JP5421446B2 - Short circuit protection circuit - Google Patents

Short circuit protection circuit Download PDF

Info

Publication number
JP5421446B2
JP5421446B2 JP2012245117A JP2012245117A JP5421446B2 JP 5421446 B2 JP5421446 B2 JP 5421446B2 JP 2012245117 A JP2012245117 A JP 2012245117A JP 2012245117 A JP2012245117 A JP 2012245117A JP 5421446 B2 JP5421446 B2 JP 5421446B2
Authority
JP
Japan
Prior art keywords
circuit
short
relay drive
drive output
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012245117A
Other languages
Japanese (ja)
Other versions
JP2013034381A (en
Inventor
貴夫 今井
裕史 森
潤 伊藤
寿夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Toyota Motor Corp
Original Assignee
Tokai Rika Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd, Toyota Motor Corp filed Critical Tokai Rika Co Ltd
Priority to JP2012245117A priority Critical patent/JP5421446B2/en
Publication of JP2013034381A publication Critical patent/JP2013034381A/en
Application granted granted Critical
Publication of JP5421446B2 publication Critical patent/JP5421446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、車両に搭載された車載電子機器等に設けられたリレーに好適に適用される短絡保護回路に関する。   The present invention relates to a short-circuit protection circuit suitably applied to a relay provided in an in-vehicle electronic device mounted on a vehicle.

車両に搭載された車載電子機器に設けられ、入力された制御信号に基づいてリレー(負荷)に駆動電流を出力するリレー駆動出力回路において、その出力側で短絡が発生した場合、当該回路に過度の短絡電流が流れ、損傷することが考えられる。   In a relay drive output circuit that is provided in an in-vehicle electronic device mounted on a vehicle and outputs a drive current to a relay (load) based on an input control signal, if a short circuit occurs on the output side, the circuit is It is possible that a short circuit current flows and is damaged.

そこで、そのような短絡が発生した場合に、電源とリレー駆動出力回路の間に挿入した大電流ヒューズを溶断させたり、或いは、リレー駆動出力回路に流れる電流を監視し、該電流量を制限して同リレー駆動出力回路を短絡による損傷から保護する短絡保護回路が設けられている(例えば、特許文献1を参照)。   Therefore, when such a short circuit occurs, a large current fuse inserted between the power supply and the relay drive output circuit is blown, or the current flowing through the relay drive output circuit is monitored to limit the amount of current. Therefore, a short circuit protection circuit that protects the relay drive output circuit from damage due to a short circuit is provided (for example, see Patent Document 1).

また、前記短絡保護回路としては、短絡が発生した場合にリレー駆動出力回路の出力動作を強制的に停止させ、リレー駆動出力回路に流れる短絡電流を阻止すると共に、短絡が発生した時より所定時間経過後からリレー駆動出力回路に所定の時間間隔で復帰信号を送信し、その出力動作を復帰させるものがある。   Further, the short circuit protection circuit forcibly stops the output operation of the relay drive output circuit when a short circuit occurs, prevents a short circuit current flowing through the relay drive output circuit, and at a predetermined time from when the short circuit occurs. Some devices return a return signal at a predetermined time interval to the relay drive output circuit after the lapse to restore the output operation.

このような短絡保護回路では、図7のタイミングチャートに示すように、予め設定した一定の時間間隔ΔTにて、短絡が発生した時より所定時間ΔTc3経過後からT1〜Tn(ΔT=Tk+1−Tk;kは自然数、1≦k≦n;nは自然数)のタイミングでそれぞれ送信される復帰信号Re1〜Ren(nは自然数)によってリレー駆動出力回路を出力動作状態に復帰させている。   In such a short circuit protection circuit, as shown in the timing chart of FIG. 7, T1 to Tn (ΔT = Tk + 1−Tk) after a predetermined time ΔTc3 has elapsed since a short circuit occurred at a predetermined time interval ΔT. K is a natural number, 1 ≦ k ≦ n; n is a natural number), and the relay drive output circuit is returned to the output operation state by return signals Re1 to Ren (n is a natural number).

特開2001−25150号公報JP 2001-25150 A

ところが、このような場合、復帰信号Re1〜Renの送信頻度(リレー駆動出力回路の復帰動作の頻度)が多くなりすぎると、該復帰信号Re1〜Renによってリレー駆動出力回路の動作が一時的に復帰している時には当該回路に過度の短絡電流が流れる。このため、この短絡電流による熱が時間の経過に従って蓄積し、同回路(トランジスタ等)を損傷させる虞がある。その一方で、そのような損傷を防止するため、復帰信号Re1〜Renの送信頻度を減らすと、リレー駆動出力回路において、前記短絡が継続している短絡状態からの復帰が遅れ、出力停止状態が長時間継続してしまう。   However, in such a case, if the transmission frequency of the return signals Re1 to Ren (the frequency of the return operation of the relay drive output circuit) increases excessively, the operation of the relay drive output circuit is temporarily returned by the return signals Re1 to Ren. When this occurs, an excessive short circuit current flows through the circuit. For this reason, heat due to this short-circuit current accumulates over time, and there is a risk of damaging the circuit (such as a transistor). On the other hand, in order to prevent such damage, if the transmission frequency of the return signals Re1 to Ren is reduced, in the relay drive output circuit, the return from the short-circuit state where the short-circuit continues is delayed, and the output stop state is It will continue for a long time.

図7においては、T1から2番目のT2のタイミングで復帰信号Re2がリレー駆動出力回路に送信された時刻(T2)にその出力動作が復帰しており、短絡状態の時間[min]に対する、短絡解消から出力復帰迄の所要時間[min]の時間比率が50%になっている。これでは、復帰信号Re1〜Renの送信頻度(送信回数)は2回と少なく、リレー駆動出力回路の損傷はないものの、前記時間比率は50%と長めであって、不満足な結果となっている。尚、本背景技術では、図7に示すように、リレー駆動出力回路に復帰信号が6回以上送信されることで、当該回路が短絡電流による熱の蓄積によって損傷することを想定している。   In FIG. 7, the output operation is restored at the time (T2) when the return signal Re2 is transmitted to the relay drive output circuit at the timing of the second T2 from T1, and the short circuit with respect to the short circuit time [min]. The time ratio of the required time [min] from cancellation to output restoration is 50%. In this case, the transmission frequency (the number of transmissions) of the return signals Re1 to Ren is as low as 2 and the relay drive output circuit is not damaged, but the time ratio is as long as 50%, which is an unsatisfactory result. . In this background art, as shown in FIG. 7, it is assumed that the return signal is transmitted to the relay drive output circuit six times or more, thereby damaging the circuit due to heat accumulation due to a short-circuit current.

また、車両のユーザ(運転者等)の手動操作によって、リレー駆動出力回路の損傷を防止しながら、短絡状態から短時間で出力動作状態に復帰させる方法も考えられるが、これではユーザの利便性が損なわれてしまう。   In addition, a method of returning from the short-circuit state to the output operation state in a short time while preventing damage to the relay drive output circuit by manual operation by a vehicle user (driver or the like) is also conceivable. Will be damaged.

本発明は、上記問題点を解決するためになされたものであって、その目的は、リレー駆動出力回路に発生した短絡が解消した後、同回路を損傷させることなく速やかに出力動作状態に復帰させることができる短絡保護回路を提供することにある。   The present invention has been made to solve the above problems, and its purpose is to quickly return to the output operation state without damaging the circuit after the short circuit generated in the relay drive output circuit is resolved. An object of the present invention is to provide a short-circuit protection circuit that can be made to operate.

上記問題点を解決するために、請求項1に記載の発明は、入力された制御信号に基づいて負荷に駆動電流を出力するリレー駆動出力回路と、該回路の出力側で生じる短絡の有無を検知すると共に、当該短絡が発生した場合には前記リレー駆動出力回路の出力動作を停止させる一方、前記短絡発生時より所定時間経過後から前記リレー駆動出力回路に或る時間間隔で復帰信号を送信してその出力動作を復帰させる短絡検出回路とを備えた短絡保護回路において、前記リレー駆動出力回路及び短絡検出回路からなる組を複数組備え、一の組の短絡検出回路からの復帰信号と、他の組の短絡検出回路からの復帰信号とが交互に対応するリレー駆動出力回路へ出力されていること、を要旨とする。   In order to solve the above problems, the invention according to claim 1 is directed to a relay drive output circuit that outputs a drive current to a load based on an input control signal, and whether or not a short circuit occurs on the output side of the circuit. When the short circuit occurs, the output operation of the relay drive output circuit is stopped, and a return signal is transmitted to the relay drive output circuit after a predetermined time from the occurrence of the short circuit. In a short-circuit protection circuit comprising a short-circuit detection circuit that restores its output operation, the relay drive output circuit and the short-circuit detection circuit are provided with a plurality of sets, a return signal from one set of short-circuit detection circuits, The gist is that the return signals from the other sets of short circuit detection circuits are alternately output to the corresponding relay drive output circuits.

同構成によれば、一の組の短絡検出回路からの復帰信号と、他の組の短絡検出回路からの復帰信号とが交互に対応するリレー駆動出力回路へ送信される。このため、単一のリレー駆動出力回路及び短絡検出回路の組のみを備えている場合と比較して、リレー駆動出力回路への復帰信号の送信頻度(負荷から観た復帰信号の送信頻度)が全体として増加するので、短絡状態が自然に解消した後、リレー駆動出力回路を出力停止状態から短時間で出力動作状態に復帰させることができると共に、各リレー駆動出力回路に送信される復帰信号の送信頻度(復帰動作の頻度)はその半分以下となるので、短絡電流によってリレー駆動出力回路に蓄積される熱量も抑えられ、同回路の損傷も効果的に防止することができる。   According to this configuration, a return signal from one set of short-circuit detection circuits and a return signal from another set of short-circuit detection circuits are alternately transmitted to the corresponding relay drive output circuits. For this reason, compared with a case where only a single relay drive output circuit and short circuit detection circuit set are provided, the return signal transmission frequency to the relay drive output circuit (return signal transmission frequency viewed from the load) is higher. As the overall increase, the relay drive output circuit can be returned from the output stop state to the output operation state in a short time after the short-circuit state is naturally resolved, and the return signal transmitted to each relay drive output circuit Since the transmission frequency (recovery operation frequency) is less than half that amount, the amount of heat accumulated in the relay drive output circuit due to the short-circuit current can be suppressed, and damage to the circuit can be effectively prevented.

本発明の短絡保護回路によれば、リレー駆動出力回路に発生した短絡が解消した後、同回路を損傷させることなく速やかに出力動作状態に復帰させることができる。   According to the short circuit protection circuit of the present invention, after the short circuit generated in the relay drive output circuit is resolved, it is possible to quickly return to the output operation state without damaging the circuit.

本発明の第1実施形態に係るECU(短絡保護回路)及びリレーからなる電気的構成を示す回路図。1 is a circuit diagram showing an electrical configuration including an ECU (short circuit protection circuit) and a relay according to a first embodiment of the present invention. 本発明の第1実施形態に係るECU及びリレーからなる電気的構成をさらに詳細に示す回路図。The circuit diagram which shows further in detail the electrical structure which consists of ECU and relay which concern on 1st Embodiment of this invention. 本発明に係るECUの動作を示すフローチャート図。The flowchart figure which shows operation | movement of ECU which concerns on this invention. 本発明の第1実施形態に係るECUの特徴的動作を示すタイミングチャート図。The timing chart figure which shows the characteristic operation | movement of ECU which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るECU及びリレーからなる電気的構成を示す回路図。The circuit diagram which shows the electric constitution which consists of ECU and the relay which concern on 2nd Embodiment of this invention. 本発明の第2実施形態に係るECUの特徴的動作を示すタイミングチャート図。The timing chart figure which shows the characteristic operation | movement of ECU which concerns on 2nd Embodiment of this invention. 従来例に係るECUの特徴的動作を示すタイミングチャート図。The timing chart figure which shows the characteristic operation | movement of ECU which concerns on a prior art example.

以下、本発明を具体化した実施形態について図面に従って説明する。
[第1実施形態]
図1に示すように、本実施形態(参考例)において、短絡保護回路として機能するECU(コントローラ)1は、車両に搭載された車載電子機器に設けられ、入力された制御信号としてのリレー駆動信号Aに基づいてリレー2に駆動電流を出力するリレー駆動出力回路11と、該回路11の出力側で生じる短絡S(短絡電流I0)の有無を検出する短絡検出回路12と、前記リレー駆動出力回路11及び短絡検出回路12を制御すべく当該各回路11,12に接続された制御手段としてのCPU(マイクロコンピュータ)13とを備えている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, in this embodiment (reference example), an ECU (controller) 1 that functions as a short-circuit protection circuit is provided in an in-vehicle electronic device mounted on a vehicle, and is relay-driven as an input control signal. A relay drive output circuit 11 that outputs a drive current to the relay 2 based on the signal A, a short circuit detection circuit 12 that detects the presence or absence of a short circuit S (short circuit current I0) that occurs on the output side of the circuit 11, and the relay drive output In order to control the circuit 11 and the short-circuit detection circuit 12, a CPU (microcomputer) 13 is provided as control means connected to the circuits 11 and 12.

詳しくは、図2に示すように、前記リレー駆動出力回路11は、直列配列された抵抗R1,R2を介してベース端子がCPU13に接続され、エミッタ端子が接地されたnpn形トランジスタTR1と、該トランジスタTR1のコレクタ端子に抵抗R3を介してベース端子が接続されると共にエミッタ端子が直流電源(+B)に接続され、且つ、コレクタ端子がリレー2に接続されると共に、抵抗R7及び抵抗R8を介して接地されたpnp形トランジスタTR2とを備えている。尚、前記リレー2は、トランジスタTR2のコレクタ端子に接続され、リレー駆動出力回路11から駆動電流が流れて励磁される負荷としてのリレーコイル3と、該リレーコイル3によって駆動され、車載電子機器(外部負荷)5と車載直流電源(+B)の間の接続をオン・オフするリレー接点4とから構成されている。   Specifically, as shown in FIG. 2, the relay drive output circuit 11 includes an npn transistor TR1 having a base terminal connected to the CPU 13 and a grounded emitter terminal via resistors R1 and R2 arranged in series. The collector terminal of the transistor TR1 is connected to the base terminal via the resistor R3, the emitter terminal is connected to the DC power source (+ B), the collector terminal is connected to the relay 2, and the resistors R7 and R8 are used. And a pnp transistor TR2 grounded. The relay 2 is connected to the collector terminal of the transistor TR2 and is driven by a relay coil 3 that is excited by a drive current flowing from the relay drive output circuit 11, and is driven by the relay coil 3, so that an in-vehicle electronic device ( The external contact) 5 and the relay contact 4 for turning on / off the connection between the on-vehicle DC power source (+ B).

前記短絡検出回路12は、直列の抵抗R4を介してベース端子がCPU13に接続され、エミッタ端子が接地されたnpn形トランジスタTR3と、該トランジスタTR3のコレクタ端子に抵抗R5を介してベース端子が接続されると共にエミッタ端子がCPU13及び前記抵抗R1,R2の間に接続され、且つ、コレクタ端子が抵抗R6を介して接地されたpnp形トランジスタTR4とを備えている。ここでトランジスタTR3のコレクタ端子は、抵抗R5を介してトランジスタTR4のベース端子に接続されている。   The short circuit detection circuit 12 has a base terminal connected to the CPU 13 via a series resistor R4, an npn transistor TR3 whose emitter terminal is grounded, and a base terminal connected to the collector terminal of the transistor TR3 via a resistor R5. And a pnp transistor TR4 whose emitter terminal is connected between the CPU 13 and the resistors R1 and R2 and whose collector terminal is grounded via the resistor R6. Here, the collector terminal of the transistor TR3 is connected to the base terminal of the transistor TR4 via the resistor R5.

また、前記短絡検出回路12は、さらに、一端が接地されると共に他端がトランジスタTR2のコレクタ端子とリレーコイル3の間に接続された前記抵抗R7,R8の間の電位と、基準電圧Vrefの電位とを比較し、その結果に応じ、高(VH)及び低(VL)の2種の電圧を出力するコンパレータCMP1を備えている。   The short-circuit detection circuit 12 further includes a potential between the resistors R7 and R8, one end of which is grounded and the other end connected between the collector terminal of the transistor TR2 and the relay coil 3, and a reference voltage Vref. A comparator CMP1 is provided that compares the potential and outputs two kinds of voltages, high (VH) and low (VL), according to the result.

詳しくは、リレー駆動出力回路11の出力側、即ち、トランジスタTR2のコレクタ端子とリレーコイル3との接続箇所で短絡が発生し、前記抵抗R7,R8の間の電位(コンパレータCMP1の入力端子電圧Vi)が前記基準電圧Vref未満となった場合には、前記コンパレータCMP1は、出力端子電圧Voとして、トランジスタTR4と抵抗R6の間に低(VL)の電圧を出力する(Vo=VL)。一方、トランジスタTR2のコレクタ端子とリレーコイル3との接続箇所で短絡が解消し、前記抵抗R7,R8の間の電位(コンパレータCMP1の入力端子電圧Vi)が前記基準電圧Vref以上となった場合には、前記コンパレータCMP1は、出力端子電圧Voとして、高(VH)の電圧を出力する(Vo=VH)。   Specifically, a short circuit occurs at the output side of the relay drive output circuit 11, that is, at the connection point between the collector terminal of the transistor TR2 and the relay coil 3, and the potential between the resistors R7 and R8 (the input terminal voltage Vi of the comparator CMP1). ) Becomes less than the reference voltage Vref, the comparator CMP1 outputs a low (VL) voltage between the transistor TR4 and the resistor R6 as an output terminal voltage Vo (Vo = VL). On the other hand, when the short circuit is eliminated at the connection point between the collector terminal of the transistor TR2 and the relay coil 3, and the potential between the resistors R7 and R8 (the input terminal voltage Vi of the comparator CMP1) becomes equal to or higher than the reference voltage Vref. The comparator CMP1 outputs a high (VH) voltage as the output terminal voltage Vo (Vo = VH).

本実施形態の短絡検出回路12は、前記トランジスタTR2のコレクタ端子とリレーコイル3との接続箇所での短絡の有無、即ち、リレー駆動出力回路11の出力側で生じる短絡の有無を前記コンパレータCMP1を用いて検出すると共に、該検出結果に基づいて、前記CPU13からリレー駆動出力回路11に送信される制御信号としてのリレー駆動信号Aの送信・停止を制御するように構成されている。ここで、リレー駆動信号Aは、トランジスタTR1,TR2によって増幅されて前記リレー2を駆動する駆動電流となる。   The short circuit detection circuit 12 of the present embodiment uses the comparator CMP1 to determine whether or not there is a short circuit at the connection point between the collector terminal of the transistor TR2 and the relay coil 3, that is, whether or not a short circuit occurs on the output side of the relay drive output circuit 11. It is configured to detect and use and to control transmission / stop of the relay drive signal A as a control signal transmitted from the CPU 13 to the relay drive output circuit 11 based on the detection result. Here, the relay drive signal A is amplified by the transistors TR1 and TR2 and becomes a drive current for driving the relay 2.

詳しくは、コンパレータCMP1の出力端子電圧Voが低電圧VLである(Vo=VL)と、該低電圧VLは、所定の条件の下、前記短絡検出回路12によって短絡(短絡状態)が検出された場合にリレー駆動出力回路11の駆動電流の出力を強制的に停止されるための強制停止信号Dとして前記抵抗R1,R2の間(トランジスタTR1のベース端子)とCPU13とに送信される。   Specifically, when the output terminal voltage Vo of the comparator CMP1 is the low voltage VL (Vo = VL), the low voltage VL is detected as being short-circuited (short-circuited) by the short-circuit detection circuit 12 under a predetermined condition. In this case, the output of the drive current of the relay drive output circuit 11 is transmitted to the CPU 13 between the resistors R1 and R2 (base terminal of the transistor TR1) and the forced stop signal D for forcibly stopping the output.

この強制停止信号DがCPU13に送信されると、同CPU13において、前記リレー駆動信号Aの停止を許可するために短絡検出回路12(トランジスタTR3)に伝送される停止許可信号Cの送信が制御可能な状態となる。即ち、例えば、CPU13によって停止許可信号Cの送信が制御され、所定の時間間隔で送信・停止されるようになる。   When the forced stop signal D is transmitted to the CPU 13, the CPU 13 can control the transmission of the stop permission signal C transmitted to the short circuit detection circuit 12 (transistor TR3) in order to permit the stop of the relay drive signal A. It becomes a state. That is, for example, the transmission of the stop permission signal C is controlled by the CPU 13 and is transmitted / stopped at predetermined time intervals.

そして、前記CPU13から前記短絡検出回路12に前記したリレー駆動信号Aの停止許可信号C(以下、単に「停止許可信号C」という。)が送信されている場合では、コンパレータCMP1の出力端子電圧Vo(強制停止信号D)がトランジスタTR4を介してトランジスタTR1のベース端子に印加可能な状態となる。この場合、リレー駆動出力回路11において、前記短絡が発生し、同短絡が短絡検出回路12により検出される短絡状態では、Vo=VLとなるので、該低電圧VLが強制停止信号Dとして機能し、前記抵抗R1,R2の間が低電圧となり、リレー駆動信号Aが遮断(強制停止)される。他方、リレー駆動出力回路11において、前記短絡が自然に解消し、短絡検出回路12により短絡が検出されない正常状態では、Vo=VHとなるので、前記強制停止信号Dは消滅し、前記抵抗R1,R2の間は高電圧となり、リレー駆動信号AがCPU13から送信されることとなる。   When the stop permission signal C of the relay drive signal A (hereinafter, simply referred to as “stop permission signal C”) is transmitted from the CPU 13 to the short circuit detection circuit 12, the output terminal voltage Vo of the comparator CMP1. (Forced stop signal D) can be applied to the base terminal of transistor TR1 through transistor TR4. In this case, when the short circuit occurs in the relay drive output circuit 11 and the short circuit is detected by the short circuit detection circuit 12, Vo = VL, so that the low voltage VL functions as the forced stop signal D. The voltage between the resistors R1 and R2 becomes a low voltage, and the relay drive signal A is cut off (forced stop). On the other hand, in the relay drive output circuit 11, in the normal state where the short circuit is naturally resolved and the short circuit is not detected by the short circuit detection circuit 12, Vo = VH, so the forced stop signal D disappears and the resistors R1, R1 The voltage is high during R2, and the relay drive signal A is transmitted from the CPU 13.

一方、前記CPU13から前記短絡検出回路12に停止許可信号Cの送信が停止されている場合(停止許可信号Cが送信されていない場合)では、コンパレータCMP1の出力端子電圧VoはトランジスタTR1のベース端子に印加されず、該出力端子電圧Voの高低によらず(強制停止信号Dの有無によらず)、リレー駆動信号AはCPU13からリレー駆動出力回路11に送信される。   On the other hand, when the transmission of the stop permission signal C from the CPU 13 to the short circuit detection circuit 12 is stopped (when the stop permission signal C is not transmitted), the output terminal voltage Vo of the comparator CMP1 is the base terminal of the transistor TR1. The relay drive signal A is transmitted from the CPU 13 to the relay drive output circuit 11 regardless of whether the output terminal voltage Vo is high or low (regardless of the presence or absence of the forced stop signal D).

以下、図3のフローチャート及び図4のタイミングチャートを参照しつつ、本実施形態のECU1(短絡保護回路)の動作についてさらに具体的に説明する。
まず、図3を参照して、リレー駆動信号Aの送信が停止した状態(停止許可信号Cの送信も停止している。)において、車載電子機器5(図2参照)を作動させるべく、車両のユーザ(運転者等)のスイッチ操作が行われると、CPU13においてリレー駆動出力条件が成立する。
Hereinafter, the operation of the ECU 1 (short circuit protection circuit) of the present embodiment will be described more specifically with reference to the flowchart of FIG. 3 and the timing chart of FIG.
First, referring to FIG. 3, in order to operate vehicle-mounted electronic device 5 (see FIG. 2) in a state where transmission of relay drive signal A is stopped (transmission of stop permission signal C is also stopped) When the switch operation of the user (driver or the like) is performed, the relay drive output condition is established in the CPU 13.

すると、ステップS1において、CPU13からリレー駆動出力回路11にリレー駆動信号Aが送信され、該信号Aは、トランジスタTR1及びトランジスタTR2によって所定レベルに増幅されて駆動電流となり、リレー2(リレーコイル3)に出力される。   Then, in step S1, a relay drive signal A is transmitted from the CPU 13 to the relay drive output circuit 11, and the signal A is amplified to a predetermined level by the transistors TR1 and TR2 to become a drive current, and the relay 2 (relay coil 3). Is output.

次に、ステップS2において、CPU13から短絡検出回路12に停止許可信号Cが送信され、同短絡検出回路12がその作動を開始する。
続いて、ステップS3において、短絡検出回路12によって、前記短絡の有無が判断される。即ち、コンパレータCMP1ではその入力端子電圧Viと基準電圧Vref(例えば、Vref=3[V])の大小関係が継続して判断されている。そして、前記短絡状態が継続し、リレー駆動出力回路11が短絡状態である場合、前述したように、Vi<Vref(コンパレータCMP1の出力端子電圧Vo=VL)となるので、強制停止信号Dがリレー駆動出力回路11に送信され、前記抵抗R1,R2の間が低電圧となり、リレー駆動信号Aが遮断(強制停止)される。そしてこの場合(YESの場合)は、ステップS4に進む。他方、前記短絡が自然に解消してリレー駆動出力回路11が正常状態となった場合は、Vi≧Vref(コンパレータCMP1の出力端子電圧Vo=VH)となるので、前記強制停止信号Dは消滅し、リレー駆動信号AはCPU13からリレー駆動出力回路11に再び送信されるようになり、該回路11の出力動作が復帰する。そしてこの場合(Noの場合)は、ステップS5に進む。
Next, in step S2, a stop permission signal C is transmitted from the CPU 13 to the short circuit detection circuit 12, and the short circuit detection circuit 12 starts its operation.
Subsequently, in step S3, the short circuit detection circuit 12 determines the presence or absence of the short circuit. That is, the comparator CMP1 continuously determines the magnitude relationship between the input terminal voltage Vi and the reference voltage Vref (for example, Vref = 3 [V]). When the short-circuit state continues and the relay drive output circuit 11 is in the short-circuit state, as described above, Vi <Vref (the output terminal voltage Vo = VL of the comparator CMP1), so that the forced stop signal D is relayed. The voltage is transmitted to the drive output circuit 11, the voltage between the resistors R1 and R2 becomes low, and the relay drive signal A is cut off (forced stop). In this case (in the case of YES), the process proceeds to step S4. On the other hand, when the short circuit is naturally resolved and the relay drive output circuit 11 is in a normal state, Vi ≧ Vref (the output terminal voltage Vo = VH of the comparator CMP1), and therefore the forced stop signal D disappears. The relay drive signal A is transmitted again from the CPU 13 to the relay drive output circuit 11, and the output operation of the circuit 11 is restored. In this case (in the case of No), the process proceeds to step S5.

ステップS4では、前記低電圧VLが強制停止信号DとしてCPU13にも送信され、同強制停止信号Dの受信をトリガとしてCPU13によって停止許可信号Cの送信が制御される。そして、この停止許可信号Cの送信が一時的に停止されると、前述したように、コンパレータCMP1の出力端子電圧Voが前記抵抗R1,R2の間に印加されず、前記短絡状態が継続していても、リレー駆動信号AはCPU13からリレー駆動出力回路11に送信されるようになり、該回路11の動作が一時的に復帰される。   In step S4, the low voltage VL is also transmitted to the CPU 13 as the forced stop signal D, and the transmission of the stop permission signal C is controlled by the CPU 13 with the reception of the forced stop signal D as a trigger. When the transmission of the stop permission signal C is temporarily stopped, as described above, the output terminal voltage Vo of the comparator CMP1 is not applied between the resistors R1 and R2, and the short circuit state continues. However, the relay drive signal A is transmitted from the CPU 13 to the relay drive output circuit 11, and the operation of the circuit 11 is temporarily restored.

即ち、該強制停止信号DがCPU13へ送信されると、それをトリガとして、前記短絡検出回路12への停止許可信号Cの送信が所定の時間間隔をおいて一時的(瞬時)に停止され、これによりリレー駆動出力回路11の動作が一時的に復帰されることで、同回路11の復帰動作が行われることになる。つまり、前記短絡検出回路12においては、CPU13からの停止許可信号Cの送信の一時的な停止により、CPU13からリレー駆動出力回路11にその動作を一時的に復帰させる復帰信号(後述する復帰信号Re1〜Ren)が送信され、さらに同回路12が当該復帰信号をリレー駆動出力回路11に送信することと同じことになる。また、この復帰信号がリレー駆動出力回路11に送信されることで、リレー駆動出力回路11に直流電源(+B)から電流が流れ込み(図2参照)、リレー駆動出力回路11の出力側で短絡が発生しているか否かの判断が行われることにもなる。   That is, when the forced stop signal D is transmitted to the CPU 13, the trigger is used as a trigger to stop the transmission of the stop permission signal C to the short circuit detection circuit 12 temporarily (instantly) at a predetermined time interval. As a result, the operation of the relay drive output circuit 11 is temporarily restored, so that the return operation of the circuit 11 is performed. That is, in the short-circuit detection circuit 12, a return signal (a return signal Re1 to be described later) for temporarily returning the operation from the CPU 13 to the relay drive output circuit 11 by temporarily stopping the transmission of the stop permission signal C from the CPU 13. ~ Ren) is transmitted, and the same circuit 12 transmits the return signal to the relay drive output circuit 11. In addition, when the return signal is transmitted to the relay drive output circuit 11, a current flows from the DC power supply (+ B) to the relay drive output circuit 11 (see FIG. 2), and a short circuit occurs on the output side of the relay drive output circuit 11. It is also determined whether or not it has occurred.

したがって、リレー駆動出力回路11において、短絡状態が継続している場合に復帰動作が行われると、同回路11のトランジスタTR2には、短絡箇所に向けて直流電源(+B)から過度の短絡電流I0(図1参照)が流れて当該トランジスタTR2が発熱することになる。そして、この復帰動作が繰り返されることでトランジスタTR2に前記短絡電流I0による熱の蓄積が起こり、同回路11が損傷を受けることにつながる。尚、本実施形態では、図4に示すように、背景技術と同様、リレー駆動出力回路11に復帰信号が6回以上送信されることで、当該回路11が短絡電流I0による熱の蓄積によって損傷することを想定している。   Therefore, in the relay drive output circuit 11, when the return operation is performed when the short-circuit state continues, the transistor TR2 of the circuit 11 has an excessive short-circuit current I0 from the DC power source (+ B) toward the short-circuit point. (See FIG. 1) flows and the transistor TR2 generates heat. By repeating this return operation, heat is accumulated in the transistor TR2 due to the short-circuit current I0, and the circuit 11 is damaged. In the present embodiment, as shown in FIG. 4, as in the background art, the return signal is transmitted to the relay drive output circuit 11 six times or more, so that the circuit 11 is damaged due to heat accumulation due to the short-circuit current I0. Assumes that

ここで、図4のタイミングチャートを参照して、本実施形態のECU1における特徴的な動作について詳細に説明する。
即ち、リレー駆動出力回路11が正常状態から短絡状態となると、前記強制停止信号DがコンパレータCMP1からトランジスタTR4を介して前記抵抗R1,R2の間(リレー駆動出力回路11)及びCPU13に送信される。
Here, with reference to the timing chart of FIG. 4, a characteristic operation in the ECU 1 of the present embodiment will be described in detail.
That is, when the relay drive output circuit 11 changes from a normal state to a short circuit state, the forced stop signal D is transmitted from the comparator CMP1 to the resistors R1 and R2 (relay drive output circuit 11) and the CPU 13 via the transistor TR4. .

すると、CPU13によって、リレー駆動信号Aが停止され、リレー2への駆動電流の出力が停止すると共に、停止許可信号Cの短絡検出回路12への送信がCPU13により制御され、前記短絡が発生した時刻T0(強制停止信号DがCPU13で受信された時刻)より所定時間経過ΔTc1後の時刻T1を起点として、該短絡検出回路12から或る時間間隔ΔTn(nは自然数)にて、T1〜Tnのタイミングでそれぞれ復帰信号Re1〜Ren(nは自然数)がリレー駆動出力回路11に送信されるようになる(CPU13により、停止許可信号Cの送信の一時的な停止がT1〜Tnのタイミングで行われるようになる)。ここでは、CPU13によって、前記短絡が発生していた時間(短絡状態の時間[min])に対する、前記短絡が解消した時刻と前記リレー駆動出力回路11の出力動作が復帰した時刻の間の時間(短絡解消から出力復帰迄の所要時間[min])の時間比率が10%(所定値)以下となるように、前記復帰信号Re1〜Renが送信される時間間隔ΔT1〜ΔTn(ΔTk=Tk+1−Tk、ΔTk+1−ΔTk>0;kは自然数、1≦k≦n)が時間の経過に従い漸増するべく設定されている。ここでは、前記時間比率が10%以下となるように、例えば、ΔTk+1=a・ΔTk(aは定数であって、a>1)と設定できる。尚、ΔTc1、ΔT1、及び定数a は、想定される短絡状態の時間に応じて適宜決定することができる。   Then, the relay drive signal A is stopped by the CPU 13, the output of the drive current to the relay 2 is stopped, and the transmission of the stop permission signal C to the short-circuit detection circuit 12 is controlled by the CPU 13, and the time when the short-circuit occurs. Starting from time T1 after a predetermined time lapse ΔTc1 from T0 (time when the forced stop signal D is received by the CPU 13), from the short circuit detection circuit 12 at a certain time interval ΔTn (n is a natural number), T1 to Tn The return signals Re1 to Ren (n is a natural number) are transmitted to the relay drive output circuit 11 at the timing (the CPU 13 temporarily stops the transmission of the stop permission signal C at the timings T1 to Tn). It becomes like). Here, the time between the time when the short circuit is canceled and the time when the output operation of the relay drive output circuit 11 is restored with respect to the time when the short circuit has occurred (the time [min] of the short circuit state). The time intervals ΔT1 to ΔTn (ΔTk = Tk + 1−Tk) at which the return signals Re1 to Ren are transmitted so that the time ratio of the required time [min] from the cancellation of the short circuit to the output recovery is 10% (predetermined value) or less. , ΔTk + 1−ΔTk> 0; k is a natural number, 1 ≦ k ≦ n) is set so as to gradually increase as time elapses. Here, for example, ΔTk + 1 = a · ΔTk (a is a constant and a> 1) can be set so that the time ratio is 10% or less. Note that ΔTc1, ΔT1, and the constant a can be appropriately determined according to the expected short-circuit time.

そして、図4に示すように、短絡が自然に解消し、リレー駆動出力回路11が短絡状態から正常状態に復帰した後、T1から4番目のT4のタイミングで復帰信号Re4が短絡検出回路12からリレー駆動出力回路11に送信され、その時刻(T4)で同回路11の出力動作が復帰している。ここで、リレー駆動出力回路11の復帰動作の頻度は4回と6回未満であって少なく、該回路11の損傷はなく、しかも、短絡状態の時間[min]に対する、短絡解消から出力復帰迄の所要時間[min]の時間比率が10%以下であって短く、満足な結果が得られている。   Then, as shown in FIG. 4, after the short circuit is naturally resolved and the relay drive output circuit 11 returns from the short circuit state to the normal state, the return signal Re4 is output from the short circuit detection circuit 12 at the timing of the fourth T4 from T1. It is transmitted to the relay drive output circuit 11, and the output operation of the circuit 11 is restored at the time (T4). Here, the frequency of the return operation of the relay drive output circuit 11 is less than four times and less than six times, the circuit 11 is not damaged, and the short circuit state time [min] is from the short circuit cancellation to the output recovery. The time ratio of the required time [min] is 10% or less and is short, and satisfactory results are obtained.

図3に戻り、その後のステップS5においては、CPU13からリレー駆動信号A及び停止許可信号Cが送信され、リレー駆動出力回路11によってリレー2が駆動されている状態において、車載電子機器5(図2参照)の作動を停止させるべく、車両のユーザのスイッチ操作が行われると、CPU13においてリレー駆動停止条件が成立する。このステップS5において、リレー駆動停止条件が成立しない場合は、ステップS3に戻り、リレー駆動出力回路11によってリレー2が駆動されている状態のまま、短絡検出回路12によって前記短絡の有無の判断が継続される。他方、ステップS5において、リレー駆動停止条件が成立した場合は、ステップS6において、CPU13によってリレー駆動信号Aの送信が停止され、さらに、ステップS7において、リレー駆動信号Aの停止許可信号Cの送信が停止され、ECU1の一連の動作が終了する。   Returning to FIG. 3, in step S <b> 5 thereafter, the relay drive signal A and the stop permission signal C are transmitted from the CPU 13, and the relay 2 is driven by the relay drive output circuit 11. When the switch operation of the user of the vehicle is performed to stop the operation of (see), the relay drive stop condition is satisfied in the CPU 13. In this step S5, when the relay drive stop condition is not satisfied, the process returns to step S3, and the determination of the presence or absence of the short circuit is continued by the short circuit detection circuit 12 while the relay 2 is driven by the relay drive output circuit 11. Is done. On the other hand, if the relay drive stop condition is satisfied in step S5, the transmission of the relay drive signal A is stopped by the CPU 13 in step S6, and further, the stop permission signal C of the relay drive signal A is transmitted in step S7. It stops and a series of operation | movement of ECU1 is complete | finished.

本実施形態のECU1(短絡保護回路)によれば、以下のような作用・効果を得ることができる。
(1)短絡発生時より所定時間ΔTc1経過後からリレー駆動出力回路11に或る時間間隔で送信される復帰信号Re1〜Ren(nは自然数)の当該時間間隔ΔT1〜ΔTn(nは自然数)が、短絡状態の時間[min]に対する、短絡解消から出力復帰迄の所要時間[min]の時間比率が10%以下となるように、時間の経過に従い漸増されている。これにより、短絡の発生当初は復帰信号Re1〜Renの送信頻度が多くなり、リレー駆動出力回路11を出力停止状態から短時間で出力動作状態に復帰させることができると共に、時間の経過に従って復帰信号Re1〜Renの送信頻度が次第に少なくなる。このため、短絡電流I0によってリレー駆動出力回路11に蓄積される熱量も抑えられ、同回路11の損傷も効果的に防止することができる。
According to the ECU 1 (short circuit protection circuit) of the present embodiment, the following operations and effects can be obtained.
(1) The time intervals ΔT1 to ΔTn (n is a natural number) of the return signals Re1 to Ren (n is a natural number) transmitted to the relay drive output circuit 11 after a predetermined time ΔTc1 has elapsed since the occurrence of the short circuit. The time ratio of the required time [min] from the short-circuit elimination to the output restoration with respect to the short-circuit state time [min] is gradually increased as time passes. Thereby, at the beginning of the occurrence of the short circuit, the transmission frequency of the return signals Re1 to Ren increases, and the relay drive output circuit 11 can be returned from the output stop state to the output operation state in a short time. The transmission frequency of Re1 to Ren gradually decreases. For this reason, the amount of heat accumulated in the relay drive output circuit 11 by the short-circuit current I0 is also suppressed, and damage to the circuit 11 can be effectively prevented.

(2)リレー駆動出力回路11及び短絡検出回路12からなるシンプルなハードウェア構成により、CPU13のメモリ等に格納されたソフトウェアに拠らずにリレー駆動出力回路11の短絡の検出及び該短絡状態からの出力動作状態への復帰が迅速、確実、且つ自動的に行われる。これにより、車両のユーザ(運転者等)の利便性が高められる。   (2) With a simple hardware configuration composed of the relay drive output circuit 11 and the short circuit detection circuit 12, it is possible to detect the short circuit of the relay drive output circuit 11 and to detect the short circuit state without relying on software stored in the memory of the CPU 13 or the like. Is quickly, reliably and automatically returned to the output operation state. Thereby, the convenience of the user (driver | operator etc.) of a vehicle is improved.

[第2実施形態]
図5に示すように、本実施形態において、短絡保護回路として機能するECU(コントローラ)1aは、車両に搭載された車載電子機器に設けられ、入力された制御信号に基づいてリレー2に駆動電流を出力する一対のリレー駆動出力回路11a及びリレー駆動出力回路11bと、該各回路11a,11bの出力側で生じる短絡S(短絡電流I0)の有無を検出する一対の短絡検出回路12a及び短絡検出回路12bと、前記リレー駆動出力回路11a,11b及び短絡検出回路12a,12bを制御すべく当該各回路11a,12a,11b,12bに接続された制御手段としてのCPU(マイクロコンピュータ)113とを備えている。つまり、本実施形態のECU1aでは、リレー駆動出力回路11a,11b及び短絡検出回路12b,12bからなる組を2組(複数組)備えていることになる。
[Second Embodiment]
As shown in FIG. 5, in this embodiment, an ECU (controller) 1 a that functions as a short circuit protection circuit is provided in an in-vehicle electronic device mounted on a vehicle, and a drive current is supplied to the relay 2 based on an input control signal. A pair of relay drive output circuit 11a and relay drive output circuit 11b, and a pair of short circuit detection circuit 12a and short circuit detection for detecting the presence or absence of a short circuit S (short circuit current I0) occurring on the output side of each circuit 11a, 11b A circuit 12b and a CPU (microcomputer) 113 as control means connected to the circuits 11a, 12a, 11b, and 12b to control the relay drive output circuits 11a and 11b and the short circuit detection circuits 12a and 12b are provided. ing. That is, the ECU 1a according to this embodiment includes two sets (a plurality of sets) of the relay drive output circuits 11a and 11b and the short circuit detection circuits 12b and 12b.

以下、本実施形態のECU1aにおいて、前記各回路11a,12a,11b,12bの構成及び基本的な動作については、第1実施形態のリレー駆動出力回路11及び短絡検出回路12のそれと同様であるので、トランジスタや抵抗等、対応する電気素子には同一又は対応する符号が付されたものとし、説明を省略する。   Hereinafter, in the ECU 1a of the present embodiment, the configurations and basic operations of the circuits 11a, 12a, 11b, and 12b are the same as those of the relay drive output circuit 11 and the short circuit detection circuit 12 of the first embodiment. The corresponding electric elements such as transistors and resistors are denoted by the same or corresponding reference numerals, and the description thereof is omitted.

図6のタイミングチャートを参照して、本実施形態のECU1aにおける特徴的な動作について詳細に説明する。
即ち、リレー駆動出力回路11a,11bが正常状態から短絡状態となると、前記強制停止信号Dが、各短絡検出回路12a,12bにそれぞれ設けられたコンパレータCMP1a,CMP1bからトランジスタTR4a,TR4bを介して前記抵抗R1,R2の間(リレー駆動出力回路11a,11b)及びCPU113に送信される。
With reference to the timing chart of FIG. 6, the characteristic operation in the ECU 1a of the present embodiment will be described in detail.
That is, when the relay drive output circuits 11a and 11b are short-circuited from the normal state, the forced stop signal D is sent from the comparators CMP1a and CMP1b provided in the short-circuit detection circuits 12a and 12b to the transistors TR4a and TR4b, respectively. It is transmitted between the resistors R1 and R2 (relay drive output circuits 11a and 11b) and the CPU 113.

すると、CPU113によって、各リレー駆動信号Aが停止され、リレー2への駆動電流の出力が停止すると共に、停止許可信号Cの短絡検出回路12a,12bへの送信がCPU113により制御され、前記短絡が発生した時刻T0(強制停止信号DがCPU113で受信された時刻)より所定時間経過ΔTc2後の時刻Ta1を起点として、各短絡検出回路12a,12bから一定の時間間隔ΔTabにて、Ta1〜Tan,Tb1〜Tbnのタイミングでそれぞれ復帰信号Ra1〜Ran,Rb1〜Rbn(nは自然数)が交互に各リレー駆動出力回路11a,11bに送信されるようになる(CPU113により、停止許可信号Cの送信の一時的な停止がTa1〜Tan,Tb1〜Tbnのタイミングで行われるようになる)。ここでは、CPU113によって、前記復帰信号Ra1〜Ran,Rb1〜Rbnが交互に送信される時間間隔ΔTabが時間の経過によらず一定になるように制御されている。つまり、前記復帰信号Ra1〜Ran,Rb1〜Rbnがそれぞれ単独でCPU113から送信される場合の時間間隔ΔTa,ΔTbと比較すれば、ΔTab=ΔTa/2=ΔTb/2となるように設定されている。   Then, each relay drive signal A is stopped by the CPU 113, the output of the drive current to the relay 2 is stopped, and the transmission of the stop permission signal C to the short circuit detection circuits 12a and 12b is controlled by the CPU 113, and the short circuit is prevented. Starting from the time Ta1 after a predetermined time lapse ΔTc2 from the time T0 that has occurred (the time at which the forced stop signal D is received by the CPU 113), Ta1 to Tan, at a constant time interval ΔTab from each short-circuit detection circuit 12a, 12b. Return signals Ra1 to Ran and Rb1 to Rbn (n is a natural number) are alternately transmitted to the relay drive output circuits 11a and 11b at the timings Tb1 to Tbn (the CPU 113 transmits the stop permission signal C). Temporary stop is performed at the timing of Ta1 to Tan and Tb1 to Tbn). Here, the CPU 113 controls the time interval ΔTab at which the return signals Ra1 to Ran and Rb1 to Rbn are alternately transmitted to be constant regardless of the passage of time. That is, the return signals Ra1 to Ran and Rb1 to Rbn are set so that ΔTab = ΔTa / 2 = ΔTb / 2 when compared with the time intervals ΔTa and ΔTb when each of the return signals Ra1 to Ran and Rb1 to Rbn is independently transmitted from the CPU 113 .

そして、図6に示すように、短絡が自然に解消し、リレー駆動出力回路11a,11bが短絡状態から正常状態に復帰した後、Ta1から2番目のTa2のタイミングで復帰信号Ra2が短絡検出回路12aからリレー駆動出力回路11aに送信され、その時刻(Ta2)で同回路11aの出力動作が復帰している。ここで、リレー駆動出力回路11aの復帰動作の頻度は2回と6回未満であって少なく、該回路11aの損傷はなく、しかも、短絡状態の時間[min]に対する、短絡解消から出力復帰迄の所要時間[min]の時間比率が10%以下であって短く、満足な結果が得られている。   Then, as shown in FIG. 6, after the short circuit is naturally eliminated and the relay drive output circuits 11a and 11b are restored from the short circuit state to the normal state, the return signal Ra2 is detected at the timing of the second Ta2 from Ta1. 12a is transmitted to the relay drive output circuit 11a, and the output operation of the circuit 11a is restored at the time (Ta2). Here, the frequency of the return operation of the relay drive output circuit 11a is less than two times and less than six times, the circuit 11a is not damaged, and from the short-circuit elimination to the output return for the short-circuit time [min]. The time ratio of the required time [min] is 10% or less and is short, and satisfactory results are obtained.

また、リレー駆動出力回路11bについても、Tb1から2番目のTb2のタイミングで復帰信号Rb2が該回路11bに送信された時刻(Tb2)にその出力動作が復帰しており、同回路11bの復帰動作の頻度は2回と6回未満であって少なく、該回路11bの損傷はなく、前述したように短絡状態は既に復帰されていることから、満足な結果となっている。尚、本実施形態では、図6に示すように、第1実施形態と同様、リレー駆動出力回路11a又は11bにそれぞれ復帰信号が6回以上送信されることで、当該各回路11a,11bが短絡電流I0による熱の蓄積によって損傷することを想定している。   The output operation of the relay drive output circuit 11b also returns at the time (Tb2) when the return signal Rb2 is transmitted to the circuit 11b at the timing of the second Tb2 from Tb1, and the return operation of the circuit 11b The frequency is less than 2 and 6 times, and the circuit 11b is not damaged, and the short-circuit state has already been recovered as described above, which is a satisfactory result. In this embodiment, as shown in FIG. 6, as in the first embodiment, each of the circuits 11a and 11b is short-circuited by transmitting a return signal to the relay drive output circuit 11a or 11b at least six times. It is assumed that damage is caused by heat accumulation due to the current I0.

本実施形態のECU1a(短絡保護回路)によれば、以下のような作用・効果を得ることができる。
(1)一の組の短絡検出回路12aからの復帰信号Ra1〜Ranと、他の組の短絡検出回路12bからの復帰信号Rb1〜Rbn(nは自然数)とが交互に対応するリレー駆動出力回路へ送信される。これにより、第1実施形態のように、単一のリレー駆動出力回路11及び短絡検出回路12の組のみを備えている場合と比較して、リレー駆動出力回路11a,11bへの復帰信号Ra1〜Ran,Rb1〜Rbn(nは自然数)の送信頻度、換言すれば、リレーコイル3から観た復帰信号Ra1〜Ran,Rb1〜Rbnの送信頻度、が全体として増加する。このため、短絡状態が自然に解消した後、リレー駆動出力回路11a(又は11b)を出力停止状態から短時間で出力動作状態に復帰させることができると共に、各リレー駆動出力回路11a,11bに送信される復帰信号Ra1〜Ran,Rb1〜Rbnの送信頻度(復帰動作の頻度)はその半分以下となるので、短絡電流I0によってリレー駆動出力回路11a,11bに蓄積される熱量も抑えられ、各リレー駆動出力回路11a,11bの損傷も効果的に防止することができる。
According to the ECU 1a (short circuit protection circuit) of the present embodiment, the following operations and effects can be obtained.
(1) Relay drive output circuit in which return signals Ra1 to Ran from one set of short circuit detection circuits 12a and return signals Rb1 to Rbn (n is a natural number) from another set of short circuit detection circuits 12b alternately correspond Sent to. Thereby, compared with the case where only the set of the single relay drive output circuit 11 and the short circuit detection circuit 12 is provided like 1st Embodiment, return signal Ra1- to relay drive output circuit 11a, 11b is provided. The transmission frequency of Ran, Rb1 to Rbn (n is a natural number), in other words, the transmission frequency of the return signals Ra1 to Ran and Rb1 to Rbn viewed from the relay coil 3 increases as a whole. For this reason, the relay drive output circuit 11a (or 11b) can be returned from the output stop state to the output operation state in a short time after the short-circuit state is naturally resolved, and transmitted to the relay drive output circuits 11a and 11b. The frequency of transmission of the return signals Ra1 to Ran and Rb1 to Rbn (the frequency of the return operation) is less than half of that, so the amount of heat accumulated in the relay drive output circuits 11a and 11b by the short circuit current I0 is also suppressed, and each relay Damage to the drive output circuits 11a and 11b can be effectively prevented.

(2)2組のリレー駆動出力回路11a及び短絡検出回路12a,並びに、リレー駆動出力回路11b及び短絡検出回路12bからなるシンプルなハードウェア構成により、CPU113のメモリ等に格納されたソフトウェアに拠らずにリレー駆動出力回路11a,11bの短絡の検出及び該短絡状態から出力動作状態への復帰が迅速、確実、且つ自動的に行われる。これにより、車両のユーザ(運転者等)の利便性が高められる。   (2) Based on software stored in the memory or the like of the CPU 113 with a simple hardware configuration including two sets of the relay drive output circuit 11a and the short circuit detection circuit 12a, and the relay drive output circuit 11b and the short circuit detection circuit 12b. Therefore, the detection of the short circuit of the relay drive output circuits 11a and 11b and the return from the short circuit state to the output operation state are performed quickly, reliably and automatically. Thereby, the convenience of the user (driver | operator etc.) of a vehicle is improved.

尚、上記実施形態は以下のように変形してもよい。
・上記第2実施形態では、復帰信号Ra1〜Ran,Rb1〜Rbnが交互に送信される時間間隔ΔTabが時間の経過によらず一定になるように設定した。しかし、本発明の技術的思想はこれに限られず、例えば、第1実施形態のように、前記時間間隔ΔTabは、短絡が発生していた時間に対する、短絡が解消した時刻[min]とリレー駆動出力回路11a(又は11b)の出力動作が復帰した時刻[min]の間の時間の時間比率が所定値以下(例えば、10%以下)となるように、時間の経過に従い漸増されていてもよい。
The above embodiment may be modified as follows.
In the second embodiment, the time interval ΔTab at which the return signals Ra1 to Ran and Rb1 to Rbn are alternately transmitted is set to be constant regardless of the passage of time. However, the technical idea of the present invention is not limited to this. For example, as in the first embodiment, the time interval ΔTab is set to the time [min] at which the short circuit is eliminated and the relay driving with respect to the time when the short circuit has occurred. The time ratio between the times [min] at which the output operation of the output circuit 11a (or 11b) is restored may be gradually increased with the passage of time so as to be a predetermined value or less (for example, 10% or less). .

これによれば、一の組の短絡検出回路12aからの復帰信号Ra1〜Ranと、他の組の短絡検出回路12bからの復帰信号Rb1〜Rbn(nは自然数)とが交互に対応するリレー駆動出力回路へ送信される。これにより、第1実施形態のように、単一のリレー駆動出力回路11及び短絡検出回路12の組のみを備えている場合と比較して、リレー駆動出力回路11a,11bへの復帰信号Ra1〜Ran,Rb1〜Rbn(nは自然数)の送信頻度、換言すれば、リレーコイル3から観た復帰信号Ra1〜Ran,Rb1〜Rbnの送信頻度、が全体として増加する。このため、短絡状態が自然に解消した後、リレー駆動出力回路11a(又は11b)を出力停止状態から短時間で出力動作状態に復帰させることができると共に、各リレー駆動出力回路11a,11bに送信される復帰信号Ra1〜Ran,Rb1〜Rbnの送信頻度(復帰動作の頻度)はその半分以下となるので、短絡電流I0によってリレー駆動出力回路11a,11bに蓄積される熱量も抑えられ、各リレー駆動出力回路11a,11bの損傷も効果的に防止することができる。しかも、各組においては、短絡発生時より所定時間経過後からリレー駆動出力回路11a,11bに或る時間間隔で送信される復帰信号Ra1〜Ran,Rb1〜Rbnの当該時間間隔ΔTabが時間の経過に従い漸増されている。このため、短絡の発生当初は復帰信号Ra1〜Ran,Rb1〜Rbnの送信頻度が多くなるので、短絡状態が自然に解消した後、リレー駆動出力回路11a,11bを出力停止状態からさらに短時間で出力動作状態に復帰させることができると共に、時間の経過に従って復帰信号Ra1〜Ran,Rb1〜Rbnの送信頻度が次第に少なくなるので、短絡電流I0によってリレー駆動出力回路11a,11bに蓄積される熱量もより効果的に抑えられる。   According to this, the return signals Ra1 to Ran from one set of short circuit detection circuits 12a and the return signals Rb1 to Rbn (n is a natural number) from the other set of short circuit detection circuits 12b alternately correspond to each other. It is transmitted to the output circuit. Thereby, compared with the case where only the set of the single relay drive output circuit 11 and the short circuit detection circuit 12 is provided like 1st Embodiment, return signal Ra1- to relay drive output circuit 11a, 11b is provided. The transmission frequency of Ran, Rb1 to Rbn (n is a natural number), in other words, the transmission frequency of the return signals Ra1 to Ran and Rb1 to Rbn viewed from the relay coil 3 increases as a whole. For this reason, the relay drive output circuit 11a (or 11b) can be returned from the output stop state to the output operation state in a short time after the short-circuit state is naturally resolved, and transmitted to the relay drive output circuits 11a and 11b. The frequency of transmission of the return signals Ra1 to Ran and Rb1 to Rbn (the frequency of the return operation) is less than half of that, so the amount of heat accumulated in the relay drive output circuits 11a and 11b by the short circuit current I0 is also suppressed, and each relay Damage to the drive output circuits 11a and 11b can be effectively prevented. In addition, in each set, the time intervals ΔTab of the return signals Ra1 to Ran and Rb1 to Rbn transmitted to the relay drive output circuits 11a and 11b at a certain time interval after the elapse of a predetermined time from the occurrence of the short circuit have elapsed. It is gradually increased according to. For this reason, since the frequency of transmission of the return signals Ra1 to Ran and Rb1 to Rbn increases at the beginning of the occurrence of the short circuit, the relay drive output circuits 11a and 11b can be moved from the output stop state in a shorter time after the short circuit state has been naturally resolved. In addition to being able to return to the output operation state, the transmission frequency of the return signals Ra1 to Ran and Rb1 to Rbn gradually decreases with the passage of time, so that the amount of heat accumulated in the relay drive output circuits 11a and 11b by the short circuit current I0 is also increased. It is suppressed more effectively.

・上記第2実施形態では、復帰信号Ra1〜Ran,Rb1〜Rbnの送信タイミングを1:1としたが、これに限られず、同送信タイミングは、例えば、1:2や1:3、それ以外の比率としてもよい。   In the second embodiment, the transmission timing of the return signals Ra1 to Ran and Rb1 to Rbn is set to 1: 1. However, the transmission timing is not limited to this, and the transmission timing is, for example, 1: 2 or 1: 3. It is good also as a ratio.

・上記第2実施形態では、リレー駆動出力回路11a,11b及び短絡検出回路12a,12bからなる組を2組としたが、これに限られず、同組は3組以上としてもよい。
・上記第2実施形態では、一対の短絡検出回路12a,12bを用いたが、リレー駆動出力回路11a,11bに復帰信号Ra1〜Ran,Rb1〜Rbnを直接送信する回路部分(トランジスタTR3及びトランジスタTR4)を各々個別のもので構成する限り、短絡状態を直接検出する回路部分(コンパレータCMP1)については共用することも可能である。
In the second embodiment, two sets of the relay drive output circuits 11a and 11b and the short circuit detection circuits 12a and 12b are used. However, the present invention is not limited to this, and the set may be three or more sets.
In the second embodiment, the pair of short circuit detection circuits 12a and 12b is used. However, the circuit portion (transistor TR3 and transistor TR4 that directly transmits the return signals Ra1 to Ran and Rb1 to Rbn to the relay drive output circuits 11a and 11b. As long as each of them is configured individually, the circuit portion (comparator CMP1) that directly detects the short-circuit state can be shared.

さらに、前記した実施形態および変形例より把握できる技術的思想について以下に記載する。
○短絡保護回路において、前記時間比率が10%以下に設定されていること。同構成によれば、短絡状態が自然に解消した後、リレー駆動出力回路を、短絡が発生していた時間に対する、短絡が解消した時刻とリレー駆動出力回路の出力動作が復帰した時刻の間の時間の時間比率が10%以下となる短時間で出力動作状態に復帰させることができる。
Further, technical ideas that can be grasped from the above-described embodiments and modifications will be described below.
○ In the short-circuit protection circuit, the time ratio is set to 10% or less. According to the same configuration, after the short-circuit state is naturally resolved, the relay drive output circuit is set between the time when the short-circuit is eliminated and the time when the output operation of the relay drive output circuit is restored with respect to the time when the short-circuit has occurred. The output operation state can be restored in a short time when the time ratio is 10% or less.

○短絡保護回路において、前記リレー駆動出力回路及び短絡検出回路からなる組を2組備えること。同構成によれば、リレー駆動出力回路及び短絡検出回路からなる組を2組のみ備えるシンプルな構成によって、リレー駆動出力回路に発生した短絡が解消した後、同回路を損傷させることなく短時間で出力動作状態に復帰させることができる。   ○ In the short circuit protection circuit, two sets of the relay drive output circuit and the short circuit detection circuit are provided. According to this configuration, a simple configuration including only two sets of the relay drive output circuit and the short circuit detection circuit can be performed in a short time without damaging the circuit after the short circuit generated in the relay drive output circuit is resolved. The output operation state can be restored.

1…ECU(短絡保護回路)、11…リレー駆動出力回路、12…短絡検出回路、13…CPU(マイクロコンピュータ)、2…リレー、3…リレーコイル、5…車載電子機器、CMP1…コンパレータ、Vref…基準電圧。   DESCRIPTION OF SYMBOLS 1 ... ECU (short circuit protection circuit), 11 ... Relay drive output circuit, 12 ... Short circuit detection circuit, 13 ... CPU (microcomputer), 2 ... Relay, 3 ... Relay coil, 5 ... In-vehicle electronic device, CMP1 ... Comparator, Vref ... reference voltage.

Claims (1)

入力された制御信号に基づいて負荷に駆動電流を出力するリレー駆動出力回路と、該回路の出力側で生じる短絡の有無を検知すると共に、当該短絡が発生した場合には前記リレー駆動出力回路の出力動作を停止させる一方、前記短絡発生時より所定時間経過後から前記リレー駆動出力回路に或る時間間隔で復帰信号を送信してその出力動作を復帰させる短絡検出回路とを備えた短絡保護回路において、
前記リレー駆動出力回路及び短絡検出回路からなる組を複数組備え、
一の組の短絡検出回路からの復帰信号と、他の組の短絡検出回路からの復帰信号とが交互に対応するリレー駆動出力回路へ出力されていることを特徴とする短絡保護回路。
A relay drive output circuit that outputs a drive current to the load based on the input control signal, and detects the presence or absence of a short circuit that occurs on the output side of the circuit, and when the short circuit occurs, the relay drive output circuit A short-circuit protection circuit comprising: a short-circuit detection circuit that stops an output operation, and transmits a return signal to the relay drive output circuit at a certain time interval after a predetermined time has elapsed since the occurrence of the short-circuit, thereby returning the output operation. In
A plurality of sets comprising the relay drive output circuit and the short circuit detection circuit are provided,
A short circuit protection circuit, wherein a return signal from one set of short circuit detection circuits and a return signal from another set of short circuit detection circuits are alternately output to corresponding relay drive output circuits.
JP2012245117A 2012-11-07 2012-11-07 Short circuit protection circuit Active JP5421446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012245117A JP5421446B2 (en) 2012-11-07 2012-11-07 Short circuit protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245117A JP5421446B2 (en) 2012-11-07 2012-11-07 Short circuit protection circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008101630A Division JP5184947B2 (en) 2008-04-09 2008-04-09 Short circuit protection circuit and short circuit protection method

Publications (2)

Publication Number Publication Date
JP2013034381A JP2013034381A (en) 2013-02-14
JP5421446B2 true JP5421446B2 (en) 2014-02-19

Family

ID=47789772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245117A Active JP5421446B2 (en) 2012-11-07 2012-11-07 Short circuit protection circuit

Country Status (1)

Country Link
JP (1) JP5421446B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176421A (en) * 1984-02-21 1985-09-10 株式会社富士電機総合研究所 Overcurrent protecting circuit
JPH06103970B2 (en) * 1988-04-22 1994-12-14 新日本製鐵株式会社 Automatic reset type overload protection relay
JPH0625910U (en) * 1992-07-31 1994-04-08 日本ビクター株式会社 Overcurrent protection circuit
JP3689280B2 (en) * 1999-09-22 2005-08-31 矢崎総業株式会社 Method for protecting a semiconductor relay system
JP2004032966A (en) * 2002-06-28 2004-01-29 Yazaki Corp Semiconductor switching device

Also Published As

Publication number Publication date
JP2013034381A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5184947B2 (en) Short circuit protection circuit and short circuit protection method
US20120170166A1 (en) Overcurrent protection device and overcurrent protection system
JP3914004B2 (en) Overcurrent detection / protection device for semiconductor elements
WO2011037175A1 (en) Power supply control device
CN209805407U (en) Short-circuit protection circuit
US9083181B2 (en) Over-current protection circuit for light source driving module and related backlight module
JP6876844B2 (en) Power supply with soft start and protection
US9985517B2 (en) Voltage surge protection for active rectifiers in the event of load shedding
JP2008148496A (en) Charging apparatus
US8686700B2 (en) Boost type power converting apparatus with protection circuit
JP2012178021A (en) Fault information transmission device
US9438100B2 (en) Non-transformer isolated DC-DC power supply including shut down circuit
JP2005339470A (en) Rush current limiting power supply switch circuit for vehicle
JP2013169838A (en) Power source control device
KR101771803B1 (en) Over-current protection circuit and method
JP2008026025A (en) Power supply circuit equipped with disconnection detection circuit
JP5421446B2 (en) Short circuit protection circuit
JP5126241B2 (en) Overvoltage protection circuit and overvoltage protection method
TWI407656B (en) Circuit and method for over-current protection
JP6370191B2 (en) Battery state monitoring circuit and battery device
JP5144292B2 (en) Switching power supply circuit and vehicle equipped with the same
KR101025535B1 (en) Switch control circuit for short circuit fault protection
JP2008067518A (en) Inverter apparatus and air conditioner
JP2014033309A (en) Switch input detection device
JP2019186880A (en) Load drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5421446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250