好な低燃費性が得られる。 In the rubber composition of the present invention, the total content of carbon black and white filler is preferably 10 parts by mass or more, more preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. The content is preferably 150 parts by mass or less, more preferably 100 parts by mass or less. Within the above range, good fuel efficiency can be obtained.

本発明のゴム組成物には、上記の材料以外にも、酸化亜鉛、ステアリン酸、各種老化防止剤、硫黄、加硫促進剤などのタイヤ工業において一般的に用いられている各種材料が適宜配合されていてもよい。 In addition to the above materials, the rubber composition of the present invention is appropriately blended with various materials generally used in the tire industry such as zinc oxide, stearic acid, various anti-aging agents, sulfur, and vulcanization accelerators. May be.

本発明のゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、上記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。該ゴム組成物は、タイヤの各部材に使用でき、なかでも、トレッド、サイドウォール、スチールベルト、カーカスなどに好適に使用できる。 As a method for producing the rubber composition of the present invention, known methods can be used. For example, the above components are kneaded using a rubber kneader such as an open roll or a Banbury mixer, and then vulcanized. Can be manufactured. The rubber composition can be used for each member of a tire, and among them, it can be suitably used for a tread, a sidewall, a steel belt, a carcass and the like.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種材料を配合したゴム組成物を、未加硫の段階でトレッドなどの形状に合わせて押し出し加工し、タイヤ成型機上で通常の方法で成形して未加硫タイヤを作製した後、加硫機中で加熱加圧して製造できる。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing various materials as necessary is extruded into a shape such as a tread at an unvulcanized stage and molded by a normal method on a tire molding machine to form an unvulcanized tire. After production, it can be produced by heating and pressing in a vulcanizer.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下に、実施例で用いた各種薬品について説明する。
Wingstay L(老化防止剤):ELIOKEM社製のWingstay L(ρ−クレゾールとジシクロペンタジエンとの縮合物をブチル化した化合物)
エマルビンW(界面活性剤):LANXESS社製のエマルビンW(芳香族ポリグリコールエーテル)
タモールNN9104(界面活性剤):BASF社製のタモールNN9104(ナフタレンスルホン酸/ホルムアルデヒドのナトリウム塩)
Van gel B(界面活性剤):Vanderbilt社製のVan gel B(マグネシウムアルミニウムシリケートの水和物)
フィールドラテックス:Muhibbah Lateks社から入手したフィールドラテックス
エマールE−27C(界面活性剤):花王(株)製のエマールE−27C(ポリオキシエチレンラウリルエーテル硫酸ナトリウム)
NaOH:和光純薬工業(株)製のNaOH
アルカリプロテアーゼ:花王(株)製のアルカリプロテアーゼKP3939(蛋白分解酵素)
酸:ギ酸94%(一般的な工業用グレード、希釈して2%ギ酸水溶液として使用)
TSR:NR(TSR)
カーボンブラック:三菱化学(株)製のダイアブラックI(ISAFクラス)(NSA:114m/g)
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸つばき
老化防止剤6C:大内新興化学工業(株)製のノクラック6C(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)(6PPD)
不溶性硫黄:日本乾溜工業(株)製のセイミ硫黄(オイル分:10%)
加硫促進剤TBBS:大内新興化学工業(株)製のノクセラーNS
The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
The various chemicals used in the examples are described below.
Wingstay L (anti-aging agent): WINGSTAY L (compound obtained by butylating the condensate of ρ-cresol and dicyclopentadiene) manufactured by ELIOKEM
Emulvin W (surfactant): Emalvin W (aromatic polyglycol ether) manufactured by LANXESS
Tamol NN9104 (surfactant): Tamol NN9104 manufactured by BASF (Naphthalenesulfonic acid / formaldehyde sodium salt)
Van gel B (surfactant): Van gel B (magnesium aluminum silicate hydrate) manufactured by Vanderbilt
Field latex: Field latex Emar E-27C (surfactant) obtained from Muhibbah Lateks, Inc. Emar E-27C (polyoxyethylene lauryl ether sodium sulfate) manufactured by Kao Corporation
NaOH: NaOH manufactured by Wako Pure Chemical Industries, Ltd.
Alkaline protease: Alkaline protease KP3939 (proteolytic enzyme) manufactured by Kao Corporation
Acid: 94% formic acid (general industrial grade, diluted and used as 2% aqueous formic acid solution)
TSR: NR (TSR)
Carbon black: Dia Black I (ISAF class) manufactured by Mitsubishi Chemical Corporation (N 2 SA: 114 m 2 / g)
Zinc oxide: 2 types of zinc oxides manufactured by Mitsui Mining & Smelting Co., Ltd. Stearic acid: Beads stearic acid anti-aging agent manufactured by NOF Corporation 6C: NOCRACK 6C (N-phenyl) manufactured by Ouchi Shinsei Chemical Co., Ltd. -N '-(1,3-dimethylbutyl) -p-phenylenediamine) (6PPD)
Insoluble sulfur: Seimi sulfur (oil content: 10%) manufactured by Nihon Kiboshi Kogyo Co., Ltd.
Vulcanization accelerator TBBS: Noxeller NS manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

<実施例1〜6及び比較例1〜3>
(老化防止剤分散体の調製)
水 462.5gにエマルビンW 12.5g、タモールNN9104 12.5g、Van gel B 12.5g、Wingstay L 500g(合計1000g)をボールミルで16時間混合し、老化防止剤分散体を調製した。
<Examples 1-6 and Comparative Examples 1-3>
(Preparation of anti-aging agent dispersion)
462.5 g of water was mixed with 12.5 g of Emulvin W, 12.5 g of Tamol NN9104, 12.5 g of Van gel B, and 500 g of Wingstay L (total of 1000 g) for 16 hours by a ball mill to prepare an antioxidant dispersion.

(実施例1)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。その後、ゆっくりとギ酸を添加し、pHが約10になった時点で、アルカリプロテアーゼ0.3gを数ml程度の水に溶解して添加し、5分間攪拌後、室温で一晩静置し、改質天然ゴムラテックスを得た(配合量は表1の通り)。
次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。その後、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整し、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は3〜10mm程度であった。得られた凝集物から水を極力除いた後、水1000mlを加え2分間撹拌し、極力水を取り除く作業を2回繰り返した後、90℃で4時間乾燥して固形ゴム(高純度化天然ゴム)を得た。
Example 1
After adjusting the solid content concentration (DRC) of the field latex to 30% (w / v), 25 g of 10% Emar E-27C aqueous solution and 60 g of 25% NaOH aqueous solution were added to 1000 g of the latex and saponified for 24 hours at room temperature. Reaction was performed to obtain a saponified natural rubber latex. Thereafter, formic acid was slowly added, and when the pH reached about 10, 0.3 g of alkaline protease was dissolved in several ml of water, added, stirred for 5 minutes, and allowed to stand at room temperature overnight. A modified natural rubber latex was obtained (the amount is as shown in Table 1).
Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Thereafter, formic acid was added with slow stirring to adjust the pH to 4.0, a cationic polymer flocculant was added, and the mixture was stirred for 2 minutes for aggregation. The diameter of the aggregate (aggregated rubber) thus obtained was about 3 to 10 mm. After removing water from the resulting aggregate as much as possible, adding 1000 ml of water and stirring for 2 minutes, repeating the operation of removing water as much as possible, and then drying at 90 ° C. for 4 hours to solid rubber (high purity natural rubber) )

(実施例2)
アルカリプロテアーゼの添加量を0.03gに変更した以外は、実施例1と同様に固形ゴムを作製した。
(Example 2)
A solid rubber was produced in the same manner as in Example 1 except that the amount of alkaline protease added was changed to 0.03 g.

(実施例3)
アルカリプロテアーゼの添加量を0.003gに変更した以外は、実施例1と同様に固形ゴムを作製した。
(Example 3)
A solid rubber was produced in the same manner as in Example 1 except that the amount of alkaline protease added was changed to 0.003 g.

(実施例4)
アルカリプロテアーゼの添加量を3gに変更した以外は、実施例1と同様に固形ゴムを作製した。
Example 4
A solid rubber was produced in the same manner as in Example 1 except that the amount of alkaline protease added was changed to 3 g.

(実施例5)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gを加え、30分間よく攪拌した。次いで、アルカリプロテアーゼ0.3gを数ml程度の水に溶解して添加し、5分間攪拌後、室温で一晩静置した。その後、25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、改質天然ゴムラテックスを得た。
次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。その後、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整し、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は10〜20mm程度であった。得られた凝集物に、水1000mlを加え2分間撹拌し、極力水を取り除く作業を3回繰り返した後、90℃で4時間乾燥して固形ゴムを得た。
(Example 5)
After adjusting the solid content concentration (DRC) of the field latex to 30% (w / v), 25 g of a 10% Emar E-27C aqueous solution was added to 1000 g of the latex, and stirred well for 30 minutes. Next, 0.3 g of alkaline protease was dissolved in about several ml of water, added, stirred for 5 minutes, and allowed to stand overnight at room temperature. Thereafter, 60 g of 25% NaOH aqueous solution was added, and saponification reaction was performed at room temperature for 24 hours to obtain a modified natural rubber latex.
Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Thereafter, formic acid was added with slow stirring to adjust the pH to 4.0, a cationic polymer flocculant was added, and the mixture was stirred for 2 minutes for aggregation. The diameter of the obtained aggregate (aggregated rubber) was about 10 to 20 mm. To the resulting aggregate, 1000 ml of water was added and stirred for 2 minutes, and water was removed as much as possible. The operation was repeated three times, followed by drying at 90 ° C. for 4 hours to obtain a solid rubber.

(実施例6)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。その後、ゆっくりとギ酸を添加し、pHが約10になった時点で、アルカリプロテアーゼ0.3gを数ml程度の水に溶解して添加し、5分間攪拌後、室温で一晩静置し、改質天然ゴムラテックスを得た。
次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。その後、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整し、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は3〜10mm程度であった。得られた凝集物を取り出し、5質量%の炭酸ナトリウム水溶液1000mlに浸漬し、一晩静置した後、ゴムを取出した。これに、水1000mlを加え2分間撹拌し、極力水を取り除いた。次いで、このゴムを2質量%ギ酸水溶液に浸漬し、一晩放置した後、ゴムを取出し、同様の水洗作業を3回繰り返した後、90℃で4時間乾燥して固形ゴムを得た。
(Example 6)
After adjusting the solid content concentration (DRC) of the field latex to 30% (w / v), 25 g of 10% Emar E-27C aqueous solution and 60 g of 25% NaOH aqueous solution were added to 1000 g of the latex and saponified for 24 hours at room temperature. Reaction was performed to obtain a saponified natural rubber latex. Thereafter, formic acid was slowly added, and when the pH reached about 10, 0.3 g of alkaline protease was dissolved in several ml of water, added, stirred for 5 minutes, and allowed to stand at room temperature overnight. A modified natural rubber latex was obtained.
Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Thereafter, formic acid was added with slow stirring to adjust the pH to 4.0, a cationic polymer flocculant was added, and the mixture was stirred for 2 minutes for aggregation. The diameter of the aggregate (aggregated rubber) thus obtained was about 3 to 10 mm. The obtained agglomerate was taken out, immersed in 1000 ml of a 5% by mass aqueous sodium carbonate solution, allowed to stand overnight, and then the rubber was taken out. To this, 1000 ml of water was added and stirred for 2 minutes to remove water as much as possible. Next, this rubber was immersed in a 2% by weight aqueous formic acid solution and allowed to stand overnight, then the rubber was taken out and the same water washing operation was repeated three times, followed by drying at 90 ° C. for 4 hours to obtain a solid rubber.

(比較例1)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。
次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。その後、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整し、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は3〜15mm程度であった。得られた凝集物に、水1000mlを加え2分間撹拌し、極力水を取り除く作業を3回繰り返した後、90℃で4時間乾燥して固形ゴムを得た。
(Comparative Example 1)
After adjusting the solid content concentration (DRC) of the field latex to 30% (w / v), 25 g of 10% Emar E-27C aqueous solution and 60 g of 25% NaOH aqueous solution were added to 1000 g of the latex and saponified for 24 hours at room temperature. Reaction was performed to obtain a saponified natural rubber latex.
Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Thereafter, formic acid was added with slow stirring to adjust the pH to 4.0, a cationic polymer flocculant was added, and the mixture was stirred for 2 minutes for aggregation. The diameter of the aggregate (aggregated rubber) thus obtained was about 3 to 15 mm. To the resulting aggregate, 1000 ml of water was added and stirred for 2 minutes, and water was removed as much as possible. The operation was repeated three times, followed by drying at 90 ° C. for 4 hours to obtain a solid rubber.

(比較例2)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。
次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。その後、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整し、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は3〜15mm程度であった。得られた凝集物を取り出し、2質量%の炭酸ナトリウム水溶液1000mlに、常温で4時間浸漬した後、ゴムを取出した。これに、水1000mlを加え2分間撹拌し、極力水を取り除く作業を3回繰り返した後、90℃で4時間乾燥して固形ゴムを得た。
(Comparative Example 2)
After adjusting the solid content concentration (DRC) of the field latex to 30% (w / v), 25 g of 10% Emar E-27C aqueous solution and 60 g of 25% NaOH aqueous solution were added to 1000 g of the latex and saponified for 24 hours at room temperature. Reaction was performed to obtain a saponified natural rubber latex.
Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Thereafter, formic acid was added with slow stirring to adjust the pH to 4.0, a cationic polymer flocculant was added, and the mixture was stirred for 2 minutes for aggregation. The diameter of the aggregate (aggregated rubber) thus obtained was about 3 to 15 mm. The obtained agglomerates were taken out and immersed in 1000 ml of a 2% by weight aqueous sodium carbonate solution at room temperature for 4 hours, and then the rubber was taken out. To this, 1000 ml of water was added and stirred for 2 minutes to remove the water as much as possible. The operation was repeated three times and then dried at 90 ° C. for 4 hours to obtain a solid rubber.

(比較例3)
フィールドラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、該ラテックス1000gに、10%エマールE−27C水溶液25gと25%NaOH水溶液60gを加え、室温で24時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。
次いで、老化防止剤分散体6gを添加し、2時間撹拌した後、更に水を添加してゴム濃度15%(w/v)となるまで希釈した。その後、ゆっくり撹拌しながらギ酸を添加してpHを4.0に調整し、カチオン系高分子凝集剤を添加し、2分間撹拌し、凝集させた。これにより得られた凝集物(凝集ゴム)の直径は3〜15mm程度であった。得られた凝集物を取り出し、2質量%の炭酸ナトリウム水溶液1000mlに、常温で4時間浸漬した後、ゴムを取出した。これに、水1000mlを加え2分間撹拌し、極力水を取り除いた。次いで、このゴムを2質量%ギ酸水溶液に6時間浸漬した後、ゴムを取出し、同様の水洗作業を3回繰り返した後、90℃で4時間乾燥して固形ゴムを得た。
(Comparative Example 3)
After adjusting the solid content concentration (DRC) of the field latex to 30% (w / v), 25 g of 10% Emar E-27C aqueous solution and 60 g of 25% NaOH aqueous solution were added to 1000 g of the latex and saponified for 24 hours at room temperature. Reaction was performed to obtain a saponified natural rubber latex.
Next, 6 g of the anti-aging dispersion was added and stirred for 2 hours, and then further diluted with water to a rubber concentration of 15% (w / v). Thereafter, formic acid was added with slow stirring to adjust the pH to 4.0, a cationic polymer flocculant was added, and the mixture was stirred for 2 minutes for aggregation. The diameter of the aggregate (aggregated rubber) thus obtained was about 3 to 15 mm. The obtained agglomerates were taken out and immersed in 1000 ml of a 2% by weight aqueous sodium carbonate solution at room temperature for 4 hours, and then the rubber was taken out. To this, 1000 ml of water was added and stirred for 2 minutes to remove water as much as possible. Next, the rubber was immersed in a 2% by weight aqueous formic acid solution for 6 hours, then the rubber was taken out, and the same water washing operation was repeated 3 times, followed by drying at 90 ° C. for 4 hours to obtain a solid rubber.

上記で得られた固形ゴムについて、下記により評価し、結果を表1に示した。なお、参考例として、TSRも示した。 The solid rubber obtained above was evaluated as follows, and the results are shown in Table 1. A TSR is also shown as a reference example.

<窒素含有量の測定>
(アセトン抽出(試験片の作製))
各固形ゴムを1mm角に細断したサンプルを約0.5g用意した。サンプルをアセトン50g中に浸漬して、室温(25℃)で48時間後にゴムを取出し、乾燥させ、各試験片(老化防止剤抽出済み)を得た。
(測定)
得られた試験片の窒素含有量を以下の方法で測定した。
窒素含有量は、微量窒素炭素測定装置「SUMIGRAPH NC95A((株)住化分析センター製)」を用いて、上記で得られたアセトン抽出処理済みの各試験片を分解、ガス化し、そのガスをガスクロマトグラフ「GC−8A((株)島津製作所製)」で分析して窒素含有量を定量した。
<Measurement of nitrogen content>
(Acetone extraction (test piece preparation))
About 0.5 g of a sample obtained by chopping each solid rubber into 1 mm square was prepared. The sample was immersed in 50 g of acetone, and after 48 hours at room temperature (25 ° C.), the rubber was taken out and dried to obtain each test piece (extracted with anti-aging agent).
(Measurement)
The nitrogen content of the obtained test piece was measured by the following method.
The nitrogen content was determined by decomposing and gasifying each of the acetone-extracted test pieces obtained above using a trace nitrogen carbon measuring device “SUMIGRAPH NC95A (manufactured by Sumika Chemical Analysis Center)”. The nitrogen content was quantified by analyzing with a gas chromatograph “GC-8A (manufactured by Shimadzu Corporation)”.

<リン含有量の測定>
ICP発光分析装置(P−4010、(株)日立製作所製)を使用してリン含有量を求めた。
<Measurement of phosphorus content>
The phosphorus content was determined using an ICP emission spectrometer (P-4010, manufactured by Hitachi, Ltd.).

<耐熱老化性>
老化前後における各固形ゴムの重量平均分子量を測定し、耐熱老化性を求めた。老化処理は、各ゴムを2〜5mm角に細断し、80℃で72時間オーブン中に保管することにより行った。重量平均分子量は、ゲルパーミエーションクロマトグラフを用いて、イソプレンを標準物質として測定した。
なお、耐熱老化性は、分子量保持率(老化後の分子量/老化前の分子量×100)(%)で表した。値が大きいほど、耐熱老化性が優れていることを示す。
<Heat aging resistance>
The weight average molecular weight of each solid rubber before and after aging was measured to determine heat aging resistance. The aging treatment was performed by chopping each rubber into 2 to 5 mm squares and storing them in an oven at 80 ° C. for 72 hours. The weight average molecular weight was measured using a gel permeation chromatograph with isoprene as a standard substance.
The heat aging resistance was expressed as molecular weight retention (molecular weight after aging / molecular weight before aging × 100) (%). It shows that heat aging resistance is excellent, so that a value is large.

Figure 0005426605
Figure 0005426605

表1より、ケン化後にタンパク質分解処理を行った実施例1〜4及び6では、窒素量、リン量が充分に低減され、耐熱老化性も良好で、ケン化処理、アルカリ処理、酸処理を施した比較例3と同等の性能が得られた。特に実施例6では、処理工程のトータルステップ数が多いものの、これらの特性は非常に優れていた。また、タンパク質分解処理後にケン化を行った実施例5でも特性は優れているものの、残存窒素量が実施例1に比べて若干多い傾向が見られた。 From Table 1, in Examples 1-4 and 6 in which proteolytic treatment was performed after saponification, the amount of nitrogen and phosphorus were sufficiently reduced, heat aging resistance was good, and saponification treatment, alkali treatment, and acid treatment were performed. The same performance as in Comparative Example 3 was obtained. In particular, in Example 6, although the total number of processing steps was large, these characteristics were very excellent. Moreover, although the characteristic was excellent also in Example 5 which performed saponification after the proteolysis process, the tendency for a residual nitrogen amount to be a little larger than Example 1 was seen.

タンパク質分解処理、アルカリ処理、酸処理を行っていない比較例1では、窒素量が多かった。また、タンパク質分解処理、酸処理を行っていない比較例2では、耐熱老化性が劣っていた。 In Comparative Example 1 in which proteolytic treatment, alkali treatment, and acid treatment were not performed, the amount of nitrogen was large. Moreover, in the comparative example 2 which has not performed the protein degradation process and the acid process, heat aging resistance was inferior.

<実施例7〜12及び比較例4〜6>
(ゴム試験片の作製)
表2に示す配合処方に従って、1.7Lバンバリーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、ロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を150℃で12分間プレス加硫して加硫物を得た。
得られた未加硫ゴム組成物、加硫物を下記により評価し、結果を表2に示した。
<Examples 7 to 12 and Comparative Examples 4 to 6>
(Production of rubber test piece)
According to the formulation shown in Table 2, chemicals other than sulfur and a vulcanization accelerator were kneaded using 1.7 L Banbury. Next, using a roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized at 150 ° C. for 12 minutes to obtain a vulcanized product.
The obtained unvulcanized rubber composition and vulcanized product were evaluated as follows, and the results are shown in Table 2.

<転がり抵抗>
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み1%、周波数10Hzの条件下で、各配合(加硫物)の損失正接(tanδ)を測定し、比較例6の転がり抵抗指数を100として、下記計算式により算出した。転がり抵抗指数が小さいほど、転がり抵抗が低減され、好ましいことを示す。
(転がり抵抗指数)=(各配合のtanδ)/(比較例6のtanδ)×100
<Rolling resistance>
Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), loss tangent (tan δ) of each compound (vulcanized product) under the conditions of temperature 70 ° C., initial strain 10%, dynamic strain 1%, frequency 10 Hz. ) Was measured, and the rolling resistance index of Comparative Example 6 was set to 100, and the following calculation formula was used. The smaller the rolling resistance index, the lower the rolling resistance, which is preferable.
(Rolling resistance index) = (tan δ of each formulation) / (tan δ of Comparative Example 6) × 100

<T95:最適加硫時間>
JSRトレーディング社のキュラストメーター7で、150℃で加硫曲線を測定した。常法に従い、最高トルクと最低トルクの差の95%(最低トルク+(最高トルク−最低トルク)×0.95)に達するまでの時間をT95(最適加硫時間(分))として求めた。T95が小さいほど加硫速度が早いことを示す(通常の天然ゴムに近い方が扱いやすい。加硫が早いと、その後のリバージョンが大きい。)。
<T95: Optimal vulcanization time>
The vulcanization curve was measured at 150 ° C. with a curast meter 7 manufactured by JSR Trading. According to a conventional method, the time required to reach 95% of the difference between the maximum torque and the minimum torque (minimum torque + (maximum torque−minimum torque) × 0.95) was determined as T95 (optimum vulcanization time (minutes)). The smaller the T95, the faster the vulcanization rate (the closer to normal natural rubber, the easier to handle. The faster the vulcanization, the greater the subsequent reversion).

Figure 0005426605
Figure 0005426605

表2より、実施例1〜6の固形ゴムを用いた実施例7〜12では、良好な低燃費性が得られ、窒素量が少ないほど性能が優れる傾向が見られた。また、窒素量、リン量が少ない比較例3の固形ゴムを用いた比較例6より低燃費性が良好であった。更に、実施例では、T95がTSRに近く、加硫時間も良好であった。 From Table 2, in Examples 7-12 using the solid rubber of Examples 1-6, the favorable fuel-consumption property was acquired and the tendency for performance to be excellent, so that there were few amounts of nitrogen was seen. Further, the fuel efficiency was better than that of Comparative Example 6 using the solid rubber of Comparative Example 3 having a small amount of nitrogen and phosphorus. Furthermore, in the examples, T95 was close to TSR, and the vulcanization time was also good.

Claims (11)

天然ゴムラテックスにケン化処理及びタンパク質分解処理を施して調製される改質天然ゴムラテックスを、凝集、洗浄して得られる高純度化天然ゴムであって、
前記ケン化処理が強アルカリ性化合物、前記タンパク質分解処理が蛋白分解酵素により行われ、
前記ケン化処理の前記強アルカリ性化合物の添加量は、前記天然ゴムラテックス中のゴム固形分100質量部に対して、0.1〜5質量部である高純度化天然ゴム
A highly purified natural rubber obtained by agglomerating and washing a modified natural rubber latex prepared by subjecting natural rubber latex to saponification treatment and proteolysis treatment ,
The saponification treatment is a strongly alkaline compound, and the proteolytic treatment is performed by a proteolytic enzyme,
The highly purified natural rubber, wherein the amount of the strongly alkaline compound added in the saponification treatment is 0.1 to 5 parts by mass with respect to 100 parts by mass of the rubber solid content in the natural rubber latex .
ケン化処理及びタンパク質分解処理がケン化処理、タンパク質分解処理の順に行われる請求項1記載の高純度化天然ゴム。 The highly purified natural rubber according to claim 1, wherein the saponification treatment and the protein degradation treatment are performed in the order of saponification treatment and protein degradation treatment. ケン化処理後のラテックスをpH11以下に調整した後、タンパク質分解処理が行われる請求項2記載の高純度化天然ゴム。 The highly purified natural rubber according to claim 2, wherein the latex after the saponification treatment is adjusted to pH 11 or less and then subjected to a proteolytic treatment. ケン化処理及びタンパク質分解処理がタンパク質分解処理、ケン化処理の順に行われる請求項1記載の高純度化天然ゴム。 The highly purified natural rubber according to claim 1, wherein the saponification treatment and the proteolysis treatment are performed in the order of proteolysis treatment and saponification treatment. 凝集は、酸を添加してpHを調整して、直径3〜20mmの粒状ゴムが形成するものである請求項1〜4のいずれに記載の高純度化天然ゴム。 The high-purity natural rubber according to any one of claims 1 to 4, wherein the aggregation is performed by adding acid to adjust pH to form a granular rubber having a diameter of 3 to 20 mm . 洗浄は、ゴムを浮かせ、水相のみを排出するものである請求項1〜5のいずれに記載の高純度化天然ゴム。The highly purified natural rubber according to any one of claims 1 to 5, wherein the washing floats the rubber and discharges only the aqueous phase. リン含有量が200ppm以下、窒素含有量が0.2質量%以下である請求項1〜5のいずれに記載の高純度化天然ゴム。The highly purified natural rubber according to any one of claims 1 to 5, which has a phosphorus content of 200 ppm or less and a nitrogen content of 0.2 mass% or less. 天然ゴムラテックスにケン化処理及びタンパク質分解処理を施して改質天然ゴムラテックスを調製する工程(1)と、前記改質天然ゴムラテックスを凝集させて凝集ゴムを得る工程(2)と、前記凝集ゴムを洗浄する工程(3)とを含み、
前記ケン化処理が強アルカリ性化合物、前記タンパク質分解処理が蛋白分解酵素により行われ、
前記ケン化処理の前記強アルカリ性化合物の添加量は、前記天然ゴムラテックス中のゴム固形分100質量部に対して、0.1〜5質量部である請求項1〜のいずれかに記載の高純度化天然ゴムの製造方法。
A step (1) for preparing a modified natural rubber latex by subjecting the natural rubber latex to a saponification treatment and a proteolytic treatment, a step (2) for agglomerating the modified natural rubber latex to obtain an agglomerated rubber, and the agglomeration. look including a step (3) to wash the rubber,
The saponification treatment is a strongly alkaline compound, and the proteolytic treatment is performed by a proteolytic enzyme,
The additive amount of the strong alkali compound saponification of the rubber solid content of 100 parts by weight of the natural rubber latex, according to any one of claims 1 to 7, which is 0.1 to 5 parts by weight A method for producing highly purified natural rubber.
タンパク質分解処理では、天然ゴムラテックス中のゴム固形分100質量部に対し、蛋白分解酵素が0.001〜10質量部添加される請求項記載の高純度化天然ゴムの製造方法。 The method for producing highly purified natural rubber according to claim 8 , wherein in the proteolytic treatment, 0.001 to 10 parts by mass of a proteolytic enzyme is added to 100 parts by mass of the rubber solid content in the natural rubber latex. ゴム成分とカーボンブラック及び/又は白色充填剤とを含み、
前記ゴム成分100質量%中、請求項1〜のいずれかに記載の高純度化天然ゴムの含有量が5質量%以上であるタイヤ用ゴム組成物。
A rubber component and carbon black and / or white filler,
The rubber component in 100% by mass, claim 1-7 tire rubber composition content is 5 mass% or more highly purified natural rubber according to any one of.
請求項10記載のゴム組成物を用いて作製したタイヤ用部材を有する空気入りタイヤ。 The pneumatic tire which has the member for tires produced using the rubber composition of Claim 10 .
JP2011110559A 2011-05-17 2011-05-17 Highly purified natural rubber and method for producing the same Expired - Fee Related JP5426605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110559A JP5426605B2 (en) 2011-05-17 2011-05-17 Highly purified natural rubber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110559A JP5426605B2 (en) 2011-05-17 2011-05-17 Highly purified natural rubber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012241066A JP2012241066A (en) 2012-12-10
JP5426605B2 true JP5426605B2 (en) 2014-02-26

Family

ID=47463133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110559A Expired - Fee Related JP5426605B2 (en) 2011-05-17 2011-05-17 Highly purified natural rubber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5426605B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977083B2 (en) * 2012-05-29 2016-08-24 住友ゴム工業株式会社 Rubber composition for case topping and pneumatic tire
JP6073574B2 (en) * 2012-05-29 2017-02-01 住友ゴム工業株式会社 Chafer rubber composition and pneumatic tire
EP2896633B1 (en) * 2013-02-15 2017-05-31 Sumitomo Rubber Industries, Ltd. Modified natural rubber, process for producing same, rubber composition for tire, and pneumatic tire
JP5650796B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for studless tire and studless tire
JP5650794B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Sidewall rubber composition and pneumatic tire
JP6006170B2 (en) * 2013-05-23 2016-10-12 住友ゴム工業株式会社 Cap tread rubber composition and heavy duty tire
JP5650797B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for tread and pneumatic tire
JP5650799B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for pneumatic wrapping and pneumatic tire
JP6006171B2 (en) * 2013-05-23 2016-10-12 住友ゴム工業株式会社 Cap tread rubber composition and heavy duty tire
JP5650803B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for pneumatic tire and pneumatic tire
JP6006169B2 (en) * 2013-05-23 2016-10-12 住友ゴム工業株式会社 Sidewall rubber composition and heavy duty tire
JP5650795B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for pneumatic tread and pneumatic tire
JP6006168B2 (en) * 2013-05-23 2016-10-12 住友ゴム工業株式会社 Base tread rubber composition and heavy duty tire
JP5650798B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for breaker topping and pneumatic tire
WO2014188992A1 (en) * 2013-05-23 2014-11-27 住友ゴム工業株式会社 Heavy-load tire and method for manufacturing heavy-load tire
JP5650800B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for bead apex and pneumatic tire
WO2014188901A1 (en) * 2013-05-23 2014-11-27 住友ゴム工業株式会社 Pneumatic tire, studless tire, method for manufacturing pneumatic tire, and method for manufacturing studless tire
JP6006172B2 (en) * 2013-05-23 2016-10-12 住友ゴム工業株式会社 Cap tread rubber composition and heavy duty tire
JP5650801B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Clinch apex rubber composition and pneumatic tire
JP5650802B2 (en) * 2013-05-23 2015-01-07 住友ゴム工業株式会社 Rubber composition for inner liner and pneumatic tire
JP6215693B2 (en) * 2013-12-26 2017-10-18 住友ゴム工業株式会社 Pneumatic tire
JP6199733B2 (en) 2013-12-26 2017-09-20 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6199734B2 (en) * 2013-12-26 2017-09-20 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6215694B2 (en) * 2013-12-27 2017-10-18 住友ゴム工業株式会社 Pneumatic tire
JP6199736B2 (en) * 2013-12-27 2017-09-20 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6215695B2 (en) * 2013-12-27 2017-10-18 住友ゴム工業株式会社 Pneumatic tire
JP6297896B2 (en) * 2014-04-09 2018-03-20 住友ゴム工業株式会社 Pneumatic tire
JP6297895B2 (en) * 2014-04-09 2018-03-20 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6297894B2 (en) * 2014-04-09 2018-03-20 住友ゴム工業株式会社 Pneumatic tire
JP6297897B2 (en) * 2014-04-09 2018-03-20 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP6297898B2 (en) * 2014-04-09 2018-03-20 住友ゴム工業株式会社 Pneumatic tire
JP6334314B2 (en) * 2014-08-20 2018-05-30 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
JP2018030906A (en) * 2016-08-22 2018-03-01 住友ゴム工業株式会社 Method for producing modified natural rubber
JP2018035250A (en) * 2016-08-31 2018-03-08 住友ゴム工業株式会社 Manufacturing method of natural rubber-white filler composite and tire
CN112010485B (en) * 2020-08-14 2022-08-30 湖北加恒实业有限公司 Method for regenerating saponification liquid
CN112592417B (en) * 2020-12-09 2023-03-28 中国化工集团曙光橡胶工业研究设计院有限公司 Aircraft tire natural rubber solidification system, application method thereof and aircraft tire natural rubber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197052A (en) * 2002-12-20 2004-07-15 Sumitomo Rubber Ind Ltd Method for manufacturing deproteinized natural rubber latex
EP1652862B1 (en) * 2003-08-04 2012-02-15 Sumitomo Rubber Industries, Ltd. Deproteinized natural rubber, its composition and use thereof
JP4691389B2 (en) * 2005-04-28 2011-06-01 住友ゴム工業株式会社 Proteolytic natural rubber and composition containing the same

Also Published As

Publication number Publication date
JP2012241066A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5426605B2 (en) Highly purified natural rubber and method for producing the same
JP5457378B2 (en) Modified natural rubber, method for producing the same, rubber composition for tire and pneumatic tire
JP5456650B2 (en) Modified natural rubber, rubber composition for tire and pneumatic tire
US9181355B2 (en) Modified natural rubber, method for producing same, rubber composition, and pneumatic tire
JP5551972B2 (en) Rubber composition for sidewall, production method and pneumatic tire
JP5650796B2 (en) Rubber composition for studless tire and studless tire
JP5567454B2 (en) Modified natural rubber, rubber composition and pneumatic tire
WO2015098419A1 (en) Rubber composition for tires and pneumatic tire
WO2015098417A1 (en) Rubber composition for tires and pneumatic tire
WO2015098416A1 (en) Rubber composition for tires and pneumatic tire
JP6297894B2 (en) Pneumatic tire
JP2014227494A (en) Rubber composition for inner liner, and pneumatic tire
JP5475696B2 (en) Manufacturing method of natural rubber, rubber composition for tire and pneumatic tire
JP5650803B2 (en) Rubber composition for pneumatic tire and pneumatic tire
JP5650799B2 (en) Rubber composition for pneumatic wrapping and pneumatic tire
JP7378196B2 (en) pneumatic tires
JP6006170B2 (en) Cap tread rubber composition and heavy duty tire
JP5650794B2 (en) Sidewall rubber composition and pneumatic tire
JP2020055979A (en) Tire rubber composition and pneumatic tire
JP6006172B2 (en) Cap tread rubber composition and heavy duty tire
JP6006171B2 (en) Cap tread rubber composition and heavy duty tire
JP5650798B2 (en) Rubber composition for breaker topping and pneumatic tire
JP6006168B2 (en) Base tread rubber composition and heavy duty tire
JP5650795B2 (en) Rubber composition for pneumatic tread and pneumatic tire
JP5650801B2 (en) Clinch apex rubber composition and pneumatic tire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees