JP5423443B2 - Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace - Google Patents

Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace Download PDF

Info

Publication number
JP5423443B2
JP5423443B2 JP2010023265A JP2010023265A JP5423443B2 JP 5423443 B2 JP5423443 B2 JP 5423443B2 JP 2010023265 A JP2010023265 A JP 2010023265A JP 2010023265 A JP2010023265 A JP 2010023265A JP 5423443 B2 JP5423443 B2 JP 5423443B2
Authority
JP
Japan
Prior art keywords
flow rate
fuel flow
fuel
furnace
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010023265A
Other languages
Japanese (ja)
Other versions
JP2011162804A (en
Inventor
俊介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2010023265A priority Critical patent/JP5423443B2/en
Publication of JP2011162804A publication Critical patent/JP2011162804A/en
Application granted granted Critical
Publication of JP5423443B2 publication Critical patent/JP5423443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、連続式加熱炉における燃料流量算出方法、当該燃料流量算出方法を用いた鋼材の製造方法、及び、連続式加熱炉に関する。   The present invention relates to a fuel flow rate calculation method in a continuous heating furnace, a steel material manufacturing method using the fuel flow rate calculation method, and a continuous heating furnace.

鋼材の製造過程では、連続式加熱炉においてスラブを予め設定された目標抽出温度まで加熱し、その後熱間圧延を行うことでスラブを所定の形状とする。連続式加熱炉の内部は、予熱帯、加熱帯及び均熱帯などの複数の帯に分けられており、このうち予熱帯、加熱帯及び均熱帯においては複数のバーナが備えられている。そして、各バーナに係る燃料流量等を制御することで、バーナの燃焼量を調節し、炉内の温度が制御される。バーナの燃焼量を適切に調節し、加熱炉内の温度を効率的に制御するためには、燃料流量を過不足なく適切に制御する必要がある。   In the production process of the steel material, the slab is heated to a preset target extraction temperature in a continuous heating furnace, and then hot-rolled to obtain a predetermined shape. The inside of the continuous heating furnace is divided into a plurality of zones such as a pretropical zone, a heating zone, and a soaking zone, and among these, a plurality of burners are provided in the pretropical zone, the heating zone, and the soaking zone. And the fuel flow volume etc. which concern on each burner are controlled, the amount of combustion of a burner is adjusted, and the temperature in a furnace is controlled. In order to appropriately adjust the burner combustion amount and efficiently control the temperature in the heating furnace, it is necessary to appropriately control the fuel flow rate without excess or deficiency.

特に、厚鋼板は熱容量が大きく、加熱工程では大量のエネルギーを必要とするため、常に燃料原単位の減少が求められており、また、近年のエネルギー資源の価格の高騰などの理由から、より一層の燃料原単位の減少が要求されるようになってきている。   In particular, thick steel plates have a large heat capacity, and a large amount of energy is required in the heating process. Therefore, a reduction in the fuel consumption rate is always required, and the price of energy resources has been rising in recent years. There is an increasing demand for a reduction in fuel intensity.

一般的に熱間圧延を行うために連続式加熱炉にてスラブの加熱を行う際には、スラブを加熱炉から抽出する際に、予め設定されていた温度までスラブ温度が上昇するように、加熱帯毎の炉温設定のスケジュール(ヒートパターン)を設定し、炉温制御を行う。このヒートパターンを設定する際にはスラブ毎の目標抽出温度をクリアするだけではなく、加熱時間や燃料原単位も最適化するよう設定されることが多い。燃料原単位を最適化させるためのヒートパターン設定方法や操業方法に関しては特許文献1や2等、様々な手法が提案されている。   In general, when performing slab heating in a continuous heating furnace in order to perform hot rolling, when extracting the slab from the heating furnace, the slab temperature rises to a preset temperature, Set the furnace temperature setting schedule (heat pattern) for each heating zone and control the furnace temperature. When setting this heat pattern, it is often set not only to clear the target extraction temperature for each slab, but also to optimize the heating time and fuel consumption rate. Various methods such as Patent Documents 1 and 2 have been proposed for a heat pattern setting method and an operation method for optimizing the fuel consumption rate.

特開昭62−125292号公報JP 62-125292 A 特開2007−308777号公報JP 2007-308777 A

しかしながら、特許文献1や2に開示されている技術においては、燃料原単位の最適化にあたり、燃料流量が正確に予測可能であるということを前提としており、その予測精度が低いと最適化の信頼性が損なわれるという懸念がある。これらの文献には、燃料流量の予測精度を向上させるための技術は開示されていない。燃料流量は熱伝導を考慮した熱バランス方程式を解くことである程度の予測が可能であるが、これは理想的な条件における計算値であり、必ずしもその予測値は精度の高いものではない。   However, the techniques disclosed in Patent Documents 1 and 2 assume that the fuel flow rate can be accurately predicted when optimizing the fuel consumption rate. If the prediction accuracy is low, the reliability of the optimization is low. There is a concern that the sex will be impaired. These documents do not disclose a technique for improving the prediction accuracy of the fuel flow rate. The fuel flow rate can be predicted to some extent by solving a heat balance equation in consideration of heat conduction, but this is a calculated value under ideal conditions, and the predicted value is not necessarily highly accurate.

本発明は上記に鑑みてなされたものであり、連続式加熱炉において熱バランス方程式から燃料流量を予測する際に、より高い精度で燃料流量の予測値を算出可能な燃料流量算出方法、及び当該方法を用いた鋼材の製造方法、並びに、当該方法を実行可能な連続式加熱炉を提供することを課題とする。   The present invention has been made in view of the above, and a fuel flow rate calculation method capable of calculating a predicted value of a fuel flow rate with higher accuracy when predicting a fuel flow rate from a heat balance equation in a continuous heating furnace, and It aims at providing the manufacturing method of the steel materials using a method, and the continuous heating furnace which can perform the said method.

燃料流量の予測精度を向上させるために、本発明では以下の手段をとる。すなわち、
第1の本発明は、連続式加熱炉にて、炉内に流入させる燃料流量vfuelを算出する方法であって、熱バランス方程式から計算される燃料流量の計算値vfuelcalと、燃料流量の実績値から回帰した1次補正係数α、βとを用いて、下記式(1)により燃料流量vfuelを算出することを特徴とする、燃料流量算出方法である。
In order to improve the prediction accuracy of the fuel flow rate, the present invention takes the following means. That is,
The first aspect of the present invention is a method of calculating the fuel flow rate v fuel flowing into the furnace in a continuous heating furnace, wherein the fuel flow rate calculated from the heat balance equation v fuelcal and the fuel flow rate The fuel flow rate calculation method is characterized in that the fuel flow rate v fuel is calculated by the following equation (1) using the primary correction coefficients α and β regressed from the actual values.

第1の本発明及び以下に示す本発明において、「炉内に流入させる燃料流量vfuel」とは、連続式加熱炉の炉温を適切に保持するため炉内に供給される燃料流量をいう。具体的には、連続式加熱炉の加熱帯等に備えられるバーナに供給される燃料の流量とすればよい。「燃料流量の実績値」とは、連続式加熱炉に実際に導入した燃料流量をいう。具体的には、ヒートパターン等によって予め設定された加熱炉温度と、実際の加熱炉温度とに基づいて、コントローラ等により流量調節したうえで、実際に炉内に導入した燃料流量とすればよい。「燃料流量の実績値から回帰した1次補正係数α、β」とは、燃料流量の実績値に基づいて求められる1次補正係数であれば特に限定されるものではない。例えば、一定時間における燃料流量の計算値vfuelcalと、燃料流量の実績値の結果とを用いて、最小二乗法により求めることができる。或いは、主成分回帰法によっても求めることができる。 In the first aspect of the present invention and the present invention described below, the “fuel flow rate to flow into the furnace v fuel ” refers to the flow rate of fuel supplied into the furnace in order to appropriately maintain the furnace temperature of the continuous heating furnace. . Specifically, the flow rate of the fuel supplied to the burner provided in the heating zone of the continuous heating furnace may be used. The “actual value of the fuel flow rate” refers to the fuel flow rate actually introduced into the continuous heating furnace. Specifically, after adjusting the flow rate by a controller or the like based on the heating furnace temperature preset by the heat pattern or the like and the actual heating furnace temperature, the fuel flow rate actually introduced into the furnace may be used. . The “primary correction coefficients α and β regressed from the actual fuel flow values” are not particularly limited as long as they are primary correction coefficients obtained based on the actual fuel flow values. For example, it can be obtained by the method of least squares using the calculated value v fuelcal of the fuel flow rate for a fixed time and the result of the actual value of the fuel flow rate. Alternatively, it can be obtained by a principal component regression method.

第1の本発明において、直近の燃料流量の実績値から回帰した1次補正係数αrecent、βrecentと、使用中の一次補正係数αold、βoldと、を用いて、下記式(2)、(3)から、使用中の一次補正係数αold、βoldをαnew、βnewへと変更することが好ましい。式(1)中の1次補正係数を適宜補正することにより、より高い精度で燃料流量を算出することができるためである。 In the first aspect of the present invention, the following equation (2) is used by using the primary correction coefficients α recent and β recent that are regressed from the latest actual fuel flow rate values and the primary correction coefficients α old and β old in use. From (3), it is preferable to change the primary correction coefficients α old and β old in use to α new and β new . This is because the fuel flow rate can be calculated with higher accuracy by appropriately correcting the primary correction coefficient in the equation (1).

(ただし、0≦k≦1) (However, 0 ≦ k 1 ≦ 1)

(ただし、0≦k≦1) (However, 0 ≦ k 2 ≦ 1)

ここに、「直近の燃料流量の実績値」とは、第1の本発明に係る燃料流量算出方法を行う際、直前に連続式加熱炉に導入された燃料流量の実績値をいう。「使用中の一次補正係数αold、βoldをαnew、βnewへと変更する」とは、式(1)に用いられる1次補正係数α、βにつき、使用中の一次補正係数αold、βoldを、式(2)、(3)によってαnew、βnewに補正・変更し、当該変更後の1次補正係数αnew、βnewを、式(1)に係る1次補正係数α、βとして改めて用いることをいう。係数k、kについては、直近のデータを重視するか、過去のデータを重視するかにより0≦k,k≦1の範囲で任意に定めることができる。例えば、直近のデータを重視したい場合は0.8、過去のデータを重視する場合は0.2、同程度に重視する場合は0.5とする。 Here, the “actual value of the latest fuel flow rate” refers to the actual value of the fuel flow rate introduced into the continuous heating furnace immediately before performing the fuel flow rate calculation method according to the first aspect of the present invention. “Changing the primary correction coefficients α old and β old in use to α new and β new ” means that the primary correction coefficients α old used in relation to the primary correction coefficients α and β used in Equation (1). , Β old are corrected / changed to α new , β new by equations (2), (3), and the primary correction coefficients α new , β new after the change are changed to the primary correction factors according to equation (1). It is used again as α and β. The coefficients k 1 and k 2 can be arbitrarily determined in the range of 0 ≦ k 1 and k 2 ≦ 1, depending on whether the most recent data is important or the past data is important. For example, 0.8 is set when the most recent data is to be emphasized, 0.2 is set when the past data is emphasized, and 0.5 is set when the same level is emphasized.

第1の本発明において、連続式加熱炉の操業中に、燃料流量vfuelを決定することが好ましい。操業中、即時的に連続式加熱炉に燃料流量の算出結果を反映させることで、より正確性の高い実操業が可能となるためである。 In the first aspect of the present invention, it is preferable to determine the fuel flow rate v fuel during operation of the continuous heating furnace. This is because the actual operation with higher accuracy becomes possible by immediately reflecting the calculation result of the fuel flow rate in the continuous heating furnace during operation.

第1の本発明において、下記式(4)から、燃料流量の計算値vfuelcalを算出することが好ましい。適切な熱バランス方程式を用いて燃料流量計算値vfuelcalを算出し、これを用いて上記式(1)等によって燃料流量vfuelを求めることで、より高精度にて燃料流量を算出することができるためである。 In the first aspect of the present invention, it is preferable to calculate the calculated value v fuelcal of the fuel flow rate from the following equation (4). By calculating the fuel flow rate calculation value v fuelcal using an appropriate heat balance equation and calculating the fuel flow rate v fuel using the above equation (1) or the like using this, the fuel flow rate can be calculated with higher accuracy. This is because it can.

(式(4)において、cgasは炉内ガス比熱[kcal/Nm・℃]、Vは各燃焼帯の炉容積[m]、Tは各燃焼帯の炉温[℃]、Hlは燃料発熱量[kcal/Nm]、vfuelcalは燃料流量[Nm/hr]、qairは燃料単位あたりの燃焼用空気が有する熱量[kcal/Nm]、qgasは燃料単位あたりの炉内ガスが有する熱量[kcal/Nm]、Qnextは隣接する燃焼帯に流出する熱量[kcal/hr]、Qslabはスラブを加熱するために用いられる熱量[kcal/hr]、Qbodyは加熱炉体から環境に放散される熱量[kcal/hr]、Qskidはスキッド内を流れる冷却水に吸収される熱量[kcal/hr]、Qopenは加熱炉開口部から環境へ放射される熱量[kcal/hr]であり、Hlvfuelcalは燃料燃焼による発熱量[kcal/hr]、qairfuelcalは予熱しておいた燃焼空気が加熱炉に持ち込む熱量[kcal/hr]、qgasfuelcalは炉内ガスが各燃焼帯から持ち去る熱量[kcal/hr]を表す。) (In the formula (4), c gas is the gas specific heat in the furnace [kcal / Nm 3 · ° C.], V f is the furnace volume [m 3 ] of each combustion zone, T f is the furnace temperature [° C.] of each combustion zone, Hl fuel heating value [kcal / Nm 3], v fuelcal fuel flow [Nm 3 / hr], q air is heat possessed by the combustion air per fuel unit [kcal / Nm 3], q gas per fuel unit Calorific value [kcal / Nm 3 ], Q next is calorific value [kcal / hr] flowing out to the adjacent combustion zone, Q slab is calorific value [kcal / hr] used to heat the slab , Q body is the amount of heat dissipated from the furnace body to the environment [kcal / hr], Q skid is the amount of heat absorbed by the cooling water flowing in the skid [kcal / hr], and Q open is radiated from the opening of the furnace to the environment. A is the amount of heat [kcal / hr], Hlv fuelcal the amount of heat generated by fuel combustion [kcal / hr], q air v fuelcal combustion air preheated in the bring the furnace heat [kcal / hr], q gas v fuelcal represents the amount of heat [kcal / hr] that the in-furnace gas takes away from each combustion zone.)

第2の本発明は、連続式加熱炉において鋼材を加熱する際、第1の本発明に係る燃料流量算出方法を用いて炉内に供給する燃料流量vfuelを算出し、算出された燃料流量vfuelを用いて炉内への燃料流量を制御する工程を含む、鋼材の製造方法である。 In the second aspect of the present invention, when the steel material is heated in the continuous heating furnace, the fuel flow rate v fuel supplied into the furnace is calculated using the fuel flow rate calculation method according to the first aspect of the present invention, and the calculated fuel flow rate is calculated. A method for manufacturing a steel material, including a step of controlling a fuel flow rate into a furnace using v fuel .

ここに、「算出された燃料流量vfuelを用いて炉内への燃料流量を制御する」とは、算出された燃料流量vfuelを、そのまま実績値として、炉内への燃料流量とする形態に限定されるものではなく、算出された燃料流量vfuelを考慮しながら、コントローラ等によって燃料流量を適宜制御する形態を含む概念である。 Here, “controlling the fuel flow rate into the furnace using the calculated fuel flow rate v fuel ” means that the calculated fuel flow rate v fuel is used as the actual value as it is as the fuel flow rate into the furnace. The concept includes a mode in which the fuel flow rate is appropriately controlled by a controller or the like while considering the calculated fuel flow rate v fuel .

第3の本発明は、鋼材を加熱するための連続式加熱炉であって、燃料流量算出手段を備え、燃料流量算出手段が、熱バランス方程式から計算される燃料流量の計算値vfuelcalと、燃料流量の実績値から回帰した1次補正係数α、βとを用いて、下記式(1)により燃料流量vfuelを決定する計算部を備える、連続式加熱炉である。 The third aspect of the present invention is a continuous heating furnace for heating a steel material, comprising a fuel flow rate calculating means, wherein the fuel flow rate calculating means has a calculated value v fuelcal of a fuel flow rate calculated from a heat balance equation, This is a continuous heating furnace provided with a calculation unit that determines the fuel flow rate v fuel by the following equation (1) using the primary correction coefficients α and β regressed from the actual value of the fuel flow rate.

ここに、「燃料流量算出手段」とは、上記第1の本発明に係る燃料流量算出方法を実行可能な手段であれば特に限定されるものではなく、また、「計算部」とは、炉内情報(炉内温度分布等)から熱バランス方程式を用いてvfuelcalを計算し、計算したvfuelcalを、式(1)によって修正し、vfuelを決定可能な計算部であれば特に限定されるものではない。 Here, the “fuel flow rate calculation means” is not particularly limited as long as it is a means capable of executing the fuel flow rate calculation method according to the first aspect of the present invention. V fuelcal is calculated from the internal information (temperature distribution in the furnace, etc.) using a heat balance equation, and the calculated v fuelcal is corrected by equation (1), and the calculation unit can determine v fuel and is particularly limited. It is not something.

第3の本発明に係る計算部において、直近の燃料流量の実績値から回帰した1次補正係数αrecent、βrecentと、使用中の補正係数αold、βoldと、を用いて、下記式(2)、(3)から、使用中の補正係数αold、βoldをαnew、βnewへと変更することが好ましい。式(1)中の1次補正係数を適宜補正することにより、より高い精度で燃料流量を算出することができるためである。 In the calculation unit according to the third aspect of the present invention, the following equations are used by using the primary correction coefficients α recent and β recent regressed from the latest actual fuel flow rate values and the correction coefficients α old and β old in use. From (2) and (3), it is preferable to change the correction coefficients α old and β old in use to α new and β new . This is because the fuel flow rate can be calculated with higher accuracy by appropriately correcting the primary correction coefficient in the equation (1).

(ただし、0≦k≦1) (However, 0 ≦ k 1 ≦ 1)

(ただし、0≦k≦1) (However, 0 ≦ k 2 ≦ 1)

第3の本発明に係る計算部において、下記式(4)から、燃料流量の計算値vfuelcalを算出することが好ましい。適切な熱バランス方程式を用いて燃料流量計算値vfuelcalを算出し、当該計算値を用いることで、より高精度にて燃料流量を算出することができるためである。 In the calculation unit according to the third aspect of the present invention, it is preferable to calculate the calculated value v fuelcal of the fuel flow rate from the following equation (4). This is because the fuel flow rate can be calculated with higher accuracy by calculating the fuel flow rate calculated value v fuelcal using an appropriate heat balance equation and using the calculated value.

(式(4)において、cgasは炉内ガス比熱[kcal/Nm・℃]、Vは各燃焼帯の炉容積[m]、Tは各燃焼帯の炉温[℃]、Hlは燃料発熱量[kcal/Nm]、vfuelcalは燃料流量[Nm/hr]、qairは燃料単位あたりの燃焼用空気が有する熱量[kcal/Nm]、qgasは燃料単位あたりの炉内ガスが有する熱量[kcal/Nm]、Qnextは隣接する燃焼帯に流出する熱量[kcal/hr]、Qslabはスラブを加熱するために用いられる熱量[kcal/hr]、Qbodyは加熱炉体から環境に放散される熱量[kcal/hr]、Qskidはスキッド内を流れる冷却水に吸収される熱量[kcal/hr]、Qopenは加熱炉開口部から環境へ放射される熱量[kcal/hr]であり、Hlvfuelcalは燃料燃焼による発熱量[kcal/hr]、qairfuelcalは予熱しておいた燃焼空気が加熱炉に持ち込む熱量[kcal/hr]、qgasfuelcalは炉内ガスが各燃焼帯から持ち去る熱量[kcal/hr]を表す。) (In the formula (4), c gas is the gas specific heat in the furnace [kcal / Nm 3 · ° C.], V f is the furnace volume [m 3 ] of each combustion zone, T f is the furnace temperature [° C.] of each combustion zone, Hl fuel heating value [kcal / Nm 3], v fuelcal fuel flow [Nm 3 / hr], q air is heat possessed by the combustion air per fuel unit [kcal / Nm 3], q gas per fuel unit Calorific value [kcal / Nm 3 ], Q next is calorific value [kcal / hr] flowing out to the adjacent combustion zone, Q slab is calorific value [kcal / hr] used to heat the slab , Q body is the amount of heat dissipated from the furnace body to the environment [kcal / hr], Q skid is the amount of heat absorbed by the cooling water flowing in the skid [kcal / hr], and Q open is radiated from the opening of the furnace to the environment. A is the amount of heat [kcal / hr], Hlv fuelcal the amount of heat generated by fuel combustion [kcal / hr], q air v fuelcal combustion air preheated in the bring the furnace heat [kcal / hr], q gas v fuelcal represents the amount of heat [kcal / hr] that the in-furnace gas takes away from each combustion zone.)

第1の本発明によれば、熱バランス方程式から燃料流量を算出する際に、過去の実績を反映した補正が行われるので、より高精度にて燃料流量を算出することが可能な、燃料流量算出方法を提供することができる。   According to the first aspect of the present invention, when the fuel flow rate is calculated from the heat balance equation, correction reflecting the past results is performed, so that the fuel flow rate can be calculated with higher accuracy. A calculation method can be provided.

第2の本発明によれば、第1の本発明に係る燃料流量算出方法を用いて高精度にて燃料流量を算出しており、燃料原単位の最適化の信頼性を向上させつつ、鋼材を製造することが可能な、鋼材の製造方法を提供することができる。   According to the second aspect of the present invention, the fuel flow rate is calculated with high accuracy using the fuel flow rate calculation method according to the first aspect of the present invention, and the steel material is improved while improving the reliability of optimization of the fuel consumption rate. It is possible to provide a method for manufacturing a steel material capable of manufacturing the steel.

第3の本発明によれば、燃料流量算出手段の計算部において、熱バランス方程式から燃料流量を算出する際に、過去の実績を反映した補正が行われるので、高精度にて燃料流量を算出でき、燃料原単位の最適化の信頼性を向上させることが可能な、連続式加熱炉を提供することができる。   According to the third aspect of the present invention, when the fuel flow rate is calculated from the heat balance equation in the calculation unit of the fuel flow rate calculation means, correction reflecting the past performance is performed, so the fuel flow rate is calculated with high accuracy. It is possible to provide a continuous heating furnace capable of improving the reliability of optimization of the fuel consumption rate.

連続式加熱炉100の形態について説明するための概略図である。1 is a schematic diagram for explaining a form of a continuous heating furnace 100. FIG. 補正を行わず、熱バランス方程式(4)に基づいて燃料流量を算出し、これをそのまま予測値として、実績値と予測値とを比較した結果を示す図である。It is a figure which shows the result of having calculated a fuel flow volume based on the heat balance equation (4) without making correction | amendment, making this as a predicted value as it is, and comparing a track record value and a predicted value. 熱バランス方程式(4)に基づき燃料流量計算値を算出し、これを本発明に係る方法とは異なる方法によって補正を行って燃料流量の予測値として、実績値と予測値とを比較した結果を示す図である。A fuel flow rate calculation value is calculated based on the thermal balance equation (4), and this is corrected by a method different from the method according to the present invention, and the result of comparing the actual value and the prediction value as the fuel flow rate prediction value is obtained. FIG. 熱バランス方程式(4)に基づき燃料流量計算値を算出し、これを本発明に係る方法によって補正を行って燃料流量の予測値として、実績値と予測値とを比較した結果を示す図である。It is a figure which shows the result of having calculated a fuel flow rate calculation value based on a heat balance equation (4), performing this correction | amendment by the method which concerns on this invention, and comparing the actual value and the predicted value as a predicted value of a fuel flow rate. . 1次補正係数を修正しない場合における、第2加熱帯の燃料流量の実績値と予測値とを比較した結果を示す図である。It is a figure which shows the result of having compared the actual value and estimated value of the fuel flow rate of the 2nd heating zone in the case where a primary correction coefficient is not corrected. 1次補正係数を修正した場合における、第2加熱帯の燃料流量の実績値と予測値とを比較した結果を示す図である。It is a figure which shows the result of having compared the actual value and estimated value of the fuel flow rate of the 2nd heating zone in the case of correcting the primary correction coefficient.

本発明は、予熱帯、加熱帯、均熱帯など複数の燃焼帯を有する連続式加熱炉において適用することができる。図1に連続式加熱炉の一例を示す。なお、本発明に用いられる連続式加熱炉は、例えば、均熱帯の後にさらに冷却帯が配されているなどしていてもよく、特に図1に示す連続式加熱炉に限られるものではない。   The present invention can be applied to a continuous heating furnace having a plurality of combustion zones such as a pretropical zone, a heating zone, and a soaking zone. FIG. 1 shows an example of a continuous heating furnace. The continuous heating furnace used in the present invention may be provided with a cooling zone after soaking, for example, and is not particularly limited to the continuous heating furnace shown in FIG.

図1に示された連続式加熱炉100においては、スラブ挿入口から加熱炉に導入されたスラブ1は、スキッド2に載せられ、予熱帯10、第1加熱帯20、第2加熱帯30、及び均熱帯40の各燃焼帯を通過し、スラブ抽出口より加熱炉外に導出される。加熱炉内に導入後スラブ1は徐々に加熱され、均熱帯40でスラブ1の最終加熱温度まで加熱される。炉内で加熱されたスラブ1は、炉外に導出された後、熱間圧延等に供され、所定形状の鋼材とされる。各燃焼帯内部は、予め設定された炉温ヒートパターンに従って炉内温度が制御されており、スラブ1を適切に加熱可能とされている。炉温ヒートパターンについては、加熱炉内の温度分布等を用いて、従来公知の方法により設定すればよい。例えば、加熱炉内に存在するスラブを抽出時にスラブ毎の目標抽出温度まで加熱するため必要な炉温のうち最大のものとすることにより、各燃焼体に係る炉温ヒートパターンを設定することができる。   In the continuous heating furnace 100 shown in FIG. 1, the slab 1 introduced into the heating furnace from the slab insertion port is placed on the skid 2, and the pre-tropical zone 10, the first heating zone 20, the second heating zone 30, And it passes through each combustion zone of the soaking zone 40 and is led out of the heating furnace from the slab extraction port. After being introduced into the heating furnace, the slab 1 is gradually heated and heated to the final heating temperature of the slab 1 in the soaking zone 40. The slab 1 heated in the furnace is led out of the furnace and then subjected to hot rolling or the like to be a steel material having a predetermined shape. In each combustion zone, the furnace temperature is controlled according to a preset furnace temperature heat pattern, and the slab 1 can be appropriately heated. About a furnace temperature heat pattern, what is necessary is just to set by a conventionally well-known method using the temperature distribution etc. in a heating furnace. For example, it is possible to set the furnace temperature heat pattern for each combustor by setting the slab existing in the heating furnace to the maximum furnace temperature necessary for heating to the target extraction temperature for each slab during extraction. it can.

連続式加熱炉100においては、第1加熱帯20、第2加熱帯30、及び均熱帯40に備えられたバーナ3a〜3iに燃料等を供給・燃焼させることで、炉内の温度を制御可能としている。各バーナ3a〜3iとしては、連続式加熱炉100に適用可能な蓄熱式バーナ、非蓄熱式バーナ等を特に限定されることなく用いることができる。特に、連続式加熱炉100のスラブ装入側に、蓄熱式バーナを備える形態することが好ましい。   In the continuous heating furnace 100, the temperature in the furnace can be controlled by supplying and burning fuel and the like to the burners 3 a to 3 i provided in the first heating zone 20, the second heating zone 30, and the soaking zone 40. It is said. As each burner 3a-3i, the thermal storage type burner applicable to the continuous heating furnace 100, a non-thermal storage type burner, etc. can be used without being specifically limited. In particular, it is preferable to provide a regenerative burner on the slab charging side of the continuous heating furnace 100.

バーナ3a〜3iは、コントローラ5を介して、燃料源4に接続されている。コントローラ5は、炉内温度等の炉内情報を取得可能な炉内情報取得手段6に接続され、炉内情報取得手段6からの炉内情報と、予め設定されたヒートパターンとに基づき、各バーナ3a〜3iに供給する燃料流量(燃料流量の実績値)を制御可能とされている。一方、コントローラ5は、燃料流量算出手段50とも接続されている。燃料流量算出手段50の内部には、計算部(不図示)が備えられており、予め設定された炉温ヒートパターンに基づいて、燃料流量が算出・予測される。コントローラ5においては、燃料流量算出手段50において算出された燃料流量の予測値を目安に、燃料源4から燃料を引き出し、各バーナ3a〜3iへと燃料を供給する。   The burners 3 a to 3 i are connected to the fuel source 4 via the controller 5. The controller 5 is connected to the in-furnace information acquisition means 6 capable of acquiring the in-furnace information such as the in-furnace temperature, and based on the in-furnace information from the in-furnace information acquisition means 6 and a preset heat pattern. The fuel flow rate (actual value of the fuel flow rate) supplied to the burners 3a to 3i can be controlled. On the other hand, the controller 5 is also connected to the fuel flow rate calculation means 50. A calculation unit (not shown) is provided inside the fuel flow rate calculation means 50, and the fuel flow rate is calculated and predicted based on a preset furnace temperature heat pattern. The controller 5 draws fuel from the fuel source 4 using the predicted value of the fuel flow rate calculated by the fuel flow rate calculation means 50 as a guide, and supplies the fuel to the burners 3a to 3i.

上記の通り、燃料流量算出手段50においては、炉温ヒートパターンに基づいて、燃料流量が計算・予測される。すなわち、各燃焼帯での熱収支について熱バランス方程式として表し、これを解くことで燃料流量の計算が可能である。例えば、下記に示す加熱炉形状や熱物性値などを用いた熱バランス方程式(4’)を立てることができ、式(4’)をvfuelcalについて解くことにより、時刻毎の炉温を入力として燃料流量の算出が可能となる(下記式(4))。 As described above, the fuel flow rate calculation means 50 calculates and predicts the fuel flow rate based on the furnace temperature heat pattern. That is, the heat balance in each combustion zone is expressed as a heat balance equation, and the fuel flow rate can be calculated by solving this. For example, a heat balance equation (4 ′) using the heating furnace shape and thermophysical property values shown below can be established. By solving the equation (4 ′) for v fuelcal , the furnace temperature at each time is input. The fuel flow rate can be calculated (the following formula (4)).

式(4’)及び式(4)において、cgasは炉内ガス比熱[kcal/Nm・℃]、Vは各燃焼帯の炉容積[m]、Tは各燃焼帯の炉温[℃]、Hlは燃料発熱量[kcal/Nm]、vfuelcalは燃料流量[Nm/hr]、qairは燃料単位あたりの燃焼用空気が有する熱量[kcal/Nm]、qgasは燃料単位あたりの炉内ガスが有する熱量[kcal/Nm]、Qnextは隣接する燃焼帯に流出する熱量[kcal/hr]、Qslabはスラブを加熱するために用いられる熱量[kcal/hr]、Qbodyは加熱炉体から環境に放散される熱量[kcal/hr]、Qskidはスキッド内を流れる冷却水に吸収される熱量[kcal/hr]、Qopenは加熱炉開口部から環境へ放射される熱量[kcal/hr]であり、Hlvfuelcalは燃料燃焼による発熱量[kcal/hr]、qairfuelcalは予熱しておいた燃焼空気が加熱炉に持ち込む熱量[kcal/hr]、qgasfuelcalは炉内ガスが各燃焼帯から持ち去る熱量[kcal/hr]を表す。 In equations (4 ′) and (4), c gas is the gas specific heat in the furnace [kcal / Nm 3 · ° C.], V f is the furnace volume [m 3 ] of each combustion zone, and T f is the furnace of each combustion zone. temperature [° C.], Hl fuel heating value [kcal / Nm 3], v fuelcal fuel flow [Nm 3 / hr], q air is heat [kcal / Nm 3] with the combustion air per fuel unit, q gas is the amount of heat of the in-furnace gas per fuel unit [kcal / Nm 3 ], Q next is the amount of heat flowing out to the adjacent combustion zone [kcal / hr], and Q slab is the amount of heat [kcal] used to heat the slab. / Hr], Q body is the amount of heat dissipated from the heating furnace body to the environment [kcal / hr], Q skid is the amount of heat absorbed by the cooling water flowing in the skid [kcal / hr], and Q open is the opening of the heating furnace From A quantity of heat radiated to the boundary [kcal / hr], Hlv fuelcal the amount of heat generated by fuel combustion [kcal / hr], q air v fuelcal heat to bring the combustion air which had been preheated furnace [kcal / hr ], Q gas v fuel represents the amount of heat [kcal / hr] that the in-furnace gas takes away from each combustion zone.

図2に42時間分の燃料流量予測を実行した際の式(4)に基づき計算した燃料流量の予測値と実際に連続式加熱炉に導入した燃料流量の実績値を比較した結果を示す(第1加熱帯20における結果)。ここで、実績値とは、ヒートパターンに基づいた設定加熱炉温度と、実際の加熱炉温度とに基づいてコントローラが炉内に流入させる燃料流量である。   FIG. 2 shows the result of comparing the predicted value of the fuel flow rate calculated based on the equation (4) when the fuel flow rate prediction for 42 hours is executed and the actual value of the fuel flow rate actually introduced into the continuous heating furnace ( Results in the first heating zone 20). Here, the actual value is the fuel flow rate that the controller flows into the furnace based on the set heating furnace temperature based on the heat pattern and the actual heating furnace temperature.

図2によると、燃料流量の予測値と実績値の定性的な挙動は一致するものの、定量的には予測値の方が低い傾向にある。特に時間0−6hr、21−24hr、25−29hr付近における燃料流量は予測値と実績値とで大きく乖離しており、燃料流量を精度よく予測することができていない。燃料流量を積算し算出した燃料原単位の誤差は12.0%と、あまり一致していない。これは、上述の熱バランス方程式では記述しきれない熱損失や、熱物性の真値とノミナル値とのずれなどが原因であると考えられるが、これらを定式化し、或いは真値を測定することは非常に困難である。 According to FIG. 2, although the qualitative behavior of the predicted value and the actual value of the fuel flow rate coincides, the predicted value tends to be lower quantitatively. In particular, the fuel flow rate in the vicinity of time 0-6 hr, 21-24 hr, and 25-29 hr is greatly different between the predicted value and the actual value, and the fuel flow rate cannot be accurately predicted. The fuel unit error calculated by integrating the fuel flow rate is not very consistent with 12.0%. This is considered to be caused by heat loss that cannot be described by the above heat balance equation, or the difference between the true value and nominal value of thermophysical properties, but formulate these or measure the true value. Is very difficult.

そこで、本発明では、燃料流量算出手段50において、上記式(4)で計算される値に、さらに補正を加えて、より高い精度で燃料流量vfuelを予測する。具体的には、計算した燃料流量vfuelcalを下記式(1)に示す1次式により補正し、vfuelとする。 Therefore, in the present invention, the fuel flow rate calculating means 50 predicts the fuel flow rate v fuel with higher accuracy by further correcting the value calculated by the above equation (4). Specifically, the calculated fuel flow rate v fuelcal is corrected by a linear expression shown in the following expression (1) to obtain v fuel .

式(1)において、α、βは補正パラメータであり、実績との一次回帰により定めることができる。具体的には、一定時間における燃料流量の計算値vfuelcal及び実績値の結果から最小二乗法によりα、βを求めることができる。或いは、主成分回帰法によって求めてもよい。このようにして求めたα、βにより、上記式(4)に係るvfuelcalを補正し、補正後の燃料流量vfuelを新たな予測値とすることにより、予測精度が向上された燃料流量vfuelを得ることができる。 In equation (1), α and β are correction parameters, which can be determined by linear regression with the actual results. Specifically, α and β can be obtained by the least square method from the result of the calculated value v fuelcal and the actual value of the fuel flow rate in a certain time. Or you may obtain | require by a principal component regression method. The fuel flow rate v with improved prediction accuracy is obtained by correcting the v fuelcal according to the above equation (4) by α and β thus obtained and making the corrected fuel flow rate v fuel a new predicted value. A fuel can be obtained.

一方で、季節要因や炉の老朽化などの外的要因により連続式加熱炉の稼動状況が変わることにより、α、βは補正係数として不適当な値となりうる。この場合、α、βをさらに修正することが好ましい。   On the other hand, α and β may be inappropriate values as correction coefficients due to changes in the operating status of the continuous heating furnace due to external factors such as seasonal factors and aging of the furnace. In this case, it is preferable to further correct α and β.

ここで、α、βの修正は、例えば以下のように行うことが好ましい。すなわち、直近の燃料流量の実績値から回帰した1次補正係数αrecent、βrecentを求め、これらの値と現在補正係数として使用しているαold、βoldとから、下記式(2)、(3)に示す指数平滑学習を用い、新たな1次補正係数αnew、βnewを求める。 Here, it is preferable to correct α and β as follows, for example. That is, the primary correction coefficients α recent and β recent that are regressed from the latest actual fuel flow rate values are obtained, and from these values and α old and β old that are currently used as the correction coefficients, New primary correction coefficients α new and β new are obtained using exponential smoothing learning shown in (3).

(ただし、0≦k≦1) (However, 0 ≦ k 1 ≦ 1)

(ただし、0≦k≦1) (However, 0 ≦ k 2 ≦ 1)

このように直近の補正係数と過去の補正係数にそれぞれ重み付けをし、平均を算出することでより正確な補正係数を求めることができる。係数k、kについては、直近のデータを重視するか、過去のデータを重視するかにより0≦k,k≦1の範囲で任意に定めることができる。例えば、直近のデータを重視したい場合は0.8、過去のデータを重視する場合は0.2、同程度に重視する場合は0.5とする。 In this way, it is possible to obtain a more accurate correction coefficient by weighting the latest correction coefficient and the past correction coefficient and calculating the average. The coefficients k 1 and k 2 can be arbitrarily determined in the range of 0 ≦ k 1 and k 2 ≦ 1, depending on whether the most recent data is important or the past data is important. For example, 0.8 is set when the most recent data is to be emphasized, 0.2 is set when the past data is emphasized, and 0.5 is set when the same level is emphasized.

このように補正係数α、βの修正を行い、上記式(1)〜(4)を用いてvfuelを求めることにより、さらに正確な燃料流量予測が可能になる。ここで、燃料流量vfuelの算出はリアルタイムで、すなわち連続式加熱炉を操業中に決定することが好ましい。即時的に連続式加熱炉に算出結果を反映させることでより正確性の高い実操業が可能となるためである。 By correcting the correction coefficients α and β in this way and obtaining v fuel using the above equations (1) to (4), more accurate fuel flow prediction becomes possible. Here, the fuel flow rate v fuel is preferably calculated in real time, that is, during operation of the continuous heating furnace. This is because the actual operation can be performed with higher accuracy by immediately reflecting the calculation result in the continuous heating furnace.

以上のように、本発明に係る燃料流量算出方法によれば、燃料流量vfuelを高精度にて計算・予測することができ、例えば、実操業時における炉温ヒートパターンからの誤差が低減されるとともに、コントローラによる制御量を小さくでき、燃料原単位の最適化に係る信頼性を向上させることができる。また、本発明に係る鋼材の製造方法によれば、本発明に係る燃料流量算出方法を用いて高精度にて燃料流量を算出しており、燃料原単位の最適化の信頼性を向上させつつ、鋼材を製造することが可能である。さらに、本発明に係る連続式加熱炉によれば、本発明に係る燃料流量算出方法を実行可能な燃料流量算出手段が備えられるので、高精度にて燃料流量を算出でき、燃料原単位の最適化の信頼性を向上させることが可能である。 As described above, according to the fuel flow rate calculation method of the present invention, the fuel flow rate v fuel can be calculated and predicted with high accuracy. For example, errors from the furnace temperature heat pattern during actual operation are reduced. In addition, the amount of control by the controller can be reduced, and the reliability related to the optimization of the fuel consumption rate can be improved. In addition, according to the method for manufacturing a steel material according to the present invention, the fuel flow rate is calculated with high accuracy using the fuel flow rate calculation method according to the present invention, and the reliability of optimization of the fuel consumption rate is improved. It is possible to manufacture steel materials. Further, according to the continuous heating furnace according to the present invention, since the fuel flow rate calculation means capable of executing the fuel flow rate calculation method according to the present invention is provided, the fuel flow rate can be calculated with high accuracy, and the optimal fuel consumption rate can be calculated. It is possible to improve the reliability of conversion.

以下、実施例に基づいて、本発明に係る燃料流量算出方法についてより詳細に説明する。   Hereinafter, the fuel flow rate calculation method according to the present invention will be described in more detail based on examples.

連続式加熱炉で昇温した42時間分のスラブの昇温ヒートパターンを基に、上記式(4)から計算した各時間の予測燃料流量vfuelcal、 式(4)を一部修正した従来法の式(6)(下記に記載)で計算した予測燃料流量vfuelcal、及びvfuelcalを過去の実績から最小二乗法で求めた1次補正係数α、βを用いて式(1)で修正した予測燃料流量vfuelを計算した。 A conventional method in which the predicted fuel flow rate v fuelcal for each time calculated from the above equation (4) and the equation (4) are partially modified based on the heating heat pattern of the slab for 42 hours heated in the continuous heating furnace The predicted fuel flow rate v fuelcal and v fuelcal calculated in Equation (6) (described below) were corrected by Equation (1) using the primary correction coefficients α and β obtained from the past results by the least square method. A predicted fuel flow rate v fuel was calculated.

図2に式(4)から計算した予測燃料流量vfuelcalを、図3に従来法での予測燃料流量vfuelcal’を、図4にvfuelcalを式(1)で修正した予測燃料流量vfuelを時間の経過ごとに示す(図中、実線で示される「計算」)。図2〜4には、合わせて実炉操業での燃料流量の実績値(図中、破線で示される「実績」)と合わせて示す(実績値のトレースは図2〜4で共通である。)。尚、図3に示す従来法は各熱流束項に補正を乗じる方法で式(4)を下記式(5)のように補正するものである。 The predicted fuel flow rate v Fuelcal calculated from equation (4) in FIG. 2, the predicted fuel flow rate v fuelcal 'in the conventional method in FIG. 3, the predicted fuel flow rate v Fuel the v Fuelcal 4 modified by the formula (1) Is shown over time ("calculation" indicated by a solid line in the figure). 2 to 4 are shown together with the actual value of the fuel flow rate in the actual furnace operation ("actual result" indicated by a broken line in the figure) (the trace of the actual value is common to FIGS. 2 to 4). ). Note that the conventional method shown in FIG. 3 is to correct equation (4) as the following equation (5) by multiplying each heat flux term by correction.

ここで、式(5)ではQnextに関しては、隣接帯との整合が取れなくなることから補正は行わない。式(5)による補正では、燃料流量計算誤差が各帯1値であるのに対し、補正係数kは各帯5値あるので、kを一意に決定することができない。ここでは、cgas(dT/dt)、Qslab、Qbody、Qskid、Qopenの内、最も燃料流量予測誤差との相関係数が高いものの補正係数の調整を行った。 Here, in the expression (5), Q next is not corrected because it cannot be matched with the adjacent band. In the correction according to the equation (5), the fuel flow calculation error is 1 value in each band, whereas the correction coefficient k has 5 values in each band, so k cannot be uniquely determined. Here, among c gas V f (dT f / dt), Q slab , Q body , Q skid , and Q open , the correction coefficient was adjusted although the correlation coefficient with the fuel flow prediction error was the highest.

図2〜4を比較すると、図2は予測値vfuelcalと実績値に部分的に大きな乖離が見られる。このことより、式(4)で計算した予測燃料流量vfuelcalでは十分な予測ができないことは明らかである。一方、図3、4については予測値vfuelcal’、vfuelcalと実績値は近似しており、一定の予測ができることが分かる。 Comparing FIGS. 2 to 4, FIG. 2 shows a partial large difference between the predicted value v fuelcal and the actual value. From this, it is clear that sufficient prediction cannot be made with the predicted fuel flow rate v fuelcal calculated by the equation (4). On the other hand, in FIGS. 3 and 4, the predicted values v fuel ', v fuel and the actual values are approximate, and it can be seen that a certain prediction can be made.

ここで、図3、4に記載の予測燃料流量(vfuelcal’及びvfuelcal)と実績値の相関係数を調査したところ、従来法(図3)では0.864、本発明法(図4)では0.872となった。これより、本発明の方がより正確な燃料流量を算出できることが分かる。 Here, when the correlation coefficient between the predicted fuel flow rate (v fuelcal and v fuelcal ) and the actual value shown in FIGS. 3 and 4 was investigated, the conventional method (FIG. 3) was 0.864, and the method of the present invention (FIG. 4 ) Was 0.872. This shows that the present invention can calculate a more accurate fuel flow rate.

一方、1次補正係数α、βを2時間おきにリアルタイムで更新した場合の燃料流量も計算した。具体的には、特に第2加熱体における予測燃料流量vfuelを時間の経過ごとに計算した。すなわち、2時間前に補正して得た1次補正係数α、βをαold、βoldとし、2時間前から実績値に基づく1次補正係数αrecent、βrecentとから、下記式(2)、(3)に基づき1次補正係数αnew、βnewを計算し、これを新たな1次補正係数α、βとして燃料流量の算出を行った。なお、k、kは0.1で計算した。 On the other hand, the fuel flow rate when the primary correction coefficients α and β were updated in real time every two hours was also calculated. Specifically, the predicted fuel flow rate v fuel in the second heating body was calculated for each passage of time. That is, the primary correction coefficients α and β obtained by correcting 2 hours ago are α old and β old, and the following formula (2) is obtained from the primary correction coefficients α recent and β recent based on the actual values from 2 hours ago. ) And (3), the primary correction coefficients α new and β new were calculated, and the fuel flow rate was calculated using the new primary correction coefficients α and β as new primary correction coefficients α and β. Note that k 1 and k 2 were calculated as 0.1.

図5に1次補正係数の修正なし(学習なし)の場合の第2加熱帯の燃料流量の実績値(実績)と予測値(計算)を比較した結果を、図6に1次補正係数の修正あり(学習あり)の場合の第2加熱帯の燃料流量の実績値(実績)と予測値(計算)を比較した結果を示す。   FIG. 5 shows the result of comparing the actual value (actual) and the predicted value (calculation) of the fuel flow rate in the second heating zone when the primary correction coefficient is not corrected (no learning), and FIG. The result of comparing the actual value (actual) and the predicted value (calculation) of the fuel flow rate in the second heating zone with correction (with learning) is shown.

図5、6に記載の予測燃料流量vfuelcalはともにほぼ差異はないが、その相関係数は、1次補正係数を修正しない場合(図5)では0.929、修正した場合(図6)は0.932となり、補正係数を修正した場合の方がより正確な燃料流量を算出できることが分かる。 The estimated fuel flow rate v fuelcal described in FIGS. 5 and 6 is almost the same, but the correlation coefficient is 0.929 when the primary correction coefficient is not corrected (FIG. 5), and is corrected (FIG. 6). Is 0.932, and it can be seen that the fuel flow rate can be calculated more accurately when the correction coefficient is corrected.

本発明によれば、連続式加熱炉の炉内への燃料流量を精度よく予測することができ、燃料原単位を適切に低減しつつ、鋼材を製造することができる。本発明は、特に、熱容量が大きく、加熱工程で大量のエネルギーを必要とする厚鋼板の製造時に好適に適用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel flow rate into the furnace of a continuous heating furnace can be estimated accurately, and steel materials can be manufactured, reducing fuel basic unit appropriately. The present invention can be suitably applied particularly to the manufacture of thick steel plates that have a large heat capacity and require a large amount of energy in the heating process.

1 スラブ
2 スキッド
3 バーナ
4 燃料源
5 コントローラ
6 炉内情報取得手段
10 予熱帯
20 第1加熱帯
30 第2加熱帯
40 均熱帯
50 燃料流量算出手段
100 連続式加熱炉
DESCRIPTION OF SYMBOLS 1 Slab 2 Skid 3 Burner 4 Fuel source 5 Controller 6 Furnace information acquisition means 10 Pre-tropical 20 First heating zone 30 Second heating zone 40 Soaking zone 50 Fuel flow rate calculation means 100 Continuous heating furnace

Claims (2)

連続式加熱炉にて、炉内に流入させる燃料流量vfuelを算出する方法であって、
熱バランス方程式から計算される燃料流量の計算値vfuelcalと、燃料流量の実績値から回帰した1次補正係数α、βとを用いて、
下記式(1)により前記燃料流量vfuelを算出する、燃料流量算出方法。
A method of calculating a fuel flow rate v fuel flowing into a furnace in a continuous heating furnace,
Using the calculated value v fuelcal of the fuel flow rate calculated from the heat balance equation and the primary correction coefficients α and β regressed from the actual value of the fuel flow rate,
A fuel flow rate calculation method for calculating the fuel flow rate v fuel according to the following equation (1).
鋼材を加熱するための連続式加熱炉であって、
燃料流量算出手段を備え、
前記燃料流量算出手段が、熱バランス方程式から計算される燃料流量の計算値vfuelcalと、燃料流量の実績値から回帰した1次補正係数α、βとを用いて、下記式(1)により燃料流量vfuelを決定する計算部を備える、連続式加熱炉。
A continuous heating furnace for heating steel materials,
A fuel flow rate calculating means,
The fuel flow rate calculation means uses the calculated fuel flow value v fuelcal calculated from the heat balance equation and the primary correction coefficients α and β regressed from the actual fuel flow rate values to calculate the fuel according to the following equation (1). A continuous heating furnace including a calculation unit for determining a flow rate v fuel .
JP2010023265A 2010-02-04 2010-02-04 Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace Expired - Fee Related JP5423443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023265A JP5423443B2 (en) 2010-02-04 2010-02-04 Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023265A JP5423443B2 (en) 2010-02-04 2010-02-04 Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace

Publications (2)

Publication Number Publication Date
JP2011162804A JP2011162804A (en) 2011-08-25
JP5423443B2 true JP5423443B2 (en) 2014-02-19

Family

ID=44593849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023265A Expired - Fee Related JP5423443B2 (en) 2010-02-04 2010-02-04 Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace

Country Status (1)

Country Link
JP (1) JP5423443B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101733366B1 (en) 2013-08-02 2017-05-08 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Energy-saving-operation recommending system
CN112414155B (en) * 2020-11-18 2022-07-05 攀钢集团攀枝花钢铁研究院有限公司 Method for calculating smoke gas amount of combined type steel rolling heating furnace
WO2024004585A1 (en) * 2022-06-28 2024-01-04 Jfeスチール株式会社 Heating-furnace combustion-gas usage estimation device, energy implementation optimization system, energy implementation optimization device, display terminal device, heating-furnace combustion-gas usage estimation method, and energy implementation optimization method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663039B2 (en) * 1985-05-14 1994-08-17 三菱電機株式会社 Temperature control device for heating furnace
JPH05209235A (en) * 1992-01-30 1993-08-20 Nippon Steel Corp In-furnace temperature control device of heating furnace
JP4203275B2 (en) * 2002-07-12 2008-12-24 新日本製鐵株式会社 Combustion control method, combustion control apparatus, combustion control program and computer-readable recording medium for continuous steel heating furnace
JP5003019B2 (en) * 2006-05-19 2012-08-15 住友金属工業株式会社 Steel manufacturing method using continuous heating furnace

Also Published As

Publication number Publication date
JP2011162804A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
CN109248928B (en) A kind of hot-rolling heating furnace dynamic method for controlling furnace temperature
CN106636606B (en) A kind of method for controlling furnace temperature of heating furnace based on simulation model
JP2010209332A5 (en)
CN106636610A (en) Time-and-furnace-length-based double-dimensional stepping type heating curve optimizing setting method of heating furnace
CN103952529B (en) A kind of walking beam furnace is based on thermally equilibrated optimum furnace method
US9863283B2 (en) Steam turbine power plant and method for activating steam turbine power plant
JP5423443B2 (en) Method for calculating fuel flow rate in continuous heating furnace, method for producing steel material, and continuous heating furnace
JP2005325446A (en) Method for controlling hot blast stove, control unit, control system, computer program, and computer readable recording medium
CN113343514A (en) Method for optimizing heating system of walking beam furnace
CN101111727A (en) Method for maximum efficiency of non-condensing boiler
CN108474587A (en) Heat hot water boiler and its control method
CN108330257A (en) Annealing furnace bringing-up section temprature control method and device
TW200617628A (en) System and method for optimizing and simulating thermal management systems and predictive flow control
CN109182731A (en) A kind of high-carbon-chromium bearing steel continuous casting billet method for heating and controlling based on temperature-time control
JP2020029596A (en) Molten iron temperature prediction method, molten iron temperature prediction device, blast furnace operation method, operation guidance device, molten iron temperature control method, and molten iron temperature control device
CN111534682B (en) Pulse type heating furnace air-fuel ratio control method and device based on flow control
JP5984435B2 (en) Gas turbine control device and control method
EP2385321A3 (en) A method for regulating the combustion process in solid fuel central heating boilers
CN106011353B (en) A kind of blast funnace hot blast stove air-fuel ratio self-optimization method
CN105385843B (en) A kind of hot rolling slab method for heating and controlling based on the last temperature of section
JP5975427B2 (en) Hot water supply device and hot water storage type hot water supply system provided with the same
JP5849612B2 (en) Combustion control method and combustion control apparatus for hot stove
CN104805277B (en) Temperature control method for pulse-type slab heating furnace
JP2012140662A (en) Furnace temperature setting method for continuous heating furnace, furnace temperature control system, continuous heating furnace, and method for producing metal material
CN104267764B (en) Coke oven standard temperature dynamic optimization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees