JP5419279B2 - Improved stem cell culture - Google Patents

Improved stem cell culture Download PDF

Info

Publication number
JP5419279B2
JP5419279B2 JP2009546511A JP2009546511A JP5419279B2 JP 5419279 B2 JP5419279 B2 JP 5419279B2 JP 2009546511 A JP2009546511 A JP 2009546511A JP 2009546511 A JP2009546511 A JP 2009546511A JP 5419279 B2 JP5419279 B2 JP 5419279B2
Authority
JP
Japan
Prior art keywords
culture
pluripotent stem
human pluripotent
stem cell
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009546511A
Other languages
Japanese (ja)
Other versions
JP2010516255A (en
JP2010516255A5 (en
Inventor
フェイト ベルゲンダール
ジェイムズ エイ トムソン
Original Assignee
ウィスコンシン アラムニ リサーチ ファンデーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39277243&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5419279(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ウィスコンシン アラムニ リサーチ ファンデーション filed Critical ウィスコンシン アラムニ リサーチ ファンデーション
Publication of JP2010516255A publication Critical patent/JP2010516255A/en
Publication of JP2010516255A5 publication Critical patent/JP2010516255A5/ja
Application granted granted Critical
Publication of JP5419279B2 publication Critical patent/JP5419279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Reproductive Health (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

関連出願の相互参照
本出願は、2007年1月17日に米国仮特許出願第60/880,747号の利益を主張し、この明細書の記載は本願明細書に全体で示されるように含まれるものとする。
This application claims the benefit of US Provisional Patent Application No. 60 / 880,747 on January 17, 2007, the description of which is incorporated herein by reference in its entirety. And

胚幹(ES)細胞は、特性が多能性である、細胞培養の増殖と種々の系列限定細胞集団に対する分化の双方が可能な多能性細胞である(Odorico et al., Stem Cells 19:193-204 (2001))。これらの特性のために、ヒトES細胞を含むES細胞は、種々の機能を行う非常に特異的な細胞型になり得る。
一般に、ヒトES細胞は、高度に均一であり、自己複製能を有し、且つ体のいかなる機能細胞にも分化する能力を有する。自己複製は、適切な条件下、細胞培養内無制限増大の可能性による長期増殖能力につながる。更に、ヒトES細胞が部位特異的でないように分化する場合には、複数の異なる組織型のマーカーを発現する細胞の不均一な集団が得られる(WO 01/51616; Shamblott et al., Proc. Natl. Acad. Sci. USA 98:113 (2001))。これらの特徴は、ヒトES細胞を治療的有用性を有する細胞の産生のためのユニークな均一性出発集団にする。
ヒトES細胞は、科学的且つ商業的研究利用目的の種々の分化した細胞型にするために使用し得る。現在、多くの種類の分化したヒト細胞は、容易に利用可能でなく、試験管内培養内で著しい数に増大することができない。しかしながら、ヒトES細胞は、培養内で無制限に増大することができ、全部ではないが多くの人体の分化した細胞型に分化することができる。このように、ヒトES細胞を誘導して人体の多くの特定の細胞型に分化するために培養技術が開発されている。ヒトES細胞の利用可能性によって、多くの分化したヒト細胞が科学的且つ商業的研究用に著しい数で利用可能になるという可能性が開けてきた。
ヒトES細胞を用いて作業するに当たっての一つの難しさは、バッチ間で異なる傾向がある、動物製品又は血清のような製品を用いずにヒトES細胞の標準培養の条件を開発することである。このように、当該技術は、ヒトES細胞培養の培養条件ができる限り限定されるものであることが必要である。
この要求を解決するために、限定条件(defined condition)で未分化のヒトES細胞の長期培養を可能にした一組の培養条件が最近記載された。Ludwig et al., Nat. Methods 3:637-646 (2006)の記載は本願明細書に全体として示されるように含まれるものとする。Ludwigらは、その中でTeSRTM培地と呼ばれる、培地の各成分が完全に開示され確認されたヒトES細胞の培養のための培地を記載した。それ故、TeSRTMは、ヒトES細胞培養に完全に限定され且つ充分な培地である。TeSRTMは、未分化のヒトES細胞の培養より更に困難な制限である、新規ヒトES細胞系の誘導に用いるのに有効であることもわかった。
細胞が他の細胞と或いは環境における物理的構造と直接接触している環境で増殖する場合、ヒトES細胞は優先的に未分化のままである。他の細胞環境において、ヒトES細胞は、分化をし始めるとともに無限増殖ができなくなる。
このことは、ES細胞培養をクローン化する方法において重要である。本明細書に用いられる“クローニング”は、出発培養物から、理想的には、単個ES細胞から或いは少なくとも極めて少ないES細胞からES細胞培養を開始する方法を意味する。未分化のES細胞のクローン培養を可能にする培養条件は、正常なES細胞の培養と増殖に必要とされるすべての最も厳しい条件になり得る。
Embryonic stem (ES) cells are pluripotent cells that are both pluripotent in nature, capable of both cell culture growth and differentiation into various lineage-restricted cell populations (Odorico et al., Stem Cells 19: 193-204 (2001)). Because of these properties, ES cells, including human ES cells, can be very specific cell types that perform various functions.
In general, human ES cells are highly uniform, have the ability to self-renew, and have the ability to differentiate into any functional cell in the body. Self-renewal leads to a long-term proliferative capacity with the possibility of unlimited growth in cell culture under appropriate conditions. Furthermore, when human ES cells are differentiated so as not to be site-specific, a heterogeneous population of cells expressing markers of different tissue types is obtained (WO 01/51616; Shamblott et al., Proc. Natl. Acad. Sci. USA 98: 113 (2001)). These features make human ES cells a unique homogeneous starting population for the production of cells with therapeutic utility.
Human ES cells can be used to make various differentiated cell types for scientific and commercial research purposes. Currently, many types of differentiated human cells are not readily available and cannot grow to a significant number in vitro culture. However, human ES cells can grow indefinitely in culture and can differentiate into many, but not all, differentiated cell types of the human body. Thus, culture techniques have been developed to induce human ES cells to differentiate into many specific cell types in the human body. The availability of human ES cells has opened up the possibility that many differentiated human cells will be available in significant numbers for scientific and commercial research.
One difficulty in working with human ES cells is to develop standard culture conditions for human ES cells without using products such as animal products or serum, which tend to vary between batches . Thus, this technique requires that the culture conditions of human ES cell culture be as limited as possible.
In order to solve this requirement, a set of culture conditions has recently been described that allow long-term culture of undifferentiated human ES cells under defined conditions. The description of Ludwig et al., Nat. Methods 3: 637-646 (2006) is intended to be included as generally indicated herein. Ludwig et al. Described a medium for culturing human ES cells, referred to therein as TeSR medium, in which each component of the medium was fully disclosed and confirmed. Therefore, TeSR is a completely limited and sufficient medium for human ES cell culture. TeSR has also been shown to be effective for use in the induction of new human ES cell lines, a more difficult limitation than culturing undifferentiated human ES cells.
When cells grow in an environment where they are in direct contact with other cells or with physical structures in the environment, human ES cells preferentially remain undifferentiated. In other cellular environments, human ES cells begin to differentiate and become infinitely proliferating.
This is important in the method of cloning ES cell cultures. “Cloning” as used herein means a method of initiating ES cell culture from a starting culture, ideally from a single ES cell or at least from very few ES cells. Culture conditions that allow clonal culture of undifferentiated ES cells can be all the harshest conditions required for normal ES cell culture and expansion.

第一態様において、本発明は、多能性幹細胞培養物をクローン化する方法であって、培養容器内の限定培養培地中の培養物内の多能性幹細胞の培養物を準備する工程; 培養物中の幹細胞から単個細胞を選ぶ工程; 及び単個細胞を有する培養容器内で培養培地中の幹細胞の新規培養を開始する工程を含み、培養培地が幹細胞培養のクローニング効率を増加させるために選ばれる薬剤を含み、薬剤が幹細胞培養のクローニング効率を増加させる小分子である、前記方法としてまとめられる。“限定培養培地(defined culture meidum)”又は“限定培地(defined medium)”とは、培地がすべての成分の量が既知であることを意味する。典型的には、細胞培養のための培養培地に通常添加される血清は、例えば、既知の量の血清成分、例えば、アルブミン、インスリン、トランスフェリン、おそらく特定の増殖因子(即ち、塩基性線維芽細胞増殖因子、トランスフォーミング増殖因子又は血小板由来増殖因子)で置き換えられる。
第二態様において、本発明は、培養容器を含む多能性幹細胞培養; 容器内に含有される限定培養培地; 培養培地中で増殖する幹細胞; 及び幹細胞培養のクローニング効率を増加させるために選ばれる培養培地中の薬剤を含む多能性幹細胞培養としてまとめられる。
いずれの態様の一部の実施態様においても、薬剤は、キナーゼ阻害剤である。いずれの態様の他の実施態様においても、薬剤は、プロテインキナーゼA阻害剤、プロテインキナーゼC阻害剤、プロテインキナーゼG阻害剤又はRho関連キナーゼ阻害剤である。いずれの態様の更に他の実施態様においても、薬剤は、H-7、イソH-7、H-8、H-9、H-89、HA-100、HA-1004、HA-1077、H-1152又はY-27632より選ばれる。
In a first aspect, the present invention is a method for cloning a pluripotent stem cell culture, comprising preparing a culture of pluripotent stem cells in a culture in a limited culture medium in a culture vessel; Selecting a single cell from the stem cells in the product; and starting a new culture of the stem cells in the culture medium in a culture vessel having the single cells, wherein the culture medium increases the cloning efficiency of the stem cell culture Summarized as the above method, which is a small molecule that contains the drug of choice and that increases the cloning efficiency of stem cell culture. By "defined culture medium" or "defined medium" is meant that the medium is known for the amount of all components. Typically, serum normally added to the culture medium for cell culture is, for example, a known amount of serum components such as albumin, insulin, transferrin, and possibly certain growth factors (i.e. basic fibroblasts). Growth factor, transforming growth factor or platelet derived growth factor).
In a second embodiment, the present invention is selected to increase the cloning efficiency of a pluripotent stem cell culture comprising a culture vessel; a limited culture medium contained within the vessel; a stem cell growing in the culture medium; and a stem cell culture Summarized as pluripotent stem cell culture containing drug in culture medium.
In some embodiments of any aspect, the agent is a kinase inhibitor. In other embodiments of any aspect, the agent is a protein kinase A inhibitor, protein kinase C inhibitor, protein kinase G inhibitor or Rho-related kinase inhibitor. In still other embodiments of either aspect, the agent is H-7, isoH-7, H-8, H-9, H-89, HA-100, HA-1004, HA-1077, H- Selected from 1152 or Y-27632.

本発明の目的は、培養条件のクローニング効率を増加させることを含む、多能性幹細胞の培養のための技術を改良することである。多能性幹細胞とは、ES細胞又は誘導した多能性幹(iPS)細胞を意味する。iPS細胞は、分化した体細胞の由来に関して変化していてもよく、効力決定因子の特定の一組に関して変化していてもよく、且つ単離するために用いられる培養条件に関して変化していてもよい再プログラムされた分化した体細胞であるが、それにもかかわらず、それぞれの分化した体細胞の由来と実質的に遺伝的に同一であり且つより高い効力の細胞、例えば、ES細胞と同様の特性を示す。   An object of the present invention is to improve techniques for culturing pluripotent stem cells, including increasing the cloning efficiency of culture conditions. A pluripotent stem cell means an ES cell or an induced pluripotent stem (iPS) cell. iPS cells may vary with respect to the origin of differentiated somatic cells, may vary with respect to a specific set of efficacy determinants, and may vary with respect to the culture conditions used to isolate Good reprogrammed differentiated somatic cells, but nevertheless substantially similar to the origin of the respective differentiated somatic cells and higher potency cells, such as ES cells Show properties.

本発明の利点は、幹細胞培養に小分子の一群の一つの添加よって幹細胞培養条件のクローニング効率を改良することができ、小分子が経済的且つ効果的であることである。
本発明のこれらの及び他の特徴、態様及び利点は、以下の説明からよりよく理解される。好ましい実施態様の説明は、本発明を限定するためのものではなく、すべての変更、等価物及び代替物を包含する。それ故、本発明の範囲を解釈するためには本明細書の特許請求の範囲を参照すべきである。
An advantage of the present invention is that the cloning efficiency of stem cell culture conditions can be improved by adding one of a group of small molecules to the stem cell culture, so that the small molecule is economical and effective.
These and other features, aspects and advantages of the present invention will be better understood from the following description. The description of the preferred embodiments is not intended to limit the invention, but encompasses all modifications, equivalents and alternatives. Therefore, reference should be made to the claims herein for interpreting the scope of the invention.

上記のように、培養内でES細胞のような多能性細胞を増殖させる問題点は、クローニング効率が低いことである。本明細書に用いられる“クローニング効率”は、新規なES細胞コロニーを培養皿のウェルに塗布された個々の細胞の数で割ったトリプシンで個別化した細胞の数を意味する。マトリックス(例えば、Matrigel(登録商標))上に限定された動物性材料を含まない条件でヒトES細胞を増殖させる我々の以前の経験において、クローニング効率は非常に低いものであった(即ち、0.1%未満)。このことは、線維芽細胞にさらすことにより調整された培地に基づく培養系を用いた以前の経験と対照的であり、クローニング効率は低い(即ち、2%未満)ままであったが、ES細胞クローンコロニーを開始するのに充分高いものであった。本明細書に開示されるように、ヒトES細胞が増殖する培養培地に小分子を添加すると、ES細胞培養が小分子を添加しない非常に難しい方法でクローン的に培養させることが可能である。いくつかの小分子は、このために本明細書に例示される。
明確にする点として、ヒトES細胞を“継代すること”とクローンコロニーを開始することの間に差がある。ES細胞培養の典型的な実験において、培養容器が最大である場合、コロニーは、凝集体に分割され、次に新規培養容器に入れられる。これらの凝集体は、典型的には100〜1,000細胞を含有し、培養内増殖を容易に開始する。対照的に、クローンコロニーを開始することは、個々の単個ES細胞からのヒトES細胞コロニーを増殖することを必要とする。
ES細胞のクローニング効率を増加させる薬剤として作用する本明細書において同定される小分子は、このための小分子のスクリーンによって同定した。これらの小分子がヒトES細胞の培養のクローニング効率を増強した機序は、不明である。おそらく、小分子がシグナリングキナーゼと相互作用して、細胞におけるシグナリング経路を変化させるが、相互作用と経路の同一性は、現在知られていない。作用機序に関係なく、小分子はES細胞培養のクローニング効率を効果的に増加させ、培養条件が異なる際でさえ明らかであった。
As described above, the problem of growing pluripotent cells such as ES cells in culture is that the cloning efficiency is low. As used herein, “cloning efficiency” refers to the number of cells individualized with trypsin divided by the number of individual cells applied to a well of a culture dish. In our previous experience of growing human ES cells in conditions free of animal material limited on a matrix (e.g. Matrigel®), the cloning efficiency was very low (i.e., 0.1 %Less than). This is in contrast to previous experience with culture-based culture systems conditioned by exposure to fibroblasts, where cloning efficiency remained low (i.e., less than 2%), but ES cells It was high enough to initiate clonal colonies. As disclosed herein, when a small molecule is added to a culture medium in which human ES cells grow, ES cell culture can be clonally cultured in a very difficult way without the addition of small molecules. Several small molecules are exemplified herein for this purpose.
For clarity, there is a difference between “passaging” human ES cells and initiating clonal colonies. In a typical experiment of ES cell culture, if the culture vessel is the largest, the colony is divided into aggregates and then placed in a new culture vessel. These aggregates typically contain 100-1,000 cells and readily initiate in-culture growth. In contrast, initiating clonal colonies requires growing human ES cell colonies from individual single ES cells.
Small molecules identified herein that act as agents that increase the cloning efficiency of ES cells were identified by a small molecule screen for this purpose. The mechanism by which these small molecules enhanced the cloning efficiency of human ES cell culture is unclear. Perhaps a small molecule interacts with a signaling kinase to change the signaling pathway in the cell, but the identity of the interaction and pathway is currently unknown. Regardless of the mechanism of action, small molecules effectively increased the cloning efficiency of ES cell cultures, even when the culture conditions were different.

スクリーンは、高スループット蛍光分析を用いて行い、小分子についてクローニング効率を増強する能力をスクリーニングした。非蛍光可溶性基質(6,8-ジフルオロ-4-メチルウンベリフェリルホスフェート、DiFMUP)は、アルカリホスファターゼ(ALP)と呼ばれる未分化のヒトES細胞に特異的な酵素よって蛍光生成物に変換した。
2,000細胞を超えるコロニーを有し、且つ96ウェルプレートにおいて500の個別化ヒトES細胞を播種した12日後に形成したウェルにおいて、ALPよって加水分解されるDiFMUPからの蛍光増加は、コロニー形成を可能にする化合物を含有するいかなるウェルも示した。増殖した細胞は、分化の際にALP活性を失い、蛍光増加にならなかった。このように、この分析は、クローン増殖と未分化状態維持の双方を試験した。
本明細書に記載される方法を用いて、ES細胞クローニング効率を増加させる一組の小分子を同定した。一つの好ましい小分子は、(S)-(+)-2-メチル-1-[(4-メチル-5-イソキノリニル)スルホニル]ホモピペラジン二塩酸塩(非公式名: H-1152)である。他の好ましい小分子は、1-(5-イソキノリンスルホニル)ピペラジン塩酸塩(非公式名:HA-100)である。いずれもクローン増殖を容易にするのに等しく効果的であると思われるが、H-1152は、HA-100より10倍低い作業濃度で使用し得る。効果的である他の関連小分子としては、以下のものが含まれた: 1-(5-イソキノリンスルホニル)-2-メチルピペラジン(非公式名: H-7)、1-(5-イソキノリンスルホニル)-3-メチルピペラジン(非公式名: イソH-7)、N-2-(メチルアミノ)エチル-5-イソキノリンスルホンアミド二塩酸塩(非公式名: H-8)、N-(2-アミノエチル)-5-イソキノリンスルホンアミド二塩酸塩(非公式名: H-9)、N-[2-p-ブロモシンナミルアミノ)エチル]-5-イソキノリンスルホンアミド二塩酸塩(非公式名: H-89)、N-(2-グアニジノエチル)-5-イソキノリンスルホンアミド塩酸塩(非公式名: HA-1004)、1-(5-イソキノリンスルホニル)ホモピペラジン二塩酸塩(非公式名: HA-1077)、(S)-(+)-2-メチル-4-グリシル-1-(4-メチルイソキノリニル-5-スルホニル)ホモピペリジン二塩酸塩(非公式名:グリシルH-1152)、(+)-(R)-トランス-4-(1-アミノエチル)-N-(4-ピリジル)シクロヘキサンカルボキサミド二塩酸塩(非公式名: Y-27632)。各小分子は、Matrigel(登録商標)被覆培養皿上の限定培地、例えば、TeSRTM1培地においてクローニング効率>1%を支持した。TeSRTM1培地の全成分と使用方法は、上記、Ludwig et al. Ludwig et al.に記載されている。
Screens were performed using high-throughput fluorescence analysis and screened for the ability to enhance cloning efficiency for small molecules. A non-fluorescent soluble substrate (6,8-difluoro-4-methylumbelliferyl phosphate, DiFMUP) was converted to a fluorescent product by an enzyme called alkaline phosphatase (ALP) specific for undifferentiated human ES cells.
Increased fluorescence from DiFMUP hydrolyzed by ALP in wells formed after 12 days of seeding 500 individualized human ES cells in 96-well plates with more than 2,000 cells allowing colony formation Any well containing the compound was shown. Proliferated cells lost ALP activity upon differentiation and did not increase in fluorescence. Thus, this analysis examined both clonal expansion and maintenance of undifferentiated state.
The method described herein was used to identify a set of small molecules that increase ES cell cloning efficiency. One preferred small molecule is (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl) sulfonyl] homopiperazine dihydrochloride (informal name: H-1152). Another preferred small molecule is 1- (5-isoquinolinesulfonyl) piperazine hydrochloride (unofficial name: HA-100). Although both appear to be equally effective in facilitating clonal growth, H-1152 can be used at a working concentration 10 times lower than HA-100. Other related small molecules that were effective included: 1- (5-isoquinolinesulfonyl) -2-methylpiperazine (unofficial name: H-7), 1- (5-isoquinolinesulfonyl) ) -3-Methylpiperazine (Informal name: IsoH-7), N-2- (Methylamino) ethyl-5-isoquinolinesulfonamide dihydrochloride (Informal name: H-8), N- (2- Aminoethyl) -5-isoquinolinesulfonamide dihydrochloride (informal name: H-9), N- [2-p-bromocinnamylamino) ethyl] -5-isoquinolinesulfonamide dihydrochloride (informal name: H-89), N- (2-guanidinoethyl) -5-isoquinolinesulfonamide hydrochloride (unofficial name: HA-1004), 1- (5-isoquinolinesulfonyl) homopiperazine dihydrochloride (unofficial name: HA -1077), (S)-(+)-2-methyl-4-glycyl-1- (4-methylisoquinolinyl-5-sulfonyl) homopiperidine dihydrochloride (unofficial name: glycyl H-1152) , (+)-(R) -trans-4- (1-amino Noethyl) -N- (4-pyridyl) cyclohexanecarboxamide dihydrochloride (unofficial name: Y-27632). Each small molecule supported a cloning efficiency> 1% in a defined medium on a Matrigel®-coated culture dish, eg, TeSR 1 medium. All components of TeSR 1 medium and methods of use are described above in Ludwig et al. Ludwig et al.

これらの小分子により調整される作用は、TeSRTM1培地の使用に制限されなかった。これらの小分子は、また、線維芽細胞にさらされた培地である調整培地上で増殖されるES細胞培養のクローニング効率を増加させた。従って、これらの小分子は、ES細胞が効果的に増殖され得るいかなるES細胞培養培地のクローニング効率をも増加させると考えられる。
ES細胞培養培地のクローニング効率を増加させるのに効果的な小分子の一種は、プロテインキナーゼA(PKA)、プロテインキナーゼC(PKC)、プロテインキナーゼG(PKG)、Rho関連キナーゼ(ROCK)を含む、キナーゼ酵素の阻害剤である。
ROCKは、本明細書において特に興味深い。ROCKは、Rhoの標的タンパク質として役に立つセリン/トレオニンキナーゼである(三つのイソ型が存在する-- RhoA、RhoB及びRhoC)。これらのキナーゼは、最初は、RhoA誘発されたストレスファイバーの形成と焦点接着の化学伝達物質として確認された。二つのROCKイソ型--ROCK1(p160ROCK、ROKβとも呼ばれる)及びROCK2(ROKα)--は、N末端キナーゼドメイン、続いてRho-結合ドメイン及びプレクストリン-相同ドメイン(pH)を含有するコイルドコイルドメインから構成される。いずれのROCKも、ストレスファイバー形成、平滑筋収縮、細胞接着、膜ラフリング及び細胞運動に対するRhoA作用を仲介する、細胞骨格レギュレータである。ROCKは、下流分子、例えば、ミオシン軽鎖(MLC)、MLCホスファターゼ(MLCP)、ホスファターゼ及びテンシン同族体(PTEN)を標的にすることによって生物活性を示す。
例示的ROCK阻害剤は、Y-27632であり、選択的にROCK1を標的とする(ROCK2も阻害する)とともにTNF-α及びIL-1βを阻害する。これは、細胞透過性であり、ATPと競合することよってROCK1/ROCK2(IC50 = 800nM)を阻害する。Ishizaki T, et al., Mol. Pharmacol. 57:976-983 (2000)の記載は、本願明細書に全体として示されるように含まれるものとする。他のROCK阻害剤としては、例えば、H-1152、Y-30141、Wf-536、HA-1077、ヒドロキシルHA-1077、GSK269962A及びSB-772077-Bが挙げられる。Doe C, et al., J. Pharmacol. Exp. Ther. 32:89-98 (2007); 上記Ishizaki et al.; Nakajima M, et al., Cancer Chemother. Pharmacol. 52:319-324 (2003); Sasaki Y, et al., Pharmacol. Ther. 93:225-232 (2002)の記載は、各々本願明細書に全体として示されるように含まれるものとする。
本明細書に同定される小分子は、共通の構造元素として少なくともピリジンを有する。このように、本明細書において有効な他の小分子としては、例えば、N-(4-ピリジル)-N′-(2,4,6-トリクロロフェニル)尿素、3-(4-ピリジル)-1H-インドール、(R)-(+)-トランス-N-(4-ピリジル)-4-(1-アミノエチル)-シクロヘキサンカルボキサミドが挙げられる。
以下に示され上述したデータは、小分子の一種が一般にヒトES細胞培養培地のクローニング効率を増加させることを証明した。一般に、効果的小分子の一種は、以下のようにまとめられる:
The effects coordinated by these small molecules were not limited to the use of TeSR 1 medium. These small molecules also increased the cloning efficiency of ES cell cultures grown on conditioned medium, a medium exposed to fibroblasts. Thus, these small molecules are thought to increase the cloning efficiency of any ES cell culture medium in which ES cells can be effectively propagated.
One type of small molecule that is effective in increasing the cloning efficiency of ES cell culture media includes protein kinase A (PKA), protein kinase C (PKC), protein kinase G (PKG), and Rho-related kinase (ROCK) An inhibitor of kinase enzymes.
ROCK is of particular interest herein. ROCK is a serine / threonine kinase that serves as a target protein for Rho (there are three isoforms--RhoA, RhoB and RhoC). These kinases were first identified as RhoA-induced stress fiber formation and focal adhesion chemical mediators. Two ROCK isoforms--ROCK1 (p160ROCK, also referred to as ROKβ) and ROCK2 (ROKα)-are from a coiled-coil domain containing an N-terminal kinase domain followed by a Rho-binding domain and a pleckstrin-homology domain (pH). Composed. Both ROCKs are cytoskeletal regulators that mediate RhoA action on stress fiber formation, smooth muscle contraction, cell adhesion, membrane roughing and cell motility. ROCK exhibits biological activity by targeting downstream molecules such as myosin light chain (MLC), MLC phosphatase (MLCP), phosphatase and tensin analogs (PTEN).
An exemplary ROCK inhibitor is Y-27632, which selectively targets ROCK1 (also inhibits ROCK2) and inhibits TNF-α and IL-1β. It is cell permeable and inhibits ROCK1 / ROCK2 (IC 50 = 800 nM) by competing with ATP. The description of Ishizaki T, et al., Mol. Pharmacol. 57: 976-983 (2000) is intended to be included as generally indicated herein. Examples of other ROCK inhibitors include H-1152, Y-30141, Wf-536, HA-1077, hydroxyl HA-1077, GSK269962A and SB-772077-B. Doe C, et al., J. Pharmacol. Exp. Ther. 32: 89-98 (2007); Ishizaki et al .; Nakajima M, et al., Cancer Chemother. Pharmacol. 52: 319-324 (2003) The descriptions of Sasaki Y, et al., Pharmacol. Ther. 93: 225-232 (2002) are each intended to be included as generally indicated herein.
Small molecules identified herein have at least pyridine as a common structural element. Thus, other small molecules useful herein include, for example, N- (4-pyridyl) -N ′-(2,4,6-trichlorophenyl) urea, 3- (4-pyridyl)- 1H-indole, (R)-(+)-trans-N- (4-pyridyl) -4- (1-aminoethyl) -cyclohexanecarboxamide.
The data shown below and described above demonstrated that one of the small molecules generally increases the cloning efficiency of human ES cell culture media. In general, one type of effective small molecule can be summarized as follows:

Figure 0005419279
Figure 0005419279

(式中、R1及びR2は、芳香族基を介して結合することができ、R1は、水素又はアルキルであり、R2は、水素又はアルキルであり、R1とR2が環状芳香族の一部でない限り、R1はR2と同じでなく、R3及びR4はイソキノリンのいかなる原子にも結合され、水素又はアルキルである)。 Wherein R 1 and R 2 can be bonded via an aromatic group, R 1 is hydrogen or alkyl, R 2 is hydrogen or alkyl, and R 1 and R 2 are cyclic Unless it is part of an aromatic, R 1 is not the same as R 2 and R 3 and R 4 are bonded to any atom of isoquinoline and are hydrogen or alkyl).

実施例1: ES細胞クローニング効率を増加させる小分子の同定
方法及び材料
限定培地におけるES細胞コロニーのクローニングを可能にするのに効果的な小分子について、クローニングを可能にする所望の活性を小分子スクリーンにおいて同定した。
スクリーンは、Sigma-Aldrich(セントルイス、ミズーリ州)から購入した既知の生物活性により確認された化合物から構成されている小分子ライブラリーを用いた。ライブラリーの種類をDMSOに溶解して1mMの濃度にした。特に示されない限り、用いられる他のすべての薬品はSigmaから購入した。H1ヒトES細胞(WiCell Research Institute; マディソン、ウィスコンシン州)を、上記、Ludwig et al.に記載されるように調製した限定TeSRTM1培地において増殖した。
分析は、Keck-UWCCC小分子スクリーニング施設(ウィスコンシン大学-マディソン、マディソン、ウィスコンシン州)でBeckman Biomek(登録商標) FXラボラトリワークステーションとPerkin Elmer VictorIII(登録商標)プレートリーダーを用いて96ウェルマイクロプレート(Nunclon/Nunc; ロスキルド、デンマーク)において行った。マイクロプレートを、Matrigel(登録商標)(#354230、減少した成長因子; BD Bioscience、サンノゼ、カリフォルニア州)でDMEM/F12(Invitrogen; カールズバッド、カリフォルニア州)中0.3mg/mlにおいて室温で1時間被覆した。
H1ヒトES細胞を、5日目に6ウェルNunclon(登録商標)皿で増殖し、次に、1%ニワトリ血清を含有する1mlのトリプシン/EDTA(Invitrogen)で37°Cにおいて5分間処理した。トリプシンをDMEM/F12中の20%ウシ胎児血清で急冷し、200RCFで1.5分間遠心分離よって細胞を集めた。培地を吸引した後、細胞を5,000細胞/mlの密度までTeSRTM1培地に再懸濁した。この細胞懸濁液の100μLを各ウェルに分配し、1μLの10mM 阻害剤DMSO溶液を添加し、ピペット操作によって混合し、10μMの最終阻害剤濃度を得た。プレートを37°Cで2日間5% CO2でインキューベートした。次に、培地をクローニング分子がないTeSRTM1培地と交換した。プレートを更に8日間培養し、一日おきに培地を変えた。
コロニー形成を検出するために、我々は、蛍光分析によるALP分析(EnzChek(登録商標); Invitrogen)を用いた。この分析において、可溶性非蛍光基質(DiFMUP)は、ALPよって蛍光生成物に変換される。プレートを50mM TrisHCl(pH 7.5)で洗浄し、100μLの38μM DiFMUP溶液で1時間処理した。コロニーを有するウェルにおいて、蛍光の増加は、コロニー形成につながる化合物を含有するいかなるウェルでも示した。増殖したが、分化もした細胞は、これらの細胞がALP活性を欠いているので、蛍光増加を生じなかった。プレートを、マルチプレートリーダーよって読み出した(0.1ms発光間隔で、励起355nm、発光455nm)。
スクリーンにおいて活性を示した化合物を、1% DMSO中種々の濃度で6ウェルプレートにおいて試験した。これらの分析については、10,000細胞/ウェルをMatrigel(登録商標)被覆プレートに塗布し、次に合計4日間一日おきに上記小分子で処理した。クローニング効率に対して試験した小分子の効果を評価するために、我々は10日後に手でコロニーを計数した。
我々は、これらの小分子について他の培地上のヒトES細胞クローニングに対する効果も試験した。我々は、調整培地(CM)に対する効果をTeSRTM1培地をCMや同一処理で置き換えて試験した。培地のクローニング効率は、HA-100の添加よって増加した。更に、我々は、100ng/μlのbFGFを添加した無調整培地により同様の試験を行った。更にまた、HA-100を添加すると、HA-100を欠く同様の対照培養に比べてクローニング効率が増加した。
Example 1: Identification of small molecules that increase ES cell cloning efficiency
Methods and Materials For small molecules that are effective in allowing cloning of ES cell colonies in limited media, the desired activity that allowed cloning was identified in a small molecule screen.
The screen used a small molecule library made up of compounds confirmed by known biological activities purchased from Sigma-Aldrich (St. Louis, MO). The library type was dissolved in DMSO to a concentration of 1 mM. Unless otherwise indicated, all other chemicals used were purchased from Sigma. H1 human ES cells (WiCell Research Institute; Madison, Wis.) Were grown in limited TeSR 1 medium prepared as described above in Ludwig et al.
The analysis was performed in a 96-well microplate using a Beckman Biomek® FX laboratory workstation and a Perkin Elmer VictorIII® plate reader at the Keck-UWCCC small molecule screening facility (University of Wisconsin-Madison, Madison, WI). Nunclon / Nunc; Roskilde, Denmark). Microplates were coated with Matrigel® (# 354230, reduced growth factor; BD Bioscience, San Jose, Calif.) In DMEM / F12 (Invitrogen; Carlsbad, Calif.) At 0.3 mg / ml for 1 hour at room temperature. .
H1 human ES cells were grown in 6-well Nunclon® dishes on day 5 and then treated with 1 ml trypsin / EDTA (Invitrogen) containing 1% chicken serum for 5 minutes at 37 ° C. Trypsin was quenched with 20% fetal calf serum in DMEM / F12 and cells were collected by centrifugation at 200 RCF for 1.5 minutes. After aspirating the medium, the cells were resuspended in TeSR 1 medium to a density of 5,000 cells / ml. 100 μL of this cell suspension was dispensed into each well, 1 μL of 10 mM inhibitor DMSO solution was added and mixed by pipetting to obtain a final inhibitor concentration of 10 μM. Plates were incubated at 37 ° C. for 2 days with 5% CO 2 . The medium was then replaced with TeSR 1 medium without cloning molecules. The plate was further cultured for 8 days and the medium was changed every other day.
In order to detect colony formation, we used ALP analysis (EnzChek®; Invitrogen) by fluorescence analysis. In this analysis, soluble non-fluorescent substrate (DiFMUP) is converted to a fluorescent product by ALP. The plate was washed with 50 mM TrisHCl (pH 7.5) and treated with 100 μL of 38 μM DiFMUP solution for 1 hour. In wells with colonies, an increase in fluorescence was shown for any well containing compounds that lead to colony formation. Proliferated but differentiated cells did not produce an increase in fluorescence as these cells lack ALP activity. The plate was read by a multiplate reader (excitation 355 nm, emission 455 nm with 0.1 ms emission interval).
Compounds that showed activity in the screen were tested in 6-well plates at various concentrations in 1% DMSO. For these analyses, 10,000 cells / well were plated on Matrigel® coated plates and then treated with the small molecules every other day for a total of 4 days. To evaluate the effect of the small molecules tested on cloning efficiency, we counted colonies by hand after 10 days.
We also tested the effects of these small molecules on human ES cell cloning on other media. We tested the effect on conditioned medium (CM) by replacing TeSR 1 medium with CM or the same treatment. The cloning efficiency of the medium increased with the addition of HA-100. In addition, we performed the same test with unconditioned medium supplemented with 100 ng / μl bFGF. Furthermore, the addition of HA-100 increased the cloning efficiency compared to similar control cultures lacking HA-100.

結果
小分子スクリーンの結果は、相対蛍光単位とした。蛍光分析の典型的な性能によって平均値17,868、標準偏差5,104及び標準誤差197が得られた。典型的な成功(コロニーが増殖したことを意味する)によって200,000を超える記録が得られた。すべての潜在的な成功は、充分な試料の視覚による検査によって確認した。約1mm直径の明らかなコロニーを、ウェルにおいて真陽性(true positive)で観察した。我々は、4,500の個々の試料から4つの成功を得た。成功は、HA-100、ラトステロール(コレステロール前駆物質)、オバクノール(リモノイド)及びキパジン ジマレエート(セロトニン2A作動薬)であった。これらの四つの化合物から、HA-100だけが6ウェル分析において培養したヒトES細胞のクローニング効率を増加させるのに活性として確認することができた。
我々は、クローニング効率(CE; 塗布した単個細胞の数当たりのコロニー形成単位(CFU)の数、トリプシン/EDTA処理した)を求めた。HA-100は小分子スクリーンにおいて同定された第一分子であり、その後、他の構造的に同様の小分子についてもクローニング効率を試験した。下記の化合物は、ある濃度範囲内で同様の活性を示し、小分子による三つのキナーゼ(例えば、PKA、PKC、PKG)のIC50値を、以下の表1に示す:
下記の構造を有するHA-100(Sigma):
Results The results of the small molecule screen were in relative fluorescence units. The typical performance of the fluorescence analysis gave a mean value of 17,868, a standard deviation of 5,104 and a standard error of 197. Over 200,000 records were obtained with typical success (meaning that colonies grew). All potential successes were confirmed by visual inspection of sufficient samples. Obvious colonies of approximately 1 mm diameter were observed in the wells as true positives. We got 4 successes from 4,500 individual samples. Success was HA-100, latosterol (cholesterol precursor), obacnol (limonoid) and quipazine dimaleate (serotonin 2A agonist). From these four compounds, only HA-100 could be confirmed as active in increasing the cloning efficiency of human ES cells cultured in a 6-well assay.
We determined the cloning efficiency (CE; number of colony forming units (CFU) per number of applied single cells, treated with trypsin / EDTA). HA-100 is the first molecule identified in the small molecule screen, after which cloning efficiency was also tested for other structurally similar small molecules. The following compounds show similar activity within a range of concentrations, and IC 50 values for three kinases (e.g., PKA, PKC, PKG) by small molecules are shown in Table 1 below:
HA-100 (Sigma) having the following structure:

Figure 0005419279
Figure 0005419279

下記の構造を有するH-7(Sigma):   H-7 (Sigma) having the following structure:

Figure 0005419279
Figure 0005419279

下記の構造を有するイソH-7(Sigma):   Iso H-7 (Sigma) having the following structure:

Figure 0005419279
Figure 0005419279

下記の構造を有するH-89(Sigma):   H-89 (Sigma) having the following structure:

Figure 0005419279
Figure 0005419279

下記の構造を有するHA-1004(Sigma):   HA-1004 (Sigma) having the following structure:

Figure 0005419279
Figure 0005419279

表1

Figure 0005419279
table 1
Figure 0005419279

更に、すべての小分子を調整培地(CM)において試験し、CM単独と比較して小分子によるCMが30%までのクローニング効率を示した。
我々は、また、Oct4、多能性ES細胞の細胞内マーカーが存在するHA-100処理から得られたコロニーを試験した。免疫蛍光法は、未分化状態を意味する、クローン化コロニーにおいて処理された細胞においてOct4発現の維持の明らかな証拠を示した。このことは、ヒトES細胞がトリプシンよって個別化され且つ多能性を失うことなくHA-100の存在下で培養され得ることを示す。
続いて、他の関連小分子についても、ヒトES細胞のクローニング効率を増加させる能力を試験した。下記の構造を有するHA-1077(Upstate Biotechnologies、レークプラシッド、ニューヨーク州)は、クローニング効率を増加させた:
In addition, all small molecules were tested in conditioned medium (CM) and showed a cloning efficiency of up to 30% CM with small molecules compared to CM alone.
We also tested colonies obtained from HA-100 treatment in which an intracellular marker for Oct4, a pluripotent ES cell, was present. Immunofluorescence showed clear evidence of maintenance of Oct4 expression in cells treated in cloned colonies, implying an undifferentiated state. This indicates that human ES cells are individualized with trypsin and can be cultured in the presence of HA-100 without loss of pluripotency.
Subsequently, other related small molecules were also tested for their ability to increase the cloning efficiency of human ES cells. HA-1077 (Upstate Biotechnologies, Lake Placid, NY) having the following structure increased cloning efficiency:

Figure 0005419279
Figure 0005419279

二つの他の関連小分子も、同様の効果を示した。第一小分子は、下記の構造を有するH-8(Biomol; プリマスミーティング、ペンシルベニア州)であった:   Two other related small molecules also showed similar effects. The first small molecule was H-8 (Biomol; Plymouth Meeting, PA) having the following structure:

Figure 0005419279
Figure 0005419279

第二小分子は、下記の構造を有するH-9(Biomol)であった:   The second small molecule was H-9 (Biomol) with the following structure:

Figure 0005419279
Figure 0005419279

しかしながら、一つの小分子は、ヒトES細胞のクローニング効率を増加させなかった。この小分子は、下記の構造を有する1-[N,O-ビス-(5-イソキノリンスルホニル)-N-メチル-L-チロシル]-4-フェニルピペラジン(非公式名: KN-62又はKN62)であった:   However, one small molecule did not increase the cloning efficiency of human ES cells. This small molecule has 1- [N, O-bis- (5-isoquinolinesulfonyl) -N-methyl-L-tyrosyl] -4-phenylpiperazine (informal name: KN-62 or KN62) having the structure Met:

Figure 0005419279
Figure 0005419279

実施例2: ROCK阻害剤はES細胞クローニング効率を増加させる
方法及び材料
実施例1に記載される実験を、H-1152(EMD Chemicals, Inc./Calbiochem; サンディエゴ、カリフォルニア州)及びY-27632(EMD Chemicals, Inc./Calbiochem)で繰り返した。概要としては、H-1152又はY-27632をDMSOに溶解し、20mMの濃度にした。H1ヒトES細胞を、TeSRTM1培地においてマトリゲル(登録商標)被覆プレート上で100,000細胞/mlの密度で増殖した。H-1152及びY-27632を、20μM、15μM、10μM又は5μM/DMSOの最終濃度でそれら自体のプレート上のウェルに添加した。DMSO及びHA-100(10μM)を、それぞれ負と正の対照として用いた。プレートを、合計4日間一日おきに処理した。上記ALP分析においてコロニー形成を検出した。
第二実験において、H-1152及びY-27632を、5μM、500nM、50nM又は5nM/DMSOの最終濃度でそれら自体のプレート上のウェルに添加した。DMSO及びHA-100(10μM)を、それぞれ、負と正の対照として用いた。上記のように、プレートを処理した。
結果
500nM H-1152及び5μM Y-27632は、ALP分析においてほとんどのコロニー形成を示した。プレートを目で調べ、H-1152については500nMを超える濃度の場合に、また、Y-27632については5μMを超える濃度の場合に、HA-100(10μM)と同じか又はより良好であることが見られた。
H-1152の構造は、以下の通りである:
Example 2: ROCK inhibitor increases ES cell cloning efficiency
Methods and Materials The experiment described in Example 1 was repeated with H-1152 (EMD Chemicals, Inc./Calbiochem; San Diego, CA) and Y-27632 (EMD Chemicals, Inc./Calbiochem). As a summary, H-1152 or Y-27632 was dissolved in DMSO to a concentration of 20 mM. H1 human ES cells were grown at a density of 100,000 cells / ml on Matrigel®-coated plates in TeSR 1 medium. H-1152 and Y-27632 were added to wells on their own plates at final concentrations of 20 μM, 15 μM, 10 μM or 5 μM / DMSO. DMSO and HA-100 (10 μM) were used as negative and positive controls, respectively. Plates were processed every other day for a total of 4 days. Colony formation was detected in the ALP analysis.
In a second experiment, H-1152 and Y-27632 were added to wells on their own plates at final concentrations of 5 μM, 500 nM, 50 nM or 5 nM / DMSO. DMSO and HA-100 (10 μM) were used as negative and positive controls, respectively. Plates were processed as described above.
result
500 nM H-1152 and 5 μM Y-27632 showed most colony formation in ALP analysis. Examine the plate visually for H-1152 at concentrations greater than 500 nM, and for Y-27632 at concentrations greater than 5 μM, may be the same or better than HA-100 (10 μM). It was seen.
The structure of H-1152 is as follows:

Figure 0005419279
Figure 0005419279

Y-27632の構造は、以下の通りである:   The structure of Y-27632 is as follows:

Figure 0005419279
Figure 0005419279

理解を明瞭にするために説明と実施例によって詳細に上記の発明を記載してきたが、本発明のある種の適応が、当業者にとって通常の最適化の内容であり、本発明の真意、又は添付の特許請求の範囲の範囲から逸脱することなく実施することができることは理解される。   Although the foregoing invention has been described in detail by way of illustration and example for clarity of understanding, certain adaptations of the invention are part of the normal optimization for those skilled in the art and are It will be understood that the invention can be practiced without departing from the scope of the appended claims.

Claims (10)

ヒト多能性幹細胞のクローン培養物を生成する方法であって:
培養容器内の塩基性線維芽細胞増殖因子(bFGF)含有限定培養培地中の培養物内のヒト多能性幹細胞の培養物を準備する工程;
培養内幹細胞から単個のヒト多能性幹細胞を選ぶ工程;
単個のヒト多能性幹細胞を用いて、培養容器内でヒト多能性幹細胞の新規培養を開始する工程であって、
培養容器が、該容器内の表面を被覆するマトリックス、及び、bFGF含有限定培養培地を含み、
bFGF含有限定培養培地が薬剤を含み、
薬剤は、該薬剤を含まないbFGF含有限定培養培地と比較して、ヒト多能性幹細胞培養のクローニング効率を増加させるために選ばれ、かつ、下記:
Figure 0005419279
Figure 0005419279
からなる群より選ばれる式で表される小分子である、前記工程;及び
単個のヒト多能性幹細胞を培養して、ヒト多能性幹細胞のクローン培養物を生成する工程
を含む、前記方法。
A method for generating a clonal culture of human pluripotent stem cells comprising:
Preparing a culture of human pluripotent stem cells in a culture in a limited culture medium containing basic fibroblast growth factor (bFGF) in a culture vessel;
Selecting a single human pluripotent stem cell from the stem cells in culture ;
Using a single human pluripotent stem cell, starting a new culture of human pluripotent stem cells in a culture vessel,
The culture container contains a matrix that covers the surface of the container, and a bFGF-containing limited culture medium,
bFGF-containing limited culture medium contains drug,
The drug is selected to increase the cloning efficiency of human pluripotent stem cell cultures compared to bFGF-containing limited culture medium that does not contain the drug , and the following:
Figure 0005419279
Figure 0005419279
A small molecule represented by a formula selected from the group consisting of :
Culturing a single human pluripotent stem cell to produce a clonal culture of human pluripotent stem cells .
薬剤が、キナーゼ阻害剤である、請求項1に記載の方法。   The method of claim 1, wherein the agent is a kinase inhibitor. 薬剤が、Rho関連キナーゼ(ROCK)阻害剤である、請求項1に記載の方法。 The method of claim 1, wherein the agent is a Rho-related kinase (ROCK) inhibitor. ヒト多能性幹細胞が、ヒト胚幹細胞又はヒト誘導多能性幹細胞である、請求項1に記載の方法。 2. The method according to claim 1, wherein the human pluripotent stem cell is a human embryonic stem cell or a human induced pluripotent stem cell. bFGF含有限定培養培地が、フィーダー細胞又は血清のない未分化の多能性幹細胞の増殖と維持を支持する、請求項1に記載の方法。 bFGF-containing limited culture medium, we support the maintenance and growth of pluripotent stem cells undifferentiated no Feeder cells or serum, the method according to claim 1. ヒト多能性幹細胞のクローン培養物を生成する方法であって:
培養容器内にbFGF含有限定培養培地中の培養内ヒト多能性幹細胞の培養物を準備する工程;
培養内幹細胞から単個のヒト多能性幹細胞を選ぶ工程;
単個のヒト多能性幹細胞を用いて、培養容器内でヒト多能性細胞の新規培養を開始する工程であって、
培養容器が、bFGF含有限定培養培地を含み、
bFGF含有限定培養培地が薬剤を含み、
薬剤は、該薬剤を含まない多能性幹細胞培養培地と比較して、ヒト多能性幹細胞培養のクローニング効率を増加させるために選ばれ、かつ、下記:
Figure 0005419279
Figure 0005419279
Figure 0005419279
からなる群より選ばれる式で表される、前記工程;及び
単個のヒト多能性幹細胞を培養して、ヒト多能性幹細胞のクローン培養物を生成する工程
を含む、前記方法。
A method for generating a clonal culture of human pluripotent stem cells comprising:
Preparing a culture of in-culture human pluripotent stem cells in a bFGF-containing limited culture medium in a culture vessel;
Selecting a single human pluripotent stem cell from the stem cells in culture ;
Using single pieces of human pluripotent stem cells, comprising the steps of starting a new culture of human pluripotent stem cells in culture vessel,
The culture container contains a bFGF-containing limited culture medium,
bFGF-containing limited culture medium contains drug,
The agent is selected to increase the cloning efficiency of human pluripotent stem cell cultures compared to a pluripotent stem cell culture medium that does not contain the agent , and the following:
Figure 0005419279
Figure 0005419279
Figure 0005419279
Said step represented by a formula selected from the group consisting of : and
Culturing the single pieces of human pluripotent stem cells, comprising the step <br/> of generating clonal culture of human pluripotent stem cells, the how.
多能性幹細胞が、胚幹細胞又は誘導多能性幹細胞である、請求項に記載の方法。 The method according to claim 6 , wherein the pluripotent stem cell is an embryonic stem cell or an induced pluripotent stem cell. 培養容器;
容器内に含有する、bFGF含有限定培養培地;
bFGF含有限定培養培地中で増殖するヒト多能性幹細胞; 及び
剤を含有するbFGF含有限定培養培地であって、
薬剤は、該薬剤を含まないbFGF含有限定培養培地と比較して、ヒト多能性幹細胞培養のクローニング効率を増加させるために選ばれ
薬剤が、下記:
Figure 0005419279
Figure 0005419279
からなる群より選ばれる式で表される、キナーゼ阻害剤である、前記培養培地
を含む、ヒト多能性幹細胞培養
Culture vessels;
BFGF-containing limited culture medium , contained in a container;
human pluripotent stem cells growing in a bFGF-containing limited culture medium; and
A bFGF-containing limited culture medium containing drug agent,
The drug is selected to increase the cloning efficiency of human pluripotent stem cell culture compared to bFGF-containing limited culture medium that does not contain the drug ,
The drug is :
Figure 0005419279
Figure 0005419279
Represented by a formula selected from the group consisting of a kinase inhibitor, including the culture medium, human pluripotent stem cell culture.
幹細胞が、胚幹細胞又は誘導多能性幹細胞である、請求項に記載のヒト多能性幹細胞培養Stem cells are embryonic stem cells or induced pluripotent stem cells, human pluripotent stem cell culture according to claim 8. ヒト多能性幹細胞を培養するための限定地であって、ヒト多能性幹細胞培養のクローニング効率を増加させるために選ばれる薬剤を含み、薬剤が、下記:
Figure 0005419279
Figure 0005419279
Figure 0005419279
からなる群より選ばれる式で表される、前記培地
A limited culture locations for culturing human pluripotent stem cells, comprising an agent selected to increase the cloning efficiency of the human pluripotent stem cell culture, drug, the following:
Figure 0005419279
Figure 0005419279
Figure 0005419279
The culture medium represented by a formula selected from the group consisting of:
JP2009546511A 2007-01-17 2008-01-17 Improved stem cell culture Active JP5419279B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US88074707P 2007-01-17 2007-01-17
US60/880,747 2007-01-17
PCT/US2008/051347 WO2008089351A1 (en) 2007-01-17 2008-01-17 Improved culture of stem cells

Publications (3)

Publication Number Publication Date
JP2010516255A JP2010516255A (en) 2010-05-20
JP2010516255A5 JP2010516255A5 (en) 2013-09-12
JP5419279B2 true JP5419279B2 (en) 2014-02-19

Family

ID=39277243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009546511A Active JP5419279B2 (en) 2007-01-17 2008-01-17 Improved stem cell culture

Country Status (6)

Country Link
US (1) US7892830B2 (en)
JP (1) JP5419279B2 (en)
CA (1) CA2675445C (en)
GB (1) GB2458863B (en)
SE (1) SE0950586L (en)
WO (1) WO2008089351A1 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101160698B1 (en) * 2003-06-27 2012-06-28 아사히 가세이 가부시키가이샤 Cell differentiation inhibiting agent, cell culture method using the same, culture medium, and cultured cell line
EP1962719A4 (en) 2005-08-29 2011-05-04 Technion Res And Dev Of Foundation Ltd Media for culturing stem cells
US8278104B2 (en) * 2005-12-13 2012-10-02 Kyoto University Induced pluripotent stem cells produced with Oct3/4, Klf4 and Sox2
CN101864392B (en) 2005-12-13 2016-03-23 国立大学法人京都大学 Nuclear reprogramming factor
US20090227032A1 (en) * 2005-12-13 2009-09-10 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
US8129187B2 (en) * 2005-12-13 2012-03-06 Kyoto University Somatic cell reprogramming by retroviral vectors encoding Oct3/4. Klf4, c-Myc and Sox2
DK3441459T3 (en) 2006-08-02 2021-06-07 Technion Res & Dev Foundation PROCEDURES FOR EXPANSION OF EMBRYONAL STEM CELLS IN A SUSPENSION CULTURE
JP2008099662A (en) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research Method for culturing stem cell
JP2008307007A (en) * 2007-06-15 2008-12-25 Bayer Schering Pharma Ag Human pluripotent stem cell induced from human tissue-originated undifferentiated stem cell after birth
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
SG188904A1 (en) 2008-03-17 2013-04-30 Scripps Research Inst Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2009116840A2 (en) * 2008-03-21 2009-09-24 Industry-Academic Cooperation Foundation, Yonsei University Chemical reagents regulating stem cell fate
US8513012B2 (en) 2008-05-02 2013-08-20 Cellular Dynamics International, Inc. Method for production of mast cells from stem cells
CN101855350B (en) * 2008-05-02 2014-12-31 国立大学法人京都大学 Method of nuclear reprogramming
US8648170B2 (en) * 2008-09-19 2014-02-11 Wisconsin Alumni Research Foundation Peptide-presenting surfaces for long-term culture of pluripotent cells
KR101774546B1 (en) * 2008-11-20 2017-09-04 얀센 바이오테크 인코포레이티드 Pluripotent stem cell culture on micro-carriers
EP3312269A1 (en) 2008-12-17 2018-04-25 The Scripps Research Institute Generation and maintenance of stem cells
US8642334B2 (en) 2009-02-17 2014-02-04 Memorial Sloan Kettering Cancer Center Methods of neural conversion of human embryonic stem cells
EP2398897B1 (en) * 2009-02-20 2017-06-28 Cellular Dynamics International, Inc. Methods and compositions for the differentiation of stem cells
EP2408903B1 (en) * 2009-03-20 2014-08-06 Agency For Science, Technology And Research Culture of pluripotent and multipotent cells on microcarriers
WO2010144780A1 (en) * 2009-06-12 2010-12-16 University Of Kansas Compositions and methods for establishing and maintaining stem cells in an undifferentiated state
MX337982B (en) 2009-10-16 2016-03-30 Scripps Research Inst Induction of pluripotent cells.
JP5902092B2 (en) * 2009-10-19 2016-04-13 セルラー ダイナミクス インターナショナル, インコーポレイテッド Cardiomyocyte generation
WO2011056971A2 (en) * 2009-11-04 2011-05-12 Cellular Dynamics International, Inc. Episomal reprogramming with chemicals
KR101255649B1 (en) * 2009-11-06 2013-04-16 주식회사 알앤엘바이오 Method for Proliferating Hair Follicle Stem Cells
EP2499236B1 (en) 2009-11-12 2020-01-01 Technion Research & Development Foundation Ltd. Culture media, cell cultures and methods of culturing pluripotent stem cells in an undifferentiated state
WO2011068879A2 (en) * 2009-12-02 2011-06-09 Research Development Foundation Selection of stem cell clones with defined differentiation capabilities
EP3199623B1 (en) 2010-03-31 2021-07-28 The Scripps Research Institute Reprogramming cells
WO2011159726A2 (en) 2010-06-14 2011-12-22 The Scripps Research Institute Reprogramming of cells to a new fate
JP5875517B2 (en) * 2010-08-09 2016-03-02 武田薬品工業株式会社 Method for producing pancreatic hormone-producing cells
US9068166B2 (en) 2010-09-16 2015-06-30 Industry-Academic Cooperation Foundation Yonsei University Use of compounds for inducing differentiation of mesenchymal stem cells to chondrocytes
US9181529B2 (en) 2010-10-19 2015-11-10 Cellular Dynamics International, Inc. Titration of differentiation medium components
CA2822638C (en) 2010-12-22 2021-02-16 Fate Therapeutics, Inc. Cell culture platform for single cell sorting and enhanced reprogramming of ipscs
EP2676140A2 (en) * 2011-02-14 2013-12-25 Life Technologies Corporation Substrates and methods for staining live cells
DK2694644T3 (en) 2011-03-30 2018-04-16 Cellular Dynamics Int Inc Priming of pluripotent stem cells for neural differentiation
WO2013009825A1 (en) 2011-07-11 2013-01-17 Cellular Dynamics International, Inc. Methods for cell reprogramming and genome engineering
EP3693455A1 (en) 2011-11-04 2020-08-12 Memorial Sloan-Kettering Cancer Center Midbrain dopamine (da) neurons for engraftment
US10238755B2 (en) 2011-11-30 2019-03-26 The Wistar Institute Of Anatomy And Biology Methods and compositions for regulation of cell aging, carcinogenesis and reprogramming
CN105358680B (en) 2013-04-03 2019-06-25 富士费勒姆细胞动力学有限公司 Method and composition for the culture entoderm progenitor cells that suspend
EP2989198A4 (en) 2013-04-26 2016-10-26 Sloan Kettering Inst Cancer Cortical interneurons and other neuronal cells produced by the directed differentiation of pluripotent and multipotent cells
AU2015227184B2 (en) 2014-03-04 2021-05-20 Fate Therapeutics, Inc. Improved reprogramming methods and cell culture platforms
EP3119881B1 (en) 2014-03-21 2023-03-01 FUJIFILM Cellular Dynamics, Inc. Production of midbrain dopaminergic neurons and methods for the use thereof
US10444227B2 (en) 2014-08-19 2019-10-15 FUJIFILM Cellular Dynamics, Inc. Neural networks formed from cells derived from pluripotent stem cells
JP6581655B2 (en) 2014-10-14 2019-09-25 フジフィルム セルラー ダイナミクス,インコーポレイテッド Generation of pluripotent stem cell-derived keratinocytes and maintenance of keratinocyte culture
JP7263005B2 (en) 2015-10-16 2023-04-24 フェイト セラピューティクス,インコーポレイテッド A platform for the induction and maintenance of ground-state pluripotency
WO2017070506A1 (en) 2015-10-21 2017-04-27 Indiana University Research And Technology Corporation Derivation of human skin organoids from pluripotent stem cells
JP6979946B2 (en) 2015-10-21 2021-12-15 インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーションIndiana University Research And Technology Corporation How to Generate Human Inner Ear Sensory Epithelium and Sensory Neurons
US11154573B2 (en) 2015-10-30 2021-10-26 The Regents Of The University Of California Methods of generating T-cells from stem cells and immunotherapeutic methods using the T-cells
EP3438248A4 (en) * 2016-03-30 2019-11-06 Kyowa Hakko Bio Co., Ltd. Naïve pluripotential stem cell culturing medium and pluripotential stem cell culturing method
AU2017313065B2 (en) 2016-08-16 2021-06-24 Fujifilm Cellular Dynamics Inc. Methods for differentiating pluripotent cells
US11767508B2 (en) 2017-07-24 2023-09-26 Wisconsin Alumni Research Foundation Methods and culture substrates for controlled induction of biomimetic neural tissues comprising singular rosette structures
CN112823030A (en) 2018-08-31 2021-05-18 威斯康星校友研究基金会 Generation of vascular grafts for arterial endothelial cell implantation
CA3213988A1 (en) 2021-04-07 2022-10-13 Christopher MCMAHON Dopaminergic precursor cells and methods of use
US20240034992A1 (en) 2021-10-29 2024-02-01 FUJIFILM Cellular Dynamics, Inc. Dopaminergic neurons comprising mutations and methods of use thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456757A (en) 1981-03-20 1984-06-26 Asahi Kasei Kogyo Kabushiki Kaisha Isoquinolinesulfonyl derivatives and process for the preparation thereof
KR19990082174A (en) 1996-02-02 1999-11-25 니뽄 신야쿠 가부시키가이샤 Isoquinoline Derivatives and Medicines
NZ513800A (en) 1996-08-12 2001-09-28 Welfide Corp Treatment of diseases using Rho kinase inhibitors
US7439064B2 (en) 2000-03-09 2008-10-21 Wicell Research Institute, Inc. Cultivation of human embryonic stem cells in the absence of feeder cells or without conditioned medium
US20020009713A1 (en) * 2000-05-11 2002-01-24 Miller Freda D. Methods for identifying modulators of neuronal growth
WO2003080649A2 (en) * 2002-03-20 2003-10-02 Regents Of The University Of Minnesota Induction of hepatocyte proliferation in vitro by inhibition of cell cycle inhibitors
EP1601759A4 (en) * 2003-03-07 2007-02-14 Gamida Cell Ltd Expansion of renewable stem cell populations using modulators of pi 3-kinase
US7829332B2 (en) * 2004-02-13 2010-11-09 Cornell Research Foundation, Inc. Purines are self-renewal signals for neural stem cells, and purine receptor antagonists promote neuronal and glial differentiation therefrom
JP4576545B2 (en) * 2004-05-27 2010-11-10 独立行政法人理化学研究所 Embryonic stem cell culture method using amnion-derived factor
KR20070083559A (en) * 2004-08-13 2007-08-24 더 유니버시티 오브 죠지아 리서치 파운데이션, 인코포레이티드 Compositions and methods for self-renewal and differentiation in human embryonic stem cells
CN101044235B (en) 2004-09-08 2013-01-02 威斯康星校友研究基金会 Culturing human embryonic stem cells
CA2579652A1 (en) 2004-09-08 2006-03-16 Wisconsin Alumni Research Foundation Culturing human embryonic stem cells
US7641897B2 (en) * 2004-11-23 2010-01-05 The Board Of Trustees Of The Leland Stanford Junior University Feeder layer and serum independent embryonic stem cells
ITVA20060041A1 (en) 2006-07-05 2008-01-06 Dialectica Srl USE OF COMPOUNDS ADMINOTIAZOLIC DERIVATIVES, OF THEIR PHARMACEUTICAL COMPOSITIONS, IN THE TREATMENT OF DISEASES CHARACTERIZED BY THE ABNORMAL REPRESSION OF GENE TRANSCRIPTION, PARTICULARLY THE HUNTINGTON'S DISEASE
CA2658764A1 (en) 2006-07-20 2008-01-24 Mehmet Kahraman Benzothiophene inhibitors of rho kinase
JP2008099662A (en) * 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research Method for culturing stem cell

Also Published As

Publication number Publication date
SE0950586L (en) 2009-08-13
US7892830B2 (en) 2011-02-22
US20080171385A1 (en) 2008-07-17
CA2675445A1 (en) 2008-07-24
GB0914193D0 (en) 2009-09-16
JP2010516255A (en) 2010-05-20
GB2458863B (en) 2011-10-12
WO2008089351A1 (en) 2008-07-24
GB2458863A (en) 2009-10-07
CA2675445C (en) 2014-11-04

Similar Documents

Publication Publication Date Title
JP5419279B2 (en) Improved stem cell culture
KR102215373B1 (en) Method for producing dopaminergic neurons
JP5875517B2 (en) Method for producing pancreatic hormone-producing cells
Alves et al. A link between the accumulation of DNA damage and loss of multi‐potency of human mesenchymal stromal cells
CN105358680B (en) Method and composition for the culture entoderm progenitor cells that suspend
EP2765188B1 (en) Method for producing corneal endothelial cell
JPWO2017170849A1 (en) Medium for culturing naive type pluripotent stem cells and culture method for pluripotent stem cells
JP5722628B2 (en) hBS cell-derived cardiomyocyte-like cell cluster
CN103620024A (en) Method for differentiation of pluripotent stem cells into vascular bed cells
KR101293637B1 (en) Compositions for Suspension Culture of Stem Cells
JP2008099662A (en) Method for culturing stem cell
KR20170134634A (en) In vitro expansion of epithelial cells
EP3138906A1 (en) Cd82-positive cardiac progenitor cells
US20220282219A1 (en) Genetically engineered human fetal liver niche as platform for biomanufacturing of hematopoietic stem cells
CN106661553B (en) Method for differentiating pluripotent stem cells into cardiomyocytes
Nakahama et al. Generation of cardiomyocytes from pluripotent stem cells
JPWO2020100481A1 (en) How to make cerebral organoids
Ariyoshi et al. 3D spheroid culture models for chondrocytes using polyethylene glycol-coated microfabricated chip
AU2019359473A1 (en) Compositions and methods for cell culture
Chen et al. Effect of dual‐specificity protein phosphatase 5 on pluripotency maintenance and differentiation of mouse embryonic stem cells
Papadopoulou et al. Reacquisition of a spindle cell shape does not lead to the restoration of a youthful state in senescent human skin fibroblasts
van Maaren et al. Favorable culture conditions for spermatogonial propagation in human and non-human primate primary testicular cell cultures: a systematic review and meta-analysis
JP2023106640A (en) Method for producing inner ear hair cells, method for assessing drug, and composition for inducing differentiation of cells
Mu et al. Comparative study of directional differentiation of human and mouse embryonic stem cells into cardiomyocytes
Qin et al. The differentiation of pluripotent stem cells towards transplantable endothelial progenitor cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130502

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130513

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5419279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250