JP5422220B2 - Fault detector, fault detection system, and fault detection method - Google Patents

Fault detector, fault detection system, and fault detection method Download PDF

Info

Publication number
JP5422220B2
JP5422220B2 JP2009035200A JP2009035200A JP5422220B2 JP 5422220 B2 JP5422220 B2 JP 5422220B2 JP 2009035200 A JP2009035200 A JP 2009035200A JP 2009035200 A JP2009035200 A JP 2009035200A JP 5422220 B2 JP5422220 B2 JP 5422220B2
Authority
JP
Japan
Prior art keywords
current
fault
failure
detection
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009035200A
Other languages
Japanese (ja)
Other versions
JP2010190724A (en
Inventor
稔 渡邊
弘 米井
雅仁 清水
昌克 荒金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Nichiyu Giken Kogyo Co Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiyu Giken Kogyo Co Ltd, Chubu Electric Power Co Inc filed Critical Nichiyu Giken Kogyo Co Ltd
Priority to JP2009035200A priority Critical patent/JP5422220B2/en
Publication of JP2010190724A publication Critical patent/JP2010190724A/en
Application granted granted Critical
Publication of JP5422220B2 publication Critical patent/JP5422220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、送電線路に発生する径間短絡や地絡等の故障を検出し、その検出箇所又はその近傍位置を検出し又はその検出結果を表示する故障検出器、故障検出システム及び故障検出方法に関する。
The present invention relates to a failure detector, a failure detection system, and a failure detection method for detecting a failure such as a span short circuit or a ground fault occurring in a power transmission line, detecting the detection location or the vicinity thereof, or displaying the detection result. About.

架空送電線では、雪害によるギャロッピング、ストリートジャンプ又は他物接触による径間短絡故障が発生すると、送電線同士の接触による設備被害等も予想されるので、早急に故障箇所を特定し、必要な対策を取ることが不可欠である。   In overhead power transmission lines, when galloping due to snow damage, street jumping or short-circuit failure due to contact with other objects occurs, equipment damage due to contact between power transmission lines is also expected. It is essential to take.

架空地線を有する送電線の地絡故障に関し、架空地線に鉄塔を中心にして検出コイルを接続し、地絡故障時に各検出コイルに取り出される電力エネルギで表示器を表示することが知られている(特許文献1)。   Regarding ground faults in power transmission lines with overhead ground wires, it is known that detector coils are connected to overhead ground wires centered on steel towers, and indicators are displayed with the power energy extracted by each detection coil in the event of a ground fault. (Patent Document 1).

架空地線のない送電線での地絡故障の検出では、送電鉄塔の2つの脚の一方に第1のカレントトランス、その他方に第2のカレントトランスを設け、各カレントトランスに発生する交流電圧出力を合成することにより、地絡故障を検出することが知られている(特許文献2)。   When detecting a ground fault in a transmission line without an overhead ground line, a first current transformer is provided on one of the two legs of the transmission tower, and a second current transformer is provided on the other side. It is known to detect a ground fault by synthesizing outputs (Patent Document 2).

送電線の故障箇所の表示については、送電線の故障箇所を検出した際に、その故障箇所に対応する送電鉄塔に設置された故障表示用電気的発光体を発光させ、その発光をタイマ手段により一定期間に制限することが知られている(特許文献3)。   Regarding the display of the faulty part of the power transmission line, when the faulty part of the power transmission line is detected, the electric light emitter for fault indication installed in the power transmission tower corresponding to the faulty part is caused to emit light, and the light emission is performed by the timer means. It is known to limit to a certain period (Patent Document 3).

また、送電線路の故障区間標定について、電流センサ及び故障検出器によって検出された故障時の零相電流の値、その位相及び検出時刻を記憶し、送電線路への電流供給を遮断した故障発生時刻を記憶し、その時刻に近い検出時刻を含む検出データを取り出して故障区間を標定することが知られている(特許文献4)。
Also, for fault section location of the transmission line, the value of the zero-phase current at the time of failure detected by the current sensor and the fault detector, its phase and detection time are stored, and the failure occurrence time when the current supply to the transmission line is cut off Is stored, and detection data including a detection time close to that time is taken out and the failure section is determined (Patent Document 4).

特開平11−316256号公報JP-A-11-316256 特開2008−039549号公報JP 2008-039549 A 特開平11−237428号公報Japanese Patent Laid-Open No. 11-237428 特開平8−036017号公報JP-A-8-036017

ところで、送電線路を支持する鉄塔等の支持物の付近で発生する地絡故障、地絡短絡故障の箇所を特定するには、その設備が大がかりで高価な設備が必要であり、径間短絡の故障箇所を特定することが困難であった。   By the way, in order to identify the location of ground faults and ground fault short-circuit faults that occur in the vicinity of supports such as steel towers that support power transmission lines, the equipment is large and expensive equipment is required. It was difficult to identify the failure location.

短絡による故障区間を表示する装置が知られてはいるが、この装置は、送電線に検出部を配置し、故障点から電源まで流れる短絡電流を順次に計測し、その短絡電流と短絡箇所から負荷側の電流とを比較し、短絡電流の有無から故障点を特定している。   Although a device that displays a fault section due to a short circuit is known, this device arranges a detection unit on the transmission line, sequentially measures the short-circuit current flowing from the fault point to the power source, and from the short-circuit current and the short-circuit location Compared with the current on the load side, the failure point is specified from the presence or absence of a short-circuit current.

この故障点の特定について、図9に示すように、送電線路200の複数箇所に故障表示装置301、302、303、304、305、306・・・が設置されている。各故障表示装置301、302、303、304、305、306・・・には、故障を表示するための表示素子300が備えられている。各故障表示装置302、303、304の設置間隔Lは、鉄塔等の支持物の10基置きの一定間隔である。送電線路200に地絡や短絡が生じると、送電線路200には、電源202側と地絡等の故障点204との間に故障電流IFが流れる。この故障電流IFが発生すると、その故障電流IFの検出、その故障電流IFの誘導を受けた架空地線電流が検出され、故障表示装置301、302、303が動作し、故障表示(即ち、動作表示)となり、故障電流IFが流れていない箇所の故障表示装置304、305、306・・・は不表示となる。白丸は表示、黒丸は不表示を示す。このような表示か不表示かにより故障及びその故障点が標定される。係る装置又は方法では、故障の発見は可能ではあるが、次のような課題がある。   Regarding the identification of this failure point, as shown in FIG. 9, failure display devices 301, 302, 303, 304, 305, 306,... Each failure display device 301, 302, 303, 304, 305, 306... Is provided with a display element 300 for displaying a failure. The installation interval L of each of the failure display devices 302, 303, and 304 is a fixed interval for every ten units of a support such as a steel tower. When a ground fault or short circuit occurs in the power transmission line 200, a fault current IF flows between the power source 202 side and a fault point 204 such as a ground fault in the power transmission line 200. When this fault current IF occurs, the fault current IF is detected, and the overhead ground wire current that has been induced by the fault current IF is detected. The fault display devices 301, 302, and 303 operate, and the fault display (that is, the operation) .., And the failure display devices 304, 305, 306,... At locations where the failure current IF does not flow are not displayed. White circles indicate display and black circles indicate non-display. A failure and its failure point are determined by such display or non-display. Such an apparatus or method can detect a failure, but has the following problems.

第1に、故障箇所が故障表示装置の設置位置がその設置間隔で特定され、その特定箇所が支持物の間隔により定まる一定の区間となるため、故障点の特定ができない。故障表示装置を設置した支持物の間隔(例えば、支持物の10基置き)を単位として特定箇所が決定されるため、一定区間の区間表示となるためである。   First, since the installation position of the failure display device is specified by the installation interval and the specific location is a fixed section determined by the interval of the support, the failure point cannot be specified. This is because the specific location is determined in units of the interval between the supports (for example, every 10 support units) where the failure display device is installed, so that a section display of a certain section is obtained.

第2に、故障点のみの表示ができない。短絡電流の流れる故障点から電源までは全て表示動作となるためである。   Second, it is not possible to display only the failure point. This is because all operations from the fault point where the short-circuit current flows to the power supply are displayed.

第3に、電源から故障点までの区間における故障表示装置は、全て動作するため、正常復帰後は、その動作表示を全てリセットする必要がある。   Thirdly, since all the failure display devices in the section from the power source to the failure point operate, it is necessary to reset all the operation displays after returning to normal.

このような課題やその解決手段について、上記特許文献1〜4には、その開示や示唆はない。   The above Patent Documents 1 to 4 do not disclose or suggest such problems and solutions.

そこで、本発明の目的は上記課題に鑑み、径間短絡や地絡の故障箇所又はその近傍位置を特定することにある。   Therefore, in view of the above-described problems, an object of the present invention is to specify a short-circuited span or a fault location of a ground fault or a position in the vicinity thereof.

また、本発明の他の目的は、故障箇所又はその近傍位置を特定し、表示することにある。   Another object of the present invention is to identify and display a fault location or a position in the vicinity thereof.

また、本発明の他の目的は、上記目的を達成する装置の経済性を高めることにある。
Another object of the present invention is to improve the economics of the apparatus that achieves the above object.

上記目的を達成するため、本発明では、鉄塔等の支持物を中心に電源側と負荷側とに個別に電流検出手段を設置し、径間短絡や地絡を生じた際の架空地線に流れる電流(誘導電流又は地絡電流)を個別に検出し、故障箇所の近傍で架空地線に流れる電流の向きが異なることに着目し、各検出電流をその何れか一方を反転させて加算するので、その加算値が有限値を取るか否かにより、故障箇所又はその近傍位置を特定し、標定することができる。   In order to achieve the above object, in the present invention, current detection means are individually installed on the power supply side and the load side centering on a support such as a steel tower, and the overhead ground wire when a short-circuit between the spans or a ground fault occurs is provided. Detecting the flowing current (inductive current or ground fault current) individually, paying attention to the fact that the direction of the current flowing through the imaginary ground wire is different near the fault location, add each detection current by inverting one of them Therefore, it is possible to identify and locate the fault location or the vicinity thereof depending on whether or not the added value takes a finite value.

そこで、上記目的を達成するため、本発明の構成は、以下の通りである。   In order to achieve the above object, the configuration of the present invention is as follows.

本発明に係る故障検出器では、送電線路の径間短絡及び地絡の故障の双方を検出する故障検出器であって、前記送電線路を支持する支持物より電源側に設置され、故障時、架空地線に流れる電流を検出する第1の電流検出手段と、前記支持物より負荷側に設置され、前記故障時、前記架空地線に流れる電流を検出する第2の電流検出手段と、前記第1の電流検出手段の検出電流と前記第2の電流検出手段の検出電流とを何れか一方を反転させて加算する加算手段と、前記加算手段の加算出力の電流値が所定値を超えた場合に表示出力を生成する電流処理手段と、前記電流処理手段で生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示する表示手段と、を備え、前記故障箇所又はその近傍箇所を表示する構成である。斯かる構成により、上記目的を達成することができる。
The fault detector according to the present invention, there is provided a fault detector for detecting a bi how span short and ground fault of the transmission line is installed in the power supply side from the supporting structure for supporting the power transmission line, failure A first current detection means for detecting a current flowing through the overhead ground wire; a second current detection means which is installed on the load side from the support and detects the current flowing through the overhead ground wire at the time of the failure; An addition means for inverting one of the detection current of the first current detection means and the detection current of the second current detection means; and the current value of the addition output of the addition means exceeds a predetermined value Current processing means for generating a display output in the case of receiving the display output generated by the current processing means, distinguishing between a short-circuit failure and a ground fault by the current value of the added output, and a display means for displaying, also before Symbol fault location It is configured to display the neighborhood location. With such a configuration, the above object can be achieved.

また、本発明に係る故障検出システムでは、送電線路の径間短絡及び地絡の故障の双方を検出して表示する故障検出システムであって、前記送電線路を支持する支持物毎に設置され、前記支持物より電源側の前記送電線路に対する架空地線に流れる電流と、前記支持物より負荷側の前記送電線路に対する架空地線に流れる電流とを前記支持物毎に個別に検出する複数の電流検出手段対と、前記電流検出手段対毎に検出された各検出電流を何れか一方を反転させて加算する加算手段と、前記加算手段の加算出力の電流値が所定値を超えた場合に表示出力を生成する電流処理手段と、前記電流処理手段で生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示する表示手段と、を備え、前記故障箇所又はその近傍箇所を表示する構成である。斯かる構成においても、上記目的を達成することができる。
Further, the failure detection system according to the present invention, there is provided a fault detection system for displaying and detecting the bi how span short and ground fault of the transmission line is installed in each supporting structure for supporting the power transmission line A plurality of currents that individually detect the current flowing in the overhead ground wire for the power transmission line on the power supply side from the support and the current flowing in the overhead ground wire for the power transmission line on the load side from the support for each support. A pair of current detection means, an addition means for inverting one of the detected currents detected for each of the current detection means pairs, and a current value of the addition output of the addition means exceeds a predetermined value A current processing unit for generating a display output; a display for receiving the display output generated by the current processing unit, displaying a fault location by distinguishing between a short-circuit failure and a ground fault by a current value of the addition output and means, the It is configured to display the previous SL fault location or near point. Even in such a configuration, the above object can be achieved.

また、本発明に係る故障検出方法では、送電線路の径間短絡及び地絡の故障の双方を検出して表示する故障検出方法であって、前記送電線路を支持する支持物より電源側で、故障時、架空地線に流れる電流を検出し、前記故障時、前記支持物より負荷側で前記架空地線に流れる電流を検出するステップと、各検出電流を何れか一方を反転させて加算するステップと、加算出力の電流値が所定値を超えた場合に表示出力を生成するステップと、生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示するステップと、を含む構成である。斯かる構成においても、上記目的を達成することができる。
Further, the failure detection method according to the present invention, there is provided a fault detection method for displaying and detecting the bi-how of a failure of span short and ground fault of the transmission line, with the support material from the supply side for supporting the power transmission line Detecting the current flowing in the overhead ground wire at the time of failure, detecting the current flowing in the overhead ground wire on the load side from the support at the time of failure, and adding each detection current by inverting one of them A step of generating a display output when a current value of the addition output exceeds a predetermined value, and receiving the generated display output, and a short-circuit failure between a span and a ground fault by the current value of the addition output And a step of displaying a fault location . Even in such a configuration, the above object can be achieved.

また、本発明に係る故障検出方法では、送電線路の径間短絡及び地絡の故障の双方を検出して表示する故障検出方法であって、前記送電線路を支持する支持物毎に、前記支持物より電源側の前記送電線路に対する架空地線に流れる電流と、前記支持物より負荷側の前記送電線路に対する架空地線に流れる電流とを個別に検出し、電流検出手段対に検出された検出電流を何れか一方を反転させて加算し、加算出力の電流値が所定値を超えた場合に表示出力を生成し、生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示する構成である。斯かる構成においても、上記目的を達成することができる。 Further, the failure detection method according to the present invention, there is provided a fault detection method for displaying and detecting the bi-how of a failure of span short and ground fault of the transmission line, each supporting structure for supporting the power transmission line, wherein The current flowing in the overhead ground wire for the power transmission line on the power supply side from the support and the current flowing in the overhead ground wire for the power transmission line on the load side from the support are individually detected and detected by the current detection means pair. One of the detected currents is inverted and added, and when the current value of the added output exceeds a predetermined value, a display output is generated, the generated display output is received, and the span is determined by the current value of the added output. In this configuration, a fault location is displayed by distinguishing between a short-circuit fault and a ground fault . Even in such a configuration, the above object can be achieved.

(1) 径間短絡又は地絡の箇所の特定例えば、短絡箇所の直近で負荷側にある鉄塔、又は地絡箇所の直近の鉄塔を標定することができる。   (1) Identification of short-circuit span or ground fault location For example, a steel tower on the load side immediately near the short-circuit location or a steel tower nearest to the ground fault location can be determined.

(2) 安価な装置として提供することができる。   (2) It can be provided as an inexpensive device.

(3) 送電線路の保守の容易化を図ることができる。   (3) The maintenance of the transmission line can be facilitated.

(4) 径間短絡及び/又は地絡故障を検出できる。
(4) A short between spans and / or a ground fault can be detected.

第1の実施の形態に係る短絡故障検出システムを示す図である。It is a figure which shows the short circuit fault detection system which concerns on 1st Embodiment. 故障検出器の一例を示す図である。It is a figure which shows an example of a failure detector. 誘導電流の有無、誘導電流の加算及び表示の有無を示す図である。It is a figure which shows the presence or absence of the presence or absence of an induced current, addition of an induced current, and display. 第2の実施の形態に係る地絡故障検出システムを示す図である。It is a figure which shows the ground fault detection system which concerns on 2nd Embodiment. 地絡電流の有無、地絡電流の加算及び表示の有無を示す図である。It is a figure which shows the presence or absence of the presence or absence of a ground fault current, addition of a ground fault current, and a display. 故障検出器の構成例を示す正面図である。It is a front view which shows the structural example of a failure detector. 一方の検出コイル部を示す図である。It is a figure which shows one detection coil part. 鉄塔上の故障検出器を示す図である。It is a figure which shows the failure detector on a steel tower. 従来の故障検出を示す図である。It is a figure which shows the conventional failure detection.

〔第1の実施の形態〕 [First Embodiment]

本発明の第1の実施の形態について、図1を参照する。図1は、第1の実施の形態に係る短絡故障検出システムを示す図である。図1の構成は一例であって、斯かる構成に本発明が限定されるものではない。   For the first embodiment of the present invention, reference is made to FIG. FIG. 1 is a diagram illustrating a short-circuit fault detection system according to the first embodiment. The configuration in FIG. 1 is an example, and the present invention is not limited to such a configuration.

この故障検出システム2Aは、本発明の故障検出システム、故障検出器又は故障検出方法の一例であって、径間短絡等の故障時、径間短絡では短絡電流によって架空地線に生じる電流(径間短絡の場合には誘導電流)を鉄塔等の支持物毎に検出し、接地された支持物を中心(基準)に電源側と負荷側の各電流を同時に検出し、その検出電流を何れか一方を反転させて加算し、加算結果を表示する径間短絡故障検出表示システムを構成している。その表示によって故障箇所が標定される。   This fault detection system 2A is an example of the fault detection system, fault detector or fault detection method of the present invention. When a fault such as a span short-circuit occurs, a current (diameter generated in the overhead ground wire by a short-circuit current in the short-circuit span In the case of a short circuit, the induction current) is detected for each support such as a pylon, and each current on the power supply side and load side is detected simultaneously with the grounded support at the center (reference). One of them is inverted and added, and a span short circuit fault detection display system that displays the addition result is configured. The fault location is determined by the display.

そこで、この故障検出システム2Aは、送電線路4及び架空地線6を支持する鉄塔81、82、83、84・・・毎に設置された複数の故障検出器21、22、23、24・・・を備えたシステムであって、鉄塔81、82、83、84・・・毎に変流器対101、102、103、104・・・が備えられ、短絡電流ISによって生じる誘導電流Ii、即ち、各鉄塔81、82、83、84・・・を中心に電源12側と負荷側との各誘導電流Iiを検出し、その検出電流を何れか一方を反転させて加算している。   Therefore, this failure detection system 2A includes a plurality of failure detectors 21, 22, 23, 24,... Installed for each of the steel towers 81, 82, 83, 84... Supporting the transmission line 4 and the overhead ground wire 6. In which each of the towers 81, 82, 83, 84,... Is provided with a current transformer pair 101, 102, 103, 104,. .., The induction currents Ii on the power supply 12 side and the load side are detected around the steel towers 81, 82, 83, 84..., And the detected currents are added by inverting one of them.

送電線路4は、この実施の形態では、Y結線の変圧器からなる電源12を備え、Y結線の中性点は中性点抵抗14を介して接地され、鉄塔81、82、83、84・・・に支持されて負荷側に電力を搬送する手段である。   In this embodiment, the power transmission line 4 includes a power source 12 composed of a Y-connection transformer, the neutral point of the Y-connection is grounded via a neutral point resistor 14, and the towers 81, 82, 83, 84,. .. Means for conveying power to the load side supported by.

架空地線6は、送電線路4の上側に鉄塔81、82、83、84・・・によって支持された接地線であって、その終端部が接地され、且つ各鉄塔81、82、83、84・・・とともに接地されている。   The overhead ground wire 6 is a ground wire supported by steel towers 81, 82, 83, 84... On the upper side of the power transmission line 4, and its terminal portion is grounded, and each of the steel towers 81, 82, 83, 84 is grounded. ... and grounded.

各鉄塔81、82、83、84・・・は、送電線路4及び架空地線6の支持物であって、間隔L1 、L2 、L3 ・・・により地上に設置され、接地されている。間隔L1 、L2 、L3 ・・・は例えば、300〔m〕ないし600〔m〕である。 Each of the steel towers 81, 82, 83, 84... Is a support for the transmission line 4 and the overhead ground wire 6, and is installed on the ground at intervals L 1 , L 2 , L 3. Yes. The intervals L 1 , L 2 , L 3 ... Are, for example, 300 [m] to 600 [m].

変流器対101は、鉄塔81を中心にして電源12側に第1の変流器32、負荷側に第2の変流器34を備えており、各変流器32、34は、架空地線6に流れる短絡電流ISによって生じる誘導電流Iiを個別に検出する。この場合、変流器32は、架空地線6の電源12側に流れる誘導電流Iiを検出する手段であり、変流器34は、架空地線6の負荷側に流れる誘導電流Iiを検出する手段である。   The current transformer pair 101 includes a first current transformer 32 on the power supply 12 side and a second current transformer 34 on the load side centered on a steel tower 81. Each current transformer 32, 34 is aerial. The induced current Ii generated by the short circuit current IS flowing through the ground line 6 is individually detected. In this case, the current transformer 32 is means for detecting the induced current Ii flowing on the power source 12 side of the overhead ground wire 6, and the current transformer 34 detects the induced current Ii flowing on the load side of the overhead ground wire 6. Means.

他の鉄塔82、83、84・・・に設置された変流器対102、103、104・・・も同様であって、各変流器32、34は、架空地線6に流れる短絡電流ISによって生じる誘導電流Iiを個別に検出するので、その説明を省略する。   The current transformer pairs 102, 103, 104, etc. installed in the other steel towers 82, 83, 84... Are the same, and each current transformer 32, 34 has a short-circuit current flowing in the overhead ground wire 6. Since the induced current Ii generated by the IS is individually detected, the description thereof is omitted.

この実施の形態では、鉄塔82、83間の送電線路4の径間に短絡が生じ、その短絡箇所36を介して電源12側に短絡電流ISが流れている。この短絡電流ISは、数千〔A〕に達し、非常に大電流である。このため、この短絡電流ISに起因する電流として、誘導電流Iiが架空地線6に生じる。変流器対101の変流器32、34には、同一方向の誘導電流Iiが検出される。同様に、変流器対102の変流器32、34にも、同一方向の誘導電流Iiが検出される。また、変流器対103の変流器32には誘導電流Iiが検出されるが、変流器34は短絡箇所36より負荷側にあるため、誘導電流Iiは生じない。   In this embodiment, a short circuit occurs between the diameters of the power transmission lines 4 between the steel towers 82 and 83, and the short circuit current IS flows to the power supply 12 side via the short circuit part 36. This short-circuit current IS reaches several thousand [A] and is a very large current. For this reason, an induced current Ii is generated in the overhead ground wire 6 as a current resulting from the short-circuit current IS. An induced current Ii in the same direction is detected in the current transformers 32 and 34 of the current transformer pair 101. Similarly, the induced current Ii in the same direction is also detected in the current transformers 32 and 34 of the current transformer pair 102. Moreover, although the induced current Ii is detected in the current transformer 32 of the current transformer pair 103, the induced current Ii does not occur because the current transformer 34 is located on the load side from the short-circuit portion 36.

次に、各故障検出器21、22、23、24・・・について、図2を参照する。図2は、故障検出器の一例を示す図である。図2に示す構成は一例であって、斯かる構成に本発明が限定されるものではない。図2において、図1と同一部分には同一符号を付してある。   Next, FIG. 2 is referred about each failure detector 21, 22, 23, 24 .... FIG. 2 is a diagram illustrating an example of a failure detector. The configuration illustrated in FIG. 2 is an example, and the present invention is not limited to such a configuration. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals.

故障検出器21は、本発明の故障検出器の一例であって、既述の故障検出システム2Aの一部又は全部を構成し、誘導電流Iiを検出し、その加算によって短絡箇所36を標定するための表示を行う手段であって、図2に示すように、変流器対101と、電流加算部38と、電流処理部40と、表示部42とを備えている。他の故障検出器22、23、24・・・も同様の構成である。   The failure detector 21 is an example of the failure detector of the present invention, and constitutes a part or all of the above-described failure detection system 2A, detects the induced current Ii, and locates the short-circuited portion 36 by addition thereof. As shown in FIG. 2, a current transformer pair 101, a current adding unit 38, a current processing unit 40, and a display unit 42 are provided. The other failure detectors 22, 23, 24... Have the same configuration.

変流器対101は、鉄塔81を中心にして電源側に変流器32、負荷側に変流器34が設置され、鉄塔81を中心に対象配置である。これら変流器32、34は例えば、商用周波数(低周波)用変流器(CT)で構成される。変流器32は検出コイル44、変流器34は検出コイル46を備え、各検出コイル44、46は、架空地線6に流れる誘導電流Ii等の電流を検出する電流検出手段であって、架空地線6に非接触で巻回され、同一巻回数である。   The current transformer pair 101 has a current transformer 32 on the power source side around the steel tower 81 and a current transformer 34 on the load side, and is a target arrangement centering on the steel tower 81. These current transformers 32 and 34 are constituted by, for example, a commercial frequency (low frequency) current transformer (CT). The current transformer 32 includes a detection coil 44, and the current transformer 34 includes a detection coil 46, and each of the detection coils 44 and 46 is a current detection unit that detects a current such as an induced current Ii flowing through the overhead ground wire 6. It is wound around the aerial ground wire 6 in a non-contact manner and has the same number of turns.

電流加算部38は、各検出コイル44、46の検出電流(即ち、誘導電流Ii)を加算する加算手段である。この電流加算部38には、検出コイル44に対して検出コイル46を反転させて接続し、互いに逆相入力関係に設定されている。即ち、同相及び同一レベルの検出電流波形であれば、両者の加算結果が零になるように設定され、入力された検出電流が異なっていれば、其れに応じた加算結果として有限値である出力電流が生じる。   The current adding unit 38 is an adding unit that adds the detection currents (that is, induced currents Ii) of the detection coils 44 and 46. The current adder 38 is connected to the detection coil 44 by inverting the detection coil 46 and is set to have a reverse phase input relationship. In other words, if the detection current waveforms have the same phase and the same level, the addition result of both is set to be zero, and if the input detection currents are different, the addition result corresponding to that is a finite value. Output current is generated.

電流処理部40は、電流加算部38の出力電流を処理する手段の一例であって、電流加算部38の出力電流の整流又は検波を行い、表示出力を生成する。この電流処理部40では、検出コイル44、46の各検出電流に僅かな差があるため、それに応じた出力が電流加算部38に得られた場合の誤動作を防止するため、電圧比較手段等を備え、径間短絡等の故障に起因する電流値でない場合の表示出力の生成を阻止する構成としてもよい。   The current processing unit 40 is an example of a unit that processes the output current of the current adding unit 38, and rectifies or detects the output current of the current adding unit 38 to generate a display output. In this current processing unit 40, since there is a slight difference between the detection currents of the detection coils 44 and 46, in order to prevent malfunction when an output corresponding to the detection current is obtained in the current addition unit 38, a voltage comparison unit or the like is used. It is good also as a structure which prevents the production | generation of a display output when it is not provided and it is not the electric current value resulting from faults, such as a short circuit between diameters.

そして、表示部42は、電流処理部40で生成された表示出力に応じて表示、その表示出力を提示する手段の一例であって、例えば、表示素子で構成される。   And the display part 42 is an example of a means to display according to the display output produced | generated by the electric current process part 40, and to show the display output, Comprising: For example, it is comprised with a display element.

この短絡箇所の標定及びその動作の説明について、図3を参照する。図3は、誘導電流の有無、誘導電流の加算及び表示の有無を示す図である。図3に示す構成は一例であって、斯かる構成に本発明が限定されるものではない。   Refer to FIG. 3 for the orientation of this short-circuited location and the description of its operation. FIG. 3 is a diagram showing presence / absence of induced current, addition of induced current, and presence / absence of display. The configuration shown in FIG. 3 is an example, and the present invention is not limited to such a configuration.

既述の短絡箇所36(図1)が生じた場合、変流器対101の検出コイル44、46には既述の誘導電流Iiが検出されるが、検出コイル44、46の検出電流波形が互いに反転されて電流加算部38に加えられる。図3の(A)は、検出コイル44の検出電流であるとともに、電流加算部38に対する入力波形であって、周波数f、周期T、波高値Iimを持つ正弦波である。   When the above-described short-circuited portion 36 (FIG. 1) occurs, the above-described induced current Ii is detected in the detection coils 44 and 46 of the current transformer pair 101, but the detection current waveform of the detection coils 44 and 46 is They are inverted from each other and added to the current adder 38. 3A shows a detection current of the detection coil 44 and an input waveform to the current adding unit 38, which is a sine wave having a frequency f, a period T, and a peak value Iim.

これに対し、電流加算部38には、図3の(B)に示すように、検出コイル46の検出電流波形が反転して加えられ、同様の周波数f、周期T、波高値Iimを持つ正弦波である。電流加算部38では、これら検出電流波形A、Bが加算され、即ち、各検出電流は周波数f及び波高値Iimが同一であり、位相が反転しているので、両者は相殺され、加算電流=0となる。この結果、表示出力の生成はなく、表示部42は不表示となる。   On the other hand, as shown in FIG. 3B, the current addition unit 38 is inverted and added with the detection current waveform of the detection coil 46, and has the same frequency f, period T, and peak value Iim. It is a wave. In the current adder 38, these detected current waveforms A and B are added. That is, each detected current has the same frequency f and peak value Iim, and the phase is inverted. 0. As a result, no display output is generated, and the display unit 42 is not displayed.

この場合、変流器対102の検出コイル44、46にも同様に、既述の誘導電流Iiが検出されるが、変流器対101と同様の関係から、図3の(C)及び(D)に示すように、各検出電流は相殺されて表示出力の生成はなく、同様に表示部42は不表示となる。   In this case, the above-described induced current Ii is similarly detected in the detection coils 44 and 46 of the current transformer pair 102. From the same relationship as that of the current transformer pair 101, (C) and (C) in FIG. As shown in D), the detected currents are canceled out and no display output is generated. Similarly, the display unit 42 is not displayed.

また、変流器対103の検出コイル44には同様に、既述の誘導電流Iiが検出されるが、検出コイル46には誘導電流Iiが検出されない。図3の(E)は、検出コイル44の検出電流であるとともに、電流加算部38に対する入力波形であって、周波数f、周期T、波高値Iimを持つ正弦波である。   Similarly, the aforementioned induction current Ii is detected in the detection coil 44 of the current transformer pair 103, but the induction current Ii is not detected in the detection coil 46. 3E shows the detection current of the detection coil 44 and an input waveform to the current addition unit 38, which is a sine wave having a frequency f, a period T, and a peak value Iim.

これに対し、図3の(F)に示すように、検出コイル46の検出電流は零である。これら検出電流波形E、Fを加算すると、加算電流は検出コイル44の検出電流のみが加算値となり、電流処理部40にはその加算結果により表示出力が生成され、表示部42は表示動作となり、この表示により故障箇所が表示される。   In contrast, as shown in FIG. 3F, the detection current of the detection coil 46 is zero. When these detected current waveforms E and F are added, only the detected current of the detection coil 44 is added to the added current, a display output is generated in the current processing unit 40 based on the addition result, and the display unit 42 performs a display operation. The failure location is displayed by this display.

そして、変流器対104の検出コイル44、46には既述の誘導電流Iiが検出されないので、図3の(G)及び(H)に示すように、検出電流波形は生じない。検出電流の存在はなく、不表示となる。   Since the induction current Ii described above is not detected in the detection coils 44 and 46 of the current transformer pair 104, no detected current waveform is generated as shown in FIGS. There is no detection current and no display is made.

このような表示、不表示から、鉄塔82と鉄塔83との間の送電線路4の狭範囲に短絡箇所36が特定され、具体的には、300〔m〕から600〔m〕の距離範囲(この場合、間隔L2 )内に短絡箇所36が特定される。長距離に及ぶ送電線路4にあって、このような狭範囲に短絡箇所36が特定されることは正に短絡点の標定が行われることであり、斯かる標定は正常復旧の迅速化に寄与する。 From such indications and non-displays, the short-circuited portion 36 is specified in a narrow range of the transmission line 4 between the tower 82 and the tower 83, and specifically, a distance range (300 m to 600 m) ( In this case, the short circuit location 36 is specified within the interval L 2 ). In the transmission line 4 extending over a long distance, the fact that the short-circuit point 36 is specified in such a narrow range means that the short-circuit point is correctly positioned, and such a normalization contributes to speeding up normal recovery. To do.

上記実施の形態の特徴事項、効果及び変形例を以下に列挙する。   The features, effects, and modifications of the above embodiment are listed below.

(1) 鉄塔81、82、83、84・・・の両側に送電線路4の架空地線6に変流器対101、102、103、104・・・を取り付ける構成である。   (1) Current transformer pairs 101, 102, 103, 104... Are attached to the overhead ground wire 6 of the transmission line 4 on both sides of the steel towers 81, 82, 83, 84.

(2) 例えば、鉄塔82、83間で径間短絡が発生すると、短絡電流ISが電源12から短絡箇所36まで流れ、その短絡箇所36から電源12に戻る。この短絡電流ISは商用周波数50〔Hz〕又は60〔Hz〕である。この短絡電流ISは数千Aと非常に大きく、架空地線6に誘導電流Iiが発生する。この誘導電流Iiは、短絡電流ISの流れによって発生するため、径間のうち、鉄塔81〜83における径間に流れる。これに対し、鉄塔83の架空地線6に注目すれば、その電源側の変流器32には誘導電流が流れるが、負荷側の変流器34には流れないので、その検出電流が異なる。各変流器の出力は図3に示した通りである。   (2) For example, when a short-circuit between the steel towers 82 and 83 occurs, a short-circuit current IS flows from the power source 12 to the short-circuit point 36 and returns from the short-circuit point 36 to the power source 12. The short-circuit current IS has a commercial frequency of 50 [Hz] or 60 [Hz]. This short-circuit current IS is very large at several thousand A, and an induction current Ii is generated in the overhead ground wire 6. Since this induced current Ii is generated by the flow of the short circuit current IS, it flows between the diameters in the steel towers 81 to 83 among the distances. On the other hand, if attention is paid to the overhead ground wire 6 of the tower 83, an induced current flows through the current transformer 32 on the power source side, but does not flow through the current transformer 34 on the load side. . The output of each current transformer is as shown in FIG.

(3) 変流器32、34の方向性(出力) は、鉄塔81の架空地線6の電流のように同じ方向に通電があった場合、電源側の変流器32と負荷側の変流器34の検出波形が反転するように設定されている。   (3) The directionality (output) of the current transformers 32 and 34 is the same as the current of the overhead ground wire 6 of the tower 81, and the current transformer 32 on the power source side and the load side The detection waveform of the flow device 34 is set to be inverted.

(4) 短絡電流ISの流れた鉄塔81、82における変流器32、34では、鉄塔の両側の変流器32、34の検出出力を加算すると、出力は「ゼロ」となり、表示部42の表示は「不表示」となる。   (4) In the current transformers 32 and 34 in the steel towers 81 and 82 in which the short-circuit current IS flows, when the detection outputs of the current transformers 32 and 34 on both sides of the steel tower are added, the output becomes “zero”. The display is “not displayed”.

(5) 径間の短絡箇所36から直近で負荷側にある鉄塔83では、電源側の変流器32には出力が生じるが、負荷側の変流器34には出力が生じないので、その加算結果には有限の出力が生じ、表示部42の表示は故障箇所の存在を表す「表示」となる。   (5) In the pylon 83 on the load side closest to the short-circuited portion 36 between the spans, an output is generated in the current transformer 32 on the power source side, but no output is generated on the current transformer 34 on the load side. A finite output is generated as a result of the addition, and the display on the display unit 42 becomes “display” indicating the presence of a fault location.

(6) 短絡電流の流れない鉄塔84では、架空地線6に誘導電流が流れないので、変流器32、34の出力はなく、その加算結果も零となるため、表示部42の動作表示は「不表示」となる。   (6) In the tower 84 where no short-circuit current flows, since no induced current flows through the overhead ground wire 6, there is no output from the current transformers 32 and 34, and the addition result is also zero, so the operation display of the display unit 42 Becomes “hidden”.

(7) このような検出及び表示結果から、鉄塔81〜84・・・に設置されている故障検出器21〜24・・・の各表示部42の表示/非表示を確認すれば、径間の短絡箇所即ち、その直近で負荷側にある鉄塔から故障箇所を特定できる。   (7) From such detection and display results, if the display / non-display of each display unit 42 of the failure detectors 21-24... Installed in the steel towers 81-84. The fault location can be identified from the short-circuit location, i.e., the tower on the load side in the immediate vicinity.

(8) 架空地線6の誘導電流Iiの有無を鉄塔81〜84・・・の両側の架空地線6に取り付けた変流器対101〜104・・・で検出するので、径間短絡に直近で負荷側にある鉄塔のみを識別でき、径間短絡箇所の特定(短絡箇所に直近で負荷側にある鉄塔) ができる。   (8) Since the presence or absence of the induced current Ii of the overhead ground wire 6 is detected by the current transformer pairs 101 to 104 attached to the overhead ground wires 6 on both sides of the towers 81 to 84. Only the tower on the load side most recently can be identified, and the short-circuited part of the span can be identified (the tower on the load side closest to the short-circuited part).

(9) 故障検出システム2Aの装備について、商用周波数(低周波) 用変流器(CT)の一対(2個)で構成される変流器対101〜104・・・と、その出力の電流加算部38、電流処理部40、表示部42による簡単な構成で構築可能であり、安価な装置を提供できる。   (9) About the equipment of the fault detection system 2A, current transformer pairs 101 to 104, which are composed of a pair (two) of current frequency transformers (CT) for commercial frequency (low frequency), and the current of the output It can be constructed with a simple configuration by the adder 38, the current processing unit 40, and the display unit 42, and an inexpensive apparatus can be provided.

(10)接地動作表示した区間の装置表示を全てリセットする必要がなくなり、さらに区間(鉄塔数基から数十基) ではなく、短絡箇所の特定ができるので、送電線路4の保守が容易になる。   (10) It is not necessary to reset all the device displays in the section where the grounding operation is displayed, and furthermore, it is possible to specify the short-circuited part instead of the section (several to several tens of towers), so maintenance of the transmission line 4 is facilitated. .

(11)架空地線6の電流を検出しているので、送電線路4の地絡事故も検出し、その故障箇所を特定することができる。   (11) Since the current of the overhead ground wire 6 is detected, a ground fault in the power transmission line 4 can also be detected, and the failure location can be specified.

〔第2の実施の形態〕 [Second Embodiment]

本発明の第2の実施の形態について、図4を参照する。図4は、第2の実施の形態に係る地絡故障検出システムを示す図である。図4の構成は一例であって、斯かる構成に本発明が限定されるものではない。図4において、図1と同一部分には同一符号を付してある。   With respect to the second embodiment of the present invention, reference is made to FIG. FIG. 4 is a diagram illustrating a ground fault detection system according to the second embodiment. The configuration of FIG. 4 is an example, and the present invention is not limited to such a configuration. In FIG. 4, the same parts as those in FIG.

この故障検出システム2Bは、本発明の故障検出システム、故障検出器又は故障検出方法の一例であって、地絡事故等の故障時、地絡では架空地線に生じる地絡電流(架空地線分流)を鉄塔等の支持物毎に検出し、接地された支持物を中心(基準)に電源側と負荷側の各電流を同時に検出し、その検出電流を何れか一方を反転させて加算し、加算結果を表示する地絡故障検出表示システムを構成している。その表示によって地絡箇所が標定される。   This fault detection system 2B is an example of the fault detection system, fault detector, or fault detection method of the present invention. In the case of a fault such as a ground fault, a ground fault current (aerial ground line generated in the ground ground in the case of a ground fault). Is detected for each support such as a steel tower, and each current on the power supply side and load side is detected simultaneously with the grounded support at the center (reference), and the detected current is inverted and added. The ground fault detection display system for displaying the addition result is configured. The ground fault location is determined by the display.

そこで、この故障検出システム2Bは、送電線路4及び架空地線6を支持する鉄塔81、82、83、84・・・毎に設置された複数の故障検出器21、22、23、24・・・を備えたシステムである。地絡時、地絡電流IG(大地分流)と、地絡電流Ij(架空地線分流)とが流れるので、この故障検出システム2Bでは、鉄塔81、82、83、84・・・毎に変流器対101、102、103、104・・・が備えられ、各鉄塔81、82、83、84・・・を中心に電源12側と負荷側とで各地絡電流Ijを検出し、これら検出電流をその何れか一方を反転させて加算している。その他の構成は第1の実施の形態と同様である。   Therefore, this failure detection system 2B includes a plurality of failure detectors 21, 22, 23, 24,... Installed for each of the steel towers 81, 82, 83, 84... Supporting the transmission line 4 and the overhead ground wire 6.・ A system with Since a ground fault current IG (ground shunt current) and a ground fault current Ij (aerial ground shunt current) flow at the time of a ground fault, this fault detection system 2B changes for each of the towers 81, 82, 83, 84. . Are provided, and the local current Ij is detected on the power supply 12 side and the load side around the steel towers 81, 82, 83, 84. The current is added by inverting one of them. Other configurations are the same as those of the first embodiment.

また、各故障検出器21、22、23、24・・・は、第1の実施の形態(図2)と同一の構成である。   Further, each of the failure detectors 21, 22, 23, 24,... Has the same configuration as that of the first embodiment (FIG. 2).

次に、地絡箇所の標定及びその動作説明について、図5を参照する。図5は、地絡電流の有無、地絡電流の加算及び表示の有無を示す図である。図5に示す構成は一例であって、斯かる構成に本発明が限定されるものではない。   Next, FIG. 5 will be referred to for the orientation of the ground fault location and the explanation of its operation. FIG. 5 is a diagram illustrating the presence / absence of a ground fault current, the addition of a ground fault current, and the presence / absence of a display. The configuration illustrated in FIG. 5 is an example, and the present invention is not limited to such a configuration.

送電線路4に地絡が生じ、48はその地絡箇所を示している(図4)。この地絡によって鉄塔83には地絡電流IGが流れる。この地絡電流IGの架空地線分流である地絡電流Ijが架空地線6に流れる。変流器対101の検出コイル44、46には地絡電流Ijが検出されるが、検出コイル44、46の検出電流波形が互いに反転されて電流加算部38に加えられる。図5の(A)は、検出コイル44の検出電流であるとともに、電流加算部38に対する入力波形であって、周波数f、周期T、波高値Ijmを持つ正弦波である。   A ground fault occurs in the power transmission line 4, and 48 indicates the ground fault location (FIG. 4). This ground fault causes a ground fault current IG to flow through the steel tower 83. A ground fault current Ij, which is a shunt of the ground fault current IG, flows to the overhead ground line 6. The ground fault current Ij is detected in the detection coils 44 and 46 of the current transformer pair 101, but the detected current waveforms of the detection coils 44 and 46 are inverted and applied to the current adder 38. 5A shows the detection current of the detection coil 44 and an input waveform to the current adder 38, which is a sine wave having a frequency f, a period T, and a peak value Ijm.

これに対し、電流加算部38には、図5の(B)に示すように、検出コイル46の検出電流波形が反転して加えられ、同様の周波数f、周期T、波高値Ijmを持つ正弦波である。電流加算部38では、これら検出電流波形A、Bが加算され、即ち、各検出電流は周波数f及び波高値Ijmが同一であり、位相が反転しているので、両者は相殺され、加算電流=0となる。この結果、表示出力の生成はなく、表示部42は不表示となる。   On the other hand, as shown in FIG. 5B, the current addition unit 38 is inverted and added with the detection current waveform of the detection coil 46, and has the same frequency f, cycle T, and peak value Ijm. It is a wave. In the current adder 38, these detected current waveforms A and B are added. That is, each detected current has the same frequency f and peak value Ijm, and the phase is inverted. 0. As a result, no display output is generated, and the display unit 42 is not displayed.

この場合、変流器対102の検出コイル44、46にも同様に、既述の地絡電流Ijが検出されるが、変流器対101と同様の関係から、図5の(C)及び(D)に示すように、各検出電流は相殺されて表示出力の生成はなく、同様に表示部42は不表示となる。   In this case, the above-described ground fault current Ij is similarly detected in the detection coils 44 and 46 of the current transformer pair 102. From the same relationship as that of the current transformer pair 101, FIG. As shown in (D), the detected currents are canceled out and no display output is generated. Similarly, the display unit 42 is not displayed.

また、変流器対103の検出コイル44には同様に、既述の地絡電流Ijが検出されるが、検出コイル44には電源側に流れる地絡電流Ijが検出される。図5の(E)は、検出コイル44の検出電流であるとともに、電流加算部38に対する入力波形であって、周波数f、周期T、波高値Ijmを持つ正弦波である。   Similarly, the above-described ground fault current Ij is detected in the detection coil 44 of the current transformer pair 103, but the ground fault current Ij flowing to the power supply side is detected in the detection coil 44. (E) of FIG. 5 is a detection current of the detection coil 44 and an input waveform to the current adding unit 38, which is a sine wave having a frequency f, a period T, and a peak value Ijm.

これに対し、図5の(F)に示すように、検出コイル46には負荷側に流れる地絡電流Ijが検出され、図5の(E)に示す検出電流と同様に、周波数f、周期T、波高値Ijmを持つ正弦波である。検出コイル44、46の同相の検出電流となる。これら検出電流波形E、Fを加算すると、2倍の波高値を持つ検出電流が加算値として出力される。電流処理部40にはその加算結果により表示出力が生成され、表示部42は表示動作となり、この表示により故障箇所が表示される。   On the other hand, as shown in FIG. 5F, a ground fault current Ij flowing to the load side is detected in the detection coil 46, and the frequency f and the period are the same as the detection current shown in FIG. T is a sine wave having a peak value Ijm. The detection coils 44 and 46 have the same phase detection current. When these detected current waveforms E and F are added, a detected current having a double peak value is output as an added value. A display output is generated in the current processing unit 40 based on the addition result, and the display unit 42 performs a display operation, and the failure location is displayed by this display.

そして、変流器対104の検出コイル44、46には既述の地絡電流Iiが逆相関係となり、両者の検出電流は相殺され、表示部42は不表示となる{図5の(G)及び(H)}。   Then, the above-described ground fault current Ii is in a reverse phase relationship with the detection coils 44 and 46 of the current transformer pair 104, the detection currents of both are canceled out, and the display unit 42 is not displayed {G in FIG. ) And (H)}.

このような表示、不表示から、送電線路4の地絡箇所48が特定され、地絡箇所48の鉄塔83が標定される。長距離に及ぶ送電線路4にあって、このような狭範囲に地絡箇所48が特定されることは正に地絡点の標定が行われることであり、斯かる標定は正常復旧の迅速化に寄与する。   From such display and non-display, the ground fault location 48 of the power transmission line 4 is specified, and the steel tower 83 of the ground fault location 48 is determined. In the power transmission line 4 extending over a long distance, the fact that the ground fault point 48 is specified in such a narrow range is that the ground fault point is correctly determined, and such a standardization speeds up normal recovery. Contribute to.

斯かる故障検出システム2B、故障検出器21〜24又は故障検出方法では、架空地線の電流を検出しているので、径間短絡を検出する装置を共通に用いて送電線路4の地絡事故も検出し、その故障箇所を特定することができる。第1の実施の形態と同様の効果が得られる。   In such a failure detection system 2B, failure detectors 21 to 24, or failure detection method, since the current of the overhead ground wire is detected, a ground fault in the transmission line 4 is commonly used using a device that detects a short-circuit between the spans. Can also be detected and the failure location can be identified. The same effect as the first embodiment can be obtained.

〔他の実施の形態〕 [Other Embodiments]

(1) 上記実施の形態では、電流検出手段として変流器、検出コイルを用いているが、電流検出手段には誘導電流等の電流を検出できる半導体素子を用いてもよい。   (1) In the above embodiment, a current transformer and a detection coil are used as the current detection means. However, a semiconductor element capable of detecting a current such as an induced current may be used as the current detection means.

(2) 上記実施の形態では、支持物として鉄塔を例示しているが、鉄塔以外であってもよい。   (2) In the above embodiment, a steel tower is exemplified as the support, but it may be other than the steel tower.

(3) 上記実施の形態では、径間短絡故障、地絡故障を同一表示としているが、誘導電流と地絡電流の電流値の大小等により、それらを区別して表示する構成としてもよい。   (3) In the above embodiment, the short-circuit short-circuit fault and the ground fault are displayed in the same manner. However, they may be displayed separately according to the magnitude of the current value of the induced current and the ground fault current.

(4) 上記実施の形態では、Y結線の電源12を例示したが、電源12はY結線に限定されることはなく、Δ結線の変圧器であってもよい。
(4) In the above embodiment, the Y-connected power supply 12 is illustrated, but the power supply 12 is not limited to the Y-connected, and may be a Δ-connected transformer.

本発明の実施例について、図6及び図7を参照する。図6は、故障検出器の構成例を示す正面図、図7は、一方の検出コイル部を示す図である。図6及び図7に示す構成は一例であって、斯かる構成に本発明が限定されるものではない。   Refer to FIGS. 6 and 7 for an embodiment of the present invention. FIG. 6 is a front view illustrating a configuration example of the failure detector, and FIG. 7 is a diagram illustrating one detection coil unit. The configuration shown in FIGS. 6 and 7 is an example, and the present invention is not limited to such configuration.

この故障検出器20は、図6及び図7に示すように、本体部50と、表示部52と、検出コイル対54として第1の検出コイル部56、第2の検出コイル部58とを備えている。本体部50は例えば、円筒状の筐体であって、その内部に既述の電流加算部38、電流処理部40等の機能回路部が設置されている。   As shown in FIGS. 6 and 7, the failure detector 20 includes a main body portion 50, a display portion 52, and a first detection coil portion 56 and a second detection coil portion 58 as a detection coil pair 54. ing. The main body 50 is, for example, a cylindrical housing, and functional circuit units such as the current adding unit 38 and the current processing unit 40 described above are installed therein.

本体部50の頂部側には取付金具60が設置され、この取付金具60は鉄塔81、82、83・・・等の支持物に対する固定手段である。この取付金具60の取付部材には、金属ベルト等が用いられる。   A mounting bracket 60 is installed on the top side of the main body 50, and the mounting bracket 60 is a fixing means for a support such as a steel tower 81, 82, 83. A metal belt or the like is used as a mounting member of the mounting bracket 60.

検出コイル部56、58は、本体部50を中心にして例えば、左側に検出コイル部56、右側に検出コイル部58が設置され、これらはリード部62、64で連結されている。検出コイル部56、58には、既述の架空地線6を貫通させ、且つ架空地線6に固定するための貫通孔66(図7)が形成されている。検出コイル部56は既述の検出コイル44、検出コイル部58は既述の検出コイル46を構成し、この実施例では、それぞれが架空地線6(図1、図4)を流れる誘導電流Ii又は地絡電流Ijを検出する変流器を構成している。   The detection coil units 56 and 58 are, for example, provided with the detection coil unit 56 on the left side and the detection coil unit 58 on the right side with the main body unit 50 as the center, and these are connected by lead units 62 and 64. The detection coil portions 56 and 58 are formed with through holes 66 (FIG. 7) for allowing the above-described overhead ground wire 6 to penetrate and fixing to the overhead ground wire 6. The detection coil unit 56 constitutes the detection coil 44 described above, and the detection coil unit 58 constitutes the detection coil 46 described above. In this embodiment, each of the induced currents Ii flowing through the overhead ground wire 6 (FIGS. 1 and 4). Alternatively, a current transformer that detects the ground fault current Ij is configured.

本体部50には、取付金具60とは反対側の面部に表示部52が取り付けられ、この表示部52が既述の表示部42に相当する。   A display portion 52 is attached to the main body portion 50 on the surface opposite to the mounting bracket 60, and the display portion 52 corresponds to the display portion 42 described above.

次に、この故障検出器20の設置について、図8を参照する。図8は、鉄塔上に設置された故障検出器を示す図である。図8に示す構成は一例であって、斯かる構成に本発明が限定されるものではない。   Next, FIG. 8 will be referred to regarding the installation of the failure detector 20. FIG. 8 is a diagram showing a failure detector installed on a steel tower. The configuration shown in FIG. 8 is an example, and the present invention is not limited to such a configuration.

鉄塔80の頂部にはブラケット68が設置され、このブラケット68には架空地線6が支持部70によって固定されて張設されている。ブラケット68は、鉄塔80に対する架空地線6の支持手段である。   A bracket 68 is installed on the top of the steel tower 80, and the overhead ground wire 6 is fixed and stretched to the bracket 68 by a support unit 70. The bracket 68 is a means for supporting the overhead ground wire 6 with respect to the steel tower 80.

このように鉄塔80に支持された架空地線6には、電源側に検出コイル対54の検出コイル部56が設置され、負荷側には検出コイル部58が設置されている。各リード部62、64は架空地線6に沿わせて配置されるとともに、複数箇所にアルミバインド線72を巻き付けて固定されている。アルミバインド線72は、リード部62、64の固定手段であって、ファイバーケーブルや合成樹脂線を用いてもよい。   Thus, the aerial ground wire 6 supported by the steel tower 80 is provided with the detection coil portion 56 of the detection coil pair 54 on the power supply side and the detection coil portion 58 on the load side. The lead portions 62 and 64 are arranged along the overhead ground wire 6 and are fixed by winding an aluminum bind wire 72 around a plurality of locations. The aluminum bind wire 72 is a fixing means for the lead portions 62 and 64, and a fiber cable or a synthetic resin wire may be used.

そして、鉄塔80の頂部よりわずかに下降した位置には、固定ベルト74を以て取付金具60が固定され、故障検出器20が水平方向に取り付けられ、その表示部52が鉄塔80の側面部から突出している。   At a position slightly lowered from the top of the tower 80, the mounting bracket 60 is fixed with a fixing belt 74, the failure detector 20 is mounted in the horizontal direction, and the display section 52 projects from the side surface of the tower 80. Yes.

斯かる構成によれば、径間短絡や地絡等の故障によって生じる誘導電流や地絡電流を検出コイル対54が検出し、検出コイル部56、58の検出電流の加算結果により、表示部52に故障表示が行われる。その際、その故障表示を容易に確認することができる。   According to such a configuration, the detection coil pair 54 detects an induced current or a ground fault current caused by a fault such as a span short circuit or a ground fault, and the display section 52 is detected based on the addition result of the detection currents of the detection coil sections 56 and 58. Fault display is performed. At that time, the failure display can be easily confirmed.

以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment and the like of the present invention have been described. However, the present invention is not limited to the above description, and is described in the claims or disclosed in the specification. It goes without saying that various modifications and changes can be made by those skilled in the art based on the above gist, and such modifications and changes are included in the scope of the present invention.

本発明は、送電線路に生じる径間短絡や地絡等の故障箇所を特定でき、送電線路の保守や故障からの迅速復帰等に寄与し、有用である。
INDUSTRIAL APPLICABILITY The present invention can identify a failure point such as a span short circuit or a ground fault that occurs in a transmission line, contributes to maintenance of the transmission line, quick return from a failure, and the like, and is useful.

2A、2B 故障検出システム
21、22、23、24・・・ 故障検出器
4 送電線路
6 架空地線
80、81、82、83、84・・・ 鉄塔
101、102、103、104・・・ 変流器対
12 電源
14 中性点抵抗
32 第1の変流器
34 第2の変流器
36 短絡箇所
38 電流加算部
40 電流処理部
42 表示部
44、46 検出コイル
48 地絡箇所
50 本体部
52 表示部
54 検出コイル対
56 第1の検出コイル部
58 第2検出コイル部
60 取付金具
62、64 リード部
66 貫通孔
70 支持部
72 アルミバインド線
74 固定ベルト
2A, 2B Failure detection system 21, 22, 23, 24 ... Failure detector 4 Transmission line 6 Overhead ground wire 80, 81, 82, 83, 84 ... Steel tower 101, 102, 103, 104 ... Change Current source pair 12 Power source 14 Neutral point resistance 32 1st current transformer 34 2nd current transformer 36 Short-circuit part 38 Current addition part 40 Current processing part 42 Display part 44, 46 Detection coil 48 Ground fault part 50 Main part 52 Display part 54 Detection coil pair 56 First detection coil part 58 Second detection coil part 60 Mounting bracket 62, 64 Lead part 66 Through hole 70 Support part 72 Aluminum bind wire 74 Fixed belt

Claims (8)

送電線路の径間短絡及び地絡の故障の双方を検出する故障検出器であって、
前記送電線路を支持する支持物より電源側に設置され、故障時、架空地線に流れる電流を検出する第1の電流検出手段と、
前記支持物より負荷側に設置され、前記故障時、前記架空地線に流れる電流を検出する第2の電流検出手段と、
前記第1の電流検出手段の検出電流と前記第2の電流検出手段の検出電流とを何れか一方を反転させて加算する加算手段と、
前記加算手段の加算出力の電流値が所定値を超えた場合に表示出力を生成する電流処理手段と、
前記電流処理手段で生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示する表示手段と、
を備え、前記故障箇所又はその近傍箇所を表示することを特徴とする故障検出器。
A fault detector for detecting a bi how failure of span short and ground fault of the transmission line,
A first current detecting means which is installed on the power source side from the support supporting the power transmission line and detects a current flowing through the overhead ground wire in the event of a failure;
A second current detection means that is installed on the load side of the support and detects a current flowing through the overhead ground wire at the time of the failure;
Adding means for inverting one of the detection current of the first current detection means and the detection current of the second current detection means;
Current processing means for generating a display output when the current value of the addition output of the addition means exceeds a predetermined value;
Display means for receiving the display output generated by the current processing means, distinguishing short-circuit short-circuit faults and ground faults by the current value of the added output, and displaying the fault location;
Fault detector, characterized in that the provided, to display the previous SL fault location or near point.
請求項1記載の故障検出器において、
前記第1の電流検出手段及び/又は前記第2の電流検出手段は、変流器で構成したことを特徴とする故障検出器。
The fault detector according to claim 1, wherein
The fault detector according to claim 1, wherein the first current detection means and / or the second current detection means is constituted by a current transformer.
請求項1記載の故障検出器において、
前記加算手段の加算出力を整流して取り出す検出手段を備えることを特徴とする故障検出器。
The fault detector according to claim 1, wherein
A failure detector comprising a detecting means for rectifying and taking out the added output of the adding means.
送電線路の径間短絡及び地絡の故障の双方を検出して表示する故障検出システムであって、
前記送電線路を支持する支持物毎に設置され、前記支持物より電源側の前記送電線路に対する架空地線に流れる電流と、前記支持物より負荷側の前記送電線路に対する架空地線に流れる電流とを前記支持物毎に個別に検出する複数の電流検出手段対と、
前記電流検出手段対毎に検出された各検出電流を何れか一方を反転させて加算する加算手段と、
前記加算手段の加算出力の電流値が所定値を超えた場合に表示出力を生成する電流処理手段と、
前記電流処理手段で生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示する表示手段と、
を備え、前記故障箇所又はその近傍箇所を表示することを特徴とする故障検出システム。
A fault detection system for displaying and detecting the bi-how of a failure of span short and ground fault of the transmission line,
It is installed for each support that supports the power transmission line, and the current that flows in the overhead ground wire for the power transmission line on the power source side from the support, and the current that flows in the overhead ground wire for the power transmission line on the load side from the support A plurality of current detection means pairs for individually detecting each of the supports,
An adding means for inverting one of the detected currents detected for each of the current detecting means pairs and adding;
Current processing means for generating a display output when the current value of the addition output of the addition means exceeds a predetermined value;
Display means for receiving the display output generated by the current processing means, distinguishing short-circuit short-circuit faults and ground faults by the current value of the added output, and displaying the fault location;
Fault detection system, characterized in that the provided, to display the previous SL fault location or near point.
請求項記載の故障検出システムにおいて、
前記電流検出手段対は、変流器対で構成したことを特徴とする故障検出システム。
The failure detection system according to claim 4 ,
The fault detection system, wherein the current detection means pair is constituted by a current transformer pair.
請求項記載の故障検出システムにおいて、
前記加算手段の加算出力を整流して取り出す検出手段を備えることを特徴とする故障検出システム。
The failure detection system according to claim 4 ,
A failure detection system comprising: detection means for rectifying and taking out the addition output of the addition means.
送電線路の径間短絡及び地絡の故障の双方を検出して表示する故障検出方法であって、
前記送電線路を支持する支持物より電源側で、故障時、架空地線に流れる電流を検出し、前記故障時、前記支持物より負荷側で前記架空地線に流れる電流を検出するステップと、
各検出電流を何れか一方を反転させて加算するステップと、
加算出力の電流値が所定値を超えた場合に表示出力を生成するステップと、
生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示するステップと、
を含むことを特徴とする故障検出方法。
A fault detection method for displaying and detecting the bi-how of a failure of span short and ground fault of the transmission line,
On the power supply side of the support supporting the power transmission line, detecting a current flowing through the overhead ground wire at the time of failure, and detecting a current flowing through the overhead ground wire on the load side from the support during the failure; and
Adding each of the detected currents by inverting one of them;
Generating a display output when the current value of the added output exceeds a predetermined value;
Receiving the generated display output, distinguishing a short-circuit span failure and a ground fault by the current value of the added output, and displaying a failure location;
A failure detection method comprising:
送電線路の径間短絡及び地絡の故障の双方を検出して表示する故障検出方法であって、
前記送電線路を支持する支持物毎に、前記支持物より電源側の前記送電線路に対する架空地線に流れる電流と、前記支持物より負荷側の前記送電線路に対する架空地線に流れる電流とを個別に検出し、
電流検出手段対に検出された検出電流を何れか一方を反転させて加算し、
加算出力の電流値が所定値を超えた場合に表示出力を生成し、
生成された前記表示出力を受け、前記加算出力の電流値により径間短絡故障と地絡故障とを区別して、故障箇所を表示することを特徴とする故障検出方法。
A fault detection method for displaying and detecting the bi-how of a failure of span short and ground fault of the transmission line,
For each support that supports the power transmission line, a current that flows in the overhead ground wire for the power transmission line on the power source side from the support and a current that flows in the overhead ground wire for the power transmission line on the load side from the support are individually To detect
Invert one of the detected currents detected by the current detection means pair and add them,
When the current value of the added output exceeds the specified value, a display output is generated.
A failure detection method , wherein the generated display output is received, a short-circuit span failure is distinguished from a ground fault by the current value of the addition output, and a failure location is displayed .
JP2009035200A 2009-02-18 2009-02-18 Fault detector, fault detection system, and fault detection method Active JP5422220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035200A JP5422220B2 (en) 2009-02-18 2009-02-18 Fault detector, fault detection system, and fault detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035200A JP5422220B2 (en) 2009-02-18 2009-02-18 Fault detector, fault detection system, and fault detection method

Publications (2)

Publication Number Publication Date
JP2010190724A JP2010190724A (en) 2010-09-02
JP5422220B2 true JP5422220B2 (en) 2014-02-19

Family

ID=42816917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035200A Active JP5422220B2 (en) 2009-02-18 2009-02-18 Fault detector, fault detection system, and fault detection method

Country Status (1)

Country Link
JP (1) JP5422220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899959A (en) * 2014-03-12 2016-08-24 三菱电机株式会社 Abnormality diagnosis device for rogowski instrument current transformer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215879B (en) * 2014-08-13 2017-06-20 宁波海创天下信息科技有限公司 A kind of short circuit fault of power distribution network localization method and system
CN104678245B (en) * 2015-02-04 2018-01-30 云南电网有限责任公司电力科学研究院 A kind of method for judging electric device short circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135370A (en) * 1984-07-27 1986-02-19 Hitachi Cable Ltd Position detecting device for flashover steel tower in power transmission line
JPH0283467A (en) * 1988-09-20 1990-03-23 Ngk Insulators Ltd Apparatus for detecting distribution line accident section

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899959A (en) * 2014-03-12 2016-08-24 三菱电机株式会社 Abnormality diagnosis device for rogowski instrument current transformer
CN105899959B (en) * 2014-03-12 2018-09-04 三菱电机株式会社 The apparatus for diagnosis of abnormality of Roche instrument Current Transformer

Also Published As

Publication number Publication date
JP2010190724A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
US9964625B2 (en) Electrical substation fault monitoring and diagnostics
KR101303597B1 (en) A detection device of insulation resistance for non-interruption of electric power and hot-line
CN206226220U (en) Motor gas-gap early warning system
JP5422220B2 (en) Fault detector, fault detection system, and fault detection method
JP4681320B2 (en) Failure detection system, method, program, and computer-readable recording medium
JP2007292526A (en) Ground fault locator for service wire
JP2010237127A (en) Apparatus and method for detecting ground-fault
JP2006266709A (en) Insulator leakage current measurement apparatus
CN111983419A (en) Method and system for detecting a multiphase brushless exciter rectifier diode fault
JP6092519B2 (en) Ground fault detection device and ground fault detection method
JP2014240810A (en) Fault point survey device and fault point survey method
JP3768484B2 (en) Transmission line ground fault detection system and ground fault detection method
JP2009247155A (en) Method and device for detecting high-resistance ground fault
JP2019207130A (en) Detection device for high-resistance earth fault of direct current feeder
JP2008128735A (en) Accident determination device, method and program
JP5127736B2 (en) Accident location detection system and accident section identification method
JPH09236629A (en) Method and device for detecting earth steel tower of power transmission line
JP2011164079A (en) Ground fault detection system, monorail safety operation system, and electric train safety operation system with rail contacting ground
JP2018028501A (en) Open-phase detection system, open-phase detector and open-phase detection method
CN114114069A (en) Device and system for determining occurrence of ground fault of cable
KR20190104606A (en) Methods for determining errors in generators, and generator test systems
JP2007132856A (en) Grounding current detector, detection system, and detection method
JP7510370B2 (en) Method and system for monitoring operation of stationary electromagnetic devices
JPH06273470A (en) Accident section plotting device of overhead transmission line
JP2007057471A (en) Method and device for monitoring insulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250