JP5419488B2 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP5419488B2
JP5419488B2 JP2009033879A JP2009033879A JP5419488B2 JP 5419488 B2 JP5419488 B2 JP 5419488B2 JP 2009033879 A JP2009033879 A JP 2009033879A JP 2009033879 A JP2009033879 A JP 2009033879A JP 5419488 B2 JP5419488 B2 JP 5419488B2
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric element
piezoelectric
piezoelectric film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009033879A
Other languages
Japanese (ja)
Other versions
JP2010192585A (en
Inventor
浩一 習田
光晴 千葉
豪 水野
洋 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009033879A priority Critical patent/JP5419488B2/en
Publication of JP2010192585A publication Critical patent/JP2010192585A/en
Application granted granted Critical
Publication of JP5419488B2 publication Critical patent/JP5419488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

本発明は、カメラの手振れ補正システム、ナビゲーションシステム、姿勢制御システム用のジャイロセンサを始めとし、機器の振動衝撃検知や防犯システム用衝撃センサ等に用いられる圧電素子に関するものである。   The present invention relates to a piezoelectric element used for a gyro sensor for a camera shake correction system, a navigation system, and a posture control system, as well as for a vibration shock detection of a device, a shock sensor for a security system, and the like.

圧電材料は電気−機械変換効率が高く、小型で高感度なセンサ用圧電素子を実現できることから、様々なセンサに利用されている。近年では、数μm厚みの圧電膜を大面積の基板に再現性良く成膜する技術や圧電膜を微細に加工する技術も確立され、ますます超小型なセンサ用圧電素子が量産性良く製造できるようになってきた。   Piezoelectric materials have high electro-mechanical conversion efficiency, and can be used for various sensors because they can realize small and highly sensitive piezoelectric elements for sensors. In recent years, a technology to form a piezoelectric film with a thickness of several μm on a large-area substrate with good reproducibility and a technology to finely process the piezoelectric film have been established, and more and more small piezoelectric elements for sensors can be manufactured with high productivity. It has become like this.

こうした中、新たな技術的課題も生じてきている。その一つに電極間の容量結合があげられる。センサ用圧電素子にはしばしば複数の電極が形成されるが、それぞれの電極の間隔が極めて狭くなってきていることと、特に圧電性が高いチタン酸ジルコン酸鉛(PZT)等の圧電体は誘電率が高いことから、各電極間の容量が増大し、一つの電極で取り扱う電気信号が他の電極に飛び込む、いわゆる容量結合が大きくなり、センサ性能への影響が無視できなくなってきている。   Under such circumstances, new technical issues have also arisen. One of them is capacitive coupling between electrodes. A plurality of electrodes are often formed on a piezoelectric element for a sensor. The distance between the electrodes is becoming extremely narrow, and a piezoelectric material such as lead zirconate titanate (PZT), which has particularly high piezoelectricity, is a dielectric. Since the rate is high, the capacitance between the electrodes increases, so-called capacitive coupling in which an electric signal handled by one electrode jumps to the other electrode becomes large, and the influence on the sensor performance cannot be ignored.

容量結合について特許文献1を用いてもう少し詳しく説明する。図8は、従来例1に係る圧電素子の図を示す。図8(a)は斜視図、図8(b)は断面図である。説明をわかりやすくするため圧電素子の構造は、片端側が振動自由であり、片端側が固定されているカンチレバー状の圧電素子とした。斜視図は、片端側が自由である方向から見たものである(片端固定側は図示せず)。基板509上に下部電極504、圧電膜506、上部電極501、502、503が形成されている。尚、圧電膜506は矢印が示す通り厚み方向に予め分極処理が施されている。こうした構成とすることで、下部電極504と上部電極503との間に交流電圧を印加すると、圧電膜成膜面に対し垂直方向に圧電素子を屈曲振動させることができ、また下部電極504と上部電極501及び上部電極502との間に各々逆位相の交流電圧を印加すると、圧電膜成膜面に対し平行な方向に屈曲振動できることが従来から知られている。例えばジャイロ用圧電素子にこの圧電素子を利用するには、組み合わせはいくつか考えられるが、上部電極501及び上部電極502を駆動用電極とし、上部電極503を検出用電極とすることで実現できる。ここで、圧電素子の小型化を考えた場合、振動振幅の大きさを維持するために圧電素子の共振周波数を上げないようにする必要がある。共振周波数は圧電素子の長さの二乗に反比例し、幅や厚みに比例するため、共振周波数を維持したまま小型化すると圧電素子は細長い形状になっていく。一方、配線間容量は隣り合う電極の間隔に反比例し長さに比例するため、圧電素子を小型化すると配線間容量は増大することとなる。即ち、圧電素子を小型化すればするほど容量結合が大きくなり、上部電極501及び上部電極502に加えた交流電圧が、各々の隣に配置された上部電極503に多量に(強く)流れ込むこととなり、検出出力の安定化を損なうことにつながる。   The capacitive coupling will be described in a little more detail with reference to Patent Document 1. FIG. 8 is a diagram of a piezoelectric element according to Conventional Example 1. FIG. 8A is a perspective view, and FIG. 8B is a cross-sectional view. In order to make the explanation easy to understand, the structure of the piezoelectric element is a cantilever-like piezoelectric element in which one end side is free to vibrate and one end side is fixed. The perspective view is viewed from a direction in which one end side is free (the one end fixed side is not shown). A lower electrode 504, a piezoelectric film 506, and upper electrodes 501, 502, and 503 are formed on the substrate 509. The piezoelectric film 506 is previously polarized in the thickness direction as indicated by the arrow. With such a configuration, when an AC voltage is applied between the lower electrode 504 and the upper electrode 503, the piezoelectric element can be bent and oscillated in a direction perpendicular to the piezoelectric film forming surface, and the lower electrode 504 and the upper electrode 503 can be vibrated. It has been conventionally known that when an AC voltage having an opposite phase is applied between the electrode 501 and the upper electrode 502, bending vibration can be performed in a direction parallel to the piezoelectric film forming surface. For example, in order to use this piezoelectric element for a gyro piezoelectric element, several combinations are conceivable, but it can be realized by using the upper electrode 501 and the upper electrode 502 as drive electrodes and the upper electrode 503 as a detection electrode. Here, when considering miniaturization of the piezoelectric element, it is necessary not to increase the resonance frequency of the piezoelectric element in order to maintain the magnitude of the vibration amplitude. Since the resonance frequency is inversely proportional to the square of the length of the piezoelectric element and proportional to the width and thickness, the piezoelectric element becomes an elongated shape when it is downsized while maintaining the resonance frequency. On the other hand, since the capacitance between wirings is inversely proportional to the interval between adjacent electrodes and proportional to the length, the capacitance between wirings increases when the piezoelectric element is miniaturized. That is, the smaller the piezoelectric element is, the larger the capacitive coupling becomes, and the AC voltage applied to the upper electrode 501 and the upper electrode 502 flows into a large amount (strongly) into the upper electrode 503 disposed next to each other. This leads to a loss of stabilization of the detection output.

特許文献1の容量結合の影響に対する対策としては、例えば特許文献2、3記載の容量結合低減の従来技術が知られている。この従来技術は主にジャイロセンサ用圧電素子に関するものであり、圧電素子における圧電膜を離間配置することで容量結合を低減でき、印加された角速度に対する検出出力を安定化できる技術である。   As a countermeasure against the influence of capacitive coupling in Patent Document 1, for example, conventional techniques for reducing capacitive coupling described in Patent Documents 2 and 3 are known. This prior art mainly relates to a piezoelectric element for a gyro sensor, and is a technique that can reduce capacitive coupling by stabilizing the piezoelectric film in the piezoelectric element and stabilize the detection output with respect to the applied angular velocity.

容量結合低減の対策として、圧電素子の横方向に離間配置したことが、特許文献2に記載されている。図9は、従来例2に係る圧電素子の図を示す。図9(a)は斜視図、図9(b)は断面図である。基板519上に下部電極514、圧電膜516、上部電極511、512、513が形成されている。尚、圧電膜516は矢印が示す通り厚み方向に予め分極処理が施されている。上部電極511、512、513の各配線間における圧電膜516及び下部電極514を削りとり、上部電極511、512、513の各々を圧電素子の幅方向に離間配置している。これにより各配線間の間隔が広くなり、配線間容量を抑え、つまりは容量結合が抑えられ、検出出力の安定化につなげている。   Patent Document 2 describes that the piezoelectric elements are spaced apart in the lateral direction as a measure for reducing capacitive coupling. FIG. 9 is a diagram of a piezoelectric element according to Conventional Example 2. FIG. 9A is a perspective view, and FIG. 9B is a cross-sectional view. A lower electrode 514, a piezoelectric film 516, and upper electrodes 511, 512, and 513 are formed on the substrate 519. The piezoelectric film 516 is previously polarized in the thickness direction as indicated by the arrow. The piezoelectric film 516 and the lower electrode 514 between the wirings of the upper electrodes 511, 512, and 513 are scraped, and the upper electrodes 511, 512, and 513 are spaced apart from each other in the width direction of the piezoelectric element. As a result, the space between the wires is widened, the capacitance between the wires is suppressed, that is, capacitive coupling is suppressed, and the detection output is stabilized.

更に、容量結合低減の対策として、圧電素子の長手方向に離間配置すると同時に、上部電極の引き回しを絶縁体にすることが、特許文献3に記載されている。図10は、従来例3に係る圧電素子の図を示す。図10(a)は斜視図、図10(b)は断面図である。基板529上に下部電極524、圧電膜526、上部電極521、522、523が形成されている。尚、圧電膜526は矢印が示す通り厚み方向に予め分極処理が施されている。上部電極523は、上部電極521、522と圧電素子の長手方向に離間配置すると同時に、上部電極523の引き回しは絶縁体528上にすることで、配線間容量を抑え、つまりは容量結合が抑えられ、検出出力の安定化につなげている。   Further, Patent Document 3 describes that as a measure for reducing capacitive coupling, the piezoelectric element is spaced apart in the longitudinal direction and at the same time, the upper electrode is routed as an insulator. FIG. 10 shows a diagram of a piezoelectric element according to Conventional Example 3. FIG. 10A is a perspective view, and FIG. 10B is a cross-sectional view. A lower electrode 524, a piezoelectric film 526, and upper electrodes 521, 522, and 523 are formed on the substrate 529. The piezoelectric film 526 is previously polarized in the thickness direction as shown by the arrow. The upper electrode 523 is spaced apart from the upper electrodes 521 and 522 in the longitudinal direction of the piezoelectric element, and at the same time, the upper electrode 523 is routed on the insulator 528, thereby suppressing inter-wiring capacitance, that is, capacitive coupling. This leads to stabilization of the detection output.

特開2005−227110号公報JP 2005-227110 A 特開2005−249395号公報JP 2005-249395 A 特開2003−227719号公報JP 2003-227719 A

しかしながら、上部電極の離間配置は圧電素子の駆動検出効率の低下を招くこととなる。具体的には、図8〜図9において、上部電極503や上部電極513は圧電膜成膜面に対し垂直方向に生じる圧電素子の屈曲振動を駆動もしくは検出するためのものであるため、圧電素子の幅全面に形成されるのが、効率面においては好ましい。しかし、幅方向に圧電膜を離間配置すれば、その分、検出効率は低下する。また上部電極511、512、513の各配線間における圧電膜516及び下部電極514を削りとると、圧電膜516が加工時のダメージにより性能劣化を起こして、更に圧電素子駆動検出効率を低下させる。   However, the disposition of the upper electrode causes a decrease in the drive detection efficiency of the piezoelectric element. Specifically, in FIGS. 8 to 9, the upper electrode 503 and the upper electrode 513 are for driving or detecting bending vibration of the piezoelectric element generated in a direction perpendicular to the piezoelectric film forming surface. It is preferable in terms of efficiency to form the entire width of the. However, if the piezoelectric films are spaced apart in the width direction, the detection efficiency decreases accordingly. If the piezoelectric film 516 and the lower electrode 514 between the wirings of the upper electrodes 511, 512, and 513 are removed, the performance of the piezoelectric film 516 is deteriorated due to damage during processing, and the piezoelectric element drive detection efficiency is further reduced.

また、図10において、上部電極521、522を圧電素子の長手方向に離間配置すると圧電素子の屈曲振動の歪発生箇所に適正に配置できなくなり、これもまた圧電素子の駆動検出効率を低下させることになる。尚、基板の表裏に離間配置することも考えられるが、圧電素子の駆動検出効率の低下や容量結合は防げるものの、基板の表裏に離間した上部電極同士の位置合わせ精度が悪くなり、検出出力の安定化にはつながらない。   Further, in FIG. 10, if the upper electrodes 521 and 522 are spaced apart in the longitudinal direction of the piezoelectric element, they cannot be properly placed at the location where the bending vibration of the piezoelectric element is generated, which also reduces the drive detection efficiency of the piezoelectric element. become. Although it is conceivable to place the electrodes apart from each other on the front and back of the substrate, the accuracy of alignment between the upper electrodes separated on the front and back of the substrate is deteriorated, although the drive detection efficiency and capacitive coupling of the piezoelectric element can be prevented. It does not lead to stabilization.

以上のように上部電極の離間配置は、圧電素子の駆動検出効率の低下につながると言った問題があった。そこで本発明は、圧電素子の駆動検出効率の低下を招くことなく、且つ容量結合を少なくすることで、感度が高く、出力が安定な即ちS/Nに優れるセンサ用圧電素子の提供を目的とする。   As described above, there is a problem that the disposition of the upper electrode leads to a decrease in drive detection efficiency of the piezoelectric element. Therefore, the present invention has an object to provide a piezoelectric element for a sensor that has high sensitivity and stable output, that is, excellent S / N, without reducing the drive detection efficiency of the piezoelectric element and reducing capacitive coupling. To do.

上記の課題を解決するために、本発明の圧電素子は、圧電膜に少なくとも1層の埋め込み電極を設け、埋め込み電極の内の少なくとも1層を電気的に安定な電位である基準電位に接続した基準電極とする点と、圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出するための電極と圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出するための電極によって基準電極を厚み方向に挟んだ状態となるように構成したものである。この構成により、電気的に安定な電位に接続した埋め込み電極を挟んだ電極同士の容量結合は、ほぼ無くすことができると同時に圧電素子の変位歪が発生する箇所に電極を理想的に配置でき、圧電素子の駆動検出効率を低下させずに出力を安定にすることが可能となる。   In order to solve the above-described problems, in the piezoelectric element of the present invention, at least one embedded electrode is provided in the piezoelectric film, and at least one of the embedded electrodes is connected to a reference potential that is an electrically stable potential. A reference electrode, an electrode for driving or detecting displacement in a direction parallel to the film-forming surface of the piezoelectric film, and an electrode for driving or detecting displacement in a direction perpendicular to the film-forming surface of the piezoelectric film Thus, the reference electrode is sandwiched in the thickness direction. With this configuration, the capacitive coupling between the electrodes sandwiching the embedded electrode connected to an electrically stable potential can be almost eliminated, and at the same time, the electrode can be ideally arranged at a location where displacement distortion of the piezoelectric element occurs, The output can be stabilized without reducing the drive detection efficiency of the piezoelectric element.

すなわち、本発明によれば、基板上に、下部電極、圧電膜、上部電極が形成され、前記圧電膜の成膜面に対し平行な方向及び垂直な方向の変位を駆動もしくは検出を可能とした圧電素子であって、前記圧電膜に少なくとも1層の埋め込み電極を設け、前記埋め込み電極の内の少なくとも1層を電気的に安定な電位である基準電位に接続した基準電極とし、前記上部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出し、前記下部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出する、または、前記上部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出し、前記下部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出することを特徴とする圧電素子が得られる。 That is, according to the present invention, on a substrate, a lower electrode, a piezoelectric film, an upper electrode is formed, to enable the drive or detecting the displacement of the directions parallel and perpendicular to the deposition surface of the piezoelectric film A piezoelectric element, wherein at least one embedded electrode is provided on the piezoelectric film, and at least one of the embedded electrodes is a reference electrode connected to a reference potential which is an electrically stable potential, and the upper electrode and An alternating voltage is applied between the reference electrodes to drive or detect displacement in a direction parallel to the film formation surface of the piezoelectric film, and an alternating voltage is applied between the lower electrode and the reference electrode, Drive or detect a displacement in a direction perpendicular to the surface on which the piezoelectric film is formed , or apply an AC voltage between the upper electrode and the reference electrode so as to be perpendicular to the surface on which the piezoelectric film is formed. Drive or detect directional displacement , By applying an AC voltage between the lower electrode and the reference electrode, the piezoelectric element is obtained, characterized in that the driving or detecting a direction parallel displacement relative to the film formation surface of the piezoelectric film.

本発明は、圧電膜に少なくとも1層の埋め込み電極を設け、厚み方向に圧電膜を2分割以上することで、圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出するための電極と圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出するための電極とを各々別の層に形成することが可能となり、圧電膜の成膜面に対し垂直な方向に生じる圧電素子の屈曲振動において、電極を離間配置する必要がなくなるので、従来よりも広域に電極を形成できる。即ち、効率よく高い感度が得られるセンサ用圧電素子を提供できる。   The present invention provides an electrode for driving or detecting displacement in a direction parallel to the film formation surface of the piezoelectric film by providing at least one embedded electrode in the piezoelectric film and dividing the piezoelectric film into two or more in the thickness direction. And electrodes for driving or detecting displacement in the direction perpendicular to the film formation surface of the piezoelectric film can be formed in different layers, and the piezoelectric generated in the direction perpendicular to the film formation surface of the piezoelectric film. In the bending vibration of the element, it is not necessary to arrange the electrodes apart from each other, so that the electrodes can be formed in a wider area than before. That is, it is possible to provide a piezoelectric element for a sensor that can obtain high sensitivity efficiently.

更に、埋め込み電極の内、少なくとも1層を電気的に安定な電位である基準電位に接続した基準電極とし、圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出するための電極と圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出するための電極によって基準電極を厚み方向に挟んだ構成としたことで、圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出するための電極と圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出するための電極との間に発生する容量結合は、ほぼ無くすことができる。各々の電極の間隔は、圧電膜の厚みで決まるため通常極めて狭くなり、配線間容量は増加することとなるが、各々の電極の間には安定した基準電位を配置させるため、一方の電極が取り扱う信号が発生する電界が基準電極で遮断され、他方の電極に影響を及ぼすことを極めて少なくできる。尚、圧電性の高い材料の代表としてあげられるPZT等の比誘電率は、空気やシリコン等の基板材料と比較し数百倍〜数千倍と高いため、圧電膜にPZTを使用した場合電極間の容量結合による影響が大きく現れる。そこで、特に本発明の容量結合の低減効果は、圧電膜にPZTを使用した時には、極めて大きなものとなる。即ち、出力が安定なセンサ用圧電素子を提供できる。   Further, at least one of the embedded electrodes is a reference electrode connected to a reference potential that is an electrically stable potential, and an electrode for driving or detecting a displacement in a direction parallel to the film formation surface of the piezoelectric film; By adopting a configuration in which the reference electrode is sandwiched in the thickness direction by an electrode for driving or detecting a displacement in a direction perpendicular to the film formation surface of the piezoelectric film, the displacement in a direction parallel to the film formation surface of the piezoelectric film is reduced. Capacitive coupling generated between the electrode for driving or detecting and the electrode for driving or detecting displacement in the direction perpendicular to the film formation surface of the piezoelectric film can be almost eliminated. Since the distance between the electrodes is determined by the thickness of the piezoelectric film, it is usually extremely narrow, and the capacitance between the wirings is increased. However, in order to place a stable reference potential between the electrodes, The electric field generated by the signal to be handled is interrupted by the reference electrode, and the influence on the other electrode can be extremely reduced. The relative dielectric constant of PZT and the like, which is a representative of highly piezoelectric materials, is several hundred to several thousand times higher than that of a substrate material such as air or silicon. Therefore, when PZT is used for the piezoelectric film, an electrode The effect of capacitive coupling between them appears greatly. Therefore, the effect of reducing the capacitive coupling of the present invention is particularly great when PZT is used for the piezoelectric film. That is, it is possible to provide a sensor piezoelectric element with a stable output.

更に、各電極や各圧電膜層の加工形成において、基板の表裏に上部電極を離間して配置する方法が考えられるが、そのためには精度の出しにくい基板両面からの位置合わせ加工が必要となってくる。しかし、本発明は、精度が出し難い両面からの位置合わせを不要とし、片側面から位置合わせのみで加工形成することが可能なため、圧電素子に対し高精度に電極を配置させることができ、出力が安定なセンサ用圧電素子を提供できる。   Furthermore, in processing and forming each electrode and each piezoelectric film layer, a method of arranging the upper electrode separately on the front and back sides of the substrate is conceivable, but this requires alignment processing from both sides of the substrate that is difficult to obtain accuracy. Come. However, the present invention eliminates the need for positioning from both sides, which is difficult to obtain accuracy, and can be processed and formed only by positioning from one side, so that the electrodes can be arranged with high accuracy with respect to the piezoelectric element, A piezoelectric element for a sensor having a stable output can be provided.

本発明の実施の形態1に係る圧電素子の図を示す。図1(a)は斜視図、図1(b)は断面図である。The figure of the piezoelectric element which concerns on Embodiment 1 of this invention is shown. 1A is a perspective view, and FIG. 1B is a cross-sectional view. 本発明の実施の形態2に係る圧電素子の図を示す。図2(a)は斜視図、図2(b)は断面図である。The figure of the piezoelectric element which concerns on Embodiment 2 of this invention is shown. 2A is a perspective view, and FIG. 2B is a cross-sectional view. 本発明の実施の形態3に係る圧電素子の図を示す。図3(a)は斜視図、図3(b)は断面図である。The figure of the piezoelectric element which concerns on Embodiment 3 of this invention is shown. 3A is a perspective view, and FIG. 3B is a cross-sectional view. 本発明の実施例に係る圧電素子の図を示す。図4(a)は上面図及び回路結線図、図4(b)は図4(a)のA−A断面図、図4(c)は図4(a)のB−B断面図である。The figure of the piezoelectric element which concerns on the Example of this invention is shown. 4A is a top view and circuit connection diagram, FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A, and FIG. 4C is a cross-sectional view taken along the line BB in FIG. . 本発明の実施例に係る圧電素子基板加工後の図を示す。図5(a)は上面図、図5(b)は図5(a)のC−C断面図である。The figure after the piezoelectric element board | substrate processing which concerns on the Example of this invention is shown. 5A is a top view, and FIG. 5B is a cross-sectional view taken along the line CC in FIG. 5A. 圧電素子の感度測定結果を示す。The sensitivity measurement result of a piezoelectric element is shown. 駆動信号の検出電極への飛び込み量の測定結果を示す。The measurement result of the jump amount of the drive signal to the detection electrode is shown. 従来例1に係る圧電素子の図を示す。図8(a)は斜視図、図8(b)は断面図である。The figure of the piezoelectric element which concerns on the prior art example 1 is shown. FIG. 8A is a perspective view, and FIG. 8B is a cross-sectional view. 従来例2に係る圧電素子の図を示す。図9(a)は斜視図、図9(b)は断面図である。The figure of the piezoelectric element which concerns on the prior art example 2 is shown. FIG. 9A is a perspective view, and FIG. 9B is a cross-sectional view. 従来例3に係る圧電素子の図を示す。図10(a)は斜視図、図10(b)は断面図である。The figure of the piezoelectric element which concerns on the prior art example 3 is shown. FIG. 10A is a perspective view, and FIG. 10B is a cross-sectional view.

本発明の圧電素子は、圧電膜に少なくとも1層の埋め込み電極を設け、埋め込み電極の内少なくとも1層を電気的に安定な電位である基準電位に接続した基準電極とする点と、圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出するための電極と圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出するための電極によって基準電極を厚み方向に挟んだ状態となるように構成している。   The piezoelectric element according to the present invention is characterized in that at least one embedded electrode is provided in the piezoelectric film, and at least one of the embedded electrodes is used as a reference electrode connected to a reference potential which is an electrically stable potential, The reference electrode is sandwiched in the thickness direction by the electrode for driving or detecting the displacement in the direction parallel to the film formation surface and the electrode for driving or detecting the displacement in the direction perpendicular to the film formation surface of the piezoelectric film. It is comprised so that.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施の形態1)
図1は本発明の実施の形態1に係る圧電素子の図を示す。図1(a)は斜視図、図1(b)は断面図である。基板9上に下部電極3、圧電膜7、埋め込み電極4、圧電膜6、上部電極1、2を形成する。尚、圧電膜6及び圧電膜7は矢印が示す通り厚み方向に予め分極処理を施す。埋め込み電極4は、電気的に安定な電位である基準電位に接続した基準電極とする。
(Embodiment 1)
FIG. 1 shows a diagram of a piezoelectric element according to Embodiment 1 of the present invention. 1A is a perspective view, and FIG. 1B is a cross-sectional view. A lower electrode 3, a piezoelectric film 7, a buried electrode 4, a piezoelectric film 6, and upper electrodes 1 and 2 are formed on a substrate 9. The piezoelectric film 6 and the piezoelectric film 7 are previously polarized in the thickness direction as indicated by arrows. The embedded electrode 4 is a reference electrode connected to a reference potential that is an electrically stable potential.

こうした構成とすることで、電極間の容量結合の影響を少なくすることができる。下部電極3と埋め込み電極4との間に交流電圧を印加すると、圧電膜成膜面に対し垂直方向に圧電素子を屈曲振動させることができ、また埋め込み電極4と上部電極1及び上部電極2との間に各々逆位相の交流電圧を印加すると、圧電膜成膜面に対し平行な方向に屈曲振動できる。   With such a configuration, the influence of capacitive coupling between the electrodes can be reduced. When an AC voltage is applied between the lower electrode 3 and the embedded electrode 4, the piezoelectric element can be bent and vibrated in a direction perpendicular to the piezoelectric film forming surface, and the embedded electrode 4, the upper electrode 1, and the upper electrode 2 When an alternating voltage having an opposite phase is applied between the two, a bending vibration can be generated in a direction parallel to the surface on which the piezoelectric film is formed.

(実施の形態2)
図2は本発明の実施の形態2に係る圧電素子の図を示す。図2(a)は斜視図、図2(b)は断面図である。基板19上に下部電極11及び下部電極12、圧電膜17、埋め込み電極14、圧電膜16、上部電極13を形成する。尚、圧電膜16及び圧電膜17は矢印が示す通り厚み方向に予め分極処理を施す。埋め込み電極は、電気的に安定な電位である基準電位に接続した基準電極とする。
(Embodiment 2)
FIG. 2 shows a diagram of a piezoelectric element according to Embodiment 2 of the present invention. 2A is a perspective view, and FIG. 2B is a cross-sectional view. A lower electrode 11 and a lower electrode 12, a piezoelectric film 17, a buried electrode 14, a piezoelectric film 16, and an upper electrode 13 are formed on a substrate 19. The piezoelectric film 16 and the piezoelectric film 17 are previously polarized in the thickness direction as indicated by arrows. The embedded electrode is a reference electrode connected to a reference potential that is an electrically stable potential.

こうした構成とすることで、電極間の容量結合の影響を少なくすることができる。埋め込み電極14と下部電極11及び下部電極12との間に各々逆位相の交流電圧を印加すると、圧電膜成膜面に対し平行な方向に屈曲振動させることができ、また上部電極13と埋め込み電極14との間に交流電圧を印加すると、圧電膜成膜面に対し垂直方向に圧電素子を屈曲振動させることができる。   With such a configuration, the influence of capacitive coupling between the electrodes can be reduced. When an alternating voltage having an opposite phase is applied between the embedded electrode 14 and the lower electrode 11 and the lower electrode 12, bending vibration can be performed in a direction parallel to the piezoelectric film forming surface, and the upper electrode 13 and the embedded electrode can be vibrated. When an AC voltage is applied between the piezoelectric element 14 and the piezoelectric film forming surface, the piezoelectric element can be bent and vibrated in a direction perpendicular to the piezoelectric film forming surface.

実施の形態2は実施の形態1とほぼ同等の方法で製造できるが、圧電膜の成膜前に下部電極をパターン加工する必要があるため、成膜前の洗浄工程が増える等、若干工程が長くなる。しかし、圧電膜成膜面に対し垂直方向に圧電素子を屈曲振動させる際には、圧電素子は最表層部が最も歪むため、その箇所の圧電を利用できるようになる。つまり、上部電極を圧電膜成膜面に対し垂直方向に圧電素子を屈曲振動させる電極として利用できるようになる。更に、圧電膜成膜面に対し平行方向に圧電素子を屈曲振動させる際にも、圧電素子は最側壁部が最も歪むため、その箇所の圧電を利用できるようになる。即ち、若干コスト高ではあるが、実施の形態1より感度を向上できる。   Although the second embodiment can be manufactured by almost the same method as the first embodiment, it is necessary to pattern the lower electrode before forming the piezoelectric film. become longer. However, when the piezoelectric element is bent and vibrated in the direction perpendicular to the surface on which the piezoelectric film is formed, the outermost layer portion of the piezoelectric element is most distorted, so that the piezoelectric at that location can be used. That is, the upper electrode can be used as an electrode for bending and vibrating the piezoelectric element in a direction perpendicular to the piezoelectric film forming surface. Further, when the piezoelectric element is bent and vibrated in a direction parallel to the surface on which the piezoelectric film is formed, since the piezoelectric element is most distorted at the side wall portion, the piezoelectric element at that location can be used. That is, although the cost is slightly higher, the sensitivity can be improved than in the first embodiment.

(実施の形態3)
図3は本発明の実施の形態3に係る圧電素子の図を示す。図3(a)は斜視図、図3(b)は断面図である。基板29上に下部電極25、圧電膜28、埋め込み電極21、22、圧電膜27、埋め込み電極24、圧電膜26、上部電極23を形成する。圧電膜26、圧電膜27及び圧電膜28は矢印が示す通り厚み方向に予め分極処理を施す。尚、下部電極25、埋め込み電極24は、電気的に安定な電位である基準電位に接続した基準電極とする。
(Embodiment 3)
FIG. 3 shows a diagram of a piezoelectric element according to Embodiment 3 of the present invention. 3A is a perspective view, and FIG. 3B is a cross-sectional view. A lower electrode 25, a piezoelectric film 28, embedded electrodes 21 and 22, a piezoelectric film 27, an embedded electrode 24, a piezoelectric film 26, and an upper electrode 23 are formed on a substrate 29. The piezoelectric film 26, the piezoelectric film 27, and the piezoelectric film 28 are previously polarized in the thickness direction as indicated by arrows. The lower electrode 25 and the buried electrode 24 are reference electrodes connected to a reference potential that is an electrically stable potential.

こうした構成とすることで、電極間の容量結合の影響を少なくすることができる。下部電極25及び埋め込み電極24と埋め込み電極21及び埋め込み電極22との間に各々逆位相の交流電圧を印加すると、圧電膜成膜面に対し平行な方向に屈曲振動させることができ、また上部電極23と埋め込み電極24との間に交流電圧を印加すると、圧電膜成膜面に対し垂直方向に圧電素子を屈曲振動させることができる。   With such a configuration, the influence of capacitive coupling between the electrodes can be reduced. When an AC voltage having an opposite phase is applied between the lower electrode 25 and the embedded electrode 24 and the embedded electrode 21 and the embedded electrode 22, it can be bent and vibrated in a direction parallel to the piezoelectric film forming surface. When an AC voltage is applied between the electrode 23 and the embedded electrode 24, the piezoelectric element can be flexibly vibrated in a direction perpendicular to the surface on which the piezoelectric film is formed.

実施の形態3は実施の形態2とほぼ同等の方法で製造できるが、圧電膜の成膜層数が増える等、若干工程が長くなる。しかし、圧電膜成膜面に対し水平方向に圧電素子を屈曲振動させる際には、圧電膜27と圧電膜28が利用でき、より大きな駆動振幅を得られるようになる。即ち、コスト高ではあるが、実施の形態2より更に感度を向上できる。   The third embodiment can be manufactured by a method substantially equivalent to that of the second embodiment, but the process is slightly longer, such as an increase in the number of piezoelectric film layers. However, when the piezoelectric element is bent and vibrated in the horizontal direction with respect to the surface on which the piezoelectric film is formed, the piezoelectric film 27 and the piezoelectric film 28 can be used, and a larger driving amplitude can be obtained. That is, although the cost is high, the sensitivity can be further improved as compared with the second embodiment.

実施の形態3のように圧電膜の層数をあげることで感度を向上させることができることは言うまでもないため、これ以上の多層膜についての説明を省略する。   Needless to say, the sensitivity can be improved by increasing the number of layers of the piezoelectric film as in the third embodiment, and thus the description of the multilayer film beyond this is omitted.

ジャイロセンサ用圧電素子に本発明の実施の形態1に係る圧電素子を利用する場合について説明する。図4は本発明の実施例に係る圧電素子の図を示す。図4(a)は上面図及び回路結線図、図4(b)は図4(a)のA−A断面図、図4(c)は図4(a)のB−B断面図である。圧電素子には各電極を回路に結線できるように入出力パッドを形成し、圧電素子の入出力パッドと反対側端部が自由に屈曲振動できるよう圧電素子を浮かせ入出力パッド周辺部10にて支持固定する。埋め込み電極4は、入出力パット周辺部10において埋め込み電極4上の圧電膜6及び上部電極1及び上部電極2を除去し表面に露出させている。同様に、下部電極3も入出力パット周辺部10において表面に露出させている。   The case where the piezoelectric element according to the first embodiment of the present invention is used as the gyro sensor piezoelectric element will be described. FIG. 4 shows a diagram of a piezoelectric element according to an embodiment of the present invention. 4A is a top view and circuit connection diagram, FIG. 4B is a cross-sectional view taken along the line AA in FIG. 4A, and FIG. 4C is a cross-sectional view taken along the line BB in FIG. . An input / output pad is formed on the piezoelectric element so that each electrode can be connected to a circuit, and the piezoelectric element is floated so that the end opposite to the input / output pad of the piezoelectric element can bend and vibrate freely. Support and fix. The embedded electrode 4 is exposed to the surface by removing the piezoelectric film 6, the upper electrode 1, and the upper electrode 2 on the embedded electrode 4 in the peripheral portion 10 of the input / output pad. Similarly, the lower electrode 3 is also exposed on the surface at the input / output pad peripheral portion 10.

上部電極1及び上部電極2に各々逆位相で圧電素子の屈曲振動の共振周波数に略一致する交流電圧を印加できるよう自励発信回路101に接続する。下部電極3は電流検出増幅回路102に接続し、下部電極に発生する電荷を電流検出増幅回路102にて増幅した後、同期検波整流回路103を経由し出力端子105を設ける構成とする。尚、同期検波整流回路103では、電流検出増幅回路102にて増幅した信号を自励発信回路101の動作周波数で検波し他の周波数帯域のノイズを除去した後、検出角速度の周波数帯域を考慮したカットオフ周波数のローパスフィルタで整流され、動作周波数を含む高い周波数成分のノイズも除去して出力させる。また、埋め込み電極4は、電気的に安定な電位有する基準電圧回路104に接続する。   The self-excited oscillation circuit 101 is connected to the upper electrode 1 and the upper electrode 2 so that an alternating voltage substantially in phase with the resonance frequency of the bending vibration of the piezoelectric element can be applied to the upper electrode 1 and the upper electrode 2. The lower electrode 3 is connected to the current detection amplifier circuit 102, and after the charge generated in the lower electrode is amplified by the current detection amplifier circuit 102, the output terminal 105 is provided via the synchronous detection rectifier circuit 103. The synchronous detection rectifier circuit 103 detects the signal amplified by the current detection amplifier circuit 102 at the operating frequency of the self-excited transmission circuit 101 and removes noise in other frequency bands, and then considers the frequency band of the detected angular velocity. It is rectified by a low-pass filter with a cut-off frequency, and noise of high frequency components including the operating frequency is also removed and output. The embedded electrode 4 is connected to a reference voltage circuit 104 having an electrically stable potential.

このように本発明の実施例に係る圧電素子を前述の回路に結線することで、予め圧電素子を圧電膜の成膜面に対し平行な方向に圧電素子の共振周波数で屈曲振動させることができる。同時に、圧電素子の長手方向を中心とした角速度が加わった際、コリオリ力の作用により新に発生する圧電膜に垂直な方向の屈曲振動の振幅も出力端子105から得られる直流電圧の変化として知ることができ、つまりジャイロセンサとして機能する。   As described above, by connecting the piezoelectric element according to the embodiment of the present invention to the above-described circuit, the piezoelectric element can be bent and vibrated in advance in the direction parallel to the film formation surface of the piezoelectric film at the resonance frequency of the piezoelectric element. . At the same time, when an angular velocity centered on the longitudinal direction of the piezoelectric element is applied, the amplitude of the bending vibration in the direction perpendicular to the piezoelectric film newly generated by the action of the Coriolis force is also known as a change in the DC voltage obtained from the output terminal 105. That is, it functions as a gyro sensor.

本発明の実施の形態1に係る圧電素子の構造は、片持ち支持バリであるカンチレバー形状としたが、本発明の圧電素子の構造は、前述の構造に限定されるものではない。屈曲振動のモードが1波長共振でも何次の共振であっても構わないし、捻り振動でも構わない。更には、各振動を安定化させるために圧電素子を音さ形状としても構わないし、多軸の角速度を検出できるように振動部を複数設ける形状であっても構わない。   Although the structure of the piezoelectric element according to Embodiment 1 of the present invention is a cantilever shape that is a cantilever support burr, the structure of the piezoelectric element of the present invention is not limited to the above-described structure. The bending vibration mode may be one-wavelength resonance, any order of resonance, or torsional vibration. Furthermore, the piezoelectric element may have a sound shape in order to stabilize each vibration, or may have a shape in which a plurality of vibration parts are provided so as to detect multiaxial angular velocities.

本発明の構成の重要な点は、圧電膜に少なくとも1層の埋め込み電極を設け、埋め込み電極の内、少なくとも1層を電気的に安定な電位である基準電位に接続した基準電極とする点と、圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出するための電極と圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出するための電極によって基準電極を厚み方向に挟んだ構成とした点にある。   The important point of the structure of the present invention is that a piezoelectric film is provided with at least one buried electrode, and at least one of the buried electrodes is used as a reference electrode connected to a reference potential which is an electrically stable potential. The reference electrode is formed in the thickness direction by an electrode for driving or detecting a displacement in a direction parallel to the film formation surface of the piezoelectric film and an electrode for driving or detecting a displacement in a direction perpendicular to the film formation surface of the piezoelectric film. The point is that it is sandwiched between the two.

即ち、本発明の構成により、圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出するための電極が、圧電素子の屈曲振動等による歪範囲に対し広域に形成できている点と、自励発振回路で生成される駆動信号が、比誘電率の高い圧電膜を還しての容量結合で、検出電極に飛び込まないよう基準電極で電界を遮断している点にある。   That is, according to the configuration of the present invention, the electrode for driving or detecting the displacement in the direction perpendicular to the film formation surface of the piezoelectric film can be formed over a wide range with respect to the strain range caused by the bending vibration of the piezoelectric element. The drive signal generated by the self-excited oscillation circuit is that the electric field is blocked by the reference electrode so as not to jump into the detection electrode by capacitive coupling by returning the piezoelectric film having a high relative dielectric constant.

本発明の実施例の製造工程例を以下に説明する。図5は、本発明の実施例に係る圧電素子基板加工後の図を示す。図5(a)は上面図、図5(b)は図5(a)のC−C断面図である。まず、SOI(シリコン・オン・インシュレーター)基板212を用意する。基板サイズは4インチとした。厚みは、活性層(基板)209のSiを100μm、埋め込み酸化膜層210のSiO2を2μm、支持層211のSiを400μmとした。厚みに関しては、活性層209が振動部となるため所望の寸法にする必要があるが、埋め込み酸化膜層210及び支持層211は、工程中での基板の破損やソリによる加工精度劣化、後で述べるエッチングの加工性等を考慮した任意の寸法で構わない。 An example of the manufacturing process of the embodiment of the present invention will be described below. FIG. 5 shows a view after processing the piezoelectric element substrate according to the embodiment of the present invention. 5A is a top view, and FIG. 5B is a cross-sectional view taken along the line CC in FIG. 5A. First, an SOI (silicon on insulator) substrate 212 is prepared. The substrate size was 4 inches. The thicknesses of the active layer (substrate) 209 were Si of 100 μm, the buried oxide film layer SiO 2 of 2 μm, and the support layer 211 of Si of 400 μm. Regarding the thickness, since the active layer 209 becomes a vibration part, it is necessary to make it a desired dimension. However, the buried oxide film layer 210 and the support layer 211 are damaged in the process in the process or deteriorated in processing accuracy due to warping. Any dimensions may be used in consideration of the etching processability described.

次に、SOI基板212に下部電極203、圧電膜207、埋め込み電極204、圧電膜206、上部電極201の順で成膜する。尚、予めSOI基板212の表面は、Siの下部電極層への拡散を防ぐため、熱処理により1μm厚程度のSiO2層を形成しておくのが好ましい。下部電極203は、数十nm厚のTi上に300nm厚のPtをスパッタで成膜した。続いて最初の圧電膜207として2μm厚のPZTをスパッタで成膜した後、埋め込み電極204は、300nm厚のPtをスパッタで成膜した。次の圧電膜206は、最初の圧電膜207と同じ2μm厚のPZTをスパッタで成膜した。最後に上部電極201は、数十nm厚のCr上に400nm厚のAuをスパッタで成膜した。尚、PZT成膜方法に関しては特にスパッタ法に限定されるものではなく、ゾル・ゲル法、MOD法、MOCVD法、エアロゾル堆積法等でも構わない。電極成膜方法についても、蒸着法等でも構わない。 Next, the lower electrode 203, the piezoelectric film 207, the embedded electrode 204, the piezoelectric film 206, and the upper electrode 201 are formed in this order on the SOI substrate 212. In addition, in order to prevent diffusion of Si into the lower electrode layer, it is preferable to form a SiO 2 layer having a thickness of about 1 μm on the surface of the SOI substrate 212 in advance by heat treatment. The lower electrode 203 was formed by sputtering 300 nm thick Pt on several tens of nm thick Ti. Subsequently, after PZT having a thickness of 2 μm was formed by sputtering as the first piezoelectric film 207, the buried electrode 204 was formed by sputtering with Pt having a thickness of 300 nm. The next piezoelectric film 206 was formed by sputtering the same 2 μm-thick PZT as the first piezoelectric film 207. Finally, the upper electrode 201 was formed by sputtering 400 nm thick Au on several tens nm thick Cr. The PZT film forming method is not particularly limited to the sputtering method, and a sol-gel method, an MOD method, an MOCVD method, an aerosol deposition method, or the like may be used. The electrode film forming method may be a vapor deposition method or the like.

成膜後は、レジスト塗布、露光、現像する一般的なフォトリソグラフィー技術を用いレジストを所望のパターンに形成した。露光の際に使用するマスクのパターンは、4インチ基板に数百個の圧電素子を配置させ、各層ごとに所望のレジストパターンに合うマスクを用意する必要がある。レジストパターン形成後は、エッチング加工で不要部を除去した後、レジストを除去、洗浄する工程を各層ごとに繰り返し行うことで所望のパターンに加工した。尚、エッチング方法は、上部電極201をウェットエッチングで、圧電膜206,207、埋め込み電極204、下部電極203、SOI基板212を反応性イオンエッチングで行った。SOI基板212に関しては、活性層209のSi側からボッシュプロセスを用い基板に垂直にディープエッチングし、埋め込み酸化膜層210を利用しエッチングストップさせる。次に、SOI基板212の裏面側、即ち支持層211側から同様に基板に垂直にディープエッチングした。   After the film formation, a resist was formed into a desired pattern using a general photolithography technique for resist application, exposure, and development. As a mask pattern used for exposure, it is necessary to arrange several hundreds of piezoelectric elements on a 4-inch substrate and prepare a mask that matches a desired resist pattern for each layer. After the resist pattern was formed, unnecessary portions were removed by etching, and then the process of removing and cleaning the resist was repeated for each layer to form a desired pattern. The etching method was wet etching for the upper electrode 201 and reactive ion etching for the piezoelectric films 206 and 207, the buried electrode 204, the lower electrode 203, and the SOI substrate 212. As for the SOI substrate 212, deep etching is performed perpendicularly to the substrate from the Si side of the active layer 209 using a Bosch process, and etching is stopped using the buried oxide film layer 210. Next, deep etching was similarly performed perpendicularly to the substrate from the back surface side of the SOI substrate 212, that is, the support layer 211 side.

これらの工法についても、成膜、フォトリソグラフィー、エッチングの順に行う工法に限定されるものではなく、例えば、上部電極等をフォトリソグラフィー、成膜、リフトオフの順で所望のパターンに加工する工法であっても構わないし、上部電極をドライエッチングで加工する工法や、圧電膜をウェットエッチングやミリングで加工する工法であっても構わない。   These methods are not limited to the methods of film formation, photolithography, and etching in that order. For example, the upper electrode is processed into a desired pattern in the order of photolithography, film formation, and lift-off. Alternatively, a method of processing the upper electrode by dry etching or a method of processing the piezoelectric film by wet etching or milling may be used.

各層のパターン加工後は、ダイシング加工にて個片化した後、入出力用パッドを使用し、下部電極と埋め込み電極間、及び埋め込み電極と上部電極間に各々10Vの電圧を印加することで圧電膜を分極処理した。尚、分極の向きに関しても、図1(a)に示す向きに限定されるものでなく、下部電極と埋め込み電極間、及び埋め込み電極と上部電極間が逆向きにしても構わない。分極処理後、入出力用パッドと駆動検出回路とをワイヤーボンディングにて図4(a)に示す結線で接続した。   After pattern processing of each layer, it is separated into pieces by dicing, and then input / output pads are used to apply a voltage of 10 V between the lower electrode and the embedded electrode, and between the embedded electrode and the upper electrode. The membrane was polarized. The direction of polarization is not limited to the direction shown in FIG. 1A, and the lower electrode and the buried electrode, and the buried electrode and the upper electrode may be reversed. After the polarization treatment, the input / output pad and the drive detection circuit were connected by wire bonding as shown in FIG.

本発明の実施の形態1の効果をより明確にするため、図8及び図9に示す従来技術の構造の圧電素子を、本発明の実施の形態1に係る圧電素子を作製した実施例と同一の4インチSOI基板内にて作製し、それぞれ図4(a)に示す回路に結線後、ジャイロセンサの感度と駆動信号の検出電極への飛び込み量を測定した。先ず、図6に圧電素子の感度測定結果を示す。従来例1の測定値301は図8に示す従来例1の圧電素子のものである。また、従来例2の測定値302は図9に示す従来例2の圧電素子のものであり、駆動電極としての上部電極511及び駆動電極としての上部電極512と、検出電極としての上部電極513との間のPZTの圧電膜516を削りこんだ離間配置の対策が施された場合のものである。本発明の測定値303は図1に示す本発明の実施の形態1に係る圧電素子の実施例のものであり、安定した基準電極としての埋め込み電極4を駆動電極としての上部電極1及び駆動電極としての上部電極2と検出電極としての下部電極3とで挟み込んだ場合のものである。本発明の圧電素子の角速度を加えた際の出力端子105の電圧変化、即ち感度が図8及び図9に示す従来例1、2の構造の圧電素子より3倍近く高く得られることがわかる。この結果は、本発明の検出電極の下部電極3の面積が従来技術の圧電素子の検出電極と比較し3倍程度大きいため感度が3倍程度高くなったものと考えられる。   In order to clarify the effect of the first embodiment of the present invention, the piezoelectric element having the conventional structure shown in FIGS. 8 and 9 is the same as the example in which the piezoelectric element according to the first embodiment of the present invention is manufactured. 4 inch SOI substrate, and after connecting to the circuit shown in FIG. 4A, the sensitivity of the gyro sensor and the amount of drive signal jumping into the detection electrode were measured. First, FIG. 6 shows the sensitivity measurement result of the piezoelectric element. The measured value 301 of Conventional Example 1 is that of the piezoelectric element of Conventional Example 1 shown in FIG. Further, the measurement value 302 of the conventional example 2 is that of the piezoelectric element of the conventional example 2 shown in FIG. 9, and includes an upper electrode 511 as a drive electrode, an upper electrode 512 as a drive electrode, and an upper electrode 513 as a detection electrode. This is a case in which a measure for separating the PZT piezoelectric film 516 is taken. The measured value 303 of the present invention is an example of the piezoelectric element according to the first embodiment of the present invention shown in FIG. 1, and the upper electrode 1 and the drive electrode using the embedded electrode 4 as a stable reference electrode as the drive electrode. Between the upper electrode 2 and the lower electrode 3 as a detection electrode. It can be seen that the voltage change of the output terminal 105 when the angular velocity of the piezoelectric element of the present invention is applied, that is, the sensitivity can be obtained nearly three times higher than the piezoelectric elements having the structures of the conventional examples 1 and 2 shown in FIGS. This result is considered that the sensitivity is increased by about 3 times because the area of the lower electrode 3 of the detection electrode of the present invention is about 3 times larger than the detection electrode of the conventional piezoelectric element.

次に、図7に駆動信号の検出電極への飛び込み量の測定結果を示す。従来例1の測定値401は、図8に示す従来例1の圧電素子のものである。また、従来例2の測定値402は、図9に示す従来例2の圧電素子のものであり、駆動電極としての上部電極511及び駆動電極としての上部電極512と、検出電極としての上部電極513との間のPZTの圧電膜516を削りこんだ離間配置の対策が施された場合のものである。本発明の測定値403は図1に示す本発明の圧電素子のものであり、安定した基準電極としての埋め込み電極4を駆動電極としての上部電極1及び駆動電極としての上部電極2と、検出電極としての下部電極3とで挟み込んだ場合のものである。尚、圧電素子の寸法は、いずれも厚み約100μm、幅90μm、長さ3mmであり、上部電極の幅は20μmである。駆動信号の検出電極への飛び込み量の測定に関しては、常温大気中において各振動子の駆動電極としての上部電極1、上部電極501、上部電極511と、基準電極としての埋め込み電極4、下部電極504、下部電極514との間に各々外部から振幅1Vの信号を0.1kHz〜100kHzまで可変させ入力し、検出電極としての下部電極3、上部電極503、上部電極513に、飛び込み発生する電流を帰還容量5pFのチャージアンプで構成された電流検出増幅回路102(図4(a))で電圧に変換して測定した。図7の横軸は入力した信号の周波数を示し、縦軸はチャージアンプで測定された電圧の入力信号に対するレベルを容量結合レベルとして示す。測定結果が示す通り、図8に示す従来例1の圧電素子の測定値401に対し図1及び図9の圧電素子は約40dB程度の容量結合レベル低減が確認できた。従って、本発明の圧電素子は、従来技術より感度が高く、駆動信号の検出電極への飛び込み量も大幅に低減できると言える。   Next, FIG. 7 shows the measurement result of the amount of drive signal jumping into the detection electrode. The measured value 401 of Conventional Example 1 is that of the piezoelectric element of Conventional Example 1 shown in FIG. Further, the measured value 402 of Conventional Example 2 is that of the piezoelectric element of Conventional Example 2 shown in FIG. 9, and includes an upper electrode 511 as a drive electrode, an upper electrode 512 as a drive electrode, and an upper electrode 513 as a detection electrode. This is a case where a measure for separating the PZT piezoelectric film 516 is taken. The measured value 403 of the present invention is that of the piezoelectric element of the present invention shown in FIG. 1, and the upper electrode 1 as the drive electrode, the upper electrode 2 as the drive electrode, the upper electrode 2 as the drive electrode, and the detection electrode When sandwiched between the lower electrode 3 as described above. The dimensions of the piezoelectric element are all about 100 μm in thickness, 90 μm in width, 3 mm in length, and the width of the upper electrode is 20 μm. Regarding the measurement of the amount of drive signal jumping into the detection electrode, the upper electrode 1, the upper electrode 501, the upper electrode 511 as the drive electrode of each vibrator, the buried electrode 4 as the reference electrode, and the lower electrode 504 in the ambient air. A signal with an amplitude of 1 V is input from the outside to the lower electrode 514 in a variable manner from 0.1 kHz to 100 kHz, and a current generated by jumping is fed back to the lower electrode 3, the upper electrode 503, and the upper electrode 513 as detection electrodes. The voltage was measured by the current detection amplifier circuit 102 (FIG. 4A) configured with a charge amplifier having a capacitance of 5 pF. The horizontal axis of FIG. 7 shows the frequency of the input signal, and the vertical axis shows the level of the voltage measured by the charge amplifier with respect to the input signal as the capacitive coupling level. As shown by the measurement results, it was confirmed that the piezoelectric element of FIGS. 1 and 9 had a capacitive coupling level reduction of about 40 dB with respect to the measured value 401 of the conventional example 1 shown in FIG. Therefore, it can be said that the piezoelectric element of the present invention has higher sensitivity than the prior art and can greatly reduce the amount of drive signal jumping into the detection electrode.

以上、本発明に係る圧電素子を実施の形態、実施例を用いて説明したが、この発明は、これらの具体例にのみ限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   As described above, the piezoelectric element according to the present invention has been described using the embodiment and the examples. However, the present invention is not limited to these specific examples, and design changes can be made without departing from the gist of the present invention. Even if it exists, it is included in this invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

本発明は、カメラの手振れ補正システム、ナビゲーションシステム、姿勢制御システム用のジャイロセンサを始とし、機器の振動衝撃検知や防犯システム用衝撃センサ等に利用することができる。   The present invention can be used for gyro sensors for camera shake correction systems, navigation systems, and attitude control systems, as well as for detecting vibration shocks in devices, impact sensors for crime prevention systems, and the like.

1、2、13、23、201、501、502、503、511、512、513、
521、522、523 上部電極
3、11、12、25、203、504、514、524 下部電極
4、14、21、22、24、204 埋め込み電極
6、7、16、17、26、27、28、206、207、506、516、526 圧電膜
9、19、29、509、519、529 基板
10 入出力パッド周辺部
101 自励発振回路
102 電流検出増幅回路
103 同期検波整流回路
104 基準電圧回路
105 出力端子
209 活性層(基板)
210 埋め込み酸化膜層
211 支持層
212 SOI基板
301、401 従来例1の測定値
302、402 従来例2の測定値
303、403 本発明の測定値
528 絶縁体
1, 2, 13, 23, 201, 501, 502, 503, 511, 512, 513,
521, 522, 523 Upper electrode
3, 11, 12, 25, 203, 504, 514, 524 Lower electrode 4, 14, 21, 22, 24, 204 Embedded electrode 6, 7, 16, 17, 26, 27, 28, 206, 207, 506, 516, 526 Piezoelectric films 9, 19, 29, 509, 519, 529 Substrate 10 Input / output pad peripheral portion 101 Self-excited oscillation circuit 102 Current detection amplifier circuit 103 Synchronous detection rectifier circuit 104 Reference voltage circuit 105 Output terminal 209 Active layer (substrate) )
210 Embedded oxide layer 211 Support layer 212 SOI substrates 301 and 401 Measurement values 302 and 402 of Conventional Example 1 Measurement values 303 and 403 of Conventional Example 2 Measurement value 528 of the present invention Insulator

Claims (1)

基板上に、下部電極、圧電膜、上部電極が形成され、前記圧電膜の成膜面に対し平行な方向及び垂直な方向の変位を駆動もしくは検出を可能とした圧電素子であって、前記圧電膜に少なくとも1層の埋め込み電極を設け、前記埋め込み電極の内の少なくとも1層を電気的に安定な電位である基準電位に接続した基準電極とし、前記上部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出し、前記下部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出する、または、前記上部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し垂直な方向の変位を駆動もしくは検出し、前記下部電極と前記基準電極の間に交流電圧を印加して、前記圧電膜の成膜面に対し平行な方向の変位を駆動もしくは検出することを特徴とする圧電素子。 A piezoelectric element having a lower electrode, a piezoelectric film, and an upper electrode formed on a substrate and capable of driving or detecting displacement in a direction parallel to and perpendicular to a film formation surface of the piezoelectric film, An AC voltage is provided between the upper electrode and the reference electrode , wherein at least one embedded electrode is provided on the film, and at least one of the embedded electrodes is used as a reference electrode connected to a reference potential that is an electrically stable potential. To drive or detect displacement in a direction parallel to the film formation surface of the piezoelectric film , and apply an AC voltage between the lower electrode and the reference electrode to Drive or detect a displacement in a direction perpendicular to the upper surface or apply an AC voltage between the upper electrode and the reference electrode to drive or detect a displacement in a direction perpendicular to the film formation surface of the piezoelectric film. The lower electrode and the reference The piezoelectric element characterized by between electrode by applying an AC voltage to drive or detecting a displacement in a direction parallel to the deposition surface of the piezoelectric film.
JP2009033879A 2009-02-17 2009-02-17 Piezoelectric element Expired - Fee Related JP5419488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033879A JP5419488B2 (en) 2009-02-17 2009-02-17 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033879A JP5419488B2 (en) 2009-02-17 2009-02-17 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2010192585A JP2010192585A (en) 2010-09-02
JP5419488B2 true JP5419488B2 (en) 2014-02-19

Family

ID=42818322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033879A Expired - Fee Related JP5419488B2 (en) 2009-02-17 2009-02-17 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP5419488B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150135833A1 (en) * 2012-03-09 2015-05-21 Panasonic Corporation Inertial force sensor
JP2015001420A (en) * 2013-06-14 2015-01-05 セイコーエプソン株式会社 Gyro sensor element, gyro device, electronic device, and mobile
JP5916668B2 (en) * 2013-07-17 2016-05-11 富士フイルム株式会社 Mirror driving device and driving method thereof
JP5916667B2 (en) * 2013-07-17 2016-05-11 富士フイルム株式会社 Mirror driving device and driving method thereof
JP6168486B2 (en) * 2014-01-24 2017-07-26 株式会社村田製作所 Piezoelectric vibrator and piezoelectric vibrator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341661B2 (en) * 1997-12-10 2002-11-05 株式会社村田製作所 Vibrating gyro
JP2005340631A (en) * 2004-05-28 2005-12-08 Sony Corp Piezoelectric element component and electronic equipment
JP2010078500A (en) * 2008-09-26 2010-04-08 Toshiba Corp Inertial sensor

Also Published As

Publication number Publication date
JP2010192585A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
US9835641B2 (en) Angular velocity detection device and angular velocity sensor including the same
JP5419488B2 (en) Piezoelectric element
JP4356479B2 (en) Angular velocity sensor
JP6572892B2 (en) Gyro sensor and electronic equipment
JP5070813B2 (en) Electronic component and manufacturing method thereof
JP4640459B2 (en) Angular velocity sensor
JP5451396B2 (en) Angular velocity detector
WO2010041422A1 (en) Angular velocity sensor element, angular velocity sensor and angular velocity sensor unit both using angular velocity sensor element, and signal detecting method for angular velocity sensor unit
JP2008249490A (en) Angular velocity sensor element and sensor device
JP2012215518A (en) Piezoelectric thin film structure, and angle speed detector
US9488477B2 (en) Vibrating reed, angular velocity sensor, electronic device, moving object, and method for manufacturing vibrating reed
JP2010122141A (en) Mems sensor
JPWO2008010337A1 (en) Sound piece type vibrator and vibration gyro using the same
JP2008224628A (en) Angular velocity sensor and electronic device
JP5050590B2 (en) Angular velocity sensor and electronic device
JP2008141307A (en) Piezoelectric vibrator, its manufacturing method, and physical quantity sensor
JP2001133267A (en) Vibration gyro
JP2010181179A (en) Angular velocity detection device
JP2010223622A (en) Angular velocity detection device
JPH10318758A (en) Piezoelectric micro angular speed sensor and fabrication thereof
JP5421651B2 (en) Triaxial angular velocity detection vibrator, triaxial angular velocity detection device, and triaxial angular velocity detection system
JP3783708B2 (en) Angular velocity sensor
JP3819343B2 (en) Columnar vibrator for piezoelectric vibration gyro and manufacturing method thereof
JP3147870B2 (en) Gyro sensor, driving method and manufacturing method thereof
JP2010043870A (en) Angular velocity sensor element, angular velocity sensor, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R150 Certificate of patent or registration of utility model

Ref document number: 5419488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees