JP5423544B2 - Optical position detector - Google Patents

Optical position detector Download PDF

Info

Publication number
JP5423544B2
JP5423544B2 JP2010085820A JP2010085820A JP5423544B2 JP 5423544 B2 JP5423544 B2 JP 5423544B2 JP 2010085820 A JP2010085820 A JP 2010085820A JP 2010085820 A JP2010085820 A JP 2010085820A JP 5423544 B2 JP5423544 B2 JP 5423544B2
Authority
JP
Japan
Prior art keywords
light source
detection
detection light
target object
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010085820A
Other languages
Japanese (ja)
Other versions
JP2011215101A (en
Inventor
大介 中西
摂内 清瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010085820A priority Critical patent/JP5423544B2/en
Publication of JP2011215101A publication Critical patent/JP2011215101A/en
Application granted granted Critical
Publication of JP5423544B2 publication Critical patent/JP5423544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明は、対象物体を光学的に検出する光学式位置検出装置に関するものである。   The present invention relates to an optical position detection device that optically detects a target object.

対象物体を光学的に検出する光学式位置検出装置としては、例えば、図10(a)に示
すように、4つの検出用光源12(第1検出用光源12A〜第4検出用光源12D)の各
々から透光部材40を介して対象物体Obに向けて検出光L2(検出光L2a〜L2d)
を出射し、対象物体Obで反射した検出光L3が透光部材40を透過して光検出器30で
検出されるものが提案されている。また、光検出器30を1つ配置する場合、検出光L2
の出射側空間としての検出空間10Rからみたとき、図10(b)に示すように、4つの
検出用光源12が光検出器30を中心にして等距離かつ等角度間隔に配置された構成が提
案されている(例えば、特許文献1参照)。
As an optical position detection device for optically detecting a target object, for example, as shown in FIG. 10A, four detection light sources 12 (first detection light source 12A to fourth detection light source 12D) are used. Detection light L <b> 2 (detection light L <b> 2 a to L <b> 2 d) toward each of the target objects Ob through the translucent member 40
, And the detection light L3 reflected by the target object Ob passes through the translucent member 40 and is detected by the photodetector 30. Further, when one light detector 30 is arranged, the detection light L2
When viewed from the detection space 10R as the emission side space, as shown in FIG. 10B, a configuration in which the four detection light sources 12 are arranged at equal distances and at equal angular intervals with the photodetector 30 as the center. It has been proposed (see, for example, Patent Document 1).

このような構成の光学式位置検出装置では、例えば、光検出器30での検出結果に基づ
いて、検出用光源12A、12Bと検出用光源12C、12Dとを差動させ、検出用光源
12A、12Dと検出用光源12B、12Cとを差動させれば、対象物体ObのX座標お
よびY座標を検出することができる。
In the optical position detection device having such a configuration, for example, based on the detection result of the photodetector 30, the detection light sources 12A and 12B and the detection light sources 12C and 12D are differentiated to detect the detection light sources 12A and 12A. If the 12D and the detection light sources 12B and 12C are differentiated, the X and Y coordinates of the target object Ob can be detected.

特表2003−534554号公報の図10FIG. 10 of JP-T-2003-534554

しかしながら、特許文献1に記載の構成では、差動により得られる情報が2つであり、
検出精度を高めることができないという問題点がある。ここに本発明者は、差動により多
数の情報を得、それらを合成して対象物体Obの位置を検出することを提案する。例えば
、光検出器30での検出結果に基づいて、第1検出用光源12Aと第3検出用光源12C
とを差動させれば、第1検出用光源12Aと対象物体Obとの距離と、第3検出用光源1
2Cと対象物体Obとの距離の比がわかる。また、光検出器30での検出結果に基づいて
、第2検出用光源12Bと第4検出用光源12Dとを差動させれば、第2検出用光源12
Bと対象物体Obとの距離と、第4検出用光源12Dと対象物体Obとの距離の比がわか
る。従って、図10(b)に示すように、第1検出用光源12Aと第3検出用光源12C
とを結ぶ仮想線Q11を比で分割した位置を通る等比線R11と、第2検出用光源12B
と第4検出用光源12Dとを結ぶ仮想線Q12を比で分割した位置を通る等比線R12と
が交差する位置を求めれば、対象物体ObのX座標およびY座標を検出することができる
However, in the configuration described in Patent Document 1, there are two pieces of information obtained by differential,
There is a problem that the detection accuracy cannot be increased. Here, the inventor proposes to obtain a large amount of information by differential and combine them to detect the position of the target object Ob. For example, based on the detection result of the photodetector 30, the first detection light source 12A and the third detection light source 12C.
And the third detection light source 1 and the distance between the first detection light source 12A and the target object Ob.
The ratio of the distance between 2C and the target object Ob is known. Further, if the second detection light source 12B and the fourth detection light source 12D are differentiated based on the detection result of the photodetector 30, the second detection light source 12 can be obtained.
The ratio of the distance between B and the target object Ob and the distance between the fourth detection light source 12D and the target object Ob are known. Accordingly, as shown in FIG. 10B, the first detection light source 12A and the third detection light source 12C.
The isoline R11 passing through the position obtained by dividing the virtual line Q11 connecting the two by the ratio and the second light source for detection 12B
If the position at which the isoline R12 passing through the position obtained by dividing the virtual line Q12 connecting the first detection light source 12D with the ratio intersects is obtained, the X coordinate and the Y coordinate of the target object Ob can be detected.

さらに、第1検出用光源12Aと第2検出用光源12Bとを差動させれば、仮想線Q1
3を所定の比で分割した位置を通る等比線R13を求めることができ、第2検出用光源1
2Bと第3検出用光源12Cとを差動させれば、仮想線Q14を所定の比で分割した位置
を通る等比線R14を求めることができる。また、第3検出用光源12Cと第4検出用光
源12Dとを差動させれば、仮想線Q15を所定の比で分割した位置を通る等比線R15
を求めることができ、第1検出用光源12Aと第4検出用光源12Dとを差動させれば、
仮想線Q16を所定の比で分割した位置を通る等比線R16を求めることができる。それ
故、対象物体Obの位置を特定するための情報量が増えるため、それらを平均する等の手
法を用いれば、対象物体Obの位置検出精度を高めることができることになる。
Furthermore, if the first detection light source 12A and the second detection light source 12B are differentiated, an imaginary line Q1 is obtained.
It is possible to obtain a contour line R13 passing through a position obtained by dividing 3 by a predetermined ratio.
If 2B and the third light source for detection 12C are differentiated, it is possible to obtain a contour line R14 passing through a position obtained by dividing the virtual line Q14 by a predetermined ratio. Further, if the third detection light source 12C and the fourth detection light source 12D are differentiated, an isoline R15 passing through a position obtained by dividing the virtual line Q15 by a predetermined ratio.
If the first detection light source 12A and the fourth detection light source 12D are differentiated,
The contour line R16 passing through the position obtained by dividing the virtual line Q16 by a predetermined ratio can be obtained. Therefore, since the amount of information for specifying the position of the target object Ob increases, the accuracy of position detection of the target object Ob can be increased by using a method such as averaging them.

しかしながら、4つの検出用光源12を光検出器30を中心にして等距離かつ等角度間
隔に配置すると、第1検出用光源12Aと第3検出用光源12Cとの差動、および第2検
出用光源12Bと第4検出用光源12Dとの差動の中心が重なってしまい、光検出器30
が位置する個所に測定の中心が重複する。このため、光検出器30から離間した位置での
検出精度を十分に高めることができないという問題点がある。
However, if the four detection light sources 12 are arranged at equal distances and at equal angular intervals with the photodetector 30 as the center, the differential between the first detection light source 12A and the third detection light source 12C, and the second detection light source The center of differential between the light source 12B and the fourth light source for detection 12D overlaps, and the photodetector 30
The center of measurement overlaps where is located. For this reason, there exists a problem that the detection accuracy in the position away from the photodetector 30 cannot fully be raised.

また、4つの検出用光源12を光検出器30を中心にして等距離かつ等角度間隔に配置
すると、第1検出用光源12Aと第2検出用光源12Bとを結んだ仮想線Q13と、第3
検出用光源12Cと第4検出用光源12Dとを結んだ仮想線Q13とは平行である。この
ため、第1検出用光源12Aと第2検出用光源12Bとを差動させ、第3検出用光源12
Cと第4検出用光源12Dとを差動させても、互いに同一方向における対象物体Obの位
置情報を得ているにすぎない。また、第2検出用光源12Bと第4検出用光源12Dとを
結んだ仮想線Q14と、第1検出用光源12Aと第4検出用光源12Dとを結んだ仮想線
Q16とは平行である。このため、第2検出用光源12Bと第4検出用光源12Dとを差
動させ、第1検出用光源12Aと第4検出用光源12Dとを差動させても、互いに同一方
向における対象物体Obの位置情報を得ているにすぎない。このため、測定頻度を増大さ
せても重複した測定を行なっていることになるため、検出精度を十分に高めることができ
ないという問題点がある。
When the four detection light sources 12 are arranged at equal intervals and at equal angular intervals with the photodetector 30 as the center, a virtual line Q13 connecting the first detection light source 12A and the second detection light source 12B, and the first 3
The imaginary line Q13 connecting the detection light source 12C and the fourth detection light source 12D is parallel. For this reason, the first detection light source 12A and the second detection light source 12B are differentiated, and the third detection light source 12 is obtained.
Even if C and the fourth light source for detection 12D are differentiated, only position information of the target object Ob in the same direction is obtained. Further, the virtual line Q14 connecting the second detection light source 12B and the fourth detection light source 12D and the virtual line Q16 connecting the first detection light source 12A and the fourth detection light source 12D are parallel to each other. For this reason, even if the second detection light source 12B and the fourth detection light source 12D are differentiated and the first detection light source 12A and the fourth detection light source 12D are differentiated, the target objects Ob in the same direction can be obtained. I just got location information. For this reason, even if the measurement frequency is increased, duplicated measurements are performed, so that the detection accuracy cannot be sufficiently increased.

以上の問題点に鑑みて、本発明の課題は、測定頻度を高めることに伴って対象物体の位
置検出精度を高めることのできる光学式位置検出装置を提供することにある。
In view of the above problems, an object of the present invention is to provide an optical position detection device capable of increasing the position detection accuracy of a target object as the measurement frequency is increased.

上記課題を解決するために、本発明は、対象物体の位置を検出するための検出光を出射
する4つ以上の検出用光源を備えた光学式位置検出装置であって、前記検出光の出射側空
間に位置する前記対象物体で反射した前記検出光を受光する光検出器と、前記4つ以上の
検出用光源を順次点灯させる光源駆動部と、前記光検出器の受光結果に基づいて前記対象
物体の位置を検出する位置検出部と、を有し、前記出射側空間からみたときに、前記4つ
以上の検出用光源のうち、前記光検出器の周りで周方向で並ぶ第1検出用光源、第2検出
用光源、第3検出用光源および第4検出用光源は、前記光検出器からの距離が相違してい
ることを特徴とする。すなわち、第1検出用光源、第2検出用光源、第3検出用光源およ
び第4検出用光源のうち、少なくとも1つ検出用光源は、他の検出用光源と、前記光検出
器からの距離が相違していることを特徴とする。
In order to solve the above-described problems, the present invention provides an optical position detection device including four or more light sources for detection that emit detection light for detecting the position of a target object. A light detector that receives the detection light reflected by the target object located in a side space, a light source driving unit that sequentially turns on the four or more detection light sources, and a light reception result of the light detector based on the light reception result A position detection unit that detects a position of a target object, and when viewed from the emission side space, of the four or more light sources for detection, a first detection arranged in a circumferential direction around the photodetector The light source for light, the light source for 2nd detection, the light source for 3rd detection, and the light source for 4th detection differ in the distance from the said photodetector. That is, at least one of the first light source for detection, the second light source for detection, the third light source for detection, and the fourth light source for detection is a distance from the other light source for detection and the photodetector. Are different.

本発明では、光源駆動部は、4つ以上の検出用光源を順次点灯させ、その間、光検出器
は、対象物体で反射した検出光を受光する。従って、光検出器での検出結果を直接、ある
いは光検出器を介して2つの検出用光源を差動させたときの駆動電流を用いれば、位置検
出部は、対象物体の位置を検出することができる。ここで、出射側空間からみたときに、
4つ以上の検出用光源のうち、光検出器の周りで周方向で並ぶ第1検出用光源、第2検出
用光源、第3検出用光源および第4検出用光源は、光検出器からの距離が相違している。
このため、第1検出用光源と第3検出用光源との差動、および第2検出用光源と第4検出
用光源との差動の中心がずれているので、広い範囲にわたって高い検出精度を得ることが
できる。また、第1検出用光源、第2検出用光源、第3検出用光源および第4検出用光源
から出射された検出光を用いて測定を行なった際、重複した方向の測定を回避することが
できる。それ故、測定頻度を高めた分だけ、対象物体の位置検出精度を高めることができ
る。
In the present invention, the light source driving unit sequentially turns on four or more light sources for detection, and during that time, the photodetector receives the detection light reflected by the target object. Therefore, the position detection unit can detect the position of the target object by using the detection result of the light detector directly or by using the drive current when the two light sources for detection are differentiated via the light detector. Can do. Here, when viewed from the exit side space,
Among the four or more detection light sources, the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source that are arranged in the circumferential direction around the photodetector are provided from the photodetector. The distance is different.
For this reason, since the center of the differential between the first detection light source and the third detection light source and the difference between the second detection light source and the fourth detection light source are shifted, high detection accuracy is achieved over a wide range. Can be obtained. Further, when measurement is performed using the detection light emitted from the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source, measurement in overlapping directions can be avoided. it can. Therefore, the position detection accuracy of the target object can be increased by the increase in the measurement frequency.

本発明において、前記出射側空間からみたときに、前記第1検出用光源、前記第2検出
用光源、前記第3検出用光源および前記第4検出用光源は、前記光検出器からの距離が全
て相違していることが好ましい。このように構成すると、第1検出用光源と第3検出用光
源との差動、および第2検出用光源と第4検出用光源との差動の中心がずれているので、
広い範囲にわたって高い検出精度を得ることができる。また、測定頻度を増大させても重
複した測定を行なうことを確実に回避することができる。それ故、測定頻度を高めた分だ
け、対象物体の位置検出精度を高めることができる。
In the present invention, when viewed from the emission side space, the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source have a distance from the photodetector. All are preferably different. With this configuration, the center of the differential between the first detection light source and the third detection light source and the difference between the second detection light source and the fourth detection light source are shifted.
High detection accuracy can be obtained over a wide range. Further, even if the measurement frequency is increased, it is possible to reliably avoid performing duplicate measurements. Therefore, the position detection accuracy of the target object can be increased by the increase in the measurement frequency.

本発明においては、前記出射側空間からみたときに、前記第1検出用光源と前記第2検
出用光源とを結ぶ仮想線と、前記第3検出用光源と前記第4検出用光源とを結ぶ仮想線と
は、非平行であることが好ましい。このように構成すると、第1検出用光源と第2検出用
光源とを用いて対象物体の位置を検出した方向と、第3検出用光源と第4検出用光源とを
用いて対象物体の位置を検出した方向とが相違する。従って、重複した測定を行なうこと
を回避することができるので、測定頻度を高めた分だけ、対象物体の位置検出精度を高め
ることができる。
In the present invention, when viewed from the emission side space, an imaginary line connecting the first detection light source and the second detection light source, and the third detection light source and the fourth detection light source are connected. The virtual line is preferably non-parallel. With this configuration, the direction in which the position of the target object is detected using the first light source for detection and the second light source for detection, and the position of the target object using the third light source for detection and the fourth light source for detection. The direction in which is detected is different. Therefore, since it is possible to avoid performing duplicate measurements, it is possible to increase the position detection accuracy of the target object by an amount corresponding to the increase in the measurement frequency.

本発明においては、さらに、前記出射側空間からみたときに、前記第1検出用光源と前
記第4検出用光源とを結ぶ仮想線と、前記第2検出用光源と前記第3検出用光源とを結ぶ
仮想線とは、非平行であることが好ましい。このように構成すると、第1検出用光源と第
4検出用光源とを用いて対象物体の位置を検出した方向と、第2検出用光源と第3検出用
光源とを用いて対象物体の位置を検出した方向とが相違する。従って、重複した測定を行
なうことを回避することができるので、測定頻度を高めた分だけ、対象物体の位置検出精
度を高めることができる。
In the present invention, when viewed from the emission side space, a virtual line connecting the first detection light source and the fourth detection light source, the second detection light source, and the third detection light source, It is preferable that the virtual line connecting the two is non-parallel. With this configuration, the direction in which the position of the target object is detected using the first light source for detection and the fourth light source for detection, and the position of the target object using the second light source for detection and the third light source for detection. The direction in which is detected is different. Therefore, since it is possible to avoid performing duplicate measurements, it is possible to increase the position detection accuracy of the target object by an amount corresponding to the increase in the measurement frequency.

本発明において、前記出射側空間からみたときに、前記第1検出用光源、前記第2検出
用光源、前記第3検出用光源および前記第4検出用光源は、前記光検出器を中心に等角度
間隔に配置されている構成を採用することができる。
In the present invention, when viewed from the exit side space, the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source are centered on the photodetector. The structure arrange | positioned at an angle space | interval can be employ | adopted.

本発明において、前記出射側空間からみたときに、前記第1検出用光源、前記第2検出
用光源、前記第3検出用光源および前記第4検出用光源は、前記光検出器を中心に不等の
角度間隔に配置されている構成を採用してもよい。すなわち、第1検出用光源、第2検出
用光源、第3検出用光源および第4検出用光源において隣り合う2つの検出用光源がなす
4つの角度のうち、少なくとも1つの角度が他の角度と相違していることを特徴とする。
In the present invention, when viewed from the exit side space, the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source are not centered on the photodetector. You may employ | adopt the structure arrange | positioned at angular intervals, such as. That is, at least one of four angles formed by two adjacent detection light sources in the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source is different from the other angles. It is characterized by being different.

本発明において、前記位置検出部は、前記光検出器の受光結果に基づいて、前記第1検
出用光源、前記第2検出用光源、前記第3検出用光源および前記第4検出用光源のうち、
一部の検出用光源と他の一部の検出用光源とを差動させた結果により前記対象物体の位置
を検出することが好ましい。このような差動を用いれば、環境光等の影響を自動的に補正
することができる。
In this invention, the said position detection part is based on the light reception result of the said photodetector among the said 1st light source for a detection, the said 2nd light source for a detection, the said 3rd light source for a detection, and the said 4th light source for a detection. ,
It is preferable to detect the position of the target object based on a result obtained by differentiating a part of the detection light sources and another part of the detection light sources. If such a differential is used, the influence of ambient light or the like can be automatically corrected.

本発明において、前記出射側空間を介さずに前記光検出器に入射する参照光を出射する
参照用光源を備え、前記位置検出部は、前記光検出器の受光結果に基づいて、前記第1検
出用光源、前記第2検出用光源、前記第3検出用光源および前記第4検出用光源のうち、
一部の検出用光源と前記参照用光源とを組み合わせを変えて差動させた複数の結果により
前記対象物体の位置を検出する構成を採用してもよい。このような差動を用いれば、環境
光等の影響を自動的に補正することができる。
In the present invention, a reference light source that emits reference light incident on the photodetector without passing through the emission-side space is provided, and the position detector is configured to perform the first detection based on a light reception result of the photodetector. Among the detection light source, the second detection light source, the third detection light source, and the fourth detection light source,
A configuration may be adopted in which the position of the target object is detected based on a plurality of results obtained by differentiating a combination of some of the detection light sources and the reference light source. If such a differential is used, the influence of ambient light or the like can be automatically corrected.

本発明において、前記位置検出部は、前記4つ以上の検出用光源の全てが同時、あるい
は順次点灯したときの前記光検出器での受光結果に基づいて前記検出光の出射方向におけ
る前記対象物体の位置を検出する構成を採用してもよい。
In the present invention, the position detection unit may detect the target object in the direction in which the detection light is emitted based on a light reception result of the photodetector when all of the four or more detection light sources are turned on simultaneously or sequentially. A configuration for detecting the position of the position may be adopted.

本発明において、前記検出光は赤外光であることが好ましい。かかる構成によれば、検
出光が視認されないので、表示装置に適用した場合でも表示を妨げない等、光学式位置検
出装置を各種機器に用いることができる。
In the present invention, the detection light is preferably infrared light. According to such a configuration, since the detection light is not visually recognized, the optical position detection device can be used for various devices, for example, when it is applied to a display device, the display is not hindered.

本発明の実施の形態1に係る光学式位置検出装置の主要部を模式的に示す説明図である。It is explanatory drawing which shows typically the principal part of the optical position detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光学式位置検出装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the optical position detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光学式位置検出装置で用いた座標検出の基本原理を示す説明図である。It is explanatory drawing which shows the basic principle of the coordinate detection used with the optical position detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光学式位置検出装置において差動により求めた複数の結果から対象物体のX座標およびY座標を特定する方法を示す説明図である。It is explanatory drawing which shows the method of specifying X coordinate and Y coordinate of a target object from the several result calculated | required by the differential in the optical position detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光学式位置検出装置において、参照光と検出光との差動を利用して対象物体の位置を検出する原理を示す説明図である。In the optical position detection apparatus according to Embodiment 1 of the present invention, it is an explanatory diagram showing the principle of detecting the position of a target object using the difference between reference light and detection light. 本発明の実施の形態1に係る光学式位置検出装置において、位置検出部で行なわれる処理内容等を示す説明図である。It is explanatory drawing which shows the processing content etc. which are performed in the position detection part in the optical position detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る光学式位置検出装置の主要部を模式的に示す説明図である。It is explanatory drawing which shows typically the principal part of the optical position detection apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る光学式位置検出装置において差動により求めた複数の結果から対象物体のX座標およびY座標を特定する方法を示す説明図である。It is explanatory drawing which shows the method of specifying X coordinate and Y coordinate of a target object from the several result calculated | required by the difference in the optical position detection apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態1に係る光学式位置検出装置をハンド装置に設けたロボットアームの説明図である。It is explanatory drawing of the robot arm which provided the optical position detection apparatus which concerns on Embodiment 1 of this invention in the hand apparatus. 従来の光学式位置検出装置の説明図である。It is explanatory drawing of the conventional optical position detection apparatus.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説
明においては、互いに交差する軸をX軸、Y軸およびZ軸とし、検出光の出射方向をZ軸
方向として説明する。また、以下に参照する図面では、X軸方向の一方側をX1側とし、
他方側をX2側とし、Y軸方向の一方側をY1側とし、他方側をY2側として示してある
。また、以下の説明では、図10に示す構成との対応がわかりやすいように、対応する構
成要素については同一の符号を付して説明する。
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the axes intersecting each other will be described as the X axis, the Y axis, and the Z axis, and the emission direction of the detection light will be described as the Z axis direction. In the drawings referred to below, one side in the X-axis direction is the X1 side,
The other side is the X2 side, one side in the Y-axis direction is the Y1 side, and the other side is the Y2 side. Further, in the following description, the corresponding components are described with the same reference numerals so that the correspondence with the configuration shown in FIG. 10 is easily understood.

[実施の形態1]
(全体構成)
図1は、本発明の実施の形態1に係る光学式位置検出装置の主要部を模式的に示す説明
図であり、図1(a)、(b)は、光学式位置検出装置の構成要素の立体的な配置を示す
説明図、および光学式位置検出装置の構成要素の平面的な配置を示す説明図である。図2
は、本発明の実施の形態1に係る光学式位置検出装置の全体構成を示す説明図である。
[Embodiment 1]
(overall structure)
FIG. 1 is an explanatory view schematically showing a main part of an optical position detection device according to Embodiment 1 of the present invention. FIGS. 1A and 1B are components of the optical position detection device. It is explanatory drawing which shows three-dimensional arrangement | positioning, and explanatory drawing which shows the planar arrangement | positioning of the component of an optical position detection apparatus. FIG.
These are explanatory drawings which show the whole structure of the optical position detection apparatus which concerns on Embodiment 1 of this invention.

図1および図2において、本形態の光学式位置検出装置10は、ロボットハンド装置で
の触覚センサー等として利用される光学装置であり、Z軸方向の一方側Z1に向けて検出
光L2を出射する複数の検出用光源12を備えた光源装置11と、対象物体Obで反射し
た検出光L3を検出する光検出器30とを備えている。また、光学式位置検出装置10は
、シート状あるいは板状の透光部材40を有している場合があり、この場合、透光部材4
0の第1面41側に位置する対象物体Obの位置を検出する。従って、検出用光源12は
、透光部材40において第1面41側とは反対側の第2面42側から第1面41側に検出
光L2を出射し、光検出器30は、対象物体Obで反射して透光部材40の第2面42側
に透過してきた検出光L3を検出する。このため、光検出器30の受光部31は、透光部
材40の第2面42に対向している。
1 and 2, an optical position detection device 10 of this embodiment is an optical device used as a tactile sensor or the like in a robot hand device, and emits detection light L2 toward one side Z1 in the Z-axis direction. A light source device 11 including a plurality of detection light sources 12 and a light detector 30 that detects the detection light L3 reflected by the target object Ob. The optical position detection device 10 may have a sheet-like or plate-like translucent member 40, and in this case, the translucent member 4.
The position of the target object Ob located on the first surface 41 side of 0 is detected. Therefore, the light source for detection 12 emits the detection light L2 from the second surface 42 side opposite to the first surface 41 side in the translucent member 40 to the first surface 41 side. Detection light L3 reflected by Ob and transmitted to the second surface 42 side of the translucent member 40 is detected. For this reason, the light receiving portion 31 of the photodetector 30 faces the second surface 42 of the translucent member 40.

本形態において、光源装置11は、複数の検出用光源12として、4つ以上の検出用光
源を備えており、本形態において、検出用光源12の数は4つである。より具体的には、
光源装置11は、複数の検出用光源12として、第1検出用光源12A、第2検出用光源
12B、第3検出用光源12Cおよび第4検出用光源12Dを備えており、これらの検出
用光源12はいずれも、発光部120a〜120dを透光部材40に向けている。従って
、検出用光源12から出射された検出光L2は、透光部材40を透過して、第1面41側
(光源装置11からの検出光L2の出射側空間)に出射され、本形態では、かかる出射側
空間(第1面41側の空間)によって、対象物体Obの位置が検出される検出空間10R
が構成されている。
In this embodiment, the light source device 11 includes four or more detection light sources as the plurality of detection light sources 12, and in this embodiment, the number of the detection light sources 12 is four. More specifically,
The light source device 11 includes, as a plurality of detection light sources 12, a first detection light source 12A, a second detection light source 12B, a third detection light source 12C, and a fourth detection light source 12D. 12 has the light emitting portions 120 a to 120 d directed to the light transmissive member 40. Accordingly, the detection light L2 emitted from the detection light source 12 is transmitted through the translucent member 40 and emitted to the first surface 41 side (the emission side space of the detection light L2 from the light source device 11). The detection space 10R in which the position of the target object Ob is detected by the emission side space (the space on the first surface 41 side).
Is configured.

第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび第4検出
用光源12Dは、検出空間10R(Z軸方向)からみたとき、光検出器30の中心光軸の
周りにこの順に配置されている。
The first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D have the central optical axis of the photodetector 30 when viewed from the detection space 10R (Z-axis direction). It is arranged around in this order.

また、第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび第
4検出用光源12Dは、光検出器30を中心に等角度間隔に配置されている。すなわち、
光検出器30と第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cお
よび第4検出用光源12Dとを各々直線で結んだときの中心角を以下
ΘAB=第1検出用光源12A、光検出器30、第2検出用光源12Bが成す角度
ΘBC=第2検出用光源12B、光検出器30、第3検出用光源12Cが成す角度
ΘCD=第3検出用光源12C、光検出器30、第4検出用光源12Dが成す角度
ΘAD=第1検出用光源12A、光検出器30、第4検出用光源12Dが成す角度
にように定義したとき、角度ΘAB、ΘBC、ΘCD、ΘADは以下の関係
ΘAB=ΘBC=ΘCD=ΘAD=90°
に設定されている。
Further, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are arranged at equiangular intervals with the photodetector 30 as the center. That is,
The central angle when the light detector 30 and the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are connected by a straight line is expressed as follows: Θ AB = first Angle formed by detection light source 12A, photodetector 30, and second detection light source 12B Θ BC = angle formed by second detection light source 12B, photodetector 30, and third detection light source 12C Θ CD = for third detection Angle Θ AD formed by light source 12C, photodetector 30, and fourth detection light source 12D is defined as angle Θ AD = angle formed by first detection light source 12A, photodetector 30, and fourth detection light source 12D. AB, Θ BC, Θ CD, Θ AD the following relationship Θ AB = Θ BC = Θ CD = Θ AD = 90 °
Is set to

ここで、第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび
第4検出用光源12Dは、検出空間10R(Z軸方向)からみたとき、第1検出用光源1
2Aと光検出器30との距離、第2検出用光源12Bと光検出器30との距離、第3検出
用光源12Cと光検出器30との距離、および第4検出用光源12Dと光検出器30との
距離は相違している。
Here, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are the first detection light source 1 when viewed from the detection space 10R (Z-axis direction).
The distance between 2A and the photodetector 30, the distance between the second detection light source 12B and the photodetector 30, the distance between the third detection light source 12C and the photodetector 30, and the fourth detection light source 12D and the light detection. The distance from the vessel 30 is different.

より具体的には、第1検出用光源12Aと光検出器30との距離、第2検出用光源12
Bと光検出器30との距離、第3検出用光源12Cと光検出器30との距離、および第4
検出用光源12Dと光検出器30との距離を各々、r1、r2、r3、r4としたとき、距離
1、r2、r3、r4は、以下の条件
4<r1<r2<r3
に設定されている。
More specifically, the distance between the first detection light source 12 </ b> A and the photodetector 30, the second detection light source 12.
B, the distance between the photodetector 30, the distance between the third detection light source 12 </ b> C and the photodetector 30, and the fourth
When the distances between the detection light source 12D and the photodetector 30 are r 1 , r 2 , r 3 , and r 4 , the distances r 1 , r 2 , r 3 , and r 4 satisfy the following conditions: r 4 < r 1 <r 2 <r 3
Is set to

また、第1検出用光源12Aと第2検出用光源12Bとを結ぶ仮想線と、第3検出用光
源12Cと第4検出用光源12Dとを結ぶ仮想線とは、非平行であり、第1検出用光源1
2Aと第4検出用光源12Dとを結ぶ仮想線と、第2検出用光源12Bと第3検出用光源
12Cとを結ぶ仮想線とは、非平行である。
Further, the virtual line connecting the first detection light source 12A and the second detection light source 12B and the virtual line connecting the third detection light source 12C and the fourth detection light source 12D are non-parallel, and the first Light source for detection 1
The virtual line connecting 2A and the fourth detection light source 12D and the virtual line connecting the second detection light source 12B and the third detection light source 12C are nonparallel.

本形態において、検出用光源12はいずれも、LED(発光ダイオード)等の発光素子
により構成され、本形態において、検出用光源12はいずれも、ピーク波長が840〜1
000nmに位置する赤外光からなる検出光L2(検出光L2a〜L2d)を発散光とし
て放出する。
In this embodiment, each of the detection light sources 12 is composed of a light emitting element such as an LED (light emitting diode), and in this embodiment, each of the detection light sources 12 has a peak wavelength of 840 to 1.
Detection light L2 (detection light L2a to L2d) made of infrared light located at 000 nm is emitted as diverging light.

また、光源装置11は、光検出器30に発光部120rを向けた参照用光源12Rも備
えている。参照用光源12Rも、検出用光源12と同様、LED(発光ダイオード)等に
より構成され、参照用光源12Rは、ピーク波長が840〜1000nmに位置する赤外
光からなる参照光Lrを発散光として放出する。但し、参照用光源12Rから出射される
参照光Lrは、参照用光源12Rの向きや、参照用光源12Rに設けられる遮光カバー(
図示せず)等によって、透光部材40の第1面41側(検出空間10R)に入射せず、検
出空間10Rを介さずに光検出器30に入射するようになっている。
The light source device 11 also includes a reference light source 12R in which the light emitting unit 120r faces the photodetector 30. Similarly to the detection light source 12, the reference light source 12 </ b> R is configured by an LED (light emitting diode) or the like, and the reference light source 12 </ b> R uses the reference light Lr composed of infrared light having a peak wavelength of 840 to 1000 nm as diverging light. discharge. However, the reference light Lr emitted from the reference light source 12R is directed to the direction of the reference light source 12R or a light shielding cover (
For example, the light does not enter the first surface 41 side (detection space 10R) of the translucent member 40 but enters the light detector 30 without passing through the detection space 10R.

光検出器30は、透光部材40に受光部31を向けたフォトダイオードやフォトトラン
ジスター等からなり、本形態において、光検出器30は赤外域の感度ピークを備えたフォ
トダイオードである。
The photodetector 30 includes a photodiode, a phototransistor, or the like with the light receiving unit 31 facing the translucent member 40. In this embodiment, the photodetector 30 is a photodiode having a sensitivity peak in the infrared region.

(位置検出部等の構成)
図2に示すように、光源装置11は複数の検出用光源12を駆動する光源駆動部14を
備えている。光源駆動部14は、検出用光源12および参照用光源12Rを駆動する光源
駆動回路140と、光源駆動回路140を介して複数の検出用光源12および参照用光源
12Rの各々の点灯パターンを制御する光源制御部145とを備えている。光源駆動回路
140は、第1検出用光源12A〜第4検出用光源12Dを駆動する光源駆動回路140
a〜140dと、参照用光源12Rを駆動する光源駆動回路140rとを備えている。光
源制御部145は、光源駆動回路140a〜140d、140rの全てを制御する。
(Configuration of position detector, etc.)
As shown in FIG. 2, the light source device 11 includes a light source driving unit 14 that drives a plurality of light sources 12 for detection. The light source driving unit 14 controls the light source driving circuit 140 that drives the detection light source 12 and the reference light source 12R, and the lighting pattern of each of the plurality of detection light sources 12 and the reference light source 12R via the light source driving circuit 140. A light source controller 145. The light source driving circuit 140 drives the first detection light source 12A to the fourth detection light source 12D.
a to 140d and a light source driving circuit 140r for driving the reference light source 12R. The light source control unit 145 controls all of the light source driving circuits 140a to 140d and 140r.

光検出器30には位置検出部50が電気的に接続されており、光検出器30での検出結
果は位置検出部50に出力される。位置検出部50は、光検出器30での検出結果に基づ
いて対象物体Obの位置を検出するための信号処理部55を備えており、かかる信号処理
部55は、増幅器や比較器等を備えている。また、位置検出部50は、対象物体ObのX
座標を検出するX座標検出部51と、対象物体ObのY座標を検出するY座標検出部52
と、対象物体ObのZ座標を検出するZ座標検出部53とを備えている。このように構成
した位置検出部50と光源駆動部14とは連動して動作し、後述する位置検出を行なう。
A position detector 50 is electrically connected to the photodetector 30, and the detection result of the photodetector 30 is output to the position detector 50. The position detection unit 50 includes a signal processing unit 55 for detecting the position of the target object Ob based on the detection result of the photodetector 30. The signal processing unit 55 includes an amplifier, a comparator, and the like. ing. Further, the position detection unit 50 detects the X of the target object Ob.
An X coordinate detection unit 51 that detects coordinates, and a Y coordinate detection unit 52 that detects Y coordinates of the target object Ob.
And a Z coordinate detection unit 53 for detecting the Z coordinate of the target object Ob. The position detection unit 50 and the light source driving unit 14 configured as described above operate in conjunction with each other and perform position detection described later.

(差動を利用した座標検出の原理)
図3は、本発明の実施の形態1に係る光学式位置検出装置10で用いた座標検出の基本
原理を示す説明図であり、図3(a)、(b)は、対象物体Obの位置と光検出器30で
の受光強度との関係を模式的に示す説明図、および検出器30での受光強度が等しくなる
ように検出光L2の出射強度を調整する様子を模式的に示す説明図である。図4は、本発
明の実施の形態1に係る光学式位置検出装置10において差動により求めた複数の結果か
ら対象物体ObのX座標およびY座標を特定する方法を示す説明図である。
(Principle of coordinate detection using differential)
FIG. 3 is an explanatory diagram showing the basic principle of coordinate detection used in the optical position detection device 10 according to Embodiment 1 of the present invention, and FIGS. 3A and 3B show the position of the target object Ob. And an explanatory diagram schematically showing the relationship between the received light intensity at the light detector 30 and the adjustment of the emission intensity of the detection light L2 so that the received light intensity at the detector 30 is equal. It is. FIG. 4 is an explanatory diagram illustrating a method for specifying the X coordinate and the Y coordinate of the target object Ob from a plurality of results obtained by differential in the optical position detection device 10 according to the first embodiment of the present invention.

本形態の光学式位置検出装置10では、図3〜図5を参照して以下に説明するように、
位置検出部50は、検出用光源12同士の差動、あるいは検出用光源12と参照用光源1
2Rとの差動により、2つの検出用光源12のうちの一方の検出用光源12と対象物体O
bとの距離と、他方の検出用光源12と対象物体Obとの距離の比を求め、かかる比に基
づいて、対象物体Obの位置を検出する。
In the optical position detection device 10 of the present embodiment, as described below with reference to FIGS.
The position detection unit 50 is a differential between the detection light sources 12 or the detection light source 12 and the reference light source 1.
Due to the differential with 2R, one of the two detection light sources 12 and the target object O are detected.
The ratio of the distance to b and the distance between the other detection light source 12 and the target object Ob is obtained, and the position of the target object Ob is detected based on the ratio.

本形態の光学式位置検出装置10において、透光部材40の第1面41側(光源装置1
1からの検出光L2の出射側の空間)には検出空間10Rが設定されている。また、2つ
の検出用光源12、例えば、第1検出用光源12Aと第3検出用光源12CはX軸方向お
よびY軸方向で離間している。このため、第1検出用光源12Aが点灯して検出光L2a
を出射すると、検出光L2aは、図3(a)に示すように、一方側から他方側に向けて強
度が単調減少する第1光強度分布L2Gaを形成する。また、第3検出用光源12Cが点
灯して検出光L2cを出射すると、検出光L2cは、透光部材40を透過して第1面41
側(検出空間10R)に、一方側から他方側に向けて強度が単調増加する第2光強度分布
L2Gcを形成する。
In the optical position detection device 10 of the present embodiment, the first surface 41 side of the translucent member 40 (light source device 1
The detection space 10R is set in the space on the emission side of the detection light L2 from 1. Also, the two detection light sources 12, for example, the first detection light source 12A and the third detection light source 12C are separated from each other in the X-axis direction and the Y-axis direction. Therefore, the first detection light source 12A is turned on and the detection light L2a.
As shown in FIG. 3A, the detection light L2a forms a first light intensity distribution L2Ga whose intensity monotonously decreases from one side to the other side, as shown in FIG. Further, when the third detection light source 12C is turned on and the detection light L2c is emitted, the detection light L2c is transmitted through the translucent member 40 and the first surface 41.
A second light intensity distribution L2Gc in which the intensity monotonously increases from one side to the other side is formed on the side (detection space 10R).

このような検出光L2a、L2cの差動を利用して対象物体Obの位置情報を得るには
、図3(a)に示すように、まず、第1検出用光源12Aを点灯させる一方、第3検出用
光源12Cを消灯させ、一方側から他方側に向かって強度が単調減少していく第1光強度
分布L2Gaを形成する。また、第1検出用光源12Aを消灯させる一方、第3検出用光
源12Cを点灯させ、一方側から他方側に向かって強度が単調増加していく第2光強度分
布L2Gcを形成する。従って、検出空間10Rに対象物体Obが配置されると、対象物
体Obにより検出光L2が反射され、その反射光の一部が光検出器30により検出される
。その際、対象物体Obでの反射強度は、対象物体Obが位置する個所での検出光L2の
強度に比例し、光検出器30での受光強度は対象物体Obでの反射強度に比例する。従っ
て、光検出器30での受光強度は、対象物体Obの位置に対応する値となる。それ故、図
3(b)に示すように、第1光強度分布L2Gaを形成した際の光検出器30での検出値
LGaと、第2光強度分布L2Gcを形成した際の光検出器30での検出値LGcとが等
しくなるように、第1検出用光源12Aに対する制御量(駆動電流)を調整した際の駆動
電流と、第3検出用光源12Cに対する制御量(駆動電流)を調整した際の駆動電流との
比や調整量の比等を用いれば、XY平面内において対象物体Obが第1検出用光源12A
と第3検出用光源12Cとの間のいずれの位置に存在するかを検出できることになる。
In order to obtain the position information of the target object Ob using the differential between the detection lights L2a and L2c, as shown in FIG. 3A, first, the first detection light source 12A is turned on, 3 The light source 12C for detection is turned off, and a first light intensity distribution L2Ga in which the intensity monotonously decreases from one side to the other side is formed. Further, the first detection light source 12A is turned off while the third detection light source 12C is turned on to form a second light intensity distribution L2Gc in which the intensity monotonously increases from one side to the other side. Therefore, when the target object Ob is arranged in the detection space 10R, the detection light L2 is reflected by the target object Ob, and a part of the reflected light is detected by the photodetector 30. At that time, the reflection intensity at the target object Ob is proportional to the intensity of the detection light L2 at the position where the target object Ob is located, and the received light intensity at the photodetector 30 is proportional to the reflection intensity at the target object Ob. Accordingly, the received light intensity at the photodetector 30 is a value corresponding to the position of the target object Ob. Therefore, as shown in FIG. 3B, the detection value LGa when the first light intensity distribution L2Ga is formed and the photodetector 30 when the second light intensity distribution L2Gc is formed. The drive current when adjusting the control amount (drive current) for the first detection light source 12A and the control amount (drive current) for the third detection light source 12C were adjusted so that the detection value LGc at If the ratio to the driving current at the time, the ratio of the adjustment amount, or the like is used, the target object Ob in the XY plane becomes the first light source 12A
And the third detection light source 12C can be detected.

かかるモデルを数理的に説明する。まず、各パラメータを以下
T=対象物体Obの反射率
t=第1検出用光源12Aから出射された検出光L2が対象物体Obで反射して
光検出器30に到る距離関数
A=検出空間10Rに対象物体Obが存在する状態で第1検出用光源12Aが
点灯したときの光検出器30の検出強度
t=第3検出用光源12Cから出射された検出光L2が対象物体Obで反射して
光検出器30に到る距離関数
C=検出空間10Rに対象物体Obが存在する状態で第3検出用光源12Cが
点灯したときの光検出器30の検出強度
とする。なお、第1検出用光源12Aおよび第3検出用光源12Cの発光強度は、駆動電
流と発光係数との積で表されるが、以下の説明では、発光係数を1とする。また、上記の
差動において、光検出器30での受光強度が等しくなったときの第1検出用光源12Aに
対する駆動電流をIAとし、第3検出用光源12Cに対する駆動電流をICとする。
Such a model will be described mathematically. First, reflectance of below T = target object Ob each parameter A t = detection light L2 emitted from the first detection light source 12A is reflected by the target object Ob
Distance function to the light detector 30 A = When the target object Ob exists in the detection space 10R, the first detection light source 12A
Detection intensity C t of the light detector 30 when it is lit = Detection light L2 emitted from the third detection light source 12C is reflected by the target object Ob
Distance function to the light detector 30 C = the third detection light source 12C is in a state where the target object Ob exists in the detection space 10R.
It is set as the detection intensity of the light detector 30 when it is turned on. The light emission intensity of the first detection light source 12A and the third detection light source 12C is represented by the product of the drive current and the light emission coefficient. In the following description, the light emission coefficient is 1. In the above-described differential, the driving current for the first detection light source 12A when the received light intensity at the photodetector 30 becomes equal is I A, and the driving current for the third detection light source 12C is I C. .

また、検出空間10Rに対象物体Obが存在する状態で、前記した差動を行なうと、
A=T×At×IA+環境光 ・・式(1)
C=T×Ct×IC+環境光 ・・式(2)
の関係が得られる。
Further, when the above-described differential is performed in a state where the target object Ob exists in the detection space 10R,
A = T × A t × I A + Ambient Light ・ ・ Formula (1)
C = T × C t × I C + Ambient Light ・ ・ Formula (2)
The relationship is obtained.

ここで、差動の際の光検出器30の検出強度は等しいことから、式(1)、(2)から
下式
T×At×IA+環境光=T×Ct×IC+環境光
T×At×IA=T×Ct×IC・・式(3)
が導かれる。
Here, since the detection intensity of the photodetector 30 at the time of the differential is equal, from the formulas (1) and (2), the following formula T × A t × I A + ambient light = T × C t × I C + Ambient light T × A t × I A = T × C t × I C .. (3)
Is guided.

また、距離関数At、Ctの比PACは、下式
AC=At/Ct・・式(4)
で定義されることから、式(3)、(4)から、比PAC
AC=IC/IA・・式(5)
で示すように表される。かかる式(5)では、環境光の項、対象物体Obの反射率の項が
存在しない。それ故、距離関数At、Ctの比PACには、環境光、対象物体Obの反射率が
影響しない。なお、上記の数理モデルについては、対象物体Obで反射せずに入射した検
出光L2の影響等を相殺するための補正を行なってもよい。
Further, the ratio P AC between the distance functions A t and C t is expressed by the following equation: P AC = A t / C t ··· (4)
From the formulas (3) and (4), the ratio P AC is P AC = I C / I A ··· Formula (5)
It is expressed as In the equation (5), there is no term of ambient light and no term of reflectance of the target object Ob. Therefore, the ambient light and the reflectance of the target object Ob do not affect the ratio P AC between the distance functions A t and C t . In addition, about said mathematical model, you may correct | amend in order to cancel the influence etc. of the detection light L2 which entered without reflecting with the target object Ob.

ここで、検出用光源12は点光源であり、ある地点での光強度は、光源からの距離の2
乗に反比例する。従って、第1検出用光源12Aと対象物体Obとの離間距離P1と、第
3検出用光源12Cと対象物体Obとの離間距離P2との比は、下式
AC=(P1)2:(P2)2
により求められる。それ故、対象物体Obは、図4に示すように、検出用光源12Aと第
3検出用光源12Cとを結ぶ仮想線Q11をP1:P2で分割した位置を通る等比線R1
1上に対象物体Obが存在することがわかる。
Here, the light source for detection 12 is a point light source, and the light intensity at a certain point is 2 of the distance from the light source.
Inversely proportional to the power. Therefore, the ratio of the separation distance P1 between the first detection light source 12A and the target object Ob and the separation distance P2 between the third detection light source 12C and the target object Ob is expressed by the following formula: P AC = (P1) 2 :( P2) 2
Is required. Therefore, the target object Ob, as shown in FIG. 4, is an isoline R1 passing through a position obtained by dividing a virtual line Q11 connecting the detection light source 12A and the third detection light source 12C by P1: P2.
1 that the target object Ob exists.

同様に、第2検出用光源12Bと第4検出用光源12Dとを差動させて、第2検出用光
源12Bと対象物体Obとの距離と、第4検出用光源12Dと対象物体Obとの距離の比
を求めれば、第2検出用光源12Bと第4検出用光源12Dとを結ぶ仮想線Q12を距離
の比で分割した位置を通る等比線R12上に対象物体Obが存在することがわかる。
Similarly, the second detection light source 12B and the fourth detection light source 12D are differentiated, and the distance between the second detection light source 12B and the target object Ob, and the fourth detection light source 12D and the target object Ob. If the distance ratio is obtained, the target object Ob may exist on the contour line R12 passing through the position obtained by dividing the virtual line Q12 connecting the second detection light source 12B and the fourth detection light source 12D by the distance ratio. Recognize.

さらに、第1検出用光源12Aと第2検出用光源12Bとを差動させれば、第1検出用
光源12Aと第2検出用光源12Bとを結ぶ仮想線Q13を所定の比で分割した位置を通
る等比線R13を求めることができる。また、第2検出用光源12Bと第3検出用光源1
2Cとを差動させれば、第2検出用光源12Bと第3検出用光源12Cとを結ぶ仮想線Q
14を所定の比で分割した位置を通る等比線R14を求めることができる。また、第3検
出用光源12Cと第4検出用光源12Dとを差動させれば、第3検出用光源12Cと第4
検出用光源12Dとを結ぶ仮想線Q15を所定の比で分割した位置を通る等比線R15を
求めることができる。また、第1検出用光源12Aと第4検出用光源12Dとを差動させ
れば、第1検出用光源12Aと第4検出用光源12Dとを結ぶ仮想線Q16を所定の比で
分割した位置を通る等比線R16を求めることができる。なお、図4は、本形態で採用し
た原理を幾何学的に示したものであり、実際には、得られたデータを用いて計算を行う。
Further, if the first detection light source 12A and the second detection light source 12B are differentiated, a position obtained by dividing the virtual line Q13 connecting the first detection light source 12A and the second detection light source 12B by a predetermined ratio. A contour line R13 passing through can be obtained. The second detection light source 12B and the third detection light source 1
If 2C is differentiated, a virtual line Q connecting the second detection light source 12B and the third detection light source 12C.
It is possible to obtain a contour line R14 passing through a position obtained by dividing 14 by a predetermined ratio. If the third detection light source 12C and the fourth detection light source 12D are differentiated, the third detection light source 12C and the fourth detection light source 12C
It is possible to obtain the contour line R15 passing through the position obtained by dividing the virtual line Q15 connecting the detection light source 12D by a predetermined ratio. Further, if the first detection light source 12A and the fourth detection light source 12D are differentiated, the virtual line Q16 connecting the first detection light source 12A and the fourth detection light source 12D is divided by a predetermined ratio. A contour line R16 passing through can be obtained. FIG. 4 shows the principle adopted in this embodiment geometrically, and actually, the calculation is performed using the obtained data.

かかる構成によれば、対象物体Obの位置を特定するための情報量が多いため、差動に
より得られた複数の結果全部を平均する等の手法を用いれば、対象物体Obの位置検出精
度を高めることができることになる。
According to such a configuration, since there is a large amount of information for specifying the position of the target object Ob, the position detection accuracy of the target object Ob can be improved by using a method such as averaging all of a plurality of results obtained by differential. Can be increased.

(参照光Lrと検出光L2との差動)
図5は、本発明の実施の形態1に係る光学式位置検出装置10において、参照光Lrと
検出光L2との差動を利用して対象物体Obの位置を検出する原理を示す説明図であり、
図5(a)、(b)は、検出用光源12から対象物体Obまでの距離と検出光L2等の受
光強度との関係を示す説明図、および光源への駆動電流を調整した後の様子を示す説明図
である。
(Differential between reference light Lr and detection light L2)
FIG. 5 is an explanatory diagram showing the principle of detecting the position of the target object Ob using the difference between the reference light Lr and the detection light L2 in the optical position detection device 10 according to the first embodiment of the present invention. Yes,
5A and 5B are explanatory diagrams showing the relationship between the distance from the light source for detection 12 to the target object Ob and the received light intensity of the detection light L2, and the state after adjusting the drive current to the light source. It is explanatory drawing which shows.

本形態の光学式位置検出装置10においては、検出光L2aと検出光L2cとの直接的
な差動に代えて、検出光L2aと参照光Lrとの差動と、検出光L2cと参照光Lrとの
差動とを利用し、最終的に図3(a)、(b)を参照して説明した原理と同様な結果を導
く。ここで、検出光L2aと参照光Lrとの差動、および検出光L2cと参照光Lrとの
差動は、以下のようにして実行される。
In the optical position detection device 10 of the present embodiment, instead of direct differential between the detection light L2a and the detection light L2c, the differential between the detection light L2a and the reference light Lr, the detection light L2c, and the reference light Lr. Finally, a result similar to the principle described with reference to FIGS. 3A and 3B is derived. Here, the differential between the detection light L2a and the reference light Lr and the differential between the detection light L2c and the reference light Lr are performed as follows.

図5(a)に示すように、検出空間10Rに対象物体Obが存在する状態においては、
第1検出用光源12Aから対象物体Obまで距離と、光検出器30での検出光L2aの受
光強度Daとは、実線SAで示すように単調に変化する。これに対して、参照用光源12
Rから出射された参照光Lrの光検出器30での検出強度は、実線SRで示すように、対
象物体Obの位置にかかわらず、一定である。従って、光検出器30での検出光L2aの
受光強度Daと、光検出器30での参照光Lrの検出強度Drとは、相違している。
As shown in FIG. 5A, in the state where the target object Ob exists in the detection space 10R,
The distance from the first detection light source 12A to the object Ob, the light reception intensity D a of the detection light L2a from the light detector 30 is monotonously changed as shown by the solid line SA. In contrast, the reference light source 12
The detection intensity of the reference light Lr emitted from R at the photodetector 30 is constant regardless of the position of the target object Ob, as indicated by the solid line SR. Thus, the received light intensity D a of the detection light L2a from the light detector 30, the detection intensity D r of the reference light Lr of the light detector 30 is different.

次に、図5(b)に示すように、第1検出用光源12Aに対する駆動電流、および参照
用光源12Rに対する駆動電流のうちの少なくとも一方を調整し、光検出器30での検出
光L2aの受光強度Daと、参照光Lrの光検出器30での検出強度Drとを一致させる。
このような差動は、参照光Lrと検出光L2aとの間で行なわれるとともに、参照光Lr
と検出光L2cとの間でも行なわれる。従って、光検出器30での検出光L2a、L2c
(対象物体Obで反射した検出光L3a、L3c)の検出結果と、光検出器30での参照
光Lrの検出結果とが等しくなった時点での第1検出用光源12Aに対する駆動電流と、
第3検出用光源12Cに対する駆動電流との比を求めることができる。それ故、第1検出
用光源12Aと第3検出用光源12Cとの間のいずれの位置に対象物体Obが存在するか
を検出できることになる。
Next, as shown in FIG. 5B, at least one of the drive current for the first detection light source 12A and the drive current for the reference light source 12R is adjusted, and the detection light L2a from the photodetector 30 is adjusted. The received light intensity D a is matched with the detected intensity D r of the reference light Lr at the photodetector 30.
Such differential is performed between the reference light Lr and the detection light L2a, and the reference light Lr.
And the detection light L2c. Therefore, the detection lights L2a and L2c in the photodetector 30
A drive current for the first detection light source 12A when the detection result of the detection light L3a and L3c reflected by the target object Ob is equal to the detection result of the reference light Lr by the photodetector 30;
The ratio with the drive current for the third detection light source 12C can be obtained. Therefore, it is possible to detect at which position between the first detection light source 12A and the third detection light source 12C the target object Ob exists.

上記の検出原理を光路関数を用いて数理的に説明すると、以下のようになる。まず、各
パラメータを以下
T=対象物体Obの反射率
t=第1検出用光源12Aから出射された検出光L2が対象物体Obで反射して
光検出器30に到る距離関数
A=検出空間10Rに対象物体Obが存在する状態で第1検出用光源12Aが
点灯したときの光検出器30の検出強度
t=第3検出用光源12Cから出射された検出光L2が対象物体Obで反射して
光検出器30に到る距離関数
C=検出空間10Rに対象物体Obが存在する状態で第3検出用光源12Cが
点灯したときの光検出器30の検出強度
s=参照用光源12Rから光検出器30に到る光路係数
R=参照用光源12Rのみが点灯したときの光検出器30の検出強度
とする。なお、第1検出用光源12A、第3検出用光源12Cおよび参照用光源12Rの
発光強度は、駆動電流と発光係数との積で表されるが、以下の説明では、発光係数を1と
する。また、上記の差動において、光検出器30での受光強度が等しくなったときの第1
検出用光源12Aに対する駆動電流をIAとし、第3検出用光源12Cに対する駆動電流
をICとし、参照用光源12Rに対する駆動電流をIRとする。また、差動の際、参照用光
源12Rのみが点灯したときの光検出器30の検出強度については、第1検出用光源12
Aとの差動と、第3検出用光源12Cとの差動とにおいて同一と仮定する。
The above detection principle can be mathematically explained using an optical path function as follows. First, reflectance of below T = target object Ob each parameter A t = detection light L2 emitted from the first detection light source 12A is reflected by the target object Ob
Distance function to the light detector 30 A = When the target object Ob exists in the detection space 10R, the first detection light source 12A
Detection intensity C t of the light detector 30 when it is lit = Detection light L2 emitted from the third detection light source 12C is reflected by the target object Ob
Distance function to the light detector 30 C = the third detection light source 12C is in a state where the target object Ob exists in the detection space 10R.
Detection intensity R s of the light detector 30 when it is turned on R = optical path coefficient from the reference light source 12R to the light detector 30 R = detection intensity of the light detector 30 when only the reference light source 12R is turned on. Note that the light emission intensities of the first detection light source 12A, the third detection light source 12C, and the reference light source 12R are represented by the product of the drive current and the light emission coefficient. In the following description, the light emission coefficient is 1. . Further, in the above differential, the first when the light receiving intensity at the photodetector 30 becomes equal.
The drive current for the detection light source 12A is I A , the drive current for the third detection light source 12C is I C, and the drive current for the reference light source 12R is I R. Further, regarding the detection intensity of the photodetector 30 when only the reference light source 12R is lit during the differential operation, the first detection light source 12 is used.
It is assumed that the differential with A and the differential with the third detection light source 12C are the same.

検出空間10Rに対象物体Obが存在する状態で、前記した差動を行なうと、
A=T×At×IA+環境光 ・・式(6)
C=T×Ct×IC+環境光 ・・式(7)
R=Rs×IR+環境光 ・・式(8)
の関係が得られる。
When the above-described differential is performed in a state where the target object Ob exists in the detection space 10R,
A = T × A t × I A + Ambient Light ・ ・ Formula (6)
C = T × C t × I C + Ambient Light ・ ・ Formula (7)
R = R s × I R + Ambient Light ・ ・ Formula (8)
The relationship is obtained.

ここで、差動の際の光検出器30の検出強度は等しいことから、式(6)、(8)から
下式
T×At×IA+環境光=Rs×IR+環境光
T×At×IA=Rs×IR
T×At=Rs×IR/IA・・式(9)
が導かれ、式(7)、(8)から下式
T×Ct×IC+環境光=Rs×IR+環境光
T×Ct×IC=Rs×IR
T×Ct=Rs×IR/IC・・式(10)
が導かれる。
Here, since the detection intensity of the photodetector 30 at the time of differential is equal, from the formulas (6) and (8), the following formula T × A t × I A + ambient light = R s × I R + ambient light T × A t × I A = R s × I R
T × A t = R s × I R / I A ... (9)
From the formulas (7) and (8), the following formula T × C t × I C + environment light = R s × I R + environment light T × C t × I C = R s × I R
T × C t = R s × I R / I C ... (10)
Is guided.

また、距離関数At、Ctの比PACは、下式
AC=At/Ct・・式(11)
で定義されることから、式(9)、(10)から、比PAC
AC=IC/IA・・式(12)
で示すように表される。かかる式(12)では、環境光の項、対象物体Obの反射率の項
が存在しない。それ故、距離関数At、Ctの比PACには、環境光、対象物体Obの反射率
が影響しない。なお、上記の数理モデルについては、対象物体Obで反射せずに入射した
検出光L2の影響等を相殺するための補正を行なってもよい。また、参照用光源12Rに
対する駆動電流IRについては、第1検出用光源12Aとの差動と、第3検出用光源12
Cとの差動とにおいて異なる値であっても、略同様な方法で比PACを求めることができる
The distance function A t, the ratio P AC of C t is the formula P AC = A t / C t ·· formula (11)
From the equations (9) and (10), the ratio P AC is P AC = I C / I A ··· Equation (12)
It is expressed as In the formula (12), there is no term of ambient light and no term of reflectance of the target object Ob. Therefore, the ambient light and the reflectance of the target object Ob do not affect the ratio P AC between the distance functions A t and C t . In addition, about said mathematical model, you may correct | amend in order to cancel the influence etc. of the detection light L2 which entered without reflecting with the target object Ob. Further, regarding the drive current I R for the reference light source 12R, the differential with the first detection light source 12A and the third detection light source 12 are used.
Even if the differential value is different from C, the ratio P AC can be obtained by a substantially similar method.

ここで、検出用光源12は点光源であり、ある地点での光強度は、光源からの距離の2
乗に反比例する。従って、第1検出用光源12Aと対象物体Obとの離間距離P1と、第
3検出用光源12Cと対象物体Obとの離間距離P2との比は、下式
AC=(P1)2:(P2)2
により求められる。それ故、対象物体Obは、図4に示すように、検出用光源12Aと第
3検出用光源12Cとを結ぶ仮想線Q11をP1:P2で分割した位置を通る等比線R1
1上に対象物体Obが存在することがわかる。
Here, the light source for detection 12 is a point light source, and the light intensity at a certain point is 2 of the distance from the light source.
Inversely proportional to the power. Therefore, the ratio of the separation distance P1 between the first detection light source 12A and the target object Ob and the separation distance P2 between the third detection light source 12C and the target object Ob is expressed by the following equation: P AC = (P1) 2 :( P2) 2
Is required. Therefore, the target object Ob, as shown in FIG. 4, is an isoline R1 passing through a position obtained by dividing a virtual line Q11 connecting the detection light source 12A and the third detection light source 12C by P1: P2.
1 that the target object Ob exists.

そこで、本形態では、第1検出用光源12Aと参照用光源12Rとの差動、第2検出用
光源12Bと参照用光源12Rとの差動、第3検出用光源12Cと参照用光源12Rとの
差動、第4検出用光源12Dと参照用光源12Rとの差動を順次行い、各距離関数の比を
求める。従って、第1検出用光源12Aと対象物体Obとの離間距離、第2検出用光源1
2Bと対象物体Obとの離間距離、第3検出用光源12Cと対象物体Obとの離間距離、
および第4検出用光源12Dと対象物体Obとの離間距離の比がわかる。それ故、図4を
参照して説明した方法と同様な方法で対象物体ObのX座標およびY座標を検出すること
ができる。なお、図4は、本形態で採用した原理を幾何学的に示したものであり、実際に
は、得られたデータを用いて計算を行う。
Therefore, in this embodiment, the differential between the first detection light source 12A and the reference light source 12R, the differential between the second detection light source 12B and the reference light source 12R, and the third detection light source 12C and the reference light source 12R And the differential between the fourth detection light source 12D and the reference light source 12R are sequentially performed to obtain the ratio of the distance functions. Therefore, the separation distance between the first detection light source 12A and the target object Ob, the second detection light source 1
2B and the distance between the target object Ob, the distance between the third detection light source 12C and the target object Ob,
Further, the ratio of the separation distance between the fourth detection light source 12D and the target object Ob is known. Therefore, the X coordinate and the Y coordinate of the target object Ob can be detected by a method similar to the method described with reference to FIG. FIG. 4 shows the principle adopted in this embodiment geometrically, and actually, the calculation is performed using the obtained data.

かかる構成によれば、対象物体Obの位置を特定するための情報量が多いため、差動に
より得られた複数の結果全部を平均する等の手法を用いれば、対象物体Obの位置検出精
度を高めることができることになる。
According to such a configuration, since there is a large amount of information for specifying the position of the target object Ob, the position detection accuracy of the target object Ob can be improved by using a method such as averaging all of a plurality of results obtained by differential. Can be increased.

(差動のための位置検出部50の構成例)
図6は、本発明の実施の形態1に係る光学式位置検出装置10において、位置検出部5
0で行なわれる処理内容等を示す説明図である。
(Configuration Example of Position Detection Unit 50 for Differential)
FIG. 6 shows a position detector 5 in the optical position detector 10 according to Embodiment 1 of the present invention.
It is explanatory drawing which shows the processing content etc. which are performed by 0.

上記の差動を実施するにあたっては、位置検出部50としてマイクロプロセッサーユニ
ット(MPU)を用い、これにより所定のソフトウェア(動作プログラム)を実行するこ
とに従って処理を行う構成を採用することができる。また、図6を参照して以下に説明す
るように、論理回路等のハードウェアを用いた信号処理部で処理を行う構成を採用するこ
ともできる。なお、図6には、図5を参照して説明した差動を示してあるが、参照用光源
12Rを第2検出用光源12Bに置き換えれば、図3を参照して説明した差動に適用する
ことができる。
In carrying out the above-described differential operation, it is possible to employ a configuration in which a microprocessor unit (MPU) is used as the position detection unit 50 and processing is performed by executing predetermined software (operation program). Further, as will be described below with reference to FIG. 6, a configuration in which processing is performed by a signal processing unit using hardware such as a logic circuit may be employed. 6 shows the differential described with reference to FIG. 5. However, if the reference light source 12R is replaced with the second detection light source 12B, the differential can be applied to the differential described with reference to FIG. can do.

図6(a)に示すように、本形態の光学式位置検出装置10において、光源駆動回路1
40は、可変抵抗111を介して第1検出用光源12Aに所定電流値の駆動パルスを印加
する一方、可変抵抗112および反転回路113を介して参照用光源12Rに所定電流値
の駆動パルスを印加する。このため、第1検出用光源12Aと参照用光源12Rには逆相
の駆動パルスが印加されるので、第1検出用光源12Aと参照用光源12Rとは交互に点
灯することになる。そして、第1検出用光源12Aが点灯した時、検出光L2aのうち、
対象物体Obで反射した光は光検出器30で受光され、参照用光源12Rが点灯した時、
参照光Lrが光検出器30で受光される。光強度信号生成回路150において、光検出器
30には、1kΩ程度の抵抗30rが直列に電気的接続されており、それらの両端にはバ
イアス電圧Vbが印加されている。
As shown in FIG. 6A, in the optical position detection device 10 of the present embodiment, the light source driving circuit 1
40 applies a driving pulse having a predetermined current value to the first detection light source 12A via the variable resistor 111, while applying a driving pulse having a predetermined current value to the reference light source 12R via the variable resistor 112 and the inverting circuit 113. To do. For this reason, drive pulses having opposite phases are applied to the first detection light source 12A and the reference light source 12R, so the first detection light source 12A and the reference light source 12R are alternately lit. And, when the first detection light source 12A is turned on, of the detection light L2a,
The light reflected by the target object Ob is received by the photodetector 30, and when the reference light source 12R is turned on,
The reference light Lr is received by the photodetector 30. In the light intensity signal generation circuit 150, a resistor 30r of about 1 kΩ is electrically connected in series to the photodetector 30, and a bias voltage Vb is applied to both ends thereof.

かかる光強度信号生成回路150において、光検出器30と抵抗30rとの接続点Q1
には、位置検出部50が電気的に接続されている。光検出器30と抵抗30rとの接続点
Q1から出力される検出信号Vcは、下式
Vc=V30/(V30+抵抗30rの抵抗値)
V30:光検出器30の等価抵抗
で表される。従って、環境光Lcが光検出器30に入射しない場合と、環境光Lcが光検
出器30に入射している場合とを比較すると、環境光Lcが光検出器30に入射している
場合には、検出信号Vcのレベルおよび振幅が大きくなる。
In the light intensity signal generation circuit 150, the connection point Q1 between the photodetector 30 and the resistor 30r.
The position detector 50 is electrically connected. The detection signal Vc output from the connection point Q1 between the photodetector 30 and the resistor 30r is expressed by the following equation: Vc = V30 / (V30 + resistance value of the resistor 30r)
V30: Expressed by an equivalent resistance of the photodetector 30. Therefore, when the ambient light Lc is not incident on the photodetector 30 and the ambient light Lc is incident on the photodetector 30, the ambient light Lc is incident on the photodetector 30. Increases the level and amplitude of the detection signal Vc.

位置検出部50は概ね、位置検出用信号抽出回路190、位置検出用信号分離回路17
0、および発光強度補償指令回路180を備えている。位置検出用信号抽出回路190は
、1nF程度のキャパシタからなるフィルター192を備えており、かかるフィルター1
92は、光検出器30と抵抗30rとの接続点Q1から出力された信号から直流成分を除
去するハイパスフィルターとして機能する。このため、フィルター192によって、光検
出器30と抵抗30rとの接続点Q1から出力された検出信号Vcからは、光検出器30
による位置検出信号Vdのみが抽出される。すなわち、検出光L2aおよび参照光Lrは
変調されているのに対して、環境光Lcはある期間内において強度が一定であると見なす
ことができるので、環境光Lcに起因する低周波成分あるいは直流成分はフィルター19
2によって除去される。
The position detection unit 50 generally includes a position detection signal extraction circuit 190 and a position detection signal separation circuit 17.
0, and a light emission intensity compensation command circuit 180 are provided. The position detection signal extraction circuit 190 includes a filter 192 made of a capacitor of about 1 nF.
Reference numeral 92 functions as a high-pass filter that removes a DC component from the signal output from the connection point Q1 between the photodetector 30 and the resistor 30r. Therefore, from the detection signal Vc output from the connection point Q1 between the photodetector 30 and the resistor 30r by the filter 192, the photodetector 30 is detected.
Only the position detection signal Vd is extracted. That is, since the detection light L2a and the reference light Lr are modulated, the ambient light Lc can be considered to have a constant intensity within a certain period, and therefore, the low frequency component or direct current caused by the ambient light Lc. Ingredient is filter 19
2 to remove.

また、位置検出用信号抽出回路190は、フィルター192の後段に、220kΩ程度
の帰還抵抗194を備えた加算回路193を有しており、フィルター192によって抽出
された位置検出信号Vdは、バイアス電圧Vbの1/2倍の電圧V/2に重畳された位置
検出信号Vsとして位置検出用信号分離回路170に出力される。
The position detection signal extraction circuit 190 has an adder circuit 193 provided with a feedback resistor 194 of about 220 kΩ at the subsequent stage of the filter 192. The position detection signal Vd extracted by the filter 192 is a bias voltage Vb. Is output to the position detection signal separation circuit 170 as a position detection signal Vs superimposed on a voltage V / 2 that is ½ of.

位置検出用信号分離回路170は、第1検出用光源12Aに印加される駆動パルスに同
期してスイッチング動作を行なうスイッチ171と、比較器172と、比較器172の入
力線に各々、電気的接続されたキャパシタ173とを備えている。このため、位置検出信
号Vsが位置検出用信号分離回路170に入力されると、位置検出用信号分離回路170
から発光強度補償指令回路180には、第1検出用光源12Aが点灯した時の位置検出信
号Vsの実効値Veaと、参照用光源12Rが点灯した時の位置検出信号Vsの実効値V
ebとが交互に出力される。
The position detection signal separation circuit 170 is electrically connected to the input lines of the switch 171, the comparator 172, and the comparator 172 that perform a switching operation in synchronization with the drive pulse applied to the first detection light source 12 </ b> A. The capacitor 173 is provided. Therefore, when the position detection signal Vs is input to the position detection signal separation circuit 170, the position detection signal separation circuit 170.
To the emission intensity compensation command circuit 180, the effective value Vea of the position detection signal Vs when the first detection light source 12A is turned on, and the effective value V of the position detection signal Vs when the reference light source 12R is turned on.
eb and are output alternately.

発光強度補償指令回路180は、実効値Vea、Vebを比較して、図6(b)に示す
処理を行ない、位置検出信号Vsの実効値Veaと位置検出信号Vsの実効値Vebとが
同一レベルとなるように光源駆動回路140に制御信号Vfを出力する。すなわち、発光
強度補償指令回路180は、位置検出信号Vsの実効値Veaと位置検出信号Vsの実効
値Vebとを比較して、それらが等しい場合、現状の駆動条件を維持させる。これに対し
て、位置検出信号Vsの実効値Veaが位置検出信号Vsの実効値Vebより低い場合、
発光強度補償指令回路180は、可変抵抗111の抵抗値を下げさせて第1検出用光源1
2Aからの出射光量を高める。また、位置検出信号Vsの実効値Vebが位置検出信号V
sの実効値Veaより低い場合、発光強度補償指令回路180は、可変抵抗112の抵抗
値を下げさせて参照用光源12Rからの出射光量を高める。
The light emission intensity compensation command circuit 180 compares the effective values Vea and Veb and performs the process shown in FIG. 6B, so that the effective value Vea of the position detection signal Vs and the effective value Veb of the position detection signal Vs are at the same level. The control signal Vf is output to the light source driving circuit 140 so that That is, the light emission intensity compensation command circuit 180 compares the effective value Vea of the position detection signal Vs with the effective value Veb of the position detection signal Vs, and maintains the current driving conditions when they are equal. On the other hand, when the effective value Vea of the position detection signal Vs is lower than the effective value Veb of the position detection signal Vs,
The light emission intensity compensation command circuit 180 lowers the resistance value of the variable resistor 111 so as to reduce the first detection light source 1.
The amount of light emitted from 2A is increased. Further, the effective value Veb of the position detection signal Vs is the position detection signal Vs.
When it is lower than the effective value Ve of s, the light emission intensity compensation command circuit 180 decreases the resistance value of the variable resistor 112 and increases the amount of light emitted from the reference light source 12R.

このようにして、光学式位置検出装置10では位置検出部50の発光強度補償指令回路
180によって、第1検出用光源点灯動作中および参照用光源点灯動作中での光検出器3
0による検出量が同一となるように、第1検出用光源12Aおよび参照用光源12Rの制
御量(駆動電流)を制御する。従って、発光強度補償指令回路180には、第1検出用光
源点灯動作中および参照用光源点灯動作中での光検出器30による検出量が同一となるよ
うな第1検出用光源12Aおよび参照用光源12Rに対する駆動電流に関する情報が存在
し、かかる情報は、位置検出信号Vgとして位置検出部50に出力される。
In this way, in the optical position detection device 10, the light detector 3 during the first detection light source lighting operation and the reference light source lighting operation is performed by the light emission intensity compensation command circuit 180 of the position detection unit 50.
The control amounts (drive currents) of the first detection light source 12A and the reference light source 12R are controlled so that the detection amounts by 0 are the same. Therefore, the emission intensity compensation command circuit 180 includes the first detection light source 12A and the reference light source that have the same detection amount by the light detector 30 during the first detection light source lighting operation and the reference light source lighting operation. Information regarding the drive current for the light source 12R exists, and such information is output to the position detection unit 50 as the position detection signal Vg.

同様な処理は、第2検出用光源12Bと参照用光源12Rとの間でも行なわれ、発光強
度補償指令回路180から出力される位置検出用信号Vgは、第2検出用光源点灯動作中
および参照用光源点灯動作中での光検出器30による検出量が同一となるような第2検出
用光源12Bおよび参照用光源12Rに対する駆動電流に関する情報である。
Similar processing is performed between the second detection light source 12B and the reference light source 12R, and the position detection signal Vg output from the light emission intensity compensation command circuit 180 is used during the second detection light source lighting operation and the reference. This is information relating to the drive current for the second detection light source 12B and the reference light source 12R so that the detection amount by the photodetector 30 during the light source lighting operation is the same.

(Z座標の検出)
本形態の光学式位置検出装置10において、第1検出用光源12A〜第4検出用光源1
2Dが同時に点灯すると、透光部材40の第1面41側(検出空間10R)には、第1面
41に対する法線方向で強度が単調減少するZ座標検出用光強度分布が形成される。かか
るZ座標検出用光強度分布では、透光部材40の第1面41から離間するに従って強度が
単調に低下する。従って、位置検出部50のZ座標検出部53では、参照用光源12Rと
第1検出用光源12A〜第4検出用光源12Dとを交互に点灯させたときの光検出器30
での検出値の差や比に基づいて対象物体ObのZ座標を検出することができる。また、位
置検出部50のZ座標検出部53では、参照用光源12Rと第1検出用光源12A〜第4
検出用光源12Dとを交互に点灯させたときの光検出器30での検出値が等しくなったと
きの参照用光源12Rに対する駆動電流と第1検出用光源12A〜第4検出用光源12D
に対する駆動電流との差や比に基づいて対象物体ObのZ座標を検出することができる。
さらに、第1検出用光源12A〜第4検出用光源12Dを順次点灯させた際と参照用光源
12Rを点灯させたときの光検出器30での検出値との差や比に基づいて対象物体Obの
Z座標を検出することができる。さらにまた、第1検出用光源12A〜第4検出用光源1
2Dを順次点灯させた際と参照用光源12Rを点灯させたときに光検出器30での検出値
が等しくなったときの参照用光源12Rに対する駆動電流と検出用光源12A、12Bに
対する駆動電流との差や比に基づいて対象物体ObのZ座標を検出することができる。い
ずれの場合も、かかるZ座標については、対象物体ObのXY座標によって補正を加える
こともある。
(Detection of Z coordinate)
In the optical position detection device 10 of the present embodiment, the first detection light source 12A to the fourth detection light source 1
When 2D lights up at the same time, a light intensity distribution for Z coordinate detection whose intensity monotonously decreases in the normal direction to the first surface 41 is formed on the first surface 41 side (detection space 10R) of the translucent member 40. In such a Z coordinate detection light intensity distribution, the intensity decreases monotonously as the distance from the first surface 41 of the translucent member 40 increases. Therefore, in the Z coordinate detection unit 53 of the position detection unit 50, the photodetector 30 when the reference light source 12R and the first detection light source 12A to the fourth detection light source 12D are alternately turned on.
The Z coordinate of the target object Ob can be detected based on the difference or ratio of the detected values at. In the Z coordinate detection unit 53 of the position detection unit 50, the reference light source 12R and the first detection light sources 12A to 4th.
The driving current for the reference light source 12R and the first detection light source 12A to the fourth detection light source 12D when the detection values of the photodetector 30 when the detection light source 12D is alternately turned on are equal.
The Z coordinate of the target object Ob can be detected based on the difference or ratio with respect to the drive current.
Furthermore, the target object is based on the difference or ratio between the detection value at the photodetector 30 when the first detection light source 12A to the fourth detection light source 12D are sequentially turned on and when the reference light source 12R is turned on. The Z coordinate of Ob can be detected. Furthermore, the first light source for detection 12A to the fourth light source for detection 1
The driving current for the reference light source 12R and the driving current for the detection light sources 12A and 12B when the detection values of the photodetector 30 are equal when the 2D is sequentially turned on and when the reference light source 12R is turned on The Z coordinate of the target object Ob can be detected based on the difference or ratio. In either case, the Z coordinate may be corrected by the XY coordinates of the target object Ob.

また、第1検出用光源12A〜第4検出用光源12Dに対してZ軸方向で離間する検出
用光源を設けてZ座標を検出してもよく、この場合も、X座標を検出したのと同様な差動
を利用してZ座標を検出することができる。
Further, the Z coordinate may be detected by providing a detection light source that is separated in the Z-axis direction with respect to the first detection light source 12A to the fourth detection light source 12D. In this case, the X coordinate is detected. A similar differential can be used to detect the Z coordinate.

(本形態の主な効果)
以上説明したように、本形態の光学式位置検出装置10では、光源駆動部14は、4つ
の検出用光源12を順次点灯させ、その間、光検出器30は、対象物体Obで反射した検
出光L3を受光する。従って、光検出器30での検出結果を直接、あるいは光検出器30
を介して2つの検出用光源12を差動させたときの駆動電流を用いれば、位置検出部50
は、対象物体Obの位置(X座標およびY座標)を検出することができる。
(Main effects of this form)
As described above, in the optical position detection device 10 according to the present embodiment, the light source driving unit 14 sequentially turns on the four light sources 12 for detection, and during that time, the photodetector 30 detects the detection light reflected by the target object Ob. L3 is received. Therefore, the detection result of the light detector 30 is directly or directly detected by the light detector 30.
If the drive current when the two light sources for detection 12 are differentiated via the position is used, the position detection unit 50
Can detect the position (X coordinate and Y coordinate) of the target object Ob.

ここで、第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび
第4検出用光源12Dは、検出空間10R(Z軸方向)からみたとき、第1検出用光源1
2Aと光検出器30との距離、第2検出用光源12Bと光検出器30との距離、第3検出
用光源12Cと光検出器30との距離、および第4検出用光源12Dと光検出器30との
距離は相違している。
Here, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are the first detection light source 1 when viewed from the detection space 10R (Z-axis direction).
The distance between 2A and the photodetector 30, the distance between the second detection light source 12B and the photodetector 30, the distance between the third detection light source 12C and the photodetector 30, and the fourth detection light source 12D and the light detection. The distance from the vessel 30 is different.

このため、第1検出用光源12Aと第3検出用光源12Cとの差動、および第2検出用
光源12Bと第4検出用光源12Dとの差動の中心がずれているので、広い範囲にわたっ
て高い検出精度を得ることができる。
For this reason, since the center of the differential between the first detection light source 12A and the third detection light source 12C and the difference between the second detection light source 12B and the fourth detection light source 12D are shifted, High detection accuracy can be obtained.

また、第1検出用光源12Aと第2検出用光源12Bとを結ぶ仮想線Q13と、第3検
出用光源12Cと第4検出用光源12Dとを結ぶ仮想線Q15とは、非平行である。従っ
て、第1検出用光源12Aと第2検出用光源12Bとを用いて対象物体Obの位置を検出
した方向と、第3検出用光源12Cと第4検出用光源12Dとを用いて対象物体Obの位
置を検出した方向とが相違する。また、第1検出用光源12Aと第4検出用光源12Dと
を結ぶ仮想線Q16と、第2検出用光源12Bと第3検出用光源12Cとを結ぶ仮想線Q
14とは、非平行である。従って、第1検出用光源12Aと第4検出用光源12Dとを用
いて対象物体Obの位置を検出した方向と、第2検出用光源12Bと第3検出用光源12
Cとを用いて対象物体Obの位置を検出した方向とが相違する。
Further, the virtual line Q13 connecting the first detection light source 12A and the second detection light source 12B and the virtual line Q15 connecting the third detection light source 12C and the fourth detection light source 12D are nonparallel. Accordingly, the direction in which the position of the target object Ob is detected using the first detection light source 12A and the second detection light source 12B, and the target object Ob using the third detection light source 12C and the fourth detection light source 12D. The direction in which the position is detected is different. Also, a virtual line Q16 connecting the first detection light source 12A and the fourth detection light source 12D, and a virtual line Q connecting the second detection light source 12B and the third detection light source 12C.
14 is non-parallel. Accordingly, the direction in which the position of the target object Ob is detected using the first detection light source 12A and the fourth detection light source 12D, the second detection light source 12B, and the third detection light source 12 are detected.
The direction in which the position of the target object Ob is detected using C is different.

それ故、第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび
第4検出用光源12Dを用いた測定の頻度を増大させても重複した測定を行なうことがな
い。よって、本形態の光学式位置検出装置10によれば、測定頻度を高めた分だけ、対象
物体Obの位置検出精度を高めることができる。
Therefore, even if the frequency of measurement using the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D is increased, duplicate measurement is not performed. Therefore, according to the optical position detection device 10 of the present embodiment, the position detection accuracy of the target object Ob can be increased by the increase in the measurement frequency.

また、本形態では、2つの検出用光源12での差動、あるいは検出用光源12と参照用
光源12Rとの差動を利用しているため、環境光等の影響を自動的に補正することができ
る。
In this embodiment, since the differential between the two light sources for detection 12 or the differential between the light source for detection 12 and the reference light source 12R is used, the influence of ambient light or the like is automatically corrected. Can do.

さらに、検出光L2は赤外光であるため、視認されない。従って、本形態の光学式位置
検出装置10を表示装置に適用した場合でも表示を妨げない等、光学式位置検出装置10
を各種機器に用いることができる。
Furthermore, since the detection light L2 is infrared light, it is not visually recognized. Therefore, even when the optical position detection device 10 of the present embodiment is applied to a display device, the optical position detection device 10 does not hinder the display.
Can be used for various devices.

[実施の形態2]
図7は、本発明の実施の形態2に係る光学式位置検出装置10の主要部を模式的に示す
説明図であり、図7(a)、(b)は、光学式位置検出装置10の構成要素の立体的な配
置を示す説明図、および光学式位置検出装置10の構成要素の平面的な配置を示す説明図
である。図8は、本発明の実施の形態2に係る光学式位置検出装置10において差動によ
り求めた複数の結果から対象物体ObのX座標およびY座標を特定する方法を示す説明図
である。なお、本形態の基本的な構成は、実施の形態1と同様であるため、共通する部分
には同一の符号を付して図示し、それらの説明を省略する。
[Embodiment 2]
FIG. 7 is an explanatory view schematically showing a main part of the optical position detection device 10 according to Embodiment 2 of the present invention. FIGS. 7 (a) and 7 (b) are diagrams of the optical position detection device 10. FIG. 2 is an explanatory diagram showing a three-dimensional arrangement of components, and an explanatory diagram showing a planar arrangement of components of the optical position detection device 10. FIG. 8 is an explanatory diagram showing a method of specifying the X coordinate and the Y coordinate of the target object Ob from a plurality of results obtained by differential in the optical position detection device 10 according to the second embodiment of the present invention. Since the basic configuration of this embodiment is the same as that of Embodiment 1, common portions are denoted by the same reference numerals and description thereof is omitted.

図7において、本形態の光学式位置検出装置10も、実施の形態1と同様、光源装置1
1は、複数の検出用光源12として、4つ以上の検出用光源を備えており、本形態におい
て、検出用光源12の数は4つである。より具体的には、光源装置11は、複数の検出用
光源12として、第1検出用光源12A、第2検出用光源12B、第3検出用光源12C
および第4検出用光源12Dを備えており、これらの検出用光源12はいずれも、発光部
120a〜120dを透光部材40に向けている。
In FIG. 7, the optical position detection device 10 of the present embodiment is also the light source device 1 as in the first embodiment.
1 includes four or more detection light sources as the plurality of detection light sources 12, and in this embodiment, the number of the detection light sources 12 is four. More specifically, the light source device 11 includes a first detection light source 12A, a second detection light source 12B, and a third detection light source 12C as the plurality of detection light sources 12.
And the fourth light source for detection 12D, and these light sources for detection 12 all direct the light emitting portions 120a to 120d to the light transmitting member 40.

ここで、第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび
第4検出用光源12Dは、検出空間10R(Z軸方向)からみたとき、第1検出用光源1
2Aと光検出器30との距離、第2検出用光源12Bと光検出器30との距離、第3検出
用光源12Cと光検出器30との距離、および第4検出用光源12Dと光検出器30との
距離は相違している。
Here, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are the first detection light source 1 when viewed from the detection space 10R (Z-axis direction).
The distance between 2A and the photodetector 30, the distance between the second detection light source 12B and the photodetector 30, the distance between the third detection light source 12C and the photodetector 30, and the fourth detection light source 12D and the light detection. The distance from the vessel 30 is different.

より具体的には、第1検出用光源12Aと光検出器30との距離、第2検出用光源12
Bと光検出器30との距離、第3検出用光源12Cと光検出器30との距離、および第4
検出用光源12Dと光検出器30との距離を各々、r1、r2、r3、r4としたとき、距離
1、r2、r3、r4は、以下の条件
4<r1<r2<r3
に設定されている。
More specifically, the distance between the first detection light source 12 </ b> A and the photodetector 30, the second detection light source 12.
B, the distance between the photodetector 30, the distance between the third detection light source 12 </ b> C and the photodetector 30, and the fourth
When the distances between the detection light source 12D and the photodetector 30 are r 1 , r 2 , r 3 , and r 4 , the distances r 1 , r 2 , r 3 , and r 4 satisfy the following conditions: r 4 < r 1 <r 2 <r 3
Is set to

また、第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび第
4検出用光源12Dは、光検出器30を中心に不等な角度間隔に配置されている。すなわ
ち、光検出器30と第1検出用光源12A、第2検出用光源12B、第3検出用光源12
Cおよび第4検出用光源12Dとを各々直線で結んだときの中心角を以下
ΘAB=第1検出用光源12A、光検出器30、第2検出用光源12Bが成す角度
ΘBC=第2検出用光源12B、光検出器30、第3検出用光源12Cが成す角度
ΘCD=第3検出用光源12C、光検出器30、第4検出用光源12Dが成す角度
ΘAD=第1検出用光源12A、光検出器30、第4検出用光源12Dが成す角度
にように定義したとき、角度ΘAB、ΘBC、ΘCD、ΘADのうちの1つの角度は他の角度と相
違している。本形態では、角度ΘAB、ΘBC、ΘCD、ΘADは全てが相違しており、角度ΘAB
、ΘBC、ΘCD、ΘADは以下の関係
ΘCD<ΘAD<ΘAB<ΘBC
に設定されている。
Further, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are arranged at unequal angular intervals with the photodetector 30 as the center. That is, the photodetector 30, the first light source for detection 12A, the second light source for detection 12B, and the third light source for detection 12
The central angle when C and the fourth detection light source 12D are respectively connected by a straight line is the following: Θ AB = the angle formed by the first detection light source 12A, the photodetector 30, and the second detection light source 12B Θ BC = second Angle formed by detection light source 12B, light detector 30, and third detection light source 12C Θ CD = angle formed by third detection light source 12C, light detector 30, and fourth detection light source 12D Θ AD = first detection When defined as the angle formed by the light source 12A, the photodetector 30, and the fourth detection light source 12D, one of the angles Θ AB , Θ BC , Θ CD , Θ AD is different from the other angles. Yes. In this embodiment, the angles Θ AB , Θ BC , Θ CD , Θ AD are all different, and the angle Θ AB
, Θ BC , Θ CD , Θ AD are the following relationships: Θ CDADABBC
Is set to

また、第1検出用光源12Aと第2検出用光源12Bとを結ぶ仮想線と、第3検出用光
源12Cと第4検出用光源12Dとを結ぶ仮想線とは、非平行であり、第1検出用光源1
2Aと第4検出用光源12Dとを結ぶ仮想線と、第2検出用光源12Bと第3検出用光源
12Cとを結ぶ仮想線とは、非平行である。
Further, the virtual line connecting the first detection light source 12A and the second detection light source 12B and the virtual line connecting the third detection light source 12C and the fourth detection light source 12D are non-parallel, and the first Light source for detection 1
The virtual line connecting 2A and the fourth detection light source 12D and the virtual line connecting the second detection light source 12B and the third detection light source 12C are nonparallel.

このような構成の光学式位置検出装置10でも、実施の形態1と同様、位置検出用光源
12同士の差動や、位置検出用光源12と参照用光源12Rとの差動を利用すれば、図8
に示すように、第1検出用光源12Aと第3検出用光源12Cとを結ぶ仮想線Q11を比
ACで分割した位置を通る等比線R11上に対象物体Obが存在することがわかる。また
、第2検出用光源12Bと第4検出用光源12Dとを結ぶ仮想線を比PBDで分割した位置
を通る等比線R12上に対象物体Obが存在することがわかる。さらに、第1検出用光源
12Aと第2検出用光源12Bと結ぶ仮想線Q13を所定の比で分割した位置を通る等比
線R13を求めることができ、第2検出用光源12Bと第3検出用光源12Cとを結ぶ仮
想線Q14を所定の比で分割した位置を通る等比線R14を求めることができる。また、
第3検出用光源12Cと第4検出用光源12Dとを結ぶ仮想線Q15を所定の比で分割し
た位置を通る等比線R15を求めることができ、第1検出用光源12Aと第4検出用光源
12Dとを結ぶ仮想線Q16を所定の比で分割した位置を通る等比線R16を求めること
ができる。
Even in the optical position detection device 10 having such a configuration, as in the first embodiment, if the differential between the position detection light sources 12 or the differential between the position detection light source 12 and the reference light source 12R is used, FIG.
As shown in, it can be seen that the target object Ob on the geometric line R11 through the position obtained by dividing the first detection light source 12A and the virtual line Q11 connecting the third detection light source 12C ratio P AC is present. Further, it can be seen that the target object Ob is present on geometric line R12 through the position obtained by dividing the imaginary line connecting the second detection light source 12B and the fourth detection light source 12D in a ratio P BD. Further, it is possible to obtain an isoline R13 passing through a position obtained by dividing the virtual line Q13 connecting the first detection light source 12A and the second detection light source 12B by a predetermined ratio, and the second detection light source 12B and the third detection light source can be obtained. It is possible to obtain a contour line R14 passing through a position obtained by dividing the virtual line Q14 connecting the light source 12C with a predetermined ratio. Also,
An isoline R15 passing through a position obtained by dividing the imaginary line Q15 connecting the third detection light source 12C and the fourth detection light source 12D by a predetermined ratio can be obtained, and the first detection light source 12A and the fourth detection light source are obtained. It is possible to obtain a contour line R16 passing through a position obtained by dividing the virtual line Q16 connecting the light source 12D by a predetermined ratio.

かかる構成によれば、対象物体Obの位置を特定するための情報量が多いため、差動に
より得られた複数の結果全部を平均する等の手法を用いれば、対象物体Obの位置検出精
度を高めることができることになる。
According to such a configuration, since there is a large amount of information for specifying the position of the target object Ob, the position detection accuracy of the target object Ob can be improved by using a method such as averaging all of a plurality of results obtained by differential. Can be increased.

ここで、第1検出用光源12A、第2検出用光源12B、第3検出用光源12Cおよび
第4検出用光源12Dは、検出空間10R(Z軸方向)からみたとき、第1検出用光源1
2Aと光検出器30との距離、第2検出用光源12Bと光検出器30との距離、第3検出
用光源12Cと光検出器30との距離、および第4検出用光源12Dと光検出器30との
距離は相違している。また、第1検出用光源12A、第2検出用光源12B、第3検出用
光源12Cおよび第4検出用光源12Dは、光検出器30を中心に不等な角度間隔に配置
されている。このため、第1検出用光源12Aと第3検出用光源12Cとの差動、および
第2検出用光源12Bと第4検出用光源12Dとの差動の中心がずれているので、広い範
囲にわたって高い検出精度を得ることができる。
Here, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are the first detection light source 1 when viewed from the detection space 10R (Z-axis direction).
The distance between 2A and the photodetector 30, the distance between the second detection light source 12B and the photodetector 30, the distance between the third detection light source 12C and the photodetector 30, and the fourth detection light source 12D and the light detection. The distance from the vessel 30 is different. Further, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D are arranged at unequal angular intervals with the photodetector 30 as the center. For this reason, since the center of the differential between the first detection light source 12A and the third detection light source 12C and the difference between the second detection light source 12B and the fourth detection light source 12D are shifted, High detection accuracy can be obtained.

また、第1検出用光源12Aと第2検出用光源12Bとを結ぶ仮想線Q13と、第3検
出用光源12Cと第4検出用光源12Dとを結ぶ仮想線Q15とは、非平行である。従っ
て、第1検出用光源12Aと第2検出用光源12Bとを用いて対象物体Obの位置を検出
した方向と、第3検出用光源12Cと第4検出用光源12Dとを用いて対象物体Obの位
置を検出した方向とが相違する。また、第1検出用光源12Aと第4検出用光源12Dと
を結ぶ仮想線Q16と、第2検出用光源12Bと第3検出用光源12Cとを結ぶ仮想線Q
14とは、非平行である。従って、第1検出用光源12Aと第4検出用光源12Dとを用
いて対象物体Obの位置を検出した方向と、第2検出用光源12Bと第3検出用光源12
Cとを用いて対象物体Obの位置を検出した方向とが相違する。それ故、第1検出用光源
12A、第2検出用光源12B、第3検出用光源12Cおよび第4検出用光源12Dを用
いた測定の頻度を増大させても重複した測定を行なうことがない。よって、本形態の光学
式位置検出装置10によれば、測定頻度を高めた分だけ、対象物体Obの位置検出精度を
高めることができる等、実施の形態1と同様な効果を奏する。
Further, the virtual line Q13 connecting the first detection light source 12A and the second detection light source 12B and the virtual line Q15 connecting the third detection light source 12C and the fourth detection light source 12D are nonparallel. Accordingly, the direction in which the position of the target object Ob is detected using the first detection light source 12A and the second detection light source 12B, and the target object Ob using the third detection light source 12C and the fourth detection light source 12D. The direction in which the position is detected is different. Also, a virtual line Q16 connecting the first detection light source 12A and the fourth detection light source 12D, and a virtual line Q connecting the second detection light source 12B and the third detection light source 12C.
14 is non-parallel. Accordingly, the direction in which the position of the target object Ob is detected using the first detection light source 12A and the fourth detection light source 12D, the second detection light source 12B, and the third detection light source 12 are detected.
The direction in which the position of the target object Ob is detected using C is different. Therefore, even if the frequency of measurement using the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D is increased, duplicate measurement is not performed. Therefore, according to the optical position detection device 10 of the present embodiment, the same effects as those of the first embodiment can be obtained, such as the position detection accuracy of the target object Ob can be increased by the increase in the measurement frequency.

[他の実施形態]
上記実施の形態1、2では、第1検出用光源12Aと光検出器30との距離、第2検出
用光源12Bと光検出器30との距離、第3検出用光源12Cと光検出器30との距離、
および第4検出用光源12Dと光検出器30との距離を相違させるにあたって、全ての距
離を相違させたが、1つの距離が他の距離と相違している構成を採用してもよい。かかる
構成の場合でも、図10(b)を参照して説明した構成に比して、対象物体Obの位置検
出精度を高めることができる。
[Other Embodiments]
In the first and second embodiments, the distance between the first detection light source 12A and the photodetector 30, the distance between the second detection light source 12B and the photodetector 30, and the third detection light source 12C and the photodetector 30. Distance with
In making the distances between the fourth detection light source 12D and the photodetector 30 different, all the distances are made different, but a configuration in which one distance is different from the other distances may be adopted. Even in such a configuration, the position detection accuracy of the target object Ob can be increased as compared with the configuration described with reference to FIG.

また、上記実施の形態2では、第1検出用光源12A、第2検出用光源12B、第3検
出用光源12Cおよび第4検出用光源12Dは、光検出器30を中心に不等な角度間隔に
配置するにあたって、角度ΘAB、ΘBC、ΘCD、ΘADの全てが相違している構成を採用した
が、1つの角度が他の角度と相違している構成を採用してもよい。かかる構成の場合でも
、図10(b)を参照して説明した構成に比して、対象物体Obの位置検出精度を高める
ことができる。
In the second embodiment, the first detection light source 12A, the second detection light source 12B, the third detection light source 12C, and the fourth detection light source 12D have unequal angular intervals around the photodetector 30. In the configuration, all the angles Θ AB , Θ BC , Θ CD , and Θ AD are different from each other. However, one angle may be different from the other angles. Even in such a configuration, the position detection accuracy of the target object Ob can be increased as compared with the configuration described with reference to FIG.

また、上記実施の形態では、第1検出用光源12Aと第2検出用光源12Bとを結ぶ仮
想線Q13と、第3検出用光源12Cと第4検出用光源12Dとを結ぶ仮想線Q15とが
非平行で、第1検出用光源12Aと第4検出用光源12Dとを結ぶ仮想線Q16と、第2
検出用光源12Bと第3検出用光源12Cとを結ぶ仮想線Q14とが非平行であったが、
一方のみが非平行であってもよい。かかる構成の場合でも、図10(b)を参照して説明
した構成に比して、対象物体Obの位置検出精度を高めることができる。
In the above embodiment, the virtual line Q13 connecting the first detection light source 12A and the second detection light source 12B and the virtual line Q15 connecting the third detection light source 12C and the fourth detection light source 12D are provided. A non-parallel virtual line Q16 connecting the first detection light source 12A and the fourth detection light source 12D, and a second
The imaginary line Q14 connecting the detection light source 12B and the third detection light source 12C was non-parallel,
Only one may be non-parallel. Even in such a configuration, the position detection accuracy of the target object Ob can be increased as compared with the configuration described with reference to FIG.

上記実施の形態では、検出用光源12が4つの例であったが、検出用光源の数は5つ以
上であってもよく、この場合も、5つ以上の検出用光源のうちの4つの検出用光源が第1
検出用光源12A〜第4検出用光源12Dとして、上記の構成を満たしていればよい。
In the above embodiment, the number of the detection light sources 12 is four. However, the number of the detection light sources may be five or more, and in this case, four of the five or more detection light sources are included. First light source for detection
The detection light source 12A to the fourth detection light source 12D need only satisfy the above-described configuration.

[光学式位置検出装置10の利用例]
図9を参照して、本発明の実施の形態1に係る光学式位置検出装置10を触角センサー
として用いたロボットハンド装置を説明する。図9は、本発明の実施の形態1に係る光学
式位置検出装置10を触覚センサーとしてハンド装置に備えたロボットアームの説明図で
あり、図9(a)、(b)は、ロボットアーム全体の説明図、およびハンド装置の説明図
である。
[Usage example of optical position detection apparatus 10]
With reference to FIG. 9, a robot hand apparatus using the optical position detection apparatus 10 according to the first embodiment of the present invention as a tactile sensor will be described. FIG. 9 is an explanatory diagram of a robot arm provided with a hand device using the optical position detection device 10 according to the first embodiment of the present invention as a tactile sensor, and FIGS. 9A and 9B show the entire robot arm. It is explanatory drawing of this and explanatory drawing of a hand apparatus.

図9(a)に示すロボットアーム200は、数値制御工作機械等に対してワークや工具
の供給および取り出し等を行う装置であり、基台290から直立する支柱220と、アー
ム210とを備えている。本形態において、アーム210は、支柱220の先端部に第1
関節260を介して連結された第1アーム部230と、第1アーム部230の先端部に第
2関節270を介して連結された第2アーム部240とを備えている。支柱220は、基
台290に対して垂直な軸線H1周りに回転可能であり、第1アーム部230は、支柱2
20の先端部で第1関節260によって水平な軸線H2周りに回転可能であり、第2アー
ム部240は、第1アーム部230の先端部で第2関節270によって水平な軸線H3周
りに回転可能である。第2アーム部240の先端部にはハンド装置400のハンド450
が連結されており、ハンド450は、第2アーム部240の軸線H4周りに回転可能であ
る。
A robot arm 200 shown in FIG. 9A is a device that supplies and removes workpieces and tools to and from a numerically controlled machine tool. The robot arm 200 includes a column 220 that stands upright from a base 290 and an arm 210. Yes. In this embodiment, the arm 210 is attached to the tip of the support column 220 at the first.
A first arm unit 230 connected through a joint 260 and a second arm unit 240 connected to the tip of the first arm unit 230 through a second joint 270 are provided. The support column 220 is rotatable around an axis H 1 perpendicular to the base 290, and the first arm unit 230 is connected to the support column 2.
The first arm 260 can be rotated around the horizontal axis H2 by the first joint 260, and the second arm 240 can be rotated around the horizontal axis H3 by the second joint 270 at the tip of the first arm 230. It is. The hand 450 of the hand device 400 is attached to the tip of the second arm part 240.
Are connected, and the hand 450 can rotate around the axis H <b> 4 of the second arm portion 240.

図9(b)に示すように、ハンド装置400は、複数の把持爪410(把持具)を備え
たハンド450を有しており、ハンド450は、複数の把持爪410の根元を保持する円
盤状の把持爪保持体420を備えている。本形態において、ハンド450は、複数の把持
爪410として、第1把持爪410Aおよび第2把持爪410Bを備えている。2つの把
持爪410はいずれも、矢印H4で示すように、互いに離間する方向および接近する方向
に移動可能である。
As shown in FIG. 9B, the hand device 400 includes a hand 450 having a plurality of gripping claws 410 (gripping tools), and the hand 450 is a disk that holds the roots of the plurality of gripping claws 410. A gripping claw holder 420 is provided. In this embodiment, the hand 450 includes a first gripping claw 410A and a second gripping claw 410B as the plurality of gripping claws 410. As shown by the arrow H4, the two grip claws 410 can move in a direction away from each other and a direction in which they approach each other.

このように構成したロボットアーム200において、対象物体Obを把持する際には、
支柱220、第1アーム部230および第2アーム部240が所定方向に回転してハンド
450を対象物体Ob(ワーク)に接近させた後、2つの把持爪410が互いに接近する
方向に移動して対象物体Obを把持する。
When the robot arm 200 configured as described above grips the target object Ob,
After the column 220, the first arm unit 230, and the second arm unit 240 rotate in a predetermined direction to bring the hand 450 closer to the target object Ob (work), the two gripping claws 410 move in a direction approaching each other. Grasping the target object Ob.

ここで、対象物体Ob(ワーク)を把持する際に対象物体Obに接する把持爪410の
内面は、上記の実施の形態で説明した光学式位置検出装置10の透光部材40の第1面4
1からなる。従って、把持爪410が対象物体Obを把持する際、光学式位置検出装置1
0は、対象物体Obと把持爪410との相対位置や位置を検出し、かかる検出結果は、把
持爪410の駆動制御部にフィードバックされる。それ故、把持爪410を対象物体Ob
に高速で接近させることができ、ワーク把持動作の高速化を実現することができる。
Here, the inner surface of the gripping claw 410 that comes into contact with the target object Ob when gripping the target object Ob (workpiece) is the first surface 4 of the translucent member 40 of the optical position detection device 10 described in the above embodiment.
It consists of one. Accordingly, when the gripping claw 410 grips the target object Ob, the optical position detection device 1
0 detects the relative position and position of the target object Ob and the gripping claws 410, and the detection result is fed back to the drive control unit of the gripping claws 410. Therefore, the gripping claw 410 is moved to the target object Ob.
The workpiece can be moved at a high speed, and the workpiece gripping operation can be speeded up.

10・・光学式位置検出装置、10R・・検出空間(検出光の出射側空間)、11・・光
源装置、12・・検出用光源、12A・・第1検出用光源、12B・・第2検出用光源、
12C・・第3検出用光源、12D・・第4検出用光源、12R・・参照用光源、30・
・光検出器、40・・透光部材、50・・位置検出部、51・・X座標検出部、52・・
Y座標検出部、53・・Z座標検出部、Ob・・対象物体
10..Optical position detector, 10R..Detection space (detection light emission side space), 11..Light source device, 12..Detection light source, 12A..First detection light source, 12B..Second Light source for detection,
12C ··· Third light source for detection, 12D · · Fourth light source for detection, 12R · · · Light source for reference, 30 · · ·
.. Photodetector, 40 .. Translucent member, 50 .. Position detector, 51 .. X coordinate detector, 52.
Y coordinate detector, 53 ... Z coordinate detector, Ob ... Target object

Claims (10)

対象物体の位置を検出するための検出光を出射する4つ以上の検出用光源を備えた光学
式位置検出装置であって、
前記検出光の出射側空間に位置する前記対象物体で反射した前記検出光を受光する光検
出器と、
前記4つ以上の検出用光源を順次点灯させる光源駆動部と、
前記光検出器の受光結果に基づいて前記対象物体の位置を検出する位置検出部と、
を有し、
前記出射側空間からみたときに、前記4つ以上の検出用光源のうち、前記光検出器の周
りで周方向で並ぶ第1検出用光源、第2検出用光源、第3検出用光源および第4検出用光
源は、前記光検出器からの距離が相違していることを特徴とする光学式位置検出装置。
An optical position detection device including four or more light sources for detection that emit detection light for detecting the position of a target object,
A photodetector for receiving the detection light reflected by the target object located in the emission-side space of the detection light;
A light source driving unit for sequentially lighting the four or more light sources for detection;
A position detection unit that detects the position of the target object based on a light reception result of the photodetector;
Have
Of the four or more light sources for detection, the first light source for detection, the second light source for detection, the third light source for detection, and the second light source arranged in the circumferential direction around the photodetector when viewed from the exit side space. 4. The optical position detection device according to claim 1, wherein the light sources for detection have different distances from the photodetector.
前記出射側空間からみたときに、前記第1検出用光源、前記第2検出用光源、前記第3
検出用光源および前記第4検出用光源は、前記光検出器からの距離が全て相違しているこ
とを特徴とする請求項1に記載の光学式位置検出装置。
When viewed from the exit side space, the first detection light source, the second detection light source, the third
2. The optical position detection device according to claim 1, wherein the detection light source and the fourth detection light source are all different in distance from the photodetector.
前記出射側空間からみたときに、前記第1検出用光源と前記第2検出用光源とを結ぶ仮
想線と、前記第3検出用光源と前記第4検出用光源とを結ぶ仮想線とは、非平行であるこ
とを特徴とする請求項1または2に記載の光学式位置検出装置。
When viewed from the exit side space, a virtual line connecting the first detection light source and the second detection light source, and a virtual line connecting the third detection light source and the fourth detection light source are: The optical position detection device according to claim 1, wherein the optical position detection device is non-parallel.
前記出射側空間からみたときに、前記第1検出用光源と前記第4検出用光源とを結ぶ仮
想線と、前記第2検出用光源と前記第3検出用光源とを結ぶ仮想線とは、非平行であるこ
とを特徴とする請求項3に記載の光学式位置検出装置。
A virtual line connecting the first detection light source and the fourth detection light source and a virtual line connecting the second detection light source and the third detection light source when viewed from the emission side space, The optical position detection device according to claim 3, wherein the optical position detection device is non-parallel.
前記出射側空間からみたときに、前記第1検出用光源、前記第2検出用光源、前記第3
検出用光源および前記第4検出用光源は、前記光検出器を中心に等角度間隔に配置されて
いることを特徴とする請求項1乃至4の何れか一項に記載の光学式位置検出装置。
When viewed from the exit side space, the first detection light source, the second detection light source, the third
5. The optical position detection device according to claim 1, wherein the detection light source and the fourth detection light source are arranged at equiangular intervals with respect to the photodetector. 6. .
前記出射側空間からみたときに、前記第1検出用光源、前記第2検出用光源、前記第3
検出用光源および前記第4検出用光源は、前記光検出器を中心に不等の角度間隔に配置さ
れていることを特徴とする請求項1乃至4の何れか一項に記載の光学式位置検出装置。
When viewed from the exit side space, the first detection light source, the second detection light source, the third
5. The optical position according to claim 1, wherein the light source for detection and the fourth light source for detection are arranged at unequal angular intervals around the light detector. 6. Detection device.
前記位置検出部は、前記光検出器の受光結果に基づいて、前記第1検出用光源、前記第
2検出用光源、前記第3検出用光源および前記第4検出用光源のうち、一部の検出用光源
と他の一部の検出用光源とを差動させた結果により前記対象物体の位置を検出することを
特徴とする請求項1乃至6の何れか一項に記載の光学式位置検出装置。
The position detection unit may include a part of the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source based on a light reception result of the photodetector. 7. The optical position detection according to claim 1, wherein the position of the target object is detected based on a result obtained by differentiating a detection light source and another part of the detection light source. apparatus.
前記出射側空間を介さずに前記光検出器に入射する参照光を出射する参照用光源を備え

前記位置検出部は、前記光検出器の受光結果に基づいて、前記第1検出用光源、前記第
2検出用光源、前記第3検出用光源および前記第4検出用光源のうち、一部の検出用光源
と前記参照用光源とを組み合わせを変えて差動させた複数の結果により前記対象物体の位
置を検出することを特徴とする請求項1乃至6の何れか一項に記載の光学式位置検出装置
A reference light source that emits reference light incident on the photodetector without going through the exit-side space;
The position detection unit may include a part of the first detection light source, the second detection light source, the third detection light source, and the fourth detection light source based on a light reception result of the photodetector. 7. The optical system according to claim 1, wherein the position of the target object is detected based on a plurality of results obtained by differentiating a combination of the detection light source and the reference light source. Position detection device.
前記位置検出部は、前記4つ以上の検出用光源の全てが同時、あるいは順次点灯したと
きの前記光検出器での受光結果に基づいて前記検出光の出射方向における前記対象物体の
位置を検出することを特徴とする請求項7または8に記載の光学式位置検出装置。
The position detection unit detects the position of the target object in the emission direction of the detection light based on a light reception result of the light detector when all of the four or more light sources for detection are turned on simultaneously or sequentially. The optical position detection device according to claim 7 or 8, characterized in that:
前記検出光は赤外光であることを特徴とする請求項1乃至9の何れか一項に記載の光学
式位置検出装置。
The optical position detection device according to any one of claims 1 to 9, wherein the detection light is infrared light.
JP2010085820A 2010-04-02 2010-04-02 Optical position detector Expired - Fee Related JP5423544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085820A JP5423544B2 (en) 2010-04-02 2010-04-02 Optical position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085820A JP5423544B2 (en) 2010-04-02 2010-04-02 Optical position detector

Publications (2)

Publication Number Publication Date
JP2011215101A JP2011215101A (en) 2011-10-27
JP5423544B2 true JP5423544B2 (en) 2014-02-19

Family

ID=44944965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085820A Expired - Fee Related JP5423544B2 (en) 2010-04-02 2010-04-02 Optical position detector

Country Status (1)

Country Link
JP (1) JP5423544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776281B2 (en) 2011-04-08 2015-09-09 セイコーエプソン株式会社 Optical position detection device and robot hand device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04166709A (en) * 1990-10-30 1992-06-12 Omron Corp Surface-state observing apparatus
DE10024156A1 (en) * 2000-05-19 2001-11-29 Gerd Reime Method and device for optoelectronic position determination of an object
DE10133823A1 (en) * 2001-07-16 2003-02-27 Gerd Reime Optoelectronic device for position and movement detection and associated method
JP4610411B2 (en) * 2004-05-17 2011-01-12 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド Method for generating a stylized image of a scene containing objects
JP5133626B2 (en) * 2007-07-13 2013-01-30 花王株式会社 Surface reflection characteristic measuring device
GB2452944B8 (en) * 2007-09-19 2016-09-14 Toshiba Res Europ Ltd An imaging system and method
JP2010058243A (en) * 2008-09-05 2010-03-18 Yaskawa Electric Corp Picking device
JP2010071782A (en) * 2008-09-18 2010-04-02 Omron Corp Three-dimensional measurement apparatus and method thereof

Also Published As

Publication number Publication date
JP2011215101A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5423543B2 (en) Optical position detector
JP5549202B2 (en) Optical position detection device, hand device, and display device with position detection function
JP5423542B2 (en) Optical position detector
US8629987B2 (en) Optical-type position detecting device, hand apparatus, and touch panel
US8411289B2 (en) Optical position detection device
EP3415861B1 (en) Contact making feeler head for coordinate measuring machine using a light emitting material and quadrant photodetectors for monitoring the feeler displacement
JP2006510873A (en) Multidimensional measurement system
CN114287827A (en) Cleaning robot system, cleaning robot thereof, and charging path determining method
US20110128553A1 (en) Optical-type position detecting device, hand apparatus, and touch panel
JP5776281B2 (en) Optical position detection device and robot hand device
JPH02170004A (en) Three-dimensional position measuring instrument
JP5423545B2 (en) Optical position detector
JP5423544B2 (en) Optical position detector
JP2011099994A (en) Projection display device with position detecting function
JP2011215104A (en) Optical sensor device
JP2011257334A (en) Optical position detection device and position detection method
JP2613843B2 (en) Optical position and attitude detection device
JPS59136606A (en) Detector for weld line
JP2011215103A (en) Apparatus with position detecting function
JP2009008533A (en) Optical measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5423544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees