JP5420004B2 - Portable liquefied gas tank - Google Patents

Portable liquefied gas tank Download PDF

Info

Publication number
JP5420004B2
JP5420004B2 JP2012051153A JP2012051153A JP5420004B2 JP 5420004 B2 JP5420004 B2 JP 5420004B2 JP 2012051153 A JP2012051153 A JP 2012051153A JP 2012051153 A JP2012051153 A JP 2012051153A JP 5420004 B2 JP5420004 B2 JP 5420004B2
Authority
JP
Japan
Prior art keywords
diameter portion
tank
small
outer tub
tub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012051153A
Other languages
Japanese (ja)
Other versions
JP2013184725A (en
Inventor
勝章 中井
隆弘 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Original Assignee
Nippon Sharyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd filed Critical Nippon Sharyo Ltd
Priority to JP2012051153A priority Critical patent/JP5420004B2/en
Publication of JP2013184725A publication Critical patent/JP2013184725A/en
Application granted granted Critical
Publication of JP5420004B2 publication Critical patent/JP5420004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、超低温液化ガスを収容して移動可能に構成される二重構造の可搬型液化ガスタンクに関し、特に、タンクの外槽の大型化を抑制しつつ内槽の容積を拡大できる可搬型液化ガスタンクに関するものである。   The present invention relates to a dual-structure portable liquefied gas tank configured to accommodate and move ultra-low temperature liquefied gas, and particularly to a portable liquefied liquid capable of expanding the volume of an inner tank while suppressing the enlargement of the outer tank of the tank. It relates to gas tanks.

LNG等の液化ガスは、液化ガスの積込施設でタンクローリー、トレーラ、コンテナ等の可搬型液化ガスタンク用のタンクに充填され、輸送される。可搬型液化ガスタンク用のタンクは、軸方向に亘って同一径の直胴タンク、軸方向で直径を異ならせる異径胴タンクが知られている。それらタンクは、液化ガスが収容される横置きの円筒状の内槽と、その内槽の外周に間隔をあけて配設されると共に内側に断熱層が形成される円筒状の外槽と、その外槽と内槽との間に介装され内槽を外槽に懸架して支持する懸架金具(支持部材)とを備えて構成されている(特許文献1)。可搬型液化ガスタンクでは、一度に搬送できる液化ガスの量はタンクの内槽の容積により決定されるので、一度に搬送できる液化ガスの量を増やし搬送効率の向上を図るため、内槽の容積の拡大が要請されている。   A liquefied gas such as LNG is filled in a tank for a portable liquefied gas tank such as a tank lorry, a trailer or a container at a liquefied gas loading facility and transported. As a tank for a portable liquefied gas tank, a straight cylinder tank having the same diameter in the axial direction and a different diameter cylinder tank having different diameters in the axial direction are known. These tanks are a horizontal cylindrical inner tub in which liquefied gas is accommodated, a cylindrical outer tub that is disposed at an outer periphery of the inner tub and that has a heat insulating layer formed inside, A suspension metal fitting (support member) that is interposed between the outer tub and the inner tub and supports the inner tub suspended from the outer tub is configured (Patent Document 1). In portable liquefied gas tanks, the amount of liquefied gas that can be transported at one time is determined by the volume of the inner tank of the tank, so in order to increase the amount of liquefied gas that can be transported at one time and improve transport efficiency, Expansion is requested.

特開2009−280124号公報(特に図2(a))Japanese Unexamined Patent Publication No. 2009-280124 (particularly FIG. 2 (a))

しかしながら上記従来の技術では、内槽の直径を大きくして内槽の容積を拡大する場合に、内槽の外周と外槽の内周との間に懸架金具を配置する空間を確保するため、内槽の直径の拡大にあわせて外槽の直径も大きくされていた。そのため外槽が大型化するという問題点があった。   However, in the above conventional technique, when enlarging the volume of the inner tank by increasing the diameter of the inner tank, in order to ensure a space for placing the suspension metal fitting between the outer periphery of the inner tank and the inner periphery of the outer tank, As the inner tank diameter increased, the outer tank diameter also increased. Therefore, there was a problem that the outer tank was enlarged.

本発明は上述した問題点を解決するためになされたものであり、外槽の大型化を抑制しつつ内槽の容積を拡大できる可搬型液化ガスタンクを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a portable liquefied gas tank capable of expanding the volume of the inner tank while suppressing the enlargement of the outer tank.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

この目的を達成するために、請求項1記載の可搬型液化ガスタンクによれば、タンクの内槽の軸方向両側に位置し円筒状に形成される第1小径部および第2小径部が、懸架金具により外槽に支持される。外槽に支持される内槽は、第1小径部および第2小径部の間に位置すると共に第1小径部および第2小径部より大きな直径の円筒状に形成される大径部を備えている。よって、第1小径部および第2小径部の外周に懸架金具を介装する間隔を確保しつつ、内槽の容積を拡大できる効果がある。さらに、大径部の外周面と外槽の内周面との半径方向距離が、第1小径部および第2小径部の外周面と外槽の内周面との半径方向距離より小さく設定されるので、外槽の直径が大きくなることを防止でき、外槽の大型化を抑制できる効果がある。   In order to achieve this object, according to the portable liquefied gas tank according to claim 1, the first small diameter portion and the second small diameter portion which are located on both sides in the axial direction of the inner tank of the tank and are formed in a cylindrical shape are suspended. It is supported on the outer tub by metal fittings. The inner tank supported by the outer tank includes a large-diameter portion that is located between the first small-diameter portion and the second small-diameter portion and that is formed in a cylindrical shape having a larger diameter than the first small-diameter portion and the second small-diameter portion. Yes. Therefore, there is an effect that the volume of the inner tub can be increased while securing a space for interposing the suspension metal fittings on the outer circumferences of the first small diameter portion and the second small diameter portion. Further, the radial distance between the outer peripheral surface of the large diameter portion and the inner peripheral surface of the outer tub is set smaller than the radial distance between the outer peripheral surface of the first small diameter portion and the second small diameter portion and the inner peripheral surface of the outer tub. Therefore, it is possible to prevent the outer tank from increasing in diameter and to suppress the increase in the size of the outer tank.

また、軸心を含む断面において、外槽第1傾斜部および外槽第2傾斜部は、軸方向外側に向かうにつれてそれぞれ第1傾斜部および第2傾斜部との間隔を大きくするように設定されている。外槽第1傾斜部および外槽第2傾斜部と第1傾斜部および第2傾斜部との間隔を軸方向外側で大きくすることができるので、外槽第1傾斜部および外槽第2傾斜部の軸方向外側に向かうにつれ半径方向距離が漸次大きくなる空間を、外槽の内側に設けることができる。その空間の活用を含めてタンクを設計できるので、タンクの設計の自由度を向上できる効果がある。 Further, in the cross section including the shaft center, the outer tank first inclined part and the outer tank second inclined part are set so as to increase the distance between the first inclined part and the second inclined part toward the outer side in the axial direction. ing. Since the space | interval of an outer tank 1st inclination part and an outer tank 2nd inclination part, a 1st inclination part, and a 2nd inclination part can be enlarged on an axial direction outer side, an outer tank 1st inclination part and an outer tank 2nd inclination A space in which the radial distance gradually increases as it goes outward in the axial direction of the portion can be provided inside the outer tub. Since the tank can be designed including utilization of the space, there is an effect that the degree of freedom in designing the tank can be improved.

請求項記載の可搬型液化ガスタンクによれば、大径部の外周面と外槽の内周面との半径方向距離が、第1小径部および第2小径部の外周面と外槽の内周面との半径方向距離より小さく設定されるので、外槽の直径が大きくなることを防止でき、外槽の大型化を抑制できる効果がある。
また、軸心を含む断面において、第1小径部の外周面と第1傾斜部の外周面との交点は、外槽第1小径部と外槽第1傾斜部との境界に対して軸方向外側に位置し、第2小径部の外周面と第2傾斜部の外周面との交点は、外槽第2小径部と外槽第2傾斜部との境界に対して軸方向外側に位置する。従って、第1傾斜部および第2傾斜部により外槽に対して内槽の容積を拡大できる効果がある。
According to the portable liquefied gas tank of claim 2 , the radial distance between the outer peripheral surface of the large diameter portion and the inner peripheral surface of the outer tub is such that the outer peripheral surface of the first small diameter portion and the second small diameter portion Since it is set smaller than the distance in the radial direction with respect to the peripheral surface, it is possible to prevent an increase in the diameter of the outer tub and to suppress an increase in the size of the outer tub.
In the cross section including the shaft center, the intersection of the outer peripheral surface of the first small diameter portion and the outer peripheral surface of the first inclined portion is axial with respect to the boundary between the outer tank first small diameter portion and the outer tank first inclined portion. Located on the outer side, the intersection of the outer peripheral surface of the second small-diameter portion and the outer peripheral surface of the second inclined portion is positioned outside in the axial direction with respect to the boundary between the second small-diameter portion of the outer tank and the second inclined portion of the outer tank. . Accordingly, there is an effect that the volume of the inner tank can be expanded with respect to the outer tank by the first inclined part and the second inclined part.

請求項記載の可搬型液化ガスタンクによれば、輻射熱を遮断する遮熱層により外槽から内槽への熱侵入を抑制することができるので、遮熱層を備えていない断熱層と比較して、断熱層の厚さを薄くできる。そのため、内槽の大径部の外周面と外槽の内周面との半径方向距離が、内槽の第1小径部および第2小径部の外周面と外槽の内周面との半径方向距離より小さく設定された場合に、外槽に対して内槽の大径部の外周面を近づけることができる(半径方向距離を小さくできる)。これにより請求項1又は2の効果に加え、外槽に対して内槽の容積を拡大できる効果がある。 According to the portable liquefied gas tank of claim 3 , since the heat intrusion from the outer tank to the inner tank can be suppressed by the heat insulating layer that blocks radiant heat, compared with the heat insulating layer that does not include the heat insulating layer. Thus, the thickness of the heat insulating layer can be reduced. Therefore, the radial distance between the outer peripheral surface of the large-diameter portion of the inner tub and the inner peripheral surface of the outer tub is the radius between the outer peripheral surface of the first small-diameter portion and the second small-diameter portion of the inner tub and the inner peripheral surface of the outer tub. When set smaller than the directional distance, the outer peripheral surface of the large-diameter portion of the inner tub can be brought closer to the outer tub (the radial distance can be reduced). Thereby, in addition to the effect of Claim 1 or 2 , there exists an effect which can expand the volume of an inner tank with respect to an outer tank.

第1実施の形態における可搬型液化ガスタンクの側面図である。It is a side view of the portable liquefied gas tank in a 1st embodiment. タンクの側面図である。It is a side view of a tank. 第2実施の形態における可搬型液化ガスタンクの側面図である。It is a side view of the portable liquefied gas tank in 2nd Embodiment. タンクの側面図である。It is a side view of a tank. 第3実施の形態における可搬型液化ガスタンクの側面図である。It is a side view of the portable liquefied gas tank in 3rd Embodiment. タンクの側面図である。It is a side view of a tank.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は本発明の第1実施の形態における可搬型液化ガスタンク1の側面図であり、図2はタンク4の側面図である。なお、図2ではタンク4の軸方向中央の図示を省略している。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1 is a side view of a portable liquefied gas tank 1 according to the first embodiment of the present invention, and FIG. 2 is a side view of a tank 4. In FIG. 2, the illustration of the center in the axial direction of the tank 4 is omitted.

図1に示すように、可搬型液化ガスタンク1は、タンクセミトレーラ2と、そのタンクセミトレーラ2を牽引するトラクタ3とを備えている。タンクセミトレーラ2は、液化ガスが充填される横置きのタンク4と、そのタンク4に取り付けられる走行装置5とを備え、タンク4は複数の車輪6により支持される。可搬型液化ガスタンク1は、トラクタ3のフレーム7に設けられた連結部8にタンクセミトレーラ2が連結されることで、トラクタ3の駆動力によってタンクセミトレーラ2が従動されて、タンク4が軸方向に搬送される。   As shown in FIG. 1, the portable liquefied gas tank 1 includes a tank semi-trailer 2 and a tractor 3 that pulls the tank semi-trailer 2. The tank semi-trailer 2 includes a horizontal tank 4 filled with liquefied gas and a traveling device 5 attached to the tank 4, and the tank 4 is supported by a plurality of wheels 6. In the portable liquefied gas tank 1, the tank semitrailer 2 is driven by the driving force of the tractor 3 by connecting the tank semitrailer 2 to the connecting portion 8 provided on the frame 7 of the tractor 3, so that the tank 4 is moved in the axial direction. Be transported.

タンク4は軸心Oが後方に傾斜するように配置され、タンク4の軸心O上に可搬型液化ガスタンク1の重心Gが位置する。重心Gの高さ(重心高)をH1とする。タンク4を後傾して配置することにより、タンク4を軸心Oが水平になるように配置する場合と比較して重心高H1を低くできるので、可搬型液化ガスタンク1の転倒に対する安定性を向上できる。   The tank 4 is disposed such that the axis O is inclined rearward, and the center of gravity G of the portable liquefied gas tank 1 is located on the axis O of the tank 4. The height of the center of gravity G (the center of gravity height) is H1. By placing the tank 4 tilted backward, the center of gravity height H1 can be lowered as compared with the case where the tank 4 is placed so that the axis O is horizontal, so that the stability of the portable liquefied gas tank 1 against overturning is improved. It can be improved.

ここで、本実施の形態における液化ガスとは、常用の温度において圧力が0.2MPa以上となるものであって、現にその圧力が0.2MPa以上であるもの又は圧力が0.2MPaとなる場合の温度が35℃以下であるものをいう。例えば液化天然ガス(LNG)が例示される。なかでも、液化酸素、液化窒素、液化アルゴン、液化天然ガス等の超低温液化ガスが好適に用いられる。本実施の形態における可搬型液化ガスタンク1によれば、充填された液化ガスにより0.6MPa以下の圧力に耐え得る強度を確保している。   Here, the liquefied gas in the present embodiment is a gas whose pressure is 0.2 MPa or more at a normal temperature, and whose pressure is 0.2 MPa or more, or when the pressure is 0.2 MPa. The temperature is 35 ° C. or lower. For example, liquefied natural gas (LNG) is exemplified. Among these, ultra-low temperature liquefied gases such as liquefied oxygen, liquefied nitrogen, liquefied argon, and liquefied natural gas are preferably used. According to the portable liquefied gas tank 1 in the present embodiment, the strength that can withstand a pressure of 0.6 MPa or less is ensured by the filled liquefied gas.

図2に示すように、タンク4は、液化ガスが充填される内槽20と、その内槽20の外周部に所定間隔をあけて配設される外槽10とを備えて構成されている。外槽10は内部が減圧密封され、内槽20と外槽10との間に真空断熱による断熱層が形成されている。さらに、熱反射率の高いアルミニウム箔(遮熱層)と不織布とを交互に積層して形成されたシート状の断熱層(図示せず)が、内槽20と外槽10との間に配設されている。これにより断熱層を薄くできると共に軽量化できる。また、シート状の断熱層は内槽20の外周面に布設されるので、断熱層の形成が容易である。さらに、遮熱層を備える断熱層は、内槽20と外槽10との熱伝達および輻射を抑制できるので、内槽20の外周面と外槽10の内周面との半径方向距離を小さくして断熱層の厚さを薄くしても、内槽20に充填された液化ガスを保冷できる。   As shown in FIG. 2, the tank 4 includes an inner tank 20 that is filled with liquefied gas, and an outer tank 10 that is disposed on the outer periphery of the inner tank 20 at a predetermined interval. . The inside of the outer tub 10 is sealed under reduced pressure, and a heat insulating layer is formed between the inner tub 20 and the outer tub 10 by vacuum heat insulation. Further, a sheet-like heat insulating layer (not shown) formed by alternately laminating aluminum foil (heat shielding layer) and non-woven fabric having a high heat reflectance is disposed between the inner tub 20 and the outer tub 10. It is installed. As a result, the heat insulating layer can be made thinner and lighter. Moreover, since the sheet-like heat insulating layer is laid on the outer peripheral surface of the inner tub 20, the heat insulating layer can be easily formed. Furthermore, since the heat insulating layer including the heat shielding layer can suppress heat transfer and radiation between the inner tub 20 and the outer tub 10, the radial distance between the outer peripheral surface of the inner tub 20 and the inner peripheral surface of the outer tub 10 is reduced. Even if the thickness of the heat insulating layer is reduced, the liquefied gas filled in the inner tank 20 can be kept cold.

図1に戻って説明する。外槽10は、タンク4の前端側、即ち、トラクタ3側に位置しフレーム7に支持される外槽第1小径部11と、タンク4の後端側に位置し走行装置5に支持される外槽第2小径部12と、それら外槽第1小径部11及び外槽第2小径部12の間に位置する外槽大径部13と、外槽第1小径部11と外槽大径部13とを連結する外槽第1傾斜部14と、外槽第2小径部12と外槽大径部13とを連結する外槽第2傾斜部15とを備えている。   Returning to FIG. The outer tub 10 is located on the front end side of the tank 4, that is, on the tractor 3 side and is supported by the frame 7, and the outer tub first small diameter portion 11 supported by the frame 7, and is located on the rear end side of the tank 4 and supported by the traveling device 5. The outer tub second small diameter portion 12, the outer tub first small diameter portion 11 and the outer tub second small diameter portion 12, the outer tub large diameter portion 13, the outer tub first small diameter portion 11 and the outer tub large diameter. The outer tank 1st inclination part 14 which connects the part 13 and the outer tank 2nd small diameter part 12 and the outer tank 2nd inclination part 15 which connects the outer tank large diameter part 13 are provided.

外槽第1小径部11及び外槽第2小径部12は直径D1の円筒状に、外槽大径部13は直径D2の円筒状にそれぞれ形成されており、外槽大径部13の直径D2は、外槽第1小径部11及び外槽第2小径部12の直径D1よりも大きく形成されている(D1<D2)。また、外槽大径部13は、外槽第1小径部11及び外槽第2小径部12と同心に配置されている。   The outer tub first small diameter portion 11 and the outer tub second small diameter portion 12 are formed in a cylindrical shape having a diameter D1, and the outer tub large diameter portion 13 is formed in a cylindrical shape having a diameter D2. D2 is formed larger than the diameter D1 of the outer tank first small diameter part 11 and the outer tank second small diameter part 12 (D1 <D2). The outer tub large-diameter portion 13 is arranged concentrically with the outer tub first small-diameter portion 11 and the outer tub second small-diameter portion 12.

また、外槽第1傾斜部14及び外槽第2傾斜部15は、外槽第1小径部11及び外槽第2小径部12から軸方向内側に向かうにつれ漸次拡径した円錐台状に形成されている。外槽第1傾斜部14及び外槽第2傾斜部15が円錐台状に形成されているので、可搬型液化ガスタンク1が移動(走行)する際に外槽第1傾斜部14で空気の流れを円滑にすると共に、外槽第2傾斜部15で空気の渦の発生を抑制して空気抵抗を低減できる。その結果、可搬型液化ガスタンク1の安定した移動(走行)を可能にできる。   The outer tank first inclined part 14 and the outer tank second inclined part 15 are formed in a truncated cone shape that gradually increases in diameter from the outer tank first small diameter part 11 and the outer tank second small diameter part 12 toward the inner side in the axial direction. Has been. Since the outer tank first inclined part 14 and the outer tank second inclined part 15 are formed in a truncated cone shape, the flow of air in the outer tank first inclined part 14 when the portable liquefied gas tank 1 moves (runs). In addition, the outer tank second inclined portion 15 can suppress the generation of air vortices and reduce the air resistance. As a result, the portable liquefied gas tank 1 can be stably moved (running).

次に図2を参照して、内槽20について説明する。内槽20は、タンク4の前端側、即ち、トラクタ3(図1参照)側に位置する第1小径部21と、タンク4の後端側に位置する第2小径部22と、それら第1小径部21及び第2小径部22の間に位置する大径部23と、第1小径部21と大径部23とを連結する第1傾斜部24と、第2小径部22と大径部23とを連結する第2傾斜部25とを備えている。   Next, the inner tank 20 will be described with reference to FIG. The inner tank 20 includes a first small diameter portion 21 located on the front end side of the tank 4, that is, the tractor 3 (see FIG. 1) side, a second small diameter portion 22 located on the rear end side of the tank 4, and the first A large diameter portion 23 located between the small diameter portion 21 and the second small diameter portion 22, a first inclined portion 24 connecting the first small diameter portion 21 and the large diameter portion 23, a second small diameter portion 22 and the large diameter portion. 2 and a second inclined portion 25 that connects to the second inclined portion 25.

第1小径部21及び第2小径部22は、懸架金具30により外槽第1小径部11及び外槽第2小径部12に懸架される部位であり、外槽第1小径部11及び外槽第2小径部12と同心に配置されている。懸架金具30により内槽20は外槽10に懸架されるので、外槽10及び内槽20と懸架金具30との接触面積を小さくすることで、外槽10と内槽20との熱伝導を抑制し断熱性を確保できる。また、懸架金具30は、トラクタ3及びタンクセミトレーラ2にタンク4が支持された状態において、トラクタ3のフレーム7及びタンクセミトレーラ2の走行装置5に対応する位置に配設されているので、懸架金具30が内槽20を支持するための骨格となり、内槽20の支持剛性を確保できる。   The first small-diameter portion 21 and the second small-diameter portion 22 are portions that are suspended from the outer tank first small-diameter portion 11 and the outer-tank second small-diameter portion 12 by the suspension metal fitting 30, and the outer-tank first small-diameter portion 11 and the outer-tank It is arranged concentrically with the second small diameter portion 12. Since the inner tank 20 is suspended from the outer tank 10 by the suspension fitting 30, the heat conduction between the outer tank 10 and the inner tank 20 can be reduced by reducing the contact area between the outer tank 10 and the inner tank 20 and the suspension fitting 30. It can be suppressed and heat insulation can be secured. In addition, the suspension bracket 30 is disposed at a position corresponding to the frame 7 of the tractor 3 and the traveling device 5 of the tank semi-trailer 2 in a state where the tank 4 is supported by the tractor 3 and the tank semi-trailer 2. 30 becomes a skeleton for supporting the inner tub 20, and the support rigidity of the inner tub 20 can be secured.

第1小径部21及び第2小径部22は直径E1の円筒状に、大径部23は直径E2の円筒状にそれぞれ形成されており、大径部23の直径E2は、第1小径部21及び第2小径部22の直径E1よりも大きく形成されている(E2>E1)。外槽第1小径部11の内周面と第1小径部21の外周面との間隔、外槽第2小径部12の内周面と第2小径部22の外周面との間隔を、それぞれ懸架金具30を配置できる間隔とし、さらに大径部23の直径E2と第1小径部21及び第2小径部22の直径E1とに差を設けることで、第1小径部21及び第2小径部22の外周に懸架金具30を介装する間隔Tを確保しつつ、大径部23により内槽20の容積を拡大できる。   The first small diameter portion 21 and the second small diameter portion 22 are formed in a cylindrical shape having a diameter E1, and the large diameter portion 23 is formed in a cylindrical shape having a diameter E2, and the diameter E2 of the large diameter portion 23 is defined as the first small diameter portion 21. And it is formed larger than the diameter E1 of the 2nd small diameter part 22 (E2> E1). The distance between the inner peripheral surface of the outer tub first small diameter portion 11 and the outer peripheral surface of the first small diameter portion 21, and the interval between the inner peripheral surface of the outer tub second small diameter portion 12 and the outer peripheral surface of the second small diameter portion 22, respectively. The first small diameter portion 21 and the second small diameter portion are provided by providing a difference between the diameter E2 of the large diameter portion 23 and the diameter E1 of the first small diameter portion 21 and the second small diameter portion 22 so that the suspension metal fitting 30 can be disposed. The volume of the inner tub 20 can be increased by the large diameter portion 23 while securing the interval T for interposing the suspension fitting 30 on the outer periphery of the 22.

また、大径部23は第1小径部21及び第2小径部22と同心に配置されており、内槽20は、トラクタ3(図1参照)のフレーム7とタンクセミトレーラ2の走行装置5との間に位置する大径部23の直径が上下均一に拡大される。これによりタンク4の重心Gが高くなることを抑制しつつ内槽20の容積を拡大でき、可搬型液化ガスタンク1の安定性を確保できる。さらに第1小径部21及び第2小径部22と大径部23とが同心に配置されることで、高圧状態で液化ガスが内槽20に充填される場合にも、応力集中を抑制して内槽20の強度を確保できる。   The large-diameter portion 23 is disposed concentrically with the first small-diameter portion 21 and the second small-diameter portion 22, and the inner tank 20 includes the frame 7 of the tractor 3 (see FIG. 1) and the traveling device 5 of the tank semi-trailer 2. The diameter of the large-diameter portion 23 located between the upper and lower sides is uniformly expanded. Thus, the volume of the inner tank 20 can be increased while suppressing the center of gravity G of the tank 4 from increasing, and the stability of the portable liquefied gas tank 1 can be ensured. Further, the first small diameter portion 21 and the second small diameter portion 22 and the large diameter portion 23 are arranged concentrically, thereby suppressing stress concentration even when the liquefied gas is filled in the inner tank 20 in a high pressure state. The strength of the inner tank 20 can be ensured.

また、第1傾斜部24及び第2傾斜部25は、第1小径部21及び第2小径部22から軸方向内側に向かうにつれ漸次拡径した円錐台状に形成されると共に、第1傾斜部24及び第2傾斜部25は大径部23と同心に配置されている。これにより高圧状態で液化ガスが内槽20に充填される場合にも、応力集中を抑制して内槽20の強度を確保できる。   The first inclined portion 24 and the second inclined portion 25 are formed in a truncated cone shape that gradually increases in diameter from the first small diameter portion 21 and the second small diameter portion 22 toward the inner side in the axial direction, and the first inclined portion. 24 and the second inclined portion 25 are arranged concentrically with the large diameter portion 23. Thereby, even when the liquefied gas is filled in the inner tank 20 in a high pressure state, the stress concentration can be suppressed and the strength of the inner tank 20 can be secured.

また、第1小径部21は、第2小径部22よりもタンク4の軸方向長さ(軸心Oに沿う長さ)が長く形成されている。これにより内槽20の容積をさらに拡大することができる。即ち、第1小径部21の軸方向長さを第2小径部22の軸方向長さよりも長く設定して、大径部23の位置をタンク4の後端側に偏移させるので、可搬型液化ガスタンク1(図1参照)の前方(エンジン等の重量物が搭載されたトラクタ3側)の重量と、後方(走行装置5側)の重量との重量差を小さくできる。その結果、トラクタ3及び走行装置5に負荷を分散させることができるので、内槽20への液化ガスの充填量を増加できる。   Further, the first small diameter portion 21 is formed such that the axial length of the tank 4 (length along the axis O) is longer than that of the second small diameter portion 22. Thereby, the volume of the inner tank 20 can be further expanded. That is, the axial length of the first small diameter portion 21 is set longer than the axial length of the second small diameter portion 22 and the position of the large diameter portion 23 is shifted to the rear end side of the tank 4. The weight difference between the weight in front of the liquefied gas tank 1 (see FIG. 1) (the side of the tractor 3 on which a heavy object such as an engine is mounted) and the weight in the rear (side of the traveling device 5) can be reduced. As a result, since the load can be distributed to the tractor 3 and the traveling device 5, the amount of liquefied gas filled in the inner tank 20 can be increased.

また、大径部23の外周面と外槽10(外槽大径部13)の内周面との半径方向距離tは、第1小径部21及び第2小径部22の外周面と外槽10(外槽第1小径部11及び外槽第2小径部12)の内周面との半径方向距離Tより小さく設定されている。これにより、大径部23の直径(E2)を大きくすることで内槽20の容積を拡大すると共に、外槽10の直径が大きくなることを防ぎ、外槽10の大型化を抑制できる。特に、外槽10の内側に、真空断熱方式とアルミニウム箔(金属箔)積層断熱方式とを併用した断熱層が形成されているので、半径方向距離tが小さくても、熱伝達および輻射を効果的に抑制することができる。その結果、外槽大径部13の直径を大きくすることなく、大径部23の直径を大きくすることができ、内槽20の容積を拡大できる。   The radial distance t between the outer peripheral surface of the large-diameter portion 23 and the inner peripheral surface of the outer tub 10 (outer tub large-diameter portion 13) is the outer peripheral surface of the first small-diameter portion 21 and the second small-diameter portion 22 and the outer tub. 10 (the outer tub first small diameter portion 11 and the outer tub second small diameter portion 12) are set to be smaller than the radial distance T from the inner peripheral surface. Thereby, while enlarging the volume of the inner tank 20 by enlarging the diameter (E2) of the large diameter part 23, it prevents that the diameter of the outer tank 10 becomes large, and can suppress the enlargement of the outer tank 10. In particular, since a heat insulating layer using a vacuum heat insulating method and an aluminum foil (metal foil) laminated heat insulating method is formed inside the outer tub 10, heat transfer and radiation are effective even if the radial distance t is small. Can be suppressed. As a result, the diameter of the large diameter portion 23 can be increased without increasing the diameter of the outer tank large diameter portion 13, and the volume of the inner tank 20 can be expanded.

また、外槽第1傾斜部14及び外槽第2傾斜部15の内周面上の各点と第1傾斜部24及び第2傾斜部25の外周面との最短距離は、外槽第1小径部11及び外槽第2小径部12の内周面と第1小径部21及び第2小径部22の外周面との半径方向距離T以下に設定されている。これにより、外槽第1傾斜部14及び外槽第2傾斜部15(外槽10)の直径が大きくなることを防ぎ、外槽10の大型化を抑制できる。さらに、外槽第1傾斜部14及び外槽第2傾斜部15の直径に対して第1傾斜部24及び第2傾斜部25の直径を大きくする(近づける)ことができる。その結果、第1傾斜部24及び第2傾斜部25により内槽20の容積を拡大できる。   The shortest distance between each point on the inner peripheral surface of the outer tank first inclined portion 14 and the outer tank second inclined portion 15 and the outer peripheral surface of the first inclined portion 24 and the second inclined portion 25 is the outer tank first. It is set to be equal to or less than the radial distance T between the inner peripheral surface of the small-diameter portion 11 and the outer tub second small-diameter portion 12 and the outer peripheral surface of the first small-diameter portion 21 and the second small-diameter portion 22. Thereby, the diameter of the outer tank 1st inclination part 14 and the outer tank 2nd inclination part 15 (outer tank 10) can be prevented from becoming large, and the enlargement of the outer tank 10 can be suppressed. Furthermore, the diameters of the first inclined part 24 and the second inclined part 25 can be increased (approached) relative to the diameters of the outer tank first inclined part 14 and the outer tank second inclined part 15. As a result, the volume of the inner tank 20 can be increased by the first inclined portion 24 and the second inclined portion 25.

特に、第1傾斜部24及び第2傾斜部25は、外槽第1傾斜部14及び外槽第2傾斜部15の内周面上の各点と、第1傾斜部24及び第2傾斜部25の外周面との最短距離が、軸方向外側(図2左右方向)に向かうにつれ漸次大きくなるように設定されている。その結果、外槽第1傾斜部14及び外槽第2傾斜部15の軸方向外側に向かうにつれ半径方向距離が漸次大きくなる空間(半径方向距離の最大値T)を、外槽10の内側に設けることができる。その空間の活用を含めてタンク4を設計できるので、タンク4の設計の自由度を向上できる。   In particular, the first inclined portion 24 and the second inclined portion 25 are provided on the inner peripheral surface of the outer tank first inclined portion 14 and the outer tank second inclined portion 15, and the first inclined portion 24 and the second inclined portion. The shortest distance from the outer peripheral surface of 25 is set so as to gradually increase toward the outer side in the axial direction (left-right direction in FIG. 2). As a result, a space in which the radial distance gradually increases toward the outer side in the axial direction of the outer tank first inclined portion 14 and the outer tank second inclined portion 15 (maximum value T of the radial distance) is formed inside the outer tank 10. Can be provided. Since the tank 4 can be designed including utilization of the space, the degree of freedom in designing the tank 4 can be improved.

なお、外槽10と内槽20との間には、内槽10に液化ガスを充填したり内槽10から液化ガスを払い出したりするための液化ガスが流通する配管(図示せず)が配設される。その配管は、第1傾斜部24及び第2傾斜部25の軸方向外側に形成される空間(半径方向距離の最大値T)を利用して配設できる。   Between the outer tank 10 and the inner tank 20, a pipe (not shown) through which the liquefied gas flows to fill the inner tank 10 with the liquefied gas or to discharge the liquefied gas from the inner tank 10 is arranged. Established. The piping can be arranged using a space (maximum value T in the radial direction distance) formed outside the first inclined portion 24 and the second inclined portion 25 in the axial direction.

ここで、第1小径部21の外周面と第1傾斜部24の外周面との交点P1は、タンク4の側面視において、外槽第1小径部11と外槽第1傾斜部14との境界B1に対して軸方向内側(図2右側)に位置している。また、第2小径部22の外周面と第2傾斜部25の外周面との交点P2は、タンク4の側面視において、外槽第2小径部12と外槽第2傾斜部15との境界B2に対して軸方向内側(図2左側)に位置している。そして、タンク4は、外槽第1傾斜部14及び外槽第2傾斜部15の軸方向外側に向かうにつれ半径方向距離が漸次大きくなる空間が外槽10の内側に形成されているので、その空間を利用して内槽20と外槽10との間に配管を比較的自由に配設することができる。その結果、配管を配設する設計の自由度を向上できる。   Here, the intersection P1 between the outer peripheral surface of the first small-diameter portion 21 and the outer peripheral surface of the first inclined portion 24 is defined between the outer tank first small-diameter portion 11 and the outer tank first inclined portion 14 in a side view of the tank 4. It is located on the inner side (right side in FIG. 2) in the axial direction with respect to the boundary B1. The intersection P2 between the outer peripheral surface of the second small diameter portion 22 and the outer peripheral surface of the second inclined portion 25 is a boundary between the outer tank second small diameter portion 12 and the outer tank second inclined portion 15 in a side view of the tank 4. It is located axially inside (left side in FIG. 2) with respect to B2. Since the tank 4 has a space formed on the inner side of the outer tub 10 where the radial distance gradually increases toward the outer side in the axial direction of the outer tub first inclined portion 14 and the outer tub second inclined portion 15. Piping can be arranged relatively freely between the inner tank 20 and the outer tank 10 using the space. As a result, the degree of freedom in designing the piping can be improved.

次に図3及び図4を参照して第2実施の形態について説明する。第1実施の形態では、外槽第1小径部11及び外槽第2小径部12の直径を同一としたが、第2実施の形態における可搬型液化ガスタンク101は、外槽第1小径部111及び外槽第2小径部112の直径を異ならせた構成である。なお、第2実施の形態において、第1実施の形態と同一の部分については、同一の符号を付して説明を省略する。図3は第2実施の形態における可搬型液化ガスタンク101の側面図であり、図4はタンク104の側面図である。なお、図4ではタンク104の軸方向中央の図示を省略している。   Next, a second embodiment will be described with reference to FIGS. In the first embodiment, the outer tank first small-diameter portion 11 and the outer tank second small-diameter portion 12 have the same diameter. However, the portable liquefied gas tank 101 in the second embodiment has an outer tank first small-diameter portion 111. In addition, the outer tank second small diameter portion 112 has a different diameter. Note that in the second embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. FIG. 3 is a side view of the portable liquefied gas tank 101 in the second embodiment, and FIG. 4 is a side view of the tank 104. In FIG. 4, the axial center of the tank 104 is not shown.

図3に示すように、可搬型液化ガスタンク101は、タンク104の後端側に位置する外槽第2小径部112が直径D3の円筒状に形成され、外槽第2小径部112の直径D3は、外槽第1小径部111の直径D1よりも小さく形成される(D3<D1)。また、外槽大径部113は、外槽第1小径部111及び外槽第2小径部112と同心に配置される。   As shown in FIG. 3, in the portable liquefied gas tank 101, the outer tub second small diameter portion 112 located on the rear end side of the tank 104 is formed in a cylindrical shape having a diameter D3, and the outer tub second small diameter portion 112 has a diameter D3. Is formed smaller than the diameter D1 of the outer tank first small-diameter portion 111 (D3 <D1). The outer tub large-diameter portion 113 is disposed concentrically with the outer tub first small-diameter portion 111 and the outer tub second small-diameter portion 112.

タンク104は、タンク104の軸心O上に可搬型液化ガスタンク101の重心Gが位置するように配置されている。トラクタ3のフレーム7上に位置する外槽第1小径部111の直径(D1)よりタンクセミトレーラ102の走行装置5上に位置する外槽第2小径部112の直径(D3)が小さいので、タンク104の後方への傾きを大きくできる。これにより可搬型液化ガスタンク101の重心Gの高さH2を、第1実施の形態における可搬型液化ガスタンク1の重心Gの高さH1よりもさらに低くできる。その結果、可搬型液化ガスタンク101の転倒に対する安定性を向上させることができる。   The tank 104 is arranged so that the center of gravity G of the portable liquefied gas tank 101 is positioned on the axis O of the tank 104. Since the diameter (D3) of the outer tank second small diameter portion 112 positioned on the traveling device 5 of the tank semi-trailer 102 is smaller than the diameter (D1) of the outer tank first small diameter portion 111 positioned on the frame 7 of the tractor 3, the tank The backward inclination of 104 can be increased. Thereby, the height H2 of the center of gravity G of the portable liquefied gas tank 101 can be made lower than the height H1 of the center of gravity G of the portable liquefied gas tank 1 in the first embodiment. As a result, the stability of the portable liquefied gas tank 101 against overturning can be improved.

図4に示すように内槽120は、タンク104の後端側に位置する第2小径部122が直径E3の円筒状に形成され、第2小径部122の直径E3は、第1小径部121の直径E1よりも小さく形成される(E3<E1)。また、大径部123は、第1小径部121及び第2小径部122と同心に配置される。外槽第1小径部111の内周面と第1小径部121の外周面との間隔、外槽第2小径部112の内周面と第2小径部122の外周面との間隔を、それぞれ懸架金具30を配置できる間隔とし、さらに大径部123の直径E2と第1小径部121の直径E1及び第2小径部122の直径E3とに差を設けることで、第1小径部121及び第2小径部122の外周に懸架金具30を介装する間隔Tを確保しつつ、内槽120の容積を拡大できる。   As shown in FIG. 4, in the inner tank 120, the second small diameter portion 122 located on the rear end side of the tank 104 is formed in a cylindrical shape having a diameter E <b> 3, and the diameter E <b> 3 of the second small diameter portion 122 is the first small diameter portion 121. Is smaller than the diameter E1 (E3 <E1). The large diameter portion 123 is disposed concentrically with the first small diameter portion 121 and the second small diameter portion 122. The interval between the inner peripheral surface of the outer tub first small diameter portion 111 and the outer peripheral surface of the first small diameter portion 121, the interval between the inner peripheral surface of the outer tub second small diameter portion 112 and the outer peripheral surface of the second small diameter portion 122, respectively. By setting the interval at which the suspension metal fitting 30 can be arranged, and further providing a difference between the diameter E2 of the large diameter portion 123 and the diameter E1 of the first small diameter portion 121 and the diameter E3 of the second small diameter portion 122, the first small diameter portion 121 and the first small diameter portion 121 2 The volume of the inner tub 120 can be expanded while securing the interval T at which the suspension fitting 30 is interposed on the outer periphery of the small-diameter portion 122.

また、大径部123の外周面と外槽110(外槽大径部113)の内周面との半径方向距離tは、第1小径部121及び第2小径部122の外周面と外槽110(外槽第1小径部111及び外槽第2小径部112)の内周面との半径方向距離Tより小さく設定されている。これにより、大径部123の直径(E2)を大きくすることで内槽120の容積を拡大すると共に、外槽110の直径が大きくなることを防ぎ、外槽110の大型化を抑制できる。   The radial distance t between the outer peripheral surface of the large diameter portion 123 and the inner peripheral surface of the outer tub 110 (outer tub large diameter portion 113) is the outer peripheral surface of the first small diameter portion 121 and the second small diameter portion 122 and the outer tub. 110 (the outer tank first small diameter portion 111 and the outer tank second small diameter portion 112) are set to be smaller than the radial distance T from the inner peripheral surface. Thereby, while enlarging the volume of the inner tank 120 by enlarging the diameter (E2) of the large diameter part 123, it can prevent that the diameter of the outer tank 110 becomes large, and can suppress the enlargement of the outer tank 110.

また、第1傾斜部124及び第2傾斜部125は、第1傾斜部124及び第2傾斜部125の外周面上の各点と外槽第1傾斜部114及び外槽第2傾斜部115の内周面との最短距離tが、外槽大径部113の内周面と大径部123の外周面との半径方向距離tと同一に設定されている。その結果、第1実施の形態と比較して、第1傾斜部124及び第2傾斜部125の軸方向外側の直径を大きくすることができる。さらに、第1小径部121の外周面と第1傾斜部124の外周面との交点P1を、タンク104の側面視において、外槽第1小径部111と外槽第1傾斜部114との境界B1に対して軸方向外側(図4左側)に位置させることができる。また、第2小径部122の外周面と第2傾斜部125の外周面との交点P2を、タンク104の側面視において、外槽第2小径部112と外槽第2傾斜部115との境界B2に対して軸方向外側(図4右側)に位置させることができる。これらの結果、第1傾斜部124及び第2傾斜部125により外槽110に対して内槽120の容積を拡大できる。   In addition, the first inclined portion 124 and the second inclined portion 125 are provided at points on the outer peripheral surface of the first inclined portion 124 and the second inclined portion 125, and the outer tank first inclined portion 114 and the outer tank second inclined portion 115. The shortest distance t with the inner peripheral surface is set to be the same as the radial distance t between the inner peripheral surface of the outer tub large-diameter portion 113 and the outer peripheral surface of the large-diameter portion 123. As a result, compared with the first embodiment, the diameters of the first inclined portion 124 and the second inclined portion 125 on the outer side in the axial direction can be increased. Furthermore, an intersection P1 between the outer peripheral surface of the first small diameter portion 121 and the outer peripheral surface of the first inclined portion 124 is a boundary between the outer tank first small diameter portion 111 and the outer tank first inclined portion 114 in a side view of the tank 104. It can be located axially outside (left side in FIG. 4) with respect to B1. Further, an intersection P2 between the outer peripheral surface of the second small diameter portion 122 and the outer peripheral surface of the second inclined portion 125 is defined as a boundary between the outer tank second small diameter portion 112 and the outer tank second inclined portion 115 in the side view of the tank 104. It can be located on the axially outer side (right side in FIG. 4) with respect to B2. As a result, the volume of the inner tank 120 can be increased with respect to the outer tank 110 by the first inclined part 124 and the second inclined part 125.

次に図5及び図6を参照して第3実施の形態について説明する。第1実施の形態および第2実施の形態では、外槽10,110の軸方向外側の直径D1,D3が軸方向中央の直径D2より小さく設定される異径胴の場合について説明した。これに対し第3実施の形態では、外槽210の直径D1が軸方向に亘って同一に設定される直胴の場合について説明する。なお、第3実施の形態において、第1実施の形態と同一の部分については、同一の符号を付して説明を省略する。図5は第3実施の形態における可搬型液化ガスタンク201の側面図であり、図6はタンク204の側面図である。なお、図6ではタンク204の軸方向中央の図示を省略している。   Next, a third embodiment will be described with reference to FIGS. In the first embodiment and the second embodiment, the case of different diameter cylinders in which the outer diameters D1, D3 of the outer tub 10, 110 are set smaller than the diameter D2 of the axial center is described. On the other hand, in 3rd Embodiment, the case where the diameter D1 of the outer tank 210 is set equally over an axial direction is demonstrated. Note that in the third embodiment, identical symbols are assigned to parts identical to those in the first embodiment and description thereof is omitted. FIG. 5 is a side view of the portable liquefied gas tank 201 in the third embodiment, and FIG. 6 is a side view of the tank 204. In FIG. 6, the axial center of the tank 204 is not shown.

図5に示すように、可搬型液化ガスタンク201は、タンク204の外槽210が軸方向に亘って同一の直径D1の円筒状に形成され、タンク201の軸心O上に可搬型液化ガスタンク201の重心Gが位置するように配置されている。タンク204は軸心Oが後方に傾斜するように配置されているので、タンク204を軸心Oが水平になるように配置する場合と比較して重心高H3を低くできる。   As shown in FIG. 5, the portable liquefied gas tank 201 is configured such that the outer tank 210 of the tank 204 is formed in a cylindrical shape having the same diameter D1 in the axial direction, and the portable liquefied gas tank 201 is placed on the axis O of the tank 201. It is arranged so that the center of gravity G is located. Since the tank 204 is arranged so that the axis O is inclined rearward, the center of gravity height H3 can be lowered as compared with the case where the tank 204 is arranged so that the axis O is horizontal.

図6に示すように、内槽220は、タンク204の軸方向両側に位置する第1小径部221及び第2小径部222が直径E1の円筒状に、タンク204の軸方向中央に位置する大径部223が直径E4の円筒状にそれぞれ形成されている。大径部223の直径E4は、第1小径部221及び第2小径部222の直径E1よりも大きく形成されている(E1<E4)。外槽210の内周面と第1小径部221の外周面との間隔、外槽210の内周面と第2小径部222の外周面との間隔を、それぞれ懸架金具30を配置できる間隔とし、さらに大径部223の直径E4と第1小径部221及び第2小径部222の直径E1とに差を設けることで、第1小径部221及び第2小径部222の外周に懸架金具30を介装する間隔Tを確保しつつ、内槽220の容積を拡大できる。また、大径部223は第1小径部221及び第2小径部222と同心に配置されているので、タンク204の重心Gが高くなることを抑制しつつ内槽220の容積を拡大でき、可搬型液化ガスタンク201の安定性を確保できる。   As shown in FIG. 6, the inner tank 220 has a first small-diameter portion 221 and a second small-diameter portion 222 located on both sides in the axial direction of the tank 204 in a cylindrical shape having a diameter E1 and a large size located in the center in the axial direction of the tank 204. The diameter portions 223 are each formed in a cylindrical shape having a diameter E4. The diameter E4 of the large diameter part 223 is formed larger than the diameter E1 of the first small diameter part 221 and the second small diameter part 222 (E1 <E4). The interval between the inner peripheral surface of the outer tub 210 and the outer peripheral surface of the first small-diameter portion 221 and the interval between the inner peripheral surface of the outer tub 210 and the outer peripheral surface of the second small-diameter portion 222 are set as intervals at which the suspension metal fittings 30 can be disposed, respectively. Further, by providing a difference between the diameter E4 of the large-diameter portion 223 and the diameter E1 of the first small-diameter portion 221 and the second small-diameter portion 222, the suspension bracket 30 is attached to the outer periphery of the first small-diameter portion 221 and the second small-diameter portion 222. The volume of the inner tank 220 can be expanded while ensuring the interval T to be interposed. Moreover, since the large diameter part 223 is arrange | positioned concentrically with the 1st small diameter part 221 and the 2nd small diameter part 222, the volume of the inner tank 220 can be expanded, suppressing that the gravity center G of the tank 204 becomes high. The stability of the portable liquefied gas tank 201 can be ensured.

また、大径部223の外周面と外槽210の内周面との半径方向距離tが、第1小径部221及び第2小径部222の外周面と外槽210の内周面との半径方向距離Tより小さく設定されるので、大径部223の直径(E4)を大きくすることで内槽220の容積を拡大すると共に、外槽210の直径が大きくなることを防ぎ、外槽210の大型化を抑制できる。   Further, the radial distance t between the outer peripheral surface of the large diameter portion 223 and the inner peripheral surface of the outer tub 210 is a radius between the outer peripheral surface of the first small diameter portion 221 and the second small diameter portion 222 and the inner peripheral surface of the outer tub 210. Since it is set to be smaller than the directional distance T, the volume of the inner tank 220 is increased by increasing the diameter (E4) of the large-diameter portion 223, and the diameter of the outer tank 210 is prevented from increasing. Increase in size can be suppressed.

また、第1傾斜部224及び第2傾斜部225の外周面は、軸方向外側に向かうにつれ外槽210の内周面上の各点と、第1傾斜部224及び第2傾斜部225の外周面との最短距離が漸次大きくなるように設定されている。その結果、外槽210と第1傾斜部224及び第2傾斜部225との間隔を軸方向外側で大きくすることができ、第1実施の形態と同様に、第1傾斜部224及び第2傾斜部225の軸方向外側に形成される空間(半径方向距離の最大値T)を、外槽210の内側に設けることができる。その空間の活用を含めてタンク204を設計できるので、タンク204の設計の自由度を向上できる。   In addition, the outer peripheral surfaces of the first inclined portion 224 and the second inclined portion 225 are points on the inner peripheral surface of the outer tub 210 and the outer periphery of the first inclined portion 224 and the second inclined portion 225 as it goes outward in the axial direction. The shortest distance from the surface is set to gradually increase. As a result, the interval between the outer tub 210 and the first inclined portion 224 and the second inclined portion 225 can be increased on the outer side in the axial direction. As in the first embodiment, the first inclined portion 224 and the second inclined portion A space (maximum value T of the radial distance) formed outside the portion 225 in the axial direction can be provided inside the outer tub 210. Since the tank 204 can be designed including utilization of the space, the degree of freedom in designing the tank 204 can be improved.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記各実施の形態で説明したタンク4,104,204の各部の直径や軸方向長さの値は一例であり、任意に設定することができる。   As described above, the present invention has been described based on the embodiments, but the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, the values of the diameters and axial lengths of the respective parts of the tanks 4, 104, 204 described in the above embodiments are merely examples, and can be arbitrarily set.

上記各実施の形態では、外槽10,110,210が減圧密封されることで内槽20,120,220と外槽10,110,210との間に断熱層(真空断熱層)が形成される場合について説明したが、必ずしもこれに限られるものではなく、他の断熱層を採用することは当然可能である。他の断熱層としては、クリプトン、キセノン、アルゴンガス等の低熱伝導率のガスや空気を外槽10,110,210に充填し密封した断熱層、パーライト等の固体断熱層が挙げられる。   In each of the above embodiments, the outer tub 10, 110, 210 is sealed under reduced pressure, so that a heat insulating layer (vacuum heat insulating layer) is formed between the inner tub 20, 120, 220 and the outer tub 10, 110, 210. However, the present invention is not necessarily limited to this, and other heat insulating layers can naturally be employed. Examples of the other heat insulating layer include a heat insulating layer in which a gas or air having a low thermal conductivity such as krypton, xenon, or argon gas is filled in the outer tank 10, 110, 210 and sealed, and a solid heat insulating layer such as pearlite.

また、輻射熱を遮断する遮熱層(断熱層の一部)をアルミニウム箔により形成する場合について説明したが、必ずしもこれに限られるものではなく、熱反射率の高い銅箔、ニッケル箔等の他の金属箔を用いて遮熱層を形成することは当然可能である。アルミニウム箔の場合と比較して質量は増加するが、同様の効果を実現できる。また、金属箔に代えてメッキ層により遮熱層を形成したり、固体断熱層と金属箔とを組み合わせたりすることは可能である。また、金属箔を複数枚積層し、それら金属箔間に熱伝導を抑制する不織布等の断熱材を介在させることは可能である。これにより輻射の抑制効果を向上し断熱効果を向上できる。   Moreover, although the case where the heat shielding layer (a part of the heat insulating layer) for blocking radiant heat is formed of aluminum foil has been described, the present invention is not necessarily limited to this, and other copper foils, nickel foils, etc. with high heat reflectivity are used. Of course, it is possible to form the heat-shielding layer using the metal foil. Although the mass is increased as compared with the case of the aluminum foil, the same effect can be realized. Further, it is possible to form a heat shielding layer by a plating layer instead of the metal foil, or to combine the solid heat insulating layer and the metal foil. It is also possible to laminate a plurality of metal foils and interpose a heat insulating material such as a nonwoven fabric that suppresses heat conduction between the metal foils. Thereby, the suppression effect of radiation can be improved and the heat insulation effect can be improved.

各実施の形態では、タンクセミトレーラ2,102,202及びトラクタ3により可搬型液化ガスタンク1,101,201を構成する場合について説明したが、必ずしもこれに限られるものではなく、他の形態によりタンク4,104,204を可搬型とすることは当然可能である。他の形態としては、タンクローリー、タンクフルトレーラ、バルクコンテナ等が挙げられる。   In each of the embodiments, the case where the transportable liquefied gas tanks 1, 101, 201 are configured by the tank semi-trailers 2, 102, 202 and the tractor 3 has been described. 104, 204 can be made portable. Other forms include tank trucks, tank full trailers, bulk containers, and the like.

第2実施の形態では、タンク104の外槽第2小径部112の直径D3が外槽第1小径部111の直径D1よりも小さく形成されていたが、外槽第1小径部111の直径D1を外槽第2小径部112の直径D3よりも小さく形成してもよい。この場合にはタンク104が前方に傾斜されて重心高を低くすることができる。   In the second embodiment, the diameter D3 of the outer tub second small diameter portion 112 of the tank 104 is smaller than the diameter D1 of the outer tub first small diameter portion 111, but the diameter D1 of the outer tub first small diameter portion 111 is formed. May be formed smaller than the diameter D3 of the second small-diameter portion 112 of the outer tub. In this case, the tank 104 can be tilted forward to lower the center of gravity.

また、第1実施の形態および第2実施の形態では、外槽第1小径部11,111の長さが外槽第2小径部12,112の長さよりも長く形成されていたが、外槽第1小径部11,111,211の長さを外槽第2小径部12,112の長さと同一に形成してもよい。この場合には可搬型液化ガスタンク1,101の前方の重量配分が増加するので、可搬型液化ガスタンク1,101が旋回する際の遠心力を抑制して、旋回時の安定性を向上させることができる。   Moreover, in 1st Embodiment and 2nd Embodiment, although the length of the outer tank 1st small diameter part 11,111 was formed longer than the length of the outer tank 2nd small diameter part 12,112, an outer tank You may form the length of the 1st small diameter part 11,111,211 with the length of the outer tank 2nd small diameter part 12,112. In this case, since the weight distribution in front of the portable liquefied gas tank 1, 101 increases, the centrifugal force when the portable liquefied gas tank 1, 101 turns can be suppressed and the stability during turning can be improved. it can.

また、外槽第1小径部11,111の長さを外槽第2小径部12,112の長さよりも短く形成することも可能である。この場合には、外槽第1小径部11,111の長さが外槽第2小径部12,112の長さよりも長い又は同等に形成されている場合よりも、可搬型液化ガスタンク1,101の前方の重量配分がさらに増加するので、可搬型液化ガスタンク1,101が旋回する際の遠心力を抑制して、旋回時の安定性をさらに向上させることができる。   It is also possible to form the outer tank first small-diameter portions 11 and 111 shorter than the outer tank second small-diameter portions 12 and 112. In this case, the portable liquefied gas tank 1, 101 is longer than the case where the length of the outer tub first small diameter portion 11, 111 is longer than or equal to the length of the outer tub second small diameter portion 12, 112. Since the weight distribution ahead further increases, the centrifugal force when the portable liquefied gas tank 1, 101 turns can be suppressed, and the stability during turning can be further improved.

また、第3実施の形態では、第1小径部221の長さが第2小径部222の長さよりも長く形成されていたが、第1小径部221の長さを第2小径部222の長さと同一または短く形成してもよい。この場合には可搬型液化ガスタンク204の前方の重量配分が増加するので、可搬型液化ガスタンク204が旋回する際の遠心力を抑制して、旋回時の安定性を向上させることができる。   In the third embodiment, the length of the first small diameter portion 221 is longer than the length of the second small diameter portion 222. However, the length of the first small diameter portion 221 is set to the length of the second small diameter portion 222. And may be the same or shorter. In this case, since the weight distribution ahead of the portable liquefied gas tank 204 increases, the centrifugal force when the portable liquefied gas tank 204 turns can be suppressed, and the stability during turning can be improved.

上記各実施の形態では、タンク4,104,204を軸心Oが後方に傾斜するように配置する場合について説明したが、必ずしもこれに限られるものではなく、タンク4,104,204を軸心Oが水平になるように配置することは当然可能である。   In each of the above-described embodiments, the case where the tanks 4, 104, 204 are arranged such that the axis O is inclined rearward has been described. However, the present invention is not limited to this, and the tanks 4, 104, 204 are arranged as axes. Of course, it is possible to arrange O so as to be horizontal.

上記各実施の形態のいずれかの一部または全部を、他の実施の形態の一部または全部と組み合わせることは可能である。また、上記各実施の形態のうちの一部の構成を省略することも可能である。例えば、第2実施の形態におけるタンク104の外槽第2小径部112及び第2小径部122の直径を、第1実施の形態のタンク4のように、外槽第1小径部111の直径D1及び第1小径部121の直径E1と同一にすることができる。
<手段>
この目的を達成するために、技術的思想1の可搬型液化ガスタンクは、液化ガスが収容されるタンクが移動可能に構成されたものにおいて、前記タンクは、内部に液化ガスが収容される横置きの内槽と、その内槽の外周に間隔をあけて配設されると共に内側に断熱層が形成される外槽と、その外槽と前記内槽との間に介装され前記内槽を前記外槽に懸架する懸架金具とを備え、前記内槽は、円筒状に形成され前記内槽の軸方向両側に位置し、前記懸架金具により前記外槽に支持される第1小径部および第2小径部と、前記第1小径部および前記第2小径部の間に位置すると共に前記第1小径部および前記第2小径部より大きな直径の円筒状に形成される大径部とを備え、その大径部の外周面と前記外槽の内周面との半径方向距離は、前記第1小径部および前記第2小径部の外周面と前記外槽の内周面との半径方向距離より小さく設定されている。
技術的思想2の可搬型液化ガスタンクは、技術的思想1記載の可搬型液化ガスタンクにおいて、前記内槽は、前記第1小径部と前記大径部とを連結して円錐台状に形成される第1傾斜部と、前記第2小径部と前記大径部とを連結して円錐台状に形成される第2傾斜部とを備え、前記外槽は、その外槽の軸方向両側に位置し円筒状に形成される外槽第1小径部および外槽第2小径部と、前記外槽第1小径部および前記外槽第2小径部の間に位置すると共に前記外槽第1小径部および前記外槽第2小径部より大きな直径の円筒状に形成される外槽大径部と、その外槽大径部と前記外槽第1小径部とを連結して円錐台状に形成される外槽第1傾斜部と、前記外槽大径部と前記外槽第2小径部とを連結して円錐台状に形成される外槽第2傾斜部とを備え、その外槽第2傾斜部および前記外槽第1傾斜部の内周面上の各点と前記第2傾斜部および前記第1傾斜部の外周面との最短距離は、前記外槽第1小径部および前記外槽第2小径部の内周面と前記第1小径部および前記第2小径部の外周面との半径方向距離以下に設定されている。
技術的思想3記載の可搬型液化ガスタンクは、技術的思想2記載の可搬型液化ガスタンクにおいて、前記第1傾斜部および前記第2傾斜部は、外周面が、軸方向外側に向かうにつれ前記外槽第1傾斜部および前記外槽第2傾斜部の内周面上の各点と前記外周面との最短距離が漸次大きくなるように設定されている。
技術的思想4記載の可搬型液化ガスタンクは、技術的思想2記載の可搬型液化ガスタンクにおいて、前記第1傾斜部および前記第2傾斜部は、外周面上の各点と前記外槽第1傾斜部および前記外槽第2傾斜部の内周面との最短距離が、前記外槽大径部の内周面と前記大径部の外周面との半径方向距離と同一に設定されている。
技術的思想5記載の可搬型液化ガスタンクは、技術的思想1から4のいずれかに記載の可搬型液化ガスタンクにおいて、前記断熱層は、輻射熱を遮断する遮熱層を備えている。
<効果>
技術的思想1記載の可搬型液化ガスタンクによれば、タンクの内槽の軸方向両側に位置し円筒状に形成される第1小径部および第2小径部が、懸架金具により外槽に支持される。外槽に支持される内槽は、第1小径部および第2小径部の間に位置すると共に第1小径部および第2小径部より大きな直径の円筒状に形成される大径部を備えている。よって、第1小径部および第2小径部の外周に懸架金具を介装する間隔を確保しつつ、内槽の容積を拡大できる効果がある。さらに、大径部の外周面と外槽の内周面との半径方向距離が、第1小径部および第2小径部の外周面と外槽の内周面との半径方向距離より小さく設定されるので、外槽の直径が大きくなることを防止でき、外槽の大型化を抑制できる効果がある。
技術的思想2記載の可搬型液化ガスタンクによれば、外槽第2傾斜部および外槽第1傾斜部の内周面上の各点と第2傾斜部および第1傾斜部の外周面との最短距離は、外槽第1小径部および外槽第2小径部の内周面と第1小径部および第2小径部の外周面との半径方向距離以下に設定されている。これにより、外槽第2傾斜部および外槽第1傾斜部(外槽)の直径が大きくなることを防ぎ、外槽の大型化を抑制できる効果がある。さらに、外槽第2傾斜部および外槽第1傾斜部の内周面に第1傾斜部および第2傾斜部の外周面を近づけることができるので、外槽第2傾斜部および外槽第1傾斜部(外槽)に対して第1傾斜部および第2傾斜部(内槽)の容積を拡大できる効果がある。
技術的思想3記載の可搬型液化ガスタンクによれば、第1傾斜部および第2傾斜部の外周面は、軸方向外側に向かうにつれ外槽第1傾斜部および外槽第2傾斜部の内周面上の各点と、第1傾斜部および第2傾斜部の外周面との最短距離が漸次大きくなるように設定されている。その結果、外槽第1傾斜部および外槽第2傾斜部と第1傾斜部および第2傾斜部との間隔を軸方向外側で大きくすることができる。その結果、外槽第1傾斜部および外槽第2傾斜部の軸方向外側に向かうにつれ半径方向距離が漸次大きくなる空間を、外槽の内側に設けることができる。その空間の活用を含めてタンクを設計できるので、技術的思想2の効果に加え、タンクの設計の自由度を向上できる効果がある。
技術的思想4記載の可搬型液化ガスタンクによれば、第1傾斜部および第2傾斜部は、外周面上の各点と外槽第1傾斜部および外槽第2傾斜部の内周面との最短距離が、外槽大径部の内周面と大径部の外周面との半径方向距離と同一に設定されているので、第1傾斜部および第2傾斜部の直径を大きくすることができる。その結果、技術的思想2の効果に加え、外槽第2傾斜部および外槽第1傾斜部(外槽)に対して第1傾斜部および第2傾斜部により内槽の容積を拡大できる効果がある。
技術的思想5記載の可搬型液化ガスタンクによれば、輻射熱を遮断する遮熱層により外槽から内槽への熱侵入を抑制することができるので、遮熱層を備えていない断熱層と比較して、断熱層の厚さを薄くできる。そのため、内槽の大径部の外周面と外槽の内周面との半径方向距離が、内槽の第1小径部および第2小径部の外周面と外槽の内周面との半径方向距離より小さく設定された場合に、外槽に対して内槽の大径部の外周面を近づけることができる(半径方向距離を小さくできる)。これにより技術的思想1から4のいずれかの効果に加え、外槽に対して内槽の容積を拡大できる効果がある。
Any or all of the above embodiments can be combined with some or all of the other embodiments. Moreover, it is also possible to abbreviate | omit some structures in said each embodiment. For example, the diameter of the outer tub second small diameter portion 112 and the second small diameter portion 122 of the tank 104 in the second embodiment is set to the diameter D1 of the outer tub first small diameter portion 111 as in the tank 4 of the first embodiment. And it can be made the same as the diameter E1 of the 1st small diameter part 121. FIG.
<Means>
In order to achieve this object, the portable liquefied gas tank of the technical idea 1 is configured such that a tank in which liquefied gas is accommodated is movable, and the tank is placed horizontally in which liquefied gas is accommodated. An inner tub, an outer tub disposed on the outer periphery of the inner tub with a space therebetween, and a heat insulating layer formed on the inner tub, and the inner tub interposed between the outer tub and the inner tub A suspension fitting that is suspended from the outer tub, wherein the inner tub is formed in a cylindrical shape and is positioned on both sides in the axial direction of the inner tub, and is supported by the outer tub by the suspension fitting. 2 small-diameter portions, and a large-diameter portion that is located between the first small-diameter portion and the second small-diameter portion and is formed in a cylindrical shape having a larger diameter than the first small-diameter portion and the second small-diameter portion, The radial distance between the outer peripheral surface of the large-diameter portion and the inner peripheral surface of the outer tub is the first distance. It is set smaller than the radial distance between the inner peripheral surface of the diameter and the outer peripheral surface of the second small diameter portion and the outer tub.
The portable liquefied gas tank of technical idea 2 is the portable liquefied gas tank of technical idea 1, wherein the inner tank is formed in a truncated cone shape by connecting the first small diameter portion and the large diameter portion. A first inclined portion; a second inclined portion formed in a truncated cone shape by connecting the second small diameter portion and the large diameter portion; and the outer tank is positioned on both axial sides of the outer tank. The outer tub first small diameter portion and the outer tub second small diameter portion formed between the outer tub first small diameter portion and the outer tub second small diameter portion and the outer tub first small diameter portion. The outer tub large-diameter portion formed in a cylindrical shape having a larger diameter than the outer tub second small-diameter portion, and the outer tub large-diameter portion and the outer tub first small-diameter portion are connected to form a truncated cone shape. An outer tub first inclined portion, and an outer tub second inclined portion formed in a truncated cone shape by connecting the outer tub large diameter portion and the outer tub second small diameter portion. The shortest distance between each point on the inner peripheral surface of the outer tank second inclined part and the outer tank first inclined part and the outer peripheral surface of the second inclined part and the first inclined part is the outer tank first. It is set to be equal to or less than the radial distance between the inner peripheral surface of the small diameter portion and the second small diameter portion of the outer tub and the outer peripheral surface of the first small diameter portion and the second small diameter portion.
The portable liquefied gas tank described in the technical idea 3 is the portable liquefied gas tank described in the technical idea 2, in which the first inclined portion and the second inclined portion are configured such that the outer peripheral surface of the outer inclined surface is directed outward in the axial direction. The shortest distance between each point on the inner peripheral surface of the first inclined portion and the outer tank second inclined portion and the outer peripheral surface is set to be gradually increased.
The portable liquefied gas tank described in the technical idea 4 is the portable liquefied gas tank described in the technical idea 2, wherein the first inclined portion and the second inclined portion are formed on each point on the outer peripheral surface and the outer tank first inclined. And the shortest distance between the inner peripheral surface of the outer tub second inclined portion and the inner peripheral surface of the outer tub large-diameter portion and the radial distance between the outer peripheral surface of the large-diameter portion are set to be the same.
The portable liquefied gas tank described in the technical idea 5 is the portable liquefied gas tank described in any one of the technical ideas 1 to 4, and the heat insulating layer includes a heat shielding layer that blocks radiant heat.
<Effect>
According to the portable liquefied gas tank described in the technical idea 1, the first small diameter portion and the second small diameter portion that are formed in a cylindrical shape and located on both sides in the axial direction of the inner tank of the tank are supported on the outer tank by the suspension metal fittings. The The inner tank supported by the outer tank includes a large-diameter portion that is located between the first small-diameter portion and the second small-diameter portion and that is formed in a cylindrical shape having a larger diameter than the first small-diameter portion and the second small-diameter portion. Yes. Therefore, there is an effect that the volume of the inner tub can be increased while securing a space for interposing the suspension metal fittings on the outer circumferences of the first small diameter portion and the second small diameter portion. Further, the radial distance between the outer peripheral surface of the large diameter portion and the inner peripheral surface of the outer tub is set smaller than the radial distance between the outer peripheral surface of the first small diameter portion and the second small diameter portion and the inner peripheral surface of the outer tub. Therefore, it is possible to prevent the outer tank from increasing in diameter and to suppress the increase in the size of the outer tank.
According to the portable liquefied gas tank described in the technical idea 2, each point on the inner peripheral surface of the outer tank second inclined portion and the outer tank first inclined portion and the outer peripheral surface of the second inclined portion and the first inclined portion. The shortest distance is set to be equal to or less than the radial distance between the inner peripheral surface of the outer tub first small diameter portion and the outer tub second small diameter portion and the outer peripheral surface of the first small diameter portion and the second small diameter portion. Thereby, the diameter of the outer tub second inclined portion and the outer tub first inclined portion (outer tub) can be prevented from being increased, and an increase in the size of the outer tub can be suppressed. Furthermore, since the outer peripheral surfaces of the first inclined portion and the second inclined portion can be brought closer to the inner peripheral surfaces of the outer tank second inclined portion and the outer tank first inclined portion, the outer tank second inclined portion and the outer tank first. There exists an effect which can expand the volume of a 1st inclination part and a 2nd inclination part (inner tank) with respect to an inclination part (outer tank).
According to the portable liquefied gas tank described in the technical idea 3, the outer peripheral surfaces of the first inclined portion and the second inclined portion are the inner periphery of the outer tank first inclined portion and the outer tank second inclined portion as it goes outward in the axial direction. The shortest distance between each point on the surface and the outer peripheral surfaces of the first inclined portion and the second inclined portion is set to gradually increase. As a result, the space | interval of an outer tank 1st inclination part and an outer tank 2nd inclination part, a 1st inclination part, and a 2nd inclination part can be enlarged on an axial direction outer side. As a result, a space in which the radial distance gradually increases toward the outer side in the axial direction of the outer tank first inclined part and the outer tank second inclined part can be provided inside the outer tank. Since the tank can be designed including utilization of the space, in addition to the effect of the technical idea 2, there is an effect that the degree of freedom in designing the tank can be improved.
According to the portable liquefied gas tank described in the technical idea 4, the first inclined portion and the second inclined portion are each point on the outer peripheral surface and the inner peripheral surface of the outer tank first inclined portion and the outer tank second inclined portion. Since the shortest distance is set to be the same as the radial distance between the inner peripheral surface of the outer tub large-diameter portion and the outer peripheral surface of the large-diameter portion, the diameters of the first inclined portion and the second inclined portion should be increased. Can do. As a result, in addition to the effect of the technical idea 2, an effect that the volume of the inner tank can be expanded by the first inclined part and the second inclined part with respect to the outer tank second inclined part and the outer tank first inclined part (outer tank). There is.
According to the portable liquefied gas tank described in the technical idea 5, since the heat intrusion from the outer tank to the inner tank can be suppressed by the heat insulating layer that blocks radiant heat, compared with the heat insulating layer that does not include the heat insulating layer. Thus, the thickness of the heat insulating layer can be reduced. Therefore, the radial distance between the outer peripheral surface of the large-diameter portion of the inner tub and the inner peripheral surface of the outer tub is the radius between the outer peripheral surface of the first small-diameter portion and the second small-diameter portion of the inner tub and the inner peripheral surface of the outer tub. When set smaller than the directional distance, the outer peripheral surface of the large-diameter portion of the inner tub can be brought closer to the outer tub (the radial distance can be reduced). Thereby, in addition to the effect of any one of the technical ideas 1 to 4, there is an effect that the volume of the inner tank can be expanded with respect to the outer tank.

1,101,201 可搬型液化ガスタンク
10,110,210 外槽
11,111 外槽第1小径部
12,112 外槽第2小径部
13,113 外槽大径部
14,114 外槽第1傾斜部
15,115 外槽第2傾斜部
20,120,220 内槽
21,121,221 第1小径部
22,122,222 第2小径部
23,123,223 大径部
24,124,224 第1傾斜部
25,125,225 第2傾斜部
30 懸架金具
DESCRIPTION OF SYMBOLS 1,101,201 Portable liquefied gas tank 10,110,210 Outer tank 11,111 Outer tank 1st small diameter part 12,112 Outer tank 2nd small diameter part 13,113 Outer tank large diameter part 14,114 Outer tank 1st inclination Part 15, 115 Outer tank second inclined part 20, 120, 220 Inner tank 21, 121, 221 First small diameter part 22, 122, 222 Second small diameter part 23, 123, 223 Large diameter part 24, 124, 224 First Inclined portion 25, 125, 225 Second inclined portion 30 Suspension bracket

Claims (3)

液化ガスが収容されるタンクが移動可能に構成された可搬型液化ガスタンクにおいて、
前記タンクは、
内部に液化ガスが収容される横置きの内槽と、
その内槽の外周に間隔をあけて配設されると共に内側に断熱層が形成される外槽と、
その外槽と前記内槽との間に介装され前記内槽を前記外槽に懸架する懸架金具とを備え、
前記内槽は、
円筒状に形成され前記内槽の軸方向両側に位置し、前記懸架金具により前記外槽に支持される第1小径部および第2小径部と、
前記第1小径部および前記第2小径部の間に位置すると共に前記第1小径部および前記第2小径部より大きな直径の円筒状に形成される大径部と
前記第1小径部と前記大径部とを連結して円錐台状に形成される第1傾斜部と、
前記第2小径部と前記大径部とを連結して円錐台状に形成される第2傾斜部とを備え、
前記大径部の外周面と前記外槽の内周面との半径方向距離は、前記第1小径部および前記第2小径部の外周面と前記外槽の内周面との半径方向距離より小さく設定され
前記外槽は、
その外槽の軸方向両側に位置し円筒状に形成されると共に、前記第1小径部および前記第2小径部の径方向外側にそれぞれ位置する外槽第1小径部および外槽第2小径部と、
前記外槽第1小径部および前記外槽第2小径部の間に位置すると共に前記外槽第1小径部および前記外槽第2小径部より大きな直径の円筒状に形成され、前記大径部の径方向外側に位置する外槽大径部と、
その外槽大径部と前記外槽第1小径部とを連結して円錐台状に形成されると共に前記第1傾斜部の径方向外側に位置する外槽第1傾斜部と、
前記外槽大径部と前記外槽第2小径部とを連結して円錐台状に形成されると共に前記第2傾斜部の径方向外側に位置する外槽第2傾斜部とを備え、
軸心を含む断面において、前記外槽第1傾斜部および前記外槽第2傾斜部は、軸方向外側に向かうにつれてそれぞれ前記第1傾斜部および前記第2傾斜部との間隔を大きくするように設定されていることを特徴とする可搬型液化ガスタンク。
In a portable liquefied gas tank configured such that a tank containing liquefied gas is movable,
The tank
A horizontal inner tank in which liquefied gas is stored;
An outer tank in which a heat insulating layer is formed on the inner side while being arranged around the outer periphery of the inner tank,
A suspension fitting interposed between the outer tub and the inner tub, the suspension suspending the inner tub on the outer tub,
The inner tank is
A first small-diameter portion and a second small-diameter portion formed in a cylindrical shape and positioned on both sides in the axial direction of the inner tub, and supported by the outer tub by the suspension fittings;
A large-diameter portion located between the first small-diameter portion and the second small-diameter portion and formed in a cylindrical shape having a larger diameter than the first small-diameter portion and the second small-diameter portion ;
A first inclined portion formed in a truncated cone shape by connecting the first small diameter portion and the large diameter portion;
A second inclined part formed in a truncated cone shape by connecting the second small diameter part and the large diameter part;
The radial distance between the inner peripheral surface of the outer tub and the outer circumferential surface of the large diameter portion, than the radial distance between the outer peripheral surface and the inner peripheral surface of the outer tub of the first small diameter portion and the second small-diameter portion Set small ,
The outer tank is
The outer tub first small-diameter portion and the outer tub second small-diameter portion that are located on both sides in the axial direction of the outer tub and are formed in a cylindrical shape and are positioned on the radially outer sides of the first small-diameter portion and the second small-diameter portion, respectively. When,
It is located between the outer tub first small diameter portion and the outer tub second small diameter portion and is formed in a cylindrical shape having a larger diameter than the outer tub first small diameter portion and the outer tub second small diameter portion, and the large diameter portion An outer tub large-diameter portion located on the outside in the radial direction of
The outer tub large diameter portion and the outer tub first small diameter portion are connected to each other and formed into a truncated cone shape and located on the radially outer side of the first inclined portion, and the outer tub first inclined portion,
The outer tub large-diameter portion and the outer tub second small-diameter portion are connected to each other, and the outer tub second inclined portion is formed in a truncated cone shape and located radially outside the second inclined portion.
In the cross-section including the shaft center, the outer tank first inclined part and the outer tank second inclined part increase the distance between the first inclined part and the second inclined part toward the outer side in the axial direction. A portable liquefied gas tank that is set .
液化ガスが収容されるタンクが移動可能に構成された可搬型液化ガスタンクにおいて、In a portable liquefied gas tank configured such that a tank containing liquefied gas is movable,
前記タンクは、The tank
内部に液化ガスが収容される横置きの内槽と、A horizontal inner tank in which liquefied gas is stored;
その内槽の外周に間隔をあけて配設されると共に内側に断熱層が形成される外槽と、An outer tank in which a heat insulating layer is formed on the inner side while being arranged around the outer periphery of the inner tank,
その外槽と前記内槽との間に介装され前記内槽を前記外槽に懸架する懸架金具とを備え、A suspension fitting interposed between the outer tub and the inner tub, the suspension suspending the inner tub on the outer tub,
前記内槽は、The inner tank is
円筒状に形成され前記内槽の軸方向両側に位置し、前記懸架金具により前記外槽に支持される第1小径部および第2小径部と、A first small-diameter portion and a second small-diameter portion formed in a cylindrical shape and positioned on both sides in the axial direction of the inner tub, and supported by the outer tub by the suspension fittings;
前記第1小径部および前記第2小径部の間に位置すると共に前記第1小径部および前記第2小径部より大きな直径の円筒状に形成される大径部と、A large-diameter portion located between the first small-diameter portion and the second small-diameter portion and formed in a cylindrical shape having a larger diameter than the first small-diameter portion and the second small-diameter portion;
前記第1小径部と前記大径部とを連結して円錐台状に形成される第1傾斜部と、A first inclined portion formed in a truncated cone shape by connecting the first small diameter portion and the large diameter portion;
前記第2小径部と前記大径部とを連結して円錐台状に形成される第2傾斜部とを備え、A second inclined part formed in a truncated cone shape by connecting the second small diameter part and the large diameter part;
前記大径部の外周面と前記外槽の内周面との半径方向距離は、前記第1小径部および前記第2小径部の外周面と前記外槽の内周面との半径方向距離より小さく設定され、The radial distance between the outer peripheral surface of the large-diameter portion and the inner peripheral surface of the outer tub is based on the radial distance between the outer peripheral surface of the first small-diameter portion and the second small-diameter portion and the inner peripheral surface of the outer tub. Set small,
前記外槽は、The outer tank is
その外槽の軸方向両側に位置し円筒状に形成されると共に、前記第1小径部および前記第2小径部の径方向外側にそれぞれ位置する外槽第1小径部および外槽第2小径部と、The outer tub first small-diameter portion and the outer tub second small-diameter portion that are located on both sides in the axial direction of the outer tub and are formed in a cylindrical shape and are positioned on the radially outer sides of the first small-diameter portion and the second small-diameter portion, respectively. When,
前記外槽第1小径部および前記外槽第2小径部の間に位置すると共に前記外槽第1小径部および前記外槽第2小径部より大きな直径の円筒状に形成され、前記大径部の径方向外側に位置する外槽大径部と、It is located between the outer tub first small diameter portion and the outer tub second small diameter portion and is formed in a cylindrical shape having a larger diameter than the outer tub first small diameter portion and the outer tub second small diameter portion, and the large diameter portion An outer tub large-diameter portion located on the outside in the radial direction of
その外槽大径部と前記外槽第1小径部とを連結して円錐台状に形成されると共に前記第1傾斜部の径方向外側に位置する外槽第1傾斜部と、The outer tub large diameter portion and the outer tub first small diameter portion are connected to each other and formed into a truncated cone shape and located on the radially outer side of the first inclined portion, and the outer tub first inclined portion,
前記外槽大径部と前記外槽第2小径部とを連結して円錐台状に形成されると共に前記第2傾斜部の径方向外側に位置する外槽第2傾斜部とを備え、The outer tub large-diameter portion and the outer tub second small-diameter portion are connected to each other, and the outer tub second inclined portion is formed in a truncated cone shape and located radially outside the second inclined portion.
軸心を含む断面において、前記第1小径部の外周面と前記第1傾斜部の外周面との交点は、前記外槽第1小径部と前記外槽第1傾斜部との境界に対して軸方向外側に位置し、In the cross section including the axis, the intersection of the outer peripheral surface of the first small diameter portion and the outer peripheral surface of the first inclined portion is relative to the boundary between the outer tank first small diameter portion and the outer tank first inclined portion. Located axially outside,
前記第2小径部の外周面と前記第2傾斜部の外周面との交点は、前記外槽第2小径部と前記外槽第2傾斜部との境界に対して軸方向外側に位置することを特徴とする可搬型液化ガスタンク。The intersection of the outer peripheral surface of the second small diameter portion and the outer peripheral surface of the second inclined portion is located outside in the axial direction with respect to the boundary between the outer tank second small diameter portion and the outer tank second inclined portion. A portable liquefied gas tank characterized by
前記断熱層は、輻射熱を遮断する遮熱層を備えていることを特徴とする請求項1又は2に記載の可搬型液化ガスタンク。 The heat insulation layer, a portable liquefied gas tank according to claim 1 or 2, characterized in that it comprises a thermal barrier layer for blocking radiant heat.
JP2012051153A 2012-03-08 2012-03-08 Portable liquefied gas tank Expired - Fee Related JP5420004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051153A JP5420004B2 (en) 2012-03-08 2012-03-08 Portable liquefied gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051153A JP5420004B2 (en) 2012-03-08 2012-03-08 Portable liquefied gas tank

Publications (2)

Publication Number Publication Date
JP2013184725A JP2013184725A (en) 2013-09-19
JP5420004B2 true JP5420004B2 (en) 2014-02-19

Family

ID=49386517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051153A Expired - Fee Related JP5420004B2 (en) 2012-03-08 2012-03-08 Portable liquefied gas tank

Country Status (1)

Country Link
JP (1) JP5420004B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11987162B2 (en) 2017-01-06 2024-05-21 Dcb Trailer Design, Llc Anti-rollover trailer
US11390337B2 (en) 2017-01-06 2022-07-19 Dcb Trailer Design, Llc Anti-roll over trailer improvements
US11241991B2 (en) 2017-01-06 2022-02-08 Dcb Trailer Design, Llc Anti-roll over trailer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000826A (en) * 1975-10-17 1977-01-04 Rogers Thelmer A Cryogenic transport
US5465753A (en) * 1994-06-21 1995-11-14 Schwartz; John E. Safety vessel and valve assembly
JP2007099192A (en) * 2005-10-07 2007-04-19 Nippon Sharyo Seizo Kaisha Ltd Tank semi-trailer, and tank semi-trailer type road-train
JP4624445B2 (en) * 2008-05-23 2011-02-02 日本車輌製造株式会社 Tank semi-trailer

Also Published As

Publication number Publication date
JP2013184725A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5420004B2 (en) Portable liquefied gas tank
CN109404628A (en) A kind of large-scale pipeline structure
EP3146253B1 (en) Bracketed support for a double walled cryogenic storage vessel
US20130312865A1 (en) Double-wall pipe and production process
CN202912201U (en) Storage and transportation vessel
US8528766B2 (en) Explosion proof and environment protective oil (gas) refueling equipment
US10766396B2 (en) Insulated transportation trailer
US11608939B2 (en) Support structure for shortened cryogenic transport trailer
KR101978332B1 (en) ISO LNG Tank Container
JP6969980B2 (en) Multi robe tank
CN104456060B (en) A kind of railway transportation low-temperature storage-transport container
KR20110122518A (en) A cargo tank having wall with helical wire cellular structure
KR101291659B1 (en) Structure of pump-tower for lng storage tank
CN107585262A (en) The film rhombus LNG containment systems of flat board half
JP2015518127A (en) Pressure tank
JP6020116B2 (en) Unit frame for vehicle frame, frame structure, and vehicle frame
CN208699639U (en) Low temperature liquid transport vehicle tank body inner pressurd vessel
JPS58178096A (en) Improved fiber-glass heat-insulating material for transport type low-temperature tank
CN206798296U (en) Vacuum thermal insulation transports storage tank and fresh milk transport vehicle
JP5536893B2 (en) Cross-shaped panel
JP2013193690A (en) Tanker truck
ES1174784U (en) Tank truck for the transport anti-hit of ariete of cryogenic fluids, liquefied gases, hydrocarbons to high pressure or low pressure. (Machine-translation by Google Translate, not legally binding)
JP2023533924A (en) Devices for storing cryogenic fluids and vehicles containing such devices
CN102261645A (en) Steam heat accumulator and method for fixing thermal insulating layer thereof
RU213745U1 (en) tank container

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5420004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees