JP5423193B2 - Folded panel structure - Google Patents

Folded panel structure Download PDF

Info

Publication number
JP5423193B2
JP5423193B2 JP2009164444A JP2009164444A JP5423193B2 JP 5423193 B2 JP5423193 B2 JP 5423193B2 JP 2009164444 A JP2009164444 A JP 2009164444A JP 2009164444 A JP2009164444 A JP 2009164444A JP 5423193 B2 JP5423193 B2 JP 5423193B2
Authority
JP
Japan
Prior art keywords
folded plate
panel structure
plate
folded
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009164444A
Other languages
Japanese (ja)
Other versions
JP2011021315A (en
Inventor
圭一 佐藤
信孝 清水
忠義 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009164444A priority Critical patent/JP5423193B2/en
Publication of JP2011021315A publication Critical patent/JP2011021315A/en
Application granted granted Critical
Publication of JP5423193B2 publication Critical patent/JP5423193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、建築構造物を構成するエネルギー吸収性能に優れた折板パネルに関する。   The present invention relates to a folded plate panel excellent in energy absorption performance constituting a building structure.

従来から、建築物の制振構造として、地震、風、その他の振動により建築物に振動が生じるとき、振動に応じて粘弾性体をせん断変形させることにより、振動エネルギーを吸収する構造が知られている。   Conventionally, a structure that absorbs vibrational energy by shearing a viscoelastic body in response to vibration when the building is vibrated by an earthquake, wind, or other vibration is known as a structure for damping a building. ing.

さらに、近年では、例えば特許文献1にみられるように、枠材に設けられた一対の支持部にピン接合された振り子部材を用いて、建築物に生じる変形を増大させて振り子部材端部の粘弾性体に伝えることで、小さな変位に対しても粘弾性体を大きく変形させ、エネルギー吸収効率を高める技術も提案されている。   Furthermore, in recent years, as seen in Patent Document 1, for example, a pendulum member that is pin-joined to a pair of support portions provided on a frame member is used to increase the deformation generated in a building and A technique has also been proposed in which the viscoelastic body is greatly deformed even by a small displacement and the energy absorption efficiency is increased by transmitting it to the viscoelastic body.

一方、折板を用いたエネルギー吸収構造として、特許文献2、3にみられるように、波板や折板を枠材に接合した折板パネル構造を、面内せん断力に抵抗させ、制振壁のような構造材として利用する技術も提案されている。   On the other hand, as seen in Patent Documents 2 and 3, as an energy absorbing structure using folded plates, a folded plate panel structure in which corrugated plates or folded plates are joined to a frame material is resisted by in-plane shearing force, thereby suppressing vibration. A technique for use as a structural material such as a wall has also been proposed.

特開2006−132182号公報JP 2006-132182 A 特開2006−037586号公報JP 2006-037566 A 特開2006−037628号公報JP 2006-037628 A

しかしながら、前記特許文献1の開示技術では、振り子部材とその支持部材をピン接合しているため、接合部でがたつきが生じ、振動に対する制振構造全体の履歴性状はスリップ性状を示す。その結果、入力振動に対するせん断力−せん断変形関係において履歴曲線で囲まれる面積が狭小化してしまい、エネルギー吸収効率が低下するという問題点が生じる。   However, since the pendulum member and its support member are pin-joined in the disclosed technique of Patent Document 1, rattling occurs at the joint, and the hysteresis property of the entire damping structure against vibration shows slip property. As a result, the area surrounded by the hysteresis curve in the shear force-shear deformation relationship with respect to the input vibration is narrowed, resulting in a problem that the energy absorption efficiency is lowered.

さらに、入力振動に対し、振り子部材がピン接合部を支点として円滑に振り子運動するためには、ピン接合部の機械的なつくり込みが必要となり、製造労力の負担増大、ひいては製造コストが高くなるという問題点が生じる。   In addition, in order for the pendulum member to smoothly swing with respect to the input vibration with the pin joint as a fulcrum, it is necessary to mechanically create the pin joint, which increases the burden of manufacturing labor and thus increases the manufacturing cost. The problem arises.

また、前記特許文献2、3の開示技術では折板パネルを面内せん断力に対するエネルギー吸収構造として利用する上で、パネルを構成する板要素をせん断降伏させることでエネルギー吸収しているため、せん断降伏した後の板要素の剛性低下に起因しパネルの全体座屈が誘発され、比較的小さな変形域で急激に荷重が低下し、エネルギー吸収効率が低下するという問題点が生じる。   Further, in the disclosed technologies of Patent Documents 2 and 3, since the folded plate panel is used as an energy absorbing structure for in-plane shearing force, energy is absorbed by causing the plate elements constituting the panel to yield by shearing. Due to a decrease in the rigidity of the plate element after yielding, overall panel buckling is induced, causing a problem that the load is rapidly decreased in a relatively small deformation region, resulting in a decrease in energy absorption efficiency.

本発明は、前述した課題に鑑みて案出されたものであり、地震などの入力振動に対してスリップ性状のない安定したエネルギー吸収性能を示し、製造が簡易な制振構造を提供することを目的としている。   The present invention has been devised in view of the above-described problems, and provides a damping structure that exhibits stable energy absorption performance without slip properties with respect to input vibrations such as earthquakes and is easy to manufacture. It is aimed.

本発明者らは、前記目的を達成するために、ピン接合を要する振り子部材を用いない簡
易な構造要素により建築物の変位を増大させる機構について検討した。結果、折板が面内せん断力に対して山部が山部軸方向と略直交方向に歪む幾何学的な挙動を利用することにより、ピン接合を用いずに建築物の変位を増大させ、安定した履歴性状と高いエネルギー吸収効率を得ることができることを新たに知見した。
In order to achieve the above object, the present inventors have studied a mechanism for increasing the displacement of a building with a simple structural element that does not use a pendulum member that requires pin joining. As a result, by using the geometrical behavior that the folded plate is distorted in the direction substantially perpendicular to the mountain axis direction with respect to the in-plane shear force, the displacement of the building is increased without using pin joints, It was newly found that stable hysteresis properties and high energy absorption efficiency can be obtained.

請求項1に記載の折板パネル構造は、枠材と、一つの山部とその両脇の谷部とが所定間隔で屈曲形成された折板と、前記折板の山部軸方向端部の山部と前記枠材との間に介装された粘弾性体とを備えた折板パネル構造であって、前記折板の両脇の谷部はそれぞれ山部軸方向全域に渡って支持部材を介して前記枠材に支持され、前記折板パネル構造に対して面内せん断力が負荷され、前記折板の両脇で対をなす前記支持部材間に前記山部軸方向の相対変位が生じた場合に、前記山部を山部軸方向と略直交方向に歪ませることにより、前記粘弾性体を変形させ、前記面内せん断力に対してエネルギーを吸収させることを特徴とする。 Folded plate panel of claim 1, the frame member and one at the crest and the both sides of the valleys and folded plate which is bent at a predetermined interval, before the crest axial end of Kioriban a folded plate panel structure and a interposed viscoelastic body between the crest the frame member parts, respectively both sides of the valley of the folding plate, over the crest portion axially throughout Supported by the frame member via a support member, an in-plane shearing force is applied to the folded plate panel structure, and the ridge portion axial direction between the support members paired on both sides of the folded plate . When relative displacement occurs, the viscoelastic body is deformed by distorting the peak portion in a direction substantially orthogonal to the peak axis direction, and energy is absorbed with respect to the in-plane shear force. To do.

請求項2に記載の折板パネル構造は、前記山部の断面は、略矩形状で構成されていることを特徴とする。   The folded plate panel structure according to claim 2 is characterized in that a cross section of the peak portion is formed in a substantially rectangular shape.

請求項3に記載の折板パネル構造は、請求項1または2に記載の折板パネル構造において、前記粘弾性体は、前記折板の山部から突出された板を介して前記枠材と前記折板の山部との間に介装されていることを特徴とする。   The folded plate panel structure according to claim 3 is the folded plate panel structure according to claim 1 or 2, wherein the viscoelastic body is connected to the frame member via a plate protruding from a peak portion of the folded plate. It is interposed between the ridges of the folded plate.

請求項4に記載の折板パネル構造は、請求項1または2に記載の折板パネル構造において、前記粘弾性体は、前記枠材から突出された板を介して前記枠材と前記折板の山部との間に介装されていることを特徴とする。   The folded plate panel structure according to claim 4 is the folded plate panel structure according to claim 1 or 2, wherein the viscoelastic body includes the frame member and the folded plate via a plate protruding from the frame member. It is characterized in that it is interposed between the mountain parts.

請求項5に記載の折板パネル構造は、請求項1または2に記載の折板パネル構造において、前記粘弾性体は、前記枠材から突出された板と前記折板の山部から突出された板とを介して、前記枠材と前記折板の山部との間に介装されていることを特徴とする。   The folded plate panel structure according to claim 5 is the folded plate panel structure according to claim 1 or 2, wherein the viscoelastic body is projected from a plate protruding from the frame member and a peak portion of the folded plate. It is characterized by being interposed between the frame member and the peak portion of the folded plate through a plate.

請求項6に記載の折板パネル構造は、請求項3〜5の何れか1項に記載の折板パネル構造において、前記折板の山部から突出された板と山部との接合部、または、前記枠材から突出された板と枠材との接合部が、ボルト、ねじ、クリンチ、鋲又は嵌合により接合されていることを特徴とする。 The folded plate panel structure according to claim 6 is the folded plate panel structure according to any one of claims 3 to 5, wherein a joint portion between the plate and the ridge protruding from the ridge of the folded plate, Or the junction part of the board and frame material which protruded from the said frame material is joined by the volt | bolt, the screw, the clinch, the collar, or fitting.

前述した構成からなる本発明によれば、建築物の振動により折板パネル構造に面内せん断力が負荷された場合に、枠材に取り付けられた支持部材を介して面内せん断力を折板に伝え、折板山部山部軸方向と略直交方向に歪ませることで、該折板山部端部の変位は建築物に生じた変位に比して増大される。そして、該折板山部端部の変形に追従するように折板山部端部と枠材の間に連結された粘弾性体がせん断変形することで、建築物に生じた変位が小さい場合にも効率的に振動エネルギーを吸収できる。 According to the present invention having the above-described configuration, when an in-plane shear force is applied to the folded plate panel structure due to vibration of the building, the in-plane shear force is folded through the support member attached to the frame member. In other words, by distorting the folded plate crest in a direction substantially perpendicular to the crest axial direction, the displacement of the end of the folded plate crest is increased compared to the displacement generated in the building. And when the displacement which arose in the building is small because the viscoelastic body connected between the folded-plate mountain part edge part and the frame material so that the deformation | transformation of this folded-plate mountain part edge part may follow Can absorb vibration energy efficiently.

これにより、前記折板パネル構造は、建築物の変形に対してピン接合を用いずに折板の幾何学的な弾性挙動のみを利用した変形増大機構を実現することができ、ピン接合に起因するスリップ性状を示すことなく、粘弾性体による効率的で安定したエネルギー吸収性能を発揮することができる。   As a result, the folded plate panel structure can realize a deformation increasing mechanism that uses only the geometric elastic behavior of the folded plate without using pin bonding for the deformation of the building. It is possible to exhibit an efficient and stable energy absorption performance by the viscoelastic body without exhibiting slip properties.

また、前記の変形増大機構は、支持部材を介して枠材に折板を固定することによって簡単に実現することができるため、製作性に優れ、製造コストも安価である。   In addition, the deformation increasing mechanism can be easily realized by fixing the folded plate to the frame member via the support member, so that it is excellent in manufacturability and inexpensive in manufacturing cost.

本発明を適用した折板パネル構造の一例と、その構成を示す図である。It is a figure which shows an example of the folded-panel structure to which this invention is applied, and its structure. 図1の本発明を適用した折板パネル構造の一例における変形状態を示す図である。It is a figure which shows the deformation | transformation state in an example of the folded-plate panel structure to which this invention of FIG. 1 is applied. 本発明を適用した折板パネル構造における、繰返し力に対する履歴性状を示す荷重変位関係図である。It is a load-displacement relationship figure which shows the hysteretic property with respect to repetitive force in the folded-plate panel structure to which this invention is applied. 本発明を適用した折板パネル構造において、枠材から突出された板と折板の山部との間に粘弾性体を介装させる例を示す図である。It is a figure which shows the example which inserts a viscoelastic body between the board protruded from the frame material, and the peak part of a folded board in the folded-panel structure to which this invention is applied. 本発明を適用した折板パネル構造において、折板の山部から突出された板と枠材との間に粘弾性体を介装される例を示す図である。In the folded plate panel structure to which this invention is applied, it is a figure which shows the example by which a viscoelastic body is interposed between the board protruded from the peak part of the folded board, and the frame material. 本発明を適用した折板パネル構造において、枠材から突出された板と折板の山部との間に粘弾性体を介装させる他の例を示す図である。In the folded-panel structure to which this invention is applied, it is a figure which shows the other example which interposes a viscoelastic body between the board protruded from the frame material, and the peak part of a folded board. 本発明を適用した折板パネル構造における、折板と枠材と粘弾性体の他の連結例を示す図である。It is a figure which shows the other example of a connection of a folded plate, a frame material, and a viscoelastic body in the folded plate panel structure to which this invention is applied.

本発明を実施するための形態について、図面を参照しながら詳細に説明をする。   Embodiments for carrying out the present invention will be described in detail with reference to the drawings.

図1は本発明を適用した折板パネル構造1の一例を示しており、図1(a)は正面図、図1(b)は図1(a)におけるC−C´断面図、図1(c)は図1(a)におけるA−A´断面図、図1(d)は枠材2と折板3と粘弾性体4の連結部の斜視図を示している。   FIG. 1 shows an example of a folded plate panel structure 1 to which the present invention is applied. FIG. 1 (a) is a front view, FIG. 1 (b) is a cross-sectional view along CC 'in FIG. FIG. 1C is a cross-sectional view taken along line AA ′ in FIG. 1A, and FIG. 1D is a perspective view of a connecting portion of the frame member 2, the folded plate 3, and the viscoelastic body 4.

この折板パネル構造1は、図1(a)に示すように壁の一部を構成する枠材2と、この枠材2の底面に取り付けられた幅方向一対の支持部材5と、この支持部材に接合された折板3と、枠材2と折板3との間に介装された粘弾性体4とを備えている。   As shown in FIG. 1 (a), the folded plate panel structure 1 includes a frame member 2 constituting a part of a wall, a pair of width direction support members 5 attached to the bottom surface of the frame member 2, and the support. A folded plate 3 joined to the member, and a viscoelastic body 4 interposed between the frame member 2 and the folded plate 3 are provided.

折板3は、鋼板をロール成形やプレス成形などの折り曲げ加工によって、山部31と谷部32が所定間隔で屈曲形成されており、この山部31および谷部32は、上フランジ91および下フランジ92と、この上フランジ91および下フランジ92の間に形成されているウェブ93とで構成されている。 The folded plate 3 has a crest 31 and a trough 32 bent at a predetermined interval by bending a steel plate by roll forming or press forming. The crest 31 and the trough 32 are formed by an upper flange 91 and a lower A flange 92 and a web 93 formed between the upper flange 91 and the lower flange 92 are configured.

枠材2は、溝形鋼等の薄板軽量形鋼、軽量形鋼、H形鋼、角形鋼管、円形鋼管、鋼板、木材、鉄筋コンクリート、鉄骨鉄筋コンクリート等で構成される、柱、梁、胴縁、せん断力伝達部材等の枠材である。なお、図1において、枠材2は略矩形形状として図示している。   Frame material 2 is composed of thin lightweight steel such as channel steel, lightweight steel, H-shaped steel, square steel pipe, round steel pipe, steel plate, wood, reinforced concrete, steel reinforced concrete, etc., columns, beams, trunk edges, It is a frame material such as a shear force transmission member. In FIG. 1, the frame member 2 is illustrated as a substantially rectangular shape.

粘弾性体4は、いわゆる粘弾性の挙動を示す材料であればいかなるものを用いてもよく、例えばアクリル系材料、ウレタン系材料、ゴムアスファルト系材料、合成ゴム系材料、シリコンゴム、ジエンゴム等がある。   The viscoelastic body 4 may be any material as long as it exhibits a so-called viscoelastic behavior. For example, an acrylic material, a urethane material, a rubber asphalt material, a synthetic rubber material, silicon rubber, diene rubber, or the like. is there.

前記枠材2のうち、略鉛直方向に設けられた縦枠材21には、幅方向一対の支持部材5が対向するように取り付けられており、折板3が枠材2の内側に配されるように、この支持部材5に谷部32の下フランジ92が接合されている。前記枠材2のうち、略水平方向に設けられた横枠材22の略水平方向中央部には板6が接合されており、この板6は、枠材2よりも内側に向けて突出されている。そして、この内側に突出された板6と山部31の上フランジ91の間に粘弾性体4が介装されている。なお、枠材2、折板3、支持部材5、および板材6における各接合には、例えばドリルねじ、ボルト、ビス、鋲、リベット、スポット溶接、連続溶接、接着等が用いられるが、図1においてはドリルねじ35を利用した例を図示している。ここで、下フランジ92がその幅方向両端の近傍において支持部材5に接合されることで、谷部32の枠材2からの浮き上がりが防止される。   Of the frame member 2, a pair of support members 5 in the width direction are attached to a vertical frame member 21 provided in a substantially vertical direction, and the folded plate 3 is arranged inside the frame member 2. As shown, the lower flange 92 of the trough 32 is joined to the support member 5. A plate 6 is joined to a substantially horizontal central portion of the horizontal frame member 22 provided in a substantially horizontal direction in the frame member 2, and the plate 6 projects inward from the frame member 2. ing. The viscoelastic body 4 is interposed between the plate 6 projecting inward and the upper flange 91 of the peak portion 31. For example, drill screws, bolts, screws, scissors, rivets, spot welding, continuous welding, adhesion, and the like are used for joining the frame member 2, the folded plate 3, the support member 5, and the plate member 6. FIG. Shows an example in which a drill screw 35 is used. Here, when the lower flange 92 is joined to the support member 5 in the vicinity of both ends in the width direction, the valley 32 is prevented from being lifted from the frame member 2.

本発明の技術的特徴の一つとしては、下フランジ92のみを支持部材5に接合し固定す
ることで、山部31を形成する上フランジ91およびウェブ93を山部軸方向と略直交する両矢印B−B´方向に可動としていることである。
As one of the technical features of the present invention, only the lower flange 92 is joined and fixed to the support member 5, so that the upper flange 91 and the web 93 that form the peak 31 are both substantially perpendicular to the peak axis direction. It is movable in the direction of arrow BB ′.

ここで、本発明を適用した折板パネル構造1の動作およびエネルギー吸収機構について説明する。図2(a)は、図1(a)に示す折板パネル構造1に地震等によって面内せん断力Qが負荷された場合の、折板パネル構造1全体の変形を示す図である。また、図2(b)は図2(a)における折板3のみの変形を、図2(c)は図2(a)におけるD−D´断面図を、図2(d)は図2(a)におけるE−E´断面図を図示している。   Here, the operation and energy absorption mechanism of the folded plate panel structure 1 to which the present invention is applied will be described. Fig.2 (a) is a figure which shows the deformation | transformation of the folding plate panel structure 1 whole when the in-plane shear force Q is loaded by the earthquake etc. to the folding plate panel structure 1 shown to Fig.1 (a). 2 (b) is a modification of only the folded plate 3 in FIG. 2 (a), FIG. 2 (c) is a sectional view taken along the line DD 'in FIG. 2 (a), and FIG. 2 (d) is FIG. EE 'sectional drawing in (a) is shown in figure.

地震等により面内せん断力Qが図2(a)に示す矢印Qの向きに、すなわちD−D´断面側でB方向、E−E´断面側でB´方向に負荷された場合、山部31は、D−D´断面側でB´方向、E−E´断面側でB方向に、それぞれ逆向きに倒れこむように、山部31の軸方向と略直交方向に歪む変形を起こす。これとは逆に、面内せん断力QがD−D´断面側でB´方向、E−E´断面側でB方向に負荷された場合には、山部31はD−D´断面側でB方向、E−E´断面側でB´方向に倒れ込む。   When an in-plane shear force Q is applied in the direction of the arrow Q shown in FIG. 2A due to an earthquake or the like, that is, in the B direction on the DD ′ cross section side and in the B ′ direction on the EE ′ cross section side, The portion 31 is deformed so as to be distorted in a direction substantially orthogonal to the axial direction of the peak portion 31 so as to collapse in the opposite direction in the B ′ direction on the DD ′ cross section side and in the B direction on the EE ′ cross section side. On the contrary, when the in-plane shear force Q is applied in the B ′ direction on the DD ′ cross section side and in the B direction on the EE ′ cross section side, the peak portion 31 is on the DD ′ cross section side. In the B direction, it falls in the B ′ direction on the EE ′ cross section side.

このように山部31がその軸方向と略直交方向に歪むことにより、地震等によって一対の支持部材5間に生じる図2(b)の両矢印B−B´方向と略直交方向のずれd1は、上フランジ91の鉛直方向端部において両矢印B−B´方向の変位d2に増幅される。更に、上フランジ91の鉛直方向端部の変位d2の変位方向は、横枠材22に生じる両矢印B−B´方向の変位と向きが逆であるため、横枠材22に対する上フランジ91の相対変位は増大する。これにより、横枠材22に固定された板と上フランジ91との間に係止された粘弾性体4の両矢印B−B´方向におけるせん断変形量は増大され、地震力等に対し効率的にエネルギー吸収を行うことができる。 In this manner, the peak portion 31 is distorted in a direction substantially orthogonal to the axial direction thereof, so that a deviation d1 between the pair of support members 5 due to an earthquake or the like and the direction of the arrow B-B 'in FIG. Is amplified to a displacement d2 in the direction of a double arrow BB ′ at the vertical end of the upper flange 91. Further, since the displacement direction of the displacement d2 of the vertical end portion of the upper flange 91 is opposite to the displacement in the direction of the double arrow BB ′ generated in the horizontal frame material 22, the direction of the upper flange 91 relative to the horizontal frame material 22 is reversed. The relative displacement increases. As a result, the amount of shear deformation of the viscoelastic body 4 locked between the plate 6 fixed to the horizontal frame member 22 and the upper flange 91 in the direction of the double arrow BB ′ is increased. Energy can be absorbed efficiently.

また、前記の変位増大機構およびエネルギー吸収機構は、折板3の幾何学的な変形挙動の発現によるものであるため、地震力等の繰返し力に対する折板パネル構造1の変位−荷重の履歴性状は、図3に示すような紡錘形となり、従来技術のスリップ形状(低荷重領域において、変位の増大に対する荷重増分が小さい履歴性状)と比較して、安定したエネルギー吸収性能を発揮する。   Further, since the displacement increasing mechanism and the energy absorbing mechanism are based on the expression of the geometric deformation behavior of the folded plate 3, the history of displacement-load history of the folded plate panel structure 1 with respect to repetitive forces such as seismic force. 3 has a spindle shape as shown in FIG. 3, and exhibits stable energy absorption performance as compared with a conventional slip shape (historical property with a small load increment with respect to an increase in displacement in a low load region).

なお、本発明においては、枠材2、折板3、支持部材5、および板材6における接合部の強度を、面内せん断力Qにより折板パネルがエネルギー吸収する際の荷重域において、接合部が折板3よりも先行降伏しないように設計することで、接合部の局所崩壊に伴うスリップ性状も容易に回避することができる。ちなみに、この接合部の強度は、例えば図1におけるドリルねじ35の本数や径等を調整することにより設計することができる。   In the present invention, the strength of the joints in the frame member 2, the folded plate 3, the support member 5, and the plate member 6 is determined in the load region when the folded plate panel absorbs energy by the in-plane shear force Q. However, the slip property accompanying the local collapse of the joint portion can be easily avoided by designing so as not to yield more than the folded plate 3. Incidentally, the strength of the joint can be designed, for example, by adjusting the number and diameter of the drill screws 35 in FIG.

図4は、本発明を適用した折板パネル構造1において、山部31の断面の上フランジ91とウェブ93と下フランジ92の延長線とで囲まれる部分の形状を、略矩形状としたものである。ここで、構造実験や解析によれば、上フランジ91とウェブ93との成す角、および下フランジ92とウェブ93との成す角は70°〜110°が好ましく、85°〜95°とすることがより好ましい。該山部31の断面を略矩形状とした場合、面内せん断力Qが作用すると、該断面は略矩形状から略平行四辺形状に円滑に変形するため、山部31を山部軸方向に対して略直交方向(図中の矢印B−B´方向)に歪ませて変形性能を確保することが可能となり、前記変形増大機構とエネルギー吸収機構が効果的に発現する。   FIG. 4 shows a folded plate panel structure 1 to which the present invention is applied. The portion surrounded by the upper flange 91, the web 93, and the extension line of the lower flange 92 in the cross section of the peak portion 31 has a substantially rectangular shape. It is. Here, according to structural experiments and analysis, the angle formed by the upper flange 91 and the web 93 and the angle formed by the lower flange 92 and the web 93 are preferably 70 ° to 110 °, and 85 ° to 95 °. Is more preferable. In the case where the cross section of the peak portion 31 has a substantially rectangular shape, when the in-plane shear force Q is applied, the cross section smoothly deforms from a substantially rectangular shape to a substantially parallelogram shape. On the other hand, it is possible to ensure deformation performance by distorting in a substantially orthogonal direction (arrow B-B 'direction in the figure), and the deformation increasing mechanism and the energy absorbing mechanism are effectively expressed.

図5、6は、本発明を適用した折板パネル構造1において、上フランジ91の山部軸方向端部に取り付けられた板7を介して、横枠材22と山部31の間に粘弾性体4を介装する例を示している。該板7は、溝形鋼として構成されている枠材22内において嵌合されている上下一対の粘弾性体4間に狭持され、かつその他端部が枠材2の内側に突出するように固定されている。なお、上下一対の粘弾性体4は、図5に示すように横枠材22の内側に固着されている場合のみならず、図6に示すように、枠材22の上下面から枠材2の内側へ突出するように板6を取り付け、当該上下に配設された板6間に粘弾性体4を固着させ、さらにこの粘弾性体4間に、上フランジ91に取り付けられた板7を狭持するようにしてもよい。また、折板3は、図1、2と同様に支持部材5を介して縦枠材21に固定される。 FIGS. 5 and 6 show the folded plate panel structure 1 to which the present invention is applied. The plate 7 attached to the end of the upper flange 91 in the axial direction of the mountain portion is interposed between the horizontal frame member 22 and the mountain portion 31. The example which interposes the elastic body 4 is shown. The plate 7 is sandwiched between a pair of upper and lower viscoelastic bodies 4 fitted in a horizontal frame member 22 configured as channel steel, and the other end portion protrudes inside the frame member 2. So that it is fixed. Incidentally, a pair of upper and lower viscoelastic body 4, not only is fixed to the inside of the lateral frame member 22 as shown in FIG. 5, as shown in FIG. 6, the frame member from the upper and lower surfaces of the horizontal frame member 22 The plate 6 is attached so as to protrude to the inside of the plate 2 , the viscoelastic body 4 is fixed between the plates 6 disposed above and below, and the plate 7 attached to the upper flange 91 between the viscoelastic bodies 4. May be held. Further , the folded plate 3 is fixed to the vertical frame member 21 via the support member 5 as in FIGS.

これにより、板7を狭持する上下一対の粘弾性体4を同時にせん断変形させることができるため、効率的なエネルギー吸収が可能となる。さらに、図6に示す例においては、粘弾性体4が直接に折板3および横枠材22に固着されていないため、板7と折板3の接合部、板6と横枠材22の接合部を、例えばボルト、ねじ、クリンチ、鋲、嵌合等の乾式接合としておくことによって、エネルギー吸収部の取り付けや交換が簡易に行うことが可能となる。なお、板7を狭持する上下一対の粘弾性体4の何れか一方を省略するようにしてもよい。   Thereby, since a pair of upper and lower viscoelastic bodies 4 holding the plate 7 can be shear-deformed at the same time, efficient energy absorption becomes possible. Further, in the example shown in FIG. 6, the viscoelastic body 4 is not directly fixed to the folded plate 3 and the horizontal frame member 22, so that the joint between the plate 7 and the folded plate 3, the plate 6 and the horizontal frame member 22 By setting the joint portion as a dry joint such as a bolt, screw, clinch, scissors, fitting, etc., the energy absorbing portion can be easily attached or replaced. Note that either one of the pair of upper and lower viscoelastic bodies 4 holding the plate 7 may be omitted.

図7は、本発明を適用した折板パネル構造1において、折板3を2枚用いた例を示している。2枚の折板3は、それぞれ互いの下フランジ92を対向させ、支持部材5の一端をこれら対向させた下フランジ92間に狭持させることによりこれが接合されている。その支持部材5は、下フランジ92が接合される側に対する他端側に形鋼8(例えば山形鋼)が取り付けられ、更にこの形鋼8を介して、縦枠材21に固定され、ひいては枠材2の内側に配される。2枚の折板3の上フランジ91と、横枠材22から枠材2の内側に突出するように取り付けられた板6との間には、粘弾性体4が係止されている。 FIG. 7 shows an example in which two folded plates 3 are used in the folded plate panel structure 1 to which the present invention is applied. The two folded plates 3 are joined to each other by causing the lower flanges 92 to face each other and sandwiching one end of the support member 5 between the opposed lower flanges 92. The supporting member 5 is attached with a section steel 8 (for example, angle steel) on the other end side with respect to the side to which the lower flange 92 is joined, and is further fixed to the vertical frame member 21 via the section steel 8 and thus the frame. Arranged inside the material 2. The viscoelastic body 4 is locked between the upper flange 91 of the two folded plates 3 and the plate 6 attached so as to protrude from the horizontal frame member 22 to the inside of the frame member 2 .

これにより、折板3を壁厚方向に対称となるように枠材2の内側中央に設けることができるため、折板パネル構造の捩り等を抑制し、より安定した挙動を確保できる。なお、形鋼8と縦枠材21との接合には、枠材2の構造種別(薄板軽量形鋼造、鉄骨造、木造、鉄筋コンクリート造等)に応じて、ドリルねじ、溶接、ボルト、スタッド等が用いられる。 Thereby, since the folded plate 3 can be provided in the center of the inner side of the frame member 2 so as to be plane- symmetrical in the wall thickness direction, torsion of the folded plate panel structure and the like can be suppressed, and a more stable behavior can be secured. For joining the shape steel 8 and the vertical frame material 21, drill screws, welding, bolts, studs according to the structural type of the frame material 2 (thin plate light weight steel structure, steel structure, wooden structure, reinforced concrete structure, etc.) Etc. are used.

これら図5、6、7の形態においても、山部31は可動であり、山部軸方向と略直交方向(図中B−B´方向)に歪むことで、安定した履歴性状を確保しながら建築物に生じる変位を粘弾性体4に増大して伝え、地震等の振動に対し優れたエネルギー吸収性能を発揮することは勿論である。なお、図4、5、6、7における縦枠材21および横枠材22は、溝形鋼等の薄板軽量形鋼、軽量形鋼、H形鋼、角形鋼管、円形鋼管、鋼板、木材、鉄筋コンクリート、鉄骨鉄筋コンクリート等で構成されるが、図においては縦枠材21を矩形形状、横枠材22を溝形形状として図示しており、図1、4、6、7においては縦枠材21および横枠材22のいずれも矩形形状として図示している。 In these forms of FIGS. 5, 6, and 7, the peak portion 31 is movable and is distorted in a direction substantially orthogonal to the peak portion axis direction (BB ′ direction in the figure), while ensuring stable hysteresis properties. Of course, the displacement generated in the building is increased and transmitted to the viscoelastic body 4 to exhibit excellent energy absorption performance against vibrations such as earthquakes. In addition, the vertical frame material 21 and the horizontal frame material 22 in FIG. Although composed of reinforced concrete, steel reinforced concrete, etc., in FIG. 5 , the vertical frame material 21 is illustrated as a rectangular shape, and the horizontal frame material 22 is illustrated as a groove shape, and in FIGS. 1 , 4, 6 , and 7 , the vertical frame material is illustrated. Both 21 and the horizontal frame material 22 are illustrated as rectangular shapes.

1 折板パネル構造
2 枠材
3 折板
4 粘弾性体
5 支持部材
6、7 板
8 形鋼
21 縦枠材
22 横枠材
31 山部
32 谷部
35 ドリルねじ
91 上フランジ
92 下フランジ
93 ウェブ
DESCRIPTION OF SYMBOLS 1 Folded plate panel structure 2 Frame material 3 Folded plate 4 Viscoelastic body 5 Support member 6, 7 Plate 8 Shape steel 21 Vertical frame material 22 Horizontal frame material 31 Mountain part 32 Valley part 35 Drill screw 91 Upper flange 92 Lower flange 93 Web

Claims (6)

枠材と、一つの山部とその両脇の谷部とが所定間隔で屈曲形成された折板と、前記折板の山部軸方向端部の山部と前記枠材との間に介装された粘弾性体とを備えた折板パネル構造であって、
前記折板の両脇の谷部はそれぞれ、山部軸方向全域に渡って支持部材を介して前記枠材に支持され、
前記折板パネル構造に対して面内せん断力が負荷され、前記折板の両脇で対をなす前記支持部材間に前記山部軸方向の相対変位が生じた場合に、前記山部を山部軸方向と略直交方向に歪ませることにより、前記粘弾性体を変形させ、前記面内せん断力に対してエネルギーを吸収させること
を特徴とする折板パネル構造。
A frame material, a folded plate in which one peak and valleys on both sides of the frame are bent at a predetermined interval, and a peak between the peaks in the axial direction of the folded plate and the frame material A folded panel structure comprising a viscoelastic body mounted,
The troughs on both sides of the folded plate are each supported by the frame member via a support member over the entire mountain axial direction.
When an in-plane shearing force is applied to the folded plate panel structure and a relative displacement in the peak portion axial direction occurs between the support members paired on both sides of the folded plate, A folded plate panel structure characterized in that the viscoelastic body is deformed by distorting it in a direction substantially perpendicular to the partial axis direction and energy is absorbed against the in-plane shear force.
前記山部の断面は、略矩形状で構成されていること
を特徴とする請求項1に記載の折板パネル構造。
The folded plate panel structure according to claim 1, wherein a cross section of the peak portion is formed in a substantially rectangular shape.
前記粘弾性体は、前記折板の山部から突出された板を介して前記枠材と前記折板の山部との間に介装されていること
を特徴とする請求項1又は2に記載の折板パネル構造。
The viscoelastic body is interposed between the frame member and the peak portion of the folded plate via a plate protruding from the peak portion of the folded plate. The folded plate panel structure described.
前記粘弾性体は、前記枠材から突出された板を介して前記枠材と前記折板の山部との間に介装されていること
を特徴とする請求項1又は2に記載の折板パネル構造。
The fold according to claim 1 or 2, wherein the viscoelastic body is interposed between the frame member and a peak portion of the folded plate via a plate protruding from the frame member. Board panel structure.
前記粘弾性体は、前記枠材から突出された板と前記折板の山部から突出された板とを介して、前記枠材と前記折板の山部との間に介装されていること
を特徴とする請求項1又は2に記載の折板パネル構造。
The viscoelastic body is interposed between the frame member and the peak portion of the folded plate via a plate protruding from the frame member and a plate protruding from the peak portion of the folded plate. The folded plate panel structure according to claim 1 or 2, characterized in that:
前記折板の山部から突出された板と山部との接合部、または、前記枠材から突出された板と枠材との接合部が、ボルト、ねじ、クリンチ、鋲又は嵌合により接合されていること
を特徴とする請求項3〜5の何れか1項に記載の折板パネル構造。
The joint between the plate and the ridge protruding from the crest of the folded plate, or the connection between the plate and the frame protruding from the frame material is joined by bolts, screws, clinch, scissors or fitting. The folded plate panel structure according to any one of claims 3 to 5, wherein the folded plate panel structure is provided.
JP2009164444A 2009-07-13 2009-07-13 Folded panel structure Expired - Fee Related JP5423193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164444A JP5423193B2 (en) 2009-07-13 2009-07-13 Folded panel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164444A JP5423193B2 (en) 2009-07-13 2009-07-13 Folded panel structure

Publications (2)

Publication Number Publication Date
JP2011021315A JP2011021315A (en) 2011-02-03
JP5423193B2 true JP5423193B2 (en) 2014-02-19

Family

ID=43631624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164444A Expired - Fee Related JP5423193B2 (en) 2009-07-13 2009-07-13 Folded panel structure

Country Status (1)

Country Link
JP (1) JP5423193B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284374A (en) * 1987-05-15 1988-11-21 日本鋼管株式会社 Vibration damping wall structure
JPH05519Y2 (en) * 1987-11-18 1993-01-08

Also Published As

Publication number Publication date
JP2011021315A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5336145B2 (en) Damping structure and building with damping structure
US20120017523A1 (en) Metal joint, damping structure, and architectural construction
JP5176855B2 (en) Folded panel structure and building structure
JP4879723B2 (en) Buckling restraint brace
JP5822203B2 (en) Brace damper
JP2010037905A (en) Connected seismic control structure and building
JP2017133282A (en) Steel device and load bearing wall
JP2002235457A (en) Vibration control device and vibration control structure of joint part
JP4917177B1 (en) Buckling restraint brace
JP6348085B2 (en) Seismic control structure of wooden buildings
JP4395419B2 (en) Vibration control pillar
JP5423193B2 (en) Folded panel structure
JP4918016B2 (en) Damping structure
JP4703971B2 (en) Energy absorbing brace damping device and energy absorbing device
JP2020118004A (en) Truss beam
JP4829714B2 (en) Damping wall structure of steel house
JP2003090144A (en) Damping device, damping structure, and damping structural body
JP7389356B2 (en) Reinforcements, joint structures and load-bearing walls
JP7128068B2 (en) External wall panel mounting structure
JP6448968B2 (en) Shear damper
JP5234800B2 (en) Panel damper device for buildings
KR102074039B1 (en) Steel Damper and Frame-type Damping Device usig the Damper and Reinforcing Method thereof
JP6915601B2 (en) Viscoelastic damper
JP7284641B2 (en) Damping structure
JP7172488B2 (en) Energy-absorbing devices and load-bearing walls with energy-absorbing devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees