JP5417616B2 - Electromagnetic horn type electron spin resonance device (3) - Google Patents

Electromagnetic horn type electron spin resonance device (3) Download PDF

Info

Publication number
JP5417616B2
JP5417616B2 JP2010019956A JP2010019956A JP5417616B2 JP 5417616 B2 JP5417616 B2 JP 5417616B2 JP 2010019956 A JP2010019956 A JP 2010019956A JP 2010019956 A JP2010019956 A JP 2010019956A JP 5417616 B2 JP5417616 B2 JP 5417616B2
Authority
JP
Japan
Prior art keywords
microwave
sample
electromagnetic horn
magnetic field
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010019956A
Other languages
Japanese (ja)
Other versions
JP2011158348A (en
Inventor
正 小林
正人 榎園
孝 戸高
Original Assignee
国立大学法人 大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 大分大学 filed Critical 国立大学法人 大分大学
Priority to JP2010019956A priority Critical patent/JP5417616B2/en
Publication of JP2011158348A publication Critical patent/JP2011158348A/en
Application granted granted Critical
Publication of JP5417616B2 publication Critical patent/JP5417616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、電磁ホーン型ESR装置の感度/精度の改良、操作性と応用計測性を大幅に拡大(多目的性)した電磁ホーン型電子スピン共鳴装置(3)に関するものである。 The present invention relates to an electromagnetic horn type electron spin resonance apparatus (3) in which the sensitivity / accuracy of the electromagnetic horn type ESR apparatus is improved, and the operability and applied measurement are greatly expanded (multipurpose).

従来、周波数掃引方式でなく、磁場掃引方式に限っての事例であるが、電磁ホーン型電子スピン共鳴装置の開発の先達は1983年大矢博昭氏によるX-バンド電磁ホーン型ESRの開発事例と,1991年に相馬純吉・原秀元両氏によるK-バンド電磁ホーン型ESRの開発事例のみである。
これに基く特許は、下記の特許文献1から特許文献4にて紹介されている。また最近では、発明者らが開発し非特許文献1により次に紹介する電磁ホーン型電子スピン共鳴装置が紹介され注目されている。
非特許文献1では、共振器型ESRでは、ESR計測時に高いQ値の維持が必要な為,少量・小型で誘電ロスの小さい試料でしか測定できなかった。このため、誘電ロスの大きな試料(含水試料・生体試料),導電性試料,金属含有試料,大型試料のESR測定は困難または不可能であり,多くの制約があった。
この問題を解決するために,第1段階として、マイクロ波透過方式電磁ホーン型ESRの場合にはマイクロ波出力側と入力側の2つの電磁ホーン間の空間を試料セルとして採用し,第2段階としては、マイクロ波反射方式電磁ホーン型ESRの場合には電磁ホーンの開口部とマイクロ波反射板間の空間を試料セルとして採用し,マイクロ波定在波ではなくマイクロ波進行波を用い,共振器型ESRのもつ制約・困難を悉く改善したマイクロ波透過方式及び反射方式電磁ホーン型ESRを稼働させ,感度的にも球形または円筒形共振器の高Q値をもつ空洞共振器型ESRには及ばないものの、それに近づけるためにこの3年間で3桁ほど測定感度の改善を行い、初めて電磁ホーン型ESRとして実用のレベルにまで改良を行ってきた。
Conventionally, it is an example that is limited to the magnetic field sweep method instead of the frequency sweep method, but the development of the electromagnetic horn type electron spin resonance device was developed in 1983 by Hiroaki Ohya, the X-band electromagnetic horn type ESR development case, In 1991, only K-band electromagnetic horn type ESR was developed by Junichi Soma and Hidemoto Hara.
Patents based on this are introduced in the following Patent Documents 1 to 4. Recently, an electromagnetic horn type electron spin resonance apparatus developed by the inventors and introduced next by Non-Patent Document 1 has been introduced and attracted attention.
In Non-Patent Document 1, the resonator-type ESR needs to maintain a high Q value at the time of ESR measurement. Therefore, measurement was possible only with a small amount, a small sample, and a small dielectric loss. For this reason, ESR measurement of samples with large dielectric loss (hydrated samples / biological samples), conductive samples, metal-containing samples, and large samples is difficult or impossible and has many limitations.
In order to solve this problem, as the first stage, in the case of the microwave transmission type electromagnetic horn type ESR, the space between the two electromagnetic horns on the microwave output side and the input side is adopted as the sample cell, and the second stage In the case of the microwave reflection type electromagnetic horn type ESR, the space between the opening of the electromagnetic horn and the microwave reflector is used as a sample cell, and a microwave traveling wave is used instead of a microwave standing wave, and resonance is performed. The microwave transmission type and reflection type electromagnetic horn type ESR, which has improved the limitations and difficulties of the resonator type ESR, are operated, and the cavity resonator type ESR which has a high Q value of a spherical or cylindrical resonator is also sensitive. In order to get closer to that, we have improved the measurement sensitivity by about three digits over the past three years, and for the first time we have improved it to a practical level as an electromagnetic horn type ESR.

<本発明者等が開発し発表した電磁ホーン型電子スピン共鳴装置>
電磁ホーン型電子スピン共鳴装置である反射方式電磁ホーン型ESR装置のマイクロ波立体回路のブロック線図を図4に示す。
図4において、この反射方式電磁ホーン型ESR装置は、高周波域のマイクロ波を発振するマイクロ波発振器001と、設定出力のマイクロ波mw0を減衰器ATT1とサーキュレータcirculatorを介して試料sampleに放射する電磁ホーンhornと、試料sampleへの磁場発生装置002と、試料sampleを介したマイクロ波mw1を再び試料sampleを介して電磁ホーンhornに反射するマイクロ波反射板003と、リファレンスアームからのマイクロ波mw3と電磁ホーンhornからの反射マイクロ波mw2を導入し、マイクロ波mw3は、反射マイクロ波mw2と逆の位相を持ち強度の等しいマイクロ波にしこのマイクロ波でマイクロ波mw2を打ち消しバランスさせ、ある磁場で電子スピンが│-1/2>状態から│1/2>状態に遷移する所謂磁気共鳴によるスピン反転時に試料がその分だけマイクロ波エネルギーを吸収した際のアンバランスによるマイクロ波の極微量変化を増幅してESRスペクトルとして記録するマイクロ波処理回路004とからなる。
マイクロ波処理回路004及びマイクロ波周波数計(Frequency Counter)への導入部において、WG-N,WG-SMA:同軸導波管交換器、ATT2:減衰器 Magic tee:マジックティー、Phase shifter:位相器、AMP:プリアンプとロックインアンプを各々示す。図中、ATT3は減衰器である。
<Electromagnetic horn type electron spin resonance apparatus developed and announced by the present inventors>
FIG. 4 shows a block diagram of a microwave solid circuit of a reflection type electromagnetic horn type ESR device which is an electromagnetic horn type electron spin resonance device.
In FIG. 4, this reflection type electromagnetic horn type ESR device is an electromagnetic wave that radiates a set sample output microwave mw0 to a sample sample via an attenuator ATT1 and a circulator circulator. Horn horn, magnetic field generator 002 for sample sample, microwave reflector 003 for reflecting microwave mw1 through sample sample again to electromagnetic horn horn through sample sample, and microwave mw3 from reference arm The reflected microwave mw2 from the electromagnetic horn horn is introduced, and the microwave mw3 is a microwave having the same phase and opposite intensity as that of the reflected microwave mw2, and this microwave cancels and balances the microwave mw2 with an electron in a certain magnetic field. When the spin is reversed by the so-called magnetic resonance where the spin changes from the │-1 / 2> state to the │1 / 2> state, the sample absorbs the microwave energy accordingly. A micro-wave processing circuit 004 Metropolitan be recorded as ESR spectra amplifies the trace amount change of the microwave due to unbalance at the time.
WG-N, WG-SMA: Coaxial waveguide exchanger, ATT2: Attenuator Magic tee: Magic tee, Phase shifter: Phase shifter at the introduction to microwave processing circuit 004 and microwave frequency meter (Frequency Counter) AMP: Indicates a preamplifier and a lock-in amplifier, respectively. In the figure, ATT3 is an attenuator.

この反射方式電磁ホーン型ESR装置の電磁ホーンは、例えば断面が方形の導波管であれば、開口端の開ロ面積が徐々に広くなるよう、底面が開放された角錐台の形状又は円錐台の形状のホーンを取り付けたものである。原理としては、導波管の内部を伝送された電磁波が、開ロ端反射することなく、空間に放射されるための最も単純な形と言える。電磁ホーンの長さは長ければ長いほど指向性は鋭くなる。角錐・円錐をホーンの形の基準とした場合、その頂角を中心角と呼ぶ。これは指向性を鋭くするための最適値がある。
一方マイクロ波反射板の反射面は平坦面が一般的で中には立体的形状が定かでないが側面から見て湾曲したものである。
このように、電磁ホーンのマイクロ波放射面は平坦面であり、マイクロ波反射板の反射面は平坦面かそれに類似のものであるため、何れもマイクロ波の収斂/集束が好ましくなく、ノイズが多く、感度も満足するものでなかった。
特公平3-78945号公報(発信受信電磁ホーンに反射板を対向配置させたタイプの基本) 特公平3-78591号公報(発信電磁ホーンと受信電磁ホーンタイプの基本) 特公平3-78944号公報(発信電磁ホーンと受信電磁ホーンの交差対向配置の基本) 特公平3-78946号公報(受信電磁ホーンとマイクロ波反射板が無く試料からの反射マイクロ波を検出するタイプ 「電磁ホーン型電子スピン共鳴(ESR)装置の開発とESR応用計測」小林正,桑田賢一・・・日本AEM学会誌Vol.17,No.1,2009年pp138-143
If the electromagnetic horn of this reflection type electromagnetic horn type ESR device is a waveguide having a square cross section, for example, the shape of the truncated pyramid or the truncated cone with the bottom open so that the open area of the open end gradually increases. The horn of the shape is attached. In principle, it can be said that the electromagnetic wave transmitted through the inside of the waveguide is the simplest form for radiating into the space without being reflected at the open end. The longer the electromagnetic horn, the sharper the directivity. When a pyramid / cone is used as a reference for the shape of the horn, the apex angle is called the central angle. This has an optimum value for sharpening directivity.
On the other hand, the reflection surface of the microwave reflection plate is generally a flat surface, and although the three-dimensional shape is not certain, it is curved as viewed from the side.
As described above, the microwave radiation surface of the electromagnetic horn is a flat surface, and the reflection surface of the microwave reflector is flat or similar. The sensitivity was not satisfactory.
Japanese Patent Publication No. 3-78945 (basic of the type in which a reflector is placed opposite to a transmitting / receiving electromagnetic horn) Japanese Patent Publication No. 3-78591 (Transmission Electromagnetic Horn and Reception Electromagnetic Horn Type Basics) Japanese Examined Patent Publication No. 3-78944 (Basics of crossing arrangement of transmitting electromagnetic horn and receiving electromagnetic horn) Japanese Patent Publication No. 3-78946 (A type that detects the reflected microwave from the sample without receiving electromagnetic horn and microwave reflector) “Development of Electromagnetic Horn-type Electron Spin Resonance (ESR) Apparatus and Application of ESR Measurement” Masaru Kobayashi, Kenichi Kuwata ・ ・ ・ Journal of AEM Society of Japan Vol.17, No.1, pp138-143

発明者が従来開発した上記の装置は未だ感度が低く、パソコンとの結合もなくあくまでも試作の範囲である。
本発明は、2桁以上のESR測定感度の向上。パソコン自動化による操作性の向上。多目的仕様にして誘電ロスの大きな試料および大型/多量試料の計測が有利に可能で、基礎科学から材料工学・環境科学・医薬学分野での臨床現場での血液・組織検査、レドックス関連加齢現象・発癌機構の研究等に即応用可能にするマイクロ波反射方式電磁ホーン型電子スピン共鳴(ESR/EPR)装置を提供するものである。
The above-mentioned device developed by the inventor is still low in sensitivity, and is only in the range of trial production without coupling with a personal computer.
The present invention improves the ESR measurement sensitivity by two digits or more. Improved operability by PC automation. It is possible to measure samples with large dielectric loss and large / mass samples with multi-purpose specifications, blood / histological examinations from basic science to material engineering / environmental science / pharmaceutical fields, redox-related aging phenomenon・ To provide a microwave-reflecting electromagnetic horn type electron spin resonance (ESR / EPR) device that can be immediately applied to research on carcinogenic mechanisms.

上記課題を満足する本発明の特徴とするところは、次の(1)〜(2)通りである。
(1)、マイクロ波発信装置からのマイクロ波をマイクロ波導波管のメインアーム(01)を介して試料載置台(14)上の試料(14a)に放射する電磁ホーン(12)、
試料載置台(14)の試料(14a)の周囲に設ける開磁路磁場発生器(200)、
電磁ホーン(12)から試料(14a)を介してのマイクロ波を再び試料(14a)を介して電磁ホーン(12)に反射するマイクロ波反射板(15)、
前記マイクロ波導波管のメインアーム(01)から分岐したリファレンスアーム(02)からの参照用の発信マイクロ波と、マイクロ波反射板から試料と電磁ホーン(12)とメインアーム(01)を介しての反射マイクロ波をミキサー(42)に導入して、試料中の不対電子のスピンが反転する磁気共鳴時にマイクロ波エネルギーを試料が吸収した際のマイクロ波パワーの極微量変化を検出し記録する差動増幅装置(43)・ロックイン増幅装置(44),記録装置(45)とからなる電磁ホーン型電子スピン共鳴装置において、
前記開磁路磁場発生器(200)として、前記試料載置台(14)上の試料(14a)の周囲の上方部、下方部、左方部、右方部、あるいはこれら以外の他方部等の何れか一方部の両側各々に、ヨーク(210)を平行に設け、この各ヨーク(210)に、前方の試料側に所定角度(θ)傾斜対向させて磁場変調コイル(240)と磁場掃引コイル(260)を設置すると共にその後方に平行対向させて磁化の方向成分を同一にした第一永久磁石(220)を平行配置し、この第一永久磁石(220)間に磁化方向を第一永久磁石と同一方向にした第二永久磁石(230)を配置し、前記第二永久磁石(230)の反試料側に磁性金属(231)を装着したことを特徴とする電磁ホーン型電子スピン共鳴装置。
(2)、前記電磁ホーンの表面(射出口)に凸面型放射レンズ(13)を設け、前記マイクロ波反射板(15)に凹面型反射板(15a)を設け、
前記試料載置台(14)とマイクロ波反射器(15)に電磁ホーン方向への位置調節装置(RP1,RP2)を設け、
試料(14a)に放射する放射マイクロ波の出力を表示・記録する第一パワーモニター(22)とリファレンスアーム(02)のミキサー(42)直前でのマイクロ波の出力を表示・記録する第二パワーモニター(20)と凹面型反射板(15a)から試料(14a)、電磁ホーン(12)、サーキュレーター(6)を順次介した後の反射マイクロ波の出力を表示・記録する第三パワーモニター(21)を設け、これらパワーモニターからのマイクロ波の出力測定値を導入して、第三パワーモニター(21)からのマイクロ波出力を、あるバランス用設定値になるように前記位置調節装置を調節して第二パワーモニター(20)からのマイクロ波出力値にバランスさせる制御装置(Co)を設けたことを特徴とする前記(1)に記載の電磁ホーン型電子スピン共鳴装置。
The features of the present invention that satisfy the above-described problems are the following (1) to (2).
(1), an electromagnetic horn (12) that radiates the microwave from the microwave transmission device to the sample (14a) on the sample mounting table (14) via the main arm (01) of the microwave waveguide,
An open magnetic path magnetic field generator (200) provided around the sample (14a) of the sample mounting table (14),
A microwave reflector (15) that reflects the microwave from the electromagnetic horn (12) through the sample (14a) to the electromagnetic horn (12) again through the sample (14a),
The reference transmission microwave from the reference arm (02) branched from the main arm (01) of the microwave waveguide, and the sample from the microwave reflector through the sample, the electromagnetic horn (12), and the main arm (01) Introduced into the mixer (42) to detect and record the minute changes in microwave power when the sample absorbs microwave energy during magnetic resonance in which the spin of unpaired electrons in the sample is reversed In an electromagnetic horn type electron spin resonance apparatus comprising a differential amplifier (43), a lock-in amplifier (44), and a recording device (45),
As the open magnetic path magnetic field generator (200), an upper portion, a lower portion, a left portion, a right portion around the sample (14a) on the sample mounting table (14), the other portion other than these, etc. A yoke (210) is provided in parallel on each side of any one part, and a magnetic field modulation coil (240) and a magnetic field sweep coil are provided so as to face each of the yokes (210) at a predetermined angle (θ) with respect to the front sample side. (260) is installed, and a first permanent magnet (220) having the same direction component of magnetization is arranged in parallel with the back in parallel, and the magnetization direction is set between the first permanent magnets (220) in the first permanent direction. An electromagnetic horn type electron spin resonance apparatus comprising a second permanent magnet (230) oriented in the same direction as a magnet, and a magnetic metal (231) attached to the opposite side of the second permanent magnet (230) .
(2), a convex radiation lens (13) is provided on the surface (exit) of the electromagnetic horn, and a concave reflector (15a) is provided on the microwave reflector (15),
The sample mounting table (14) and the microwave reflector (15) are provided with a position adjusting device (RP1, RP2) in the direction of the electromagnetic horn,
The first power monitor (22) that displays and records the output of the microwave emitted to the sample (14a) and the second power that displays and records the microwave output just before the mixer (42) of the reference arm (02) A third power monitor (21) that displays and records the output of the reflected microwave after passing through the sample (14a), electromagnetic horn (12), and circulator (6) in sequence from the monitor (20) and concave reflector (15a) ) And introduce the microwave output measurement values from these power monitors, and adjust the position adjustment device so that the microwave output from the third power monitor (21) becomes a certain set value for balance. The electromagnetic horn type electron spin resonance apparatus according to (1), further comprising a control device (Co) for balancing the microwave output value from the second power monitor (20).

本発明のマイクロ波反射方式電磁ホーン型電子スピン共鳴(ESR/EPR)装置は、2桁以上のESR測定感度の向上。パソコン自動化による操作性の向上。多目的仕様にして誘電ロスの大きな試料および大型/多量試料の計測が有利に可能で、基礎科学から材料工学・環境科学・医薬学分野での臨床現場での血液・組織検査、レドックス関連加齢現象・発癌機構の研究等にも即応用可能である。
1.前記構成の開磁路磁場発生器(200)は、被験物(者)を磁石で挟まない形で磁気共鳴に必要な均一磁場が得られる開磁路型にしたため、試料の形状サイズ等に影響されずに、大型/多量試料の計測を有利に可能にした。
2.前記電磁ホーン12の表面の凸面型放射レンズ13と、凹面型反射板(15a)とによりマイクロ波の収斂放射と収斂反射を有利に可能にした。
3.前記位置調節装置(RP1,RP2)は、前記制御装置(Co)と共動して、電磁ホーン12に対する凹面型反射板(15a)と試料載置台(14)の最適な相対関係を調節制御可能にした。
The microwave reflection type electromagnetic horn type electron spin resonance (ESR / EPR) apparatus of the present invention improves the ESR measurement sensitivity by two digits or more. Improved operability by PC automation. It is possible to measure samples with large dielectric loss and large / mass samples with multi-purpose specifications, blood / histological examinations from basic science to material engineering / environmental science / pharmaceutical fields, redox-related aging phenomenon -It can be applied immediately to research on carcinogenic mechanisms.
1. The open magnetic circuit magnetic field generator (200) having the above-mentioned configuration is an open magnetic circuit type that can obtain a uniform magnetic field necessary for magnetic resonance without sandwiching the test subject (person) between magnets. In this way, measurement of large / large samples can be advantageously performed.
2. The convex radiating lens 13 on the surface of the electromagnetic horn 12 and the concave reflecting plate (15a) advantageously enable microwave convergence and convergence reflection.
3. The position adjusting device (RP1, RP2) can adjust and control the optimum relative relationship between the concave reflector (15a) and the sample mounting table (14) with respect to the electromagnetic horn 12 in cooperation with the control device (Co). I made it.

更に、本発明の電磁ホーン型電子スピン共鳴装置の最良の形態を、図1〜図3に示す実施例(具体例)により詳細に説明する。 Further, the best mode of the electromagnetic horn type electron spin resonance apparatus of the present invention will be described in detail with reference to examples (specific examples) shown in FIGS.

本発明の電磁ホーン型電子スピン共鳴装置の一例である反射方式電磁ホーン型ESR装置のマイクロ波立体回路等の実施例1を以下に詳細に説明する。
図1及び図4に示す反射方式電磁ホーン型ESR装置のマイクロ波立体回路等の基本構成は、
○マイクロ波発信装置、
○マイクロ波発信装置からのマイクロ波をマイクロ波導波管のメインアーム(01)を介して試料載置台14上の試料14aに放射する電磁ホーン装置、
○電磁ホーン装置の電磁ホーン12から試料14aを介してのマイクロ波を再び試料14aを介して電磁ホーン12に反射する凹面型反射板15aを有するマイクロ波反射器15、
○凸面型放射レンズ13と凹面型反射板15aと試料14aの中心14acを結ぶ直線Xに対して試料14a中心14acを通る直交面YFにおいて、前記中心14acの沿直上・下方部D,U、水平左・右方部R,L、或いはこれらの中間部等の内、任意に設定した一方向部の両側各々に、ヨーク210を平行に設け、この各ヨーク210において、試料側に傾斜(θ)対向させて磁場変調コイル240と磁場掃引コイル260を設置すると共にその後方に平行対向させて磁化の方向成分を同一にした第一永久磁石220を配置し、第一永久磁石220間に試料14a域の磁場を調節するための第二永久磁石230を配置し、第二永久磁石230の反試料側に磁性金属231を装着してなる開磁路磁場発生器200、
○前記マイクロ波導波管のメインアーム01から分岐したリファレンスアーム02からの参照用の発信マイクロ波と、マイクロ波反射器15の凹面型反射板15aから試料と電磁ホーン12とメインアーム01を介しての反射マイクロ波をミキサー42に導入して、試料中の不対電子のスピンが反転する磁気共鳴時にマイクロ波エネルギーを試料が吸収した際のマイクロ波パワーの極微量変化を差動増幅装置43で検出しロックイン増幅装置44で増幅し記録装置45で記録するマイクロ波処理装置、
とからなる。
このマイクロ波処理装置は、ミキサー42と差動増幅装置43とロックイン増幅装置44と記録装置45からなり、リファレンスアーム02からのマイクロ波からその逆の位相を持ち強度の等しいマイクロ波をつくりこのマイクロ波で電磁ホーン12からの反射マイクロ波を打ち消しバランスさせ、電子スピンの磁気共鳴時に電子スピンの反転に費やされるのに必要なエネルギーの分だけ試料がマイクロ波エネルギーを吸収した際のアンバランスによる反射マイクロ波の変化を増幅してESRスペクトルとして記録するものである。
Example 1 of a microwave solid circuit of a reflection type electromagnetic horn type ESR device which is an example of an electromagnetic horn type electron spin resonance device of the present invention will be described in detail below.
The basic configuration of the three-dimensional microwave circuit of the reflection type electromagnetic horn type ESR device shown in FIG. 1 and FIG.
○ Microwave transmitter,
An electromagnetic horn device that radiates microwaves from a microwave transmission device to the sample 14a on the sample mounting table 14 through the main arm (01) of the microwave waveguide,
A microwave reflector 15 having a concave reflector 15a that reflects the microwave from the electromagnetic horn 12 of the electromagnetic horn device through the sample 14a to the electromagnetic horn 12 again through the sample 14a,
○ On the orthogonal plane YF passing through the center 14ac of the sample 14a with respect to the straight line X connecting the center 14ac of the convex radiation lens 13, the concave reflector 15a and the sample 14a, the straight upper and lower portions D, U of the center 14ac A yoke 210 is provided in parallel on each of the left and right parts R, L, or an intermediate part of each of the left and right parts, and a unidirectional part set arbitrarily, and each yoke 210 is inclined (θ) toward the sample side. A magnetic field modulation coil 240 and a magnetic field sweep coil 260 are placed opposite to each other, and a first permanent magnet 220 having the same magnetization direction component is arranged behind and parallel to the rear thereof. A second permanent magnet 230 for adjusting the magnetic field of the second permanent magnet 230, and an open magnetic path magnetic field generator 200 formed by mounting a magnetic metal 231 on the opposite side of the second permanent magnet 230,
A reference transmission microwave from the reference arm 02 branched from the main arm 01 of the microwave waveguide, a sample from the concave reflector 15a of the microwave reflector 15, the electromagnetic horn 12, and the main arm 01 The reflected microwave is introduced into the mixer 42, and the differential amplification device 43 uses the differential amplification device 43 to detect a very small change in microwave power when the sample absorbs microwave energy during magnetic resonance in which the spin of unpaired electrons in the sample is reversed. A microwave processing device for detecting and amplifying with a lock-in amplifying device 44 and recording with a recording device 45;
It consists of.
This microwave processing device comprises a mixer 42, a differential amplification device 43, a lock-in amplification device 44, and a recording device 45, and creates microwaves having the opposite phase from the microwave from the reference arm 02 and having the same intensity. Due to the unbalance when the sample absorbs the microwave energy by the amount of energy required to cancel the reflected microwave from the electromagnetic horn 12 by the microwave and balance the electron spin during the magnetic resonance of the electron spin. A change in the reflected microwave is amplified and recorded as an ESR spectrum.

1.マイクロ波発振装置
マイクロ波発振装置は、磁場掃引仕様と周波数掃引仕様の双方の機能を持たせたものであり、磁場掃引仕様に関しては、ガン発振器用電源31、ガン発振器32、単向管33、半固定式減衰器34、同軸導波管交換器35、アンプ電源36a付きのマイクロ波広帯域増幅器36、周波数掃引仕様に関してはスペクトラムアナライザー37a付きのYIGスイープオシレータ37(8GHz〜12.5GHzマイクロ波周波数掃引可能 HP社製、又はアジレント社製品:E8257D等)、マイクロ波を同軸ケーブル020からメインアーム導波管01に交換する同軸導波管交換器38からなる大出力も可能でガン発振器32による磁場掃引の際の周波数固定と磁場固定でスイープオシレータ37による周波数掃引が可能なマイクロ波発生部と、
同軸導波管交換器38に接続のメインアーム導波管01に介在させたアイソレータ1、周波数カウンター2付きの同軸導波管交換器3、方向性結合器4、アテネータ減衰器5、サ−キュレータ6、試料入射前マイクロ波パワーモニター計測端子部7a、試料からの反射マイクロ波パワーモニター計測端子部7bからなるマイクロ波導波管メインアーム部とからなる。
前記マイクロ波発生部は、進行波と後退波の混じったマイクロ波を単向管33で進行マイクロ波のみに選択し、単向管33からの進行マイクロ波を半固定式減衰器34と同軸導波管交換器35によりマイクロ波用同軸ケーブル010にもってきて、マイクロ波広帯域増幅器36に導入する、同様にマイクロ波広帯域増幅器36はYIGスイープオシレータ(8GHz〜12.4GHzマイクロ波周波数掃引可能 HP社製又はアジレント社製品:E8257D等)37からの数mWのマイクロ波を最大1Wまで広帯域増幅させて、同軸導波管交換器38を経て、メインアーム導波管01にマイクロ波を導入する。HP社製のYIGスイープオシレータ37からのマイクロ波はスペクトラムアナライザー37aでその周波数値がモニター確認され、ESRスペクトルの周波数掃引時の積算モニターとしても使用される。
次いで、マイクロ波導波管01に導入されたマイクロ波は、単向管(アイソレーター)1で進行マイクロ波のみに選択され、そのごく一部は同軸導波管交換器3を介して、周波数カウンター2に導入されて周波数をモニターする。
メインアーム導波管01は、方向性結合器4でリファレンスアーム導波管02を別に分岐する一方、マイクロ波パワー調整用の減衰器5をとおり、パワーを調整されてサーキュレーター6に入る。このマイクロ波はサーキュレーター6の特徴で、全てのマイクロ波が試料14aのある電磁ホーン12側に導かれる。途中にあるパワーモニター用の計測端子7aでこのマイクロ波の出力値が検知され、第一パワーモニター22で測定される。一方、試料14aを介して電磁ホーン12に戻ってきたマイクロ波はその出力値パワーモニター用の計測端子7bで検知され、パワーモニター23で測定される。
1. Microwave Oscillator Microwave Oscillator has functions of both a magnetic field sweep specification and a frequency sweep specification. Regarding the magnetic field sweep specification, a Gunn oscillator power supply 31, a Gunn oscillator 32, a unidirectional tube 33, Semi-fixed attenuator 34, coaxial waveguide switch 35, microwave broadband amplifier 36 with amplifier power supply 36a, YIG sweep oscillator 37 with spectrum analyzer 37a for frequency sweep specification (8 GHz to 12.5 GHz microwave frequency sweep possible) HP, or Agilent products: E8257D, etc.), a large output consisting of a coaxial waveguide exchanger 38 for exchanging microwaves from the coaxial cable 020 to the main arm waveguide 01 is also possible. A microwave generator capable of frequency sweeping by the sweep oscillator 37 with fixed frequency and magnetic field at the time,
Isolator 1 interposed in main arm waveguide 01 connected to coaxial waveguide exchanger 38, coaxial waveguide exchanger 3 with frequency counter 2, directional coupler 4, attenuator attenuator 5, circulator 6. A microwave waveguide main arm portion including a microwave power monitor measurement terminal portion 7a before sample incidence and a reflected microwave power monitor measurement terminal portion 7b reflected from the sample.
The microwave generation unit selects a microwave mixed with a traveling wave and a backward wave as a traveling microwave only in the unidirectional tube 33, and the traveling microwave from the unidirectional tube 33 is coaxially guided with the semi-fixed attenuator 34. It comes to the coaxial cable 010 for microwaves by the wave tube exchanger 35 and is introduced into the microwave broadband amplifier 36. Similarly, the microwave broadband amplifier 36 is capable of sweeping the YIG sweep oscillator (8 GHz to 12.4 GHz microwave frequency HP) (Agilent product: E8257D, etc.) A microwave of several mW from 37 is broadband-amplified up to 1 W, and the microwave is introduced into the main arm waveguide 01 through the coaxial waveguide exchanger 38. The frequency value of the microwave from the HP YIG sweep oscillator 37 is monitored and confirmed by the spectrum analyzer 37a, and is also used as an integration monitor during the frequency sweep of the ESR spectrum.
Next, the microwave introduced into the microwave waveguide 01 is selected as a traveling microwave only by a unidirectional tube (isolator) 1, and a small part of the microwave is passed through a coaxial waveguide exchanger 3 and a frequency counter 2. Introduced to monitor the frequency.
The main arm waveguide 01 branches the reference arm waveguide 02 separately by the directional coupler 4, and enters the circulator 6 with the power adjusted through the attenuator 5 for adjusting the microwave power. This microwave is a feature of the circulator 6, and all microwaves are guided to the electromagnetic horn 12 side where the sample 14a is located. The output value of the microwave is detected by the power monitoring measuring terminal 7 a in the middle and measured by the first power monitor 22. On the other hand, the microwave returned to the electromagnetic horn 12 through the sample 14a is detected by the output value power monitor measurement terminal 7b and measured by the power monitor 23.

2.電磁ホーン装置とマイクロ波反射器
電磁ホーン装置は、メインアーム導波管01に連結したスリースタブチューナー8、ツイスト導波管9、矩形円形導波管10、円形導波管11、電磁ホーン12、テフロン(登録商標)製のマイクロ波放射凸面型放射レンズ13からなる。
電磁ホーン装置は、パワーモニター用の計測端子7aを一部分岐させた残りのマイクロ波を、試料位置を仮想的位置に置ける働きのあるスリースタブチューナー8(通常使用時にはこれを全て抜いておいて無効化にしておく)に導入し、さらにマイク波振動面を90°回転するためにツイスト導波管9に導入し、続いて矩形円形導波管10で円形マイクロ波モードにし、円形導波管11の延長上の電磁ホーン12に導入しそのマイクロ波を凸面型放射レンズ13から試料14aを介してマイクロ波反射器15の凹面型反射板15aに向けて放射する。
これによりマイクロ波パワー計測端子7aでパワー計測されたマイクロ波はスリースタブチューナー8に入り、定在波モードのマイクロ波振動面をツイスト導波管9で90°回転された後、矩形から円形マイクロ波モードに矩形円形導波管10で交換されて、電磁ホーン12にて定在波から球面進行波になり試料空間に放出される。これは測定感度を上げるために電磁ホーン12のマイクロ波放射面に、ガラス製やプラスチック製等の透明レンズ或いはテフロン(登録商標)製等の半透明レンズ等の凸面型放射レンズ13を設けて極力収斂させる。中でもテフロン(登録商標)製の凸面型放射レンズは加工性が良く又マイクロ波透過率が大きく且つ屈折率も大きく収斂性が良いので好ましい。
誘電ロスが大きくて透過性の悪い試料14aでは試料14aで直ちに反射され、マイクロ波の透過性のよい試料では、さらに後方の凹面型反射板15aに達し、ここで凹面型反射板15aの反射効果で、収斂反射されて再度試料14aに入り、試料14aを抜けて凸面型放射レンズ13を介して電磁ホーン12に戻り、マイクロ波パワー計測端子7bにてパワー計測された後にサーキュレーター6に入り、サーキュレーター6の下向き矢印の様に進行し同軸導波管交換器16、減衰器17、同軸導波管交換器18を介してミキサー(マジックティー)42部へと導かれる。
2. Electromagnetic horn device and microwave reflector Electromagnetic horn device includes a sleeving tuner 8 connected to the main arm waveguide 01, a twisted waveguide 9, a rectangular circular waveguide 10, a circular waveguide 11, an electromagnetic horn 12, It comprises a microwave radiation convex radiation lens 13 made of Teflon (registered trademark).
The electromagnetic horn device has the function of placing the sample position in a virtual position with the remaining microwave, which is partly branched from the measurement terminal 7a for power monitoring. In addition, it is introduced into the twisted waveguide 9 in order to rotate the oscillation surface of the microphone wave by 90 °, and is then set to the circular microwave mode by the rectangular circular waveguide 10, and the circular waveguide 11 The microwave is radiated from the convex radiation lens 13 toward the concave reflector 15a of the microwave reflector 15 through the sample 14a.
As a result, the microwave power measured at the microwave power measuring terminal 7a enters the sliving tab tuner 8, and the microwave vibration surface in the standing wave mode is rotated 90 ° by the twisted waveguide 9 and then the rectangular to circular microwave is rotated. The wave mode is exchanged in the rectangular circular waveguide 10, and the electromagnetic horn 12 changes from a standing wave to a spherical traveling wave and is emitted to the sample space. In order to increase the measurement sensitivity, a convex radiation lens 13 such as a transparent lens made of glass or plastic or a translucent lens made of Teflon (registered trademark) is provided on the microwave radiation surface of the electromagnetic horn 12 as much as possible. Converge. Among these, a convex-type radiation lens made of Teflon (registered trademark) is preferable because it is easy to process, has a high microwave transmittance, a high refractive index, and good convergence.
In the sample 14a having a large dielectric loss and poor transmittance, the sample 14a is immediately reflected by the sample 14a, and in the sample having good microwave transmittance, further reaches the rear concave reflector 15a, where the reflection effect of the concave reflector 15a is obtained. Then, after being converged and reflected, it enters the sample 14a again, passes through the sample 14a, returns to the electromagnetic horn 12 through the convex radiating lens 13, and enters the circulator 6 after power measurement at the microwave power measurement terminal 7b. 6 proceeds in the direction of a downward arrow and is guided to the mixer (magic tee) 42 through the coaxial waveguide exchanger 16, the attenuator 17, and the coaxial waveguide exchanger 18.

3.開磁路磁場発生器200
磁気共鳴を起こすためには大きさと磁化方向が均一で強力な磁場を必要とするまた、従来のMRIは被験者を磁石で挟む形で均一な磁場を実現している。そのため磁石同士のギャップより大きいものは検査できない欠点がある。また閑寒的な形となるため、閑所恐怖症の人や小さい子供が怖がる揚合や火葬場の様だと嫌がる人がいる。
この開磁路磁場発生器200は、これらの問題を解決するため、被験物(者)を磁石で挟まない形で核磁気共鳴に必要な均一磁場が得られる開磁路磁場発生器である。
開磁路磁場発生器200は、図1と図2に示す如く、凸面型放射レンズ13と凹面型反射板15aと試料14aの中心14acを結ぶ直線Xに対して試料14a中心14acを通る直交面YFにおいて前記中心14acの沿直下方部Dのみに配置され、その他の水平左・右方部R,Lと沿直上方部U等を解放したものであり、該下方部Dの両側に(言い換えると前記直交面YFにおいて好ましくは試料14a中心14acを円心とする直交円面YFCの任意方向半径線(本例は下方の沿直半径線Dr)の両側に対称的に)一対のヨーク210を平行配置し、この開磁路特殊ヨーク210の各先部に100kHzの磁場変調コイル240及び磁場掃引コイル260を傾斜対向設置し、その後方に平行対向させて磁化方向を同一にした第一永久磁石220を配置し、第一永久磁石220の対向間に磁化方向を第一永久磁石220と同一方向にした磁場掃引用の第二永久磁石230を配置し第二永久磁石230の反試料側に磁性金属として鉄板231等を装着してなる。第二永久磁石230と鉄板231の中心部は沿直半径線Dr上に位置する。
これら磁場変調コイル240及び磁場掃引コイル260、第一永久磁石220、第二永久磁石230の相対関係は、次に紹介する解析モデルと解析条件とその結果等から試料条件に応じた関係に適宜設定する。
周波数掃引方式電磁ホーンESRの場合は、開磁路磁場発生器200は磁場変調コイル240のみ使用して磁場掃引コイル260を使用せず電流を0とする。他方磁場掃引方式電磁ホーンESRの場合は、磁場変調コイル240と磁場掃引コイル260を用いて磁場掃引電磁石として使用する。
図1に示すアンプ250は100kHzのサイン波を増幅し、インピーダンス・マッチングさせた多巻きの磁場変調コイル240に導入されて、磁場掃引コイル260で磁場掃引を行い、磁場変調コイル240で発生させた磁場均一性のよい静磁場に100kHzの交流磁場を重畳させて、変調分光法にて3桁ほどの計測感度の改善を行っている。
また周波数掃引方式の電磁ホーン型ESR測定を行う場合には、磁場掃引コイル260を使用しない。
3. Open magnetic circuit magnetic field generator 200
In order to cause magnetic resonance, a strong magnetic field with a uniform size and magnetization direction is required. Conventional MRI realizes a uniform magnetic field by sandwiching a subject between magnets. For this reason, there is a drawback that inspection is not possible if the gap is larger than the gap between magnets. Also, because of its cold form, some people hate that it is like a holy phobia or a crematorium that scares small children.
In order to solve these problems, the open magnetic path magnetic field generator 200 is an open magnetic path magnetic field generator that can obtain a uniform magnetic field necessary for nuclear magnetic resonance without sandwiching a test object (person) between magnets.
As shown in FIGS. 1 and 2, the open magnetic path magnetic field generator 200 is an orthogonal plane passing through the center 14ac of the sample 14a with respect to a straight line X connecting the convex radiation lens 13, the concave reflector 15a and the center 14ac of the sample 14a. The YF is arranged only in the lower part D along the center 14ac, and the other horizontal left and right parts R and L and the upper part U along the straight line are released, on both sides of the lower part D (in other words, In the orthogonal plane YF, preferably, a pair of yokes 210 are formed symmetrically on both sides of an arbitrary direction radial line of the orthogonal circular surface YFC centering on the center 14ac of the sample 14a (in this example, the downward rectilinear radial line Dr). A first permanent magnet that is arranged in parallel and has a 100 kHz magnetic field modulation coil 240 and a magnetic field sweep coil 260 that are installed opposite to each other at the tip of the open magnetic circuit special yoke 210 and in parallel with the rear thereof to have the same magnetization direction. 220 of the first permanent magnet 220 is arranged and the magnetization direction is the same as that of the first permanent magnet 220. Formed by mounting the iron plate 231 such as a magnetic metal in the counter sample side of the second permanent magnet 230 is disposed a permanent magnet 230. The central portions of the second permanent magnet 230 and the iron plate 231 are located on the straight radial line Dr.
The relative relationship between the magnetic field modulation coil 240, the magnetic field sweep coil 260, the first permanent magnet 220, and the second permanent magnet 230 is appropriately set to a relationship according to the sample condition from the analysis model, analysis conditions, and results introduced below. To do.
In the case of the frequency sweep type electromagnetic horn ESR, the open magnetic path magnetic field generator 200 uses only the magnetic field modulation coil 240 and does not use the magnetic field sweep coil 260 and sets the current to zero. On the other hand, in the case of the magnetic field sweep type electromagnetic horn ESR, the magnetic field modulation coil 240 and the magnetic field sweep coil 260 are used as a magnetic field sweep electromagnet.
The amplifier 250 shown in FIG. 1 amplifies a sine wave of 100 kHz, is introduced into a multi-turn magnetic field modulation coil 240 impedance-matched, performs a magnetic field sweep by the magnetic field sweep coil 260, and is generated by the magnetic field modulation coil 240. A 100kHz AC magnetic field is superimposed on a static magnetic field with good magnetic field uniformity, and the measurement sensitivity is improved by about 3 digits by modulation spectroscopy.
Further, when performing frequency sweep type electromagnetic horn type ESR measurement, the magnetic field sweep coil 260 is not used.

<開磁路磁場発生器200の解析モデルと解析条件>
開磁路磁場発生器200の磁場分布を2次元有限要素法で解析をし、磁場の均一領域について検討を行った結果は次の通りである。
図3の(1)と(2)に解析モデルを示す。このモデルはMg1〜Mg3の3つの永久磁石を用いて開磁路を形成し、均一磁場の領域をつくることができる。下記の条件に従って解析を行った。
(a)、永久磁石Mg2(230)の反試料側に鉄製ヨークFe(231)を配置し、永久磁石Mg2と鉄製ヨークのそれぞれの幅ならびに試料14aからの距離を変化させて、均一磁場の領域の広さとその磁場の強さの関係を調べた。
(b)、磁場を強くするために、所定間隔で平行対向させた一対の開磁路特殊ヨーク210を配置し、その形状を厚さtと先端の傾斜角度θを変化させて解析し、均一磁場の領域の広さとその磁場の強さへの影響を調べた。
(c)、永久磁石Mg2の磁化Mの値を変化させ、均一磁場の領域の広さとその磁場の強さへの影響を調べた。
<Analysis model and analysis conditions of open magnetic circuit magnetic field generator 200>
The magnetic field distribution of the open magnetic path magnetic field generator 200 is analyzed by the two-dimensional finite element method, and the results of examining the uniform region of the magnetic field are as follows.
The analysis model is shown in (1) and (2) of FIG. In this model, an open magnetic path can be formed using three permanent magnets Mg1 to Mg3 to create a uniform magnetic field region. Analysis was performed according to the following conditions.
(A) An iron yoke Fe (231) is arranged on the opposite side of the permanent magnet Mg2 (230), and the width of the permanent magnet Mg2 and the iron yoke and the distance from the sample 14a are changed to obtain a uniform magnetic field region. We investigated the relationship between the size of the field and the strength of the magnetic field.
(B) In order to strengthen the magnetic field, a pair of open magnetic path special yokes 210 arranged parallel to each other at a predetermined interval are arranged, and the shape is analyzed by changing the thickness t and the inclination angle θ of the tip to be uniform. We investigated the area of the magnetic field and its influence on the strength of the magnetic field.
(C), changing the value of the magnetization M 1 of the permanent magnet Mg2, we examined the effect of size of the region of uniform magnetic field to the strength of the magnetic field.

<解析結果から>
1)、均一領域の広さは永久磁石Mg2と試料14aとの距離ならびに永久磁石Mg2と鉄製ヨークのそれぞれの幅を変化させて均一となるように調整できた。永久磁石Mg2の厚みがゼロの場合には均一な領域は得られなかった。
2)、開磁路特殊ヨーク210を取り付けることで、均一領域の磁束密度を大きくすることができた。
3)、開磁路特殊ヨーク210は突き出ている高さが高いほど、均一領域の磁束密度を大きくすることができ、同じ高さならば磁気飽和の無い状態で厚さtが薄い方が大きくなる。磁束密度の大きさは最大で0.15[T]であり、目標の0.4[T]に届かなかった。しかし、L‐バンド電磁ホーン型ESR装置ならばおよそ0.035[T]程度で利用可能である。また、均一領域の広さは210がないときと比べて大きな変化はなかった。
4)、永久磁石Mg2の磁化Mの値を変化させても、永久磁石Mg2と試料14aとの距離と同様な傾向で、均一磁場の領域の広さを僅かながら調整することができた。
<From analysis results>
1) The width of the uniform region could be adjusted to be uniform by changing the distance between the permanent magnet Mg2 and the sample 14a and the widths of the permanent magnet Mg2 and the iron yoke. When the thickness of the permanent magnet Mg2 was zero, a uniform region could not be obtained.
2) By installing the open magnetic circuit special yoke 210, the magnetic flux density in the uniform region could be increased.
3) The higher the protruding height of the open magnetic circuit special yoke 210, the larger the magnetic flux density in the uniform region. If the height is the same, the smaller the thickness t is, the smaller the thickness t is without saturation. Become. The maximum magnetic flux density was 0.15 [T], which did not reach the target of 0.4 [T]. However, an L-band electromagnetic horn type ESR device can be used at about 0.035 [T]. Moreover, the width of the uniform area did not change much compared to the case without 210.
4), also by changing the value of the magnetization M 1 of the permanent magnet Mg2, it could be adjusted in the same tendency as the distance between the permanent magnet Mg2 and the sample 14a, slightly the size of the region of uniform magnetic field.

4.位置調節装置とその制御装置(信号処理内容を含む)
マイクロ波放射凸面型放射レンズ13と凹面型反射板15aの間に設けた試料載置台14と、凹面型反射板15aには、各々ラックピニオン式の位置調節機構RP1、RP2を設ける。試料載置台14には別途昇降機構を内設し矢印方向に昇降して試料載置台14上に載せた試料14aの中心14acを凸面型放射レンズ13中心と凹面型反射板15a中心を結ぶ直線X上に一致させ測定感度精度の向上に貢献することができる。
位置調節装置は、手動でもよいが、本例は、自動制御機構を採用してあり、その構成は、前記各々ラックピニオン式の位置調節機構RP1、RP2とそのピニオン駆動用ステッピングモータM1、M2とそのGP-IB制御器Co1,Co2からなり、その制御装置は、GP-IB制御器Co1,Co2の統括制御装置Co並びに、統括制御装置Coに連結した第一パワーモニター22、第二パワーモニター20、第三パワーモニター21とからなる。この4台のパワーモニターはGPIB仕様(もしくはラボビューでのUSB仕様)でマイクロ波出力値を自動計測する。
4). Position adjustment device and its control device (including signal processing contents)
The sample mounting table 14 provided between the microwave radiation convex surface type radiation lens 13 and the concave reflection plate 15a and the concave reflection plate 15a are respectively provided with rack and pinion type position adjustment mechanisms RP1 and RP2. A separate lifting mechanism is provided in the sample mounting table 14, and a straight line X connecting the center 14ac of the sample 14a placed on the sample mounting table 14 by moving up and down in the direction of the arrow connects the center of the convex radiation lens 13 and the center of the concave reflector 15a It is possible to contribute to the improvement of measurement sensitivity accuracy by matching the above.
The position adjusting device may be manually operated, but in this example, an automatic control mechanism is adopted, and the configuration thereof is the rack and pinion type position adjusting mechanisms RP1 and RP2 and the pinion driving stepping motors M1 and M2, respectively. The GP-IB controllers Co1 and Co2 consist of the GP-IB controllers Co1 and Co2, and the first power monitor 22 and the second power monitor 20 connected to the overall controller Co. And the third power monitor 21. These four power monitors automatically measure the microwave output value with GPIB specifications (or USB specifications in the lab view).

5.統括制御装置Coによる位置調節装置の自動制御
統括制御装置Coは、次の(1)〜(6)を順次おこなう。
(1)、GP-IB制御器Co3により、第一パワーモニター22と連動している減衰器5に設置されたステッピングモーター(図示せず)をまわし、メインアーム導波管01へのマイクロ波出力値を所定値に設定する。(例えば300mW)
(2)、GP-IB制御器Co2により、ステッピングモーターM2を駆動させて、凹面型反射板15aを一番後方まで移動させ、同時にマイクロ波吸収板を試料14aと凹面型反射板15a間に挿入する。
(3)、次に第三パワーモニター21の読みが最大になるように、GP-IB制御器Co2によりモーターM2を回して凹面型反射板15aを試料14aに近づける。
(4)、第三パワーモニター21からのマイクロ波出力値が、あるバランス用設定値になるようにGP-IB制御器Co1によりM1モーターを回して設定する。
(5)、試料14aから反射してサーキュレーター6に導かれた反射マイクロ波を導入した第三パワーモニター21の値が、第二パワーモニター20からのマイクロ波出力値とバランスするようにGP-IB制御器Co4により第二マイクロ波モニター20の直前の同軸用の減衰器40のステッピングモーター(図示せず)を回して調整する。
(6)、この状態で差動増幅器43を通過後の一部の検出電流値が最小になるように、GP-IB制御器Co5によりリレファレンスアーム導波管02に設置の位相器41のステッピングモーター(図示せず)を回して位相調整する。
(7)、XYレコーダー45(XY記録装置もしくはディジタルオシロ)では、横軸に掃引磁場又は掃引周波数を入力し、縦軸に磁場変調で得たESR強度信号100を入力することで、磁場掃引方式ESRスペクトル及び周波数掃引方式ESRスペクトルを得る。
5. The automatic control overall control device Co of the position adjusting device by the overall control device Co sequentially performs the following (1) to (6).
(1) The GP-IB controller Co3 turns a stepping motor (not shown) installed in the attenuator 5 linked to the first power monitor 22 to output the microwave to the main arm waveguide 01. Set the value to a predetermined value. (Eg 300mW)
(2) The stepping motor M2 is driven by the GP-IB controller Co2 to move the concave reflector 15a to the rearmost position, and at the same time, a microwave absorbing plate is inserted between the sample 14a and the concave reflector 15a. To do.
(3) Next, the concave reflector 15a is brought closer to the sample 14a by rotating the motor M2 by the GP-IB controller Co2 so that the reading of the third power monitor 21 is maximized.
(4) The M1 motor is turned by the GP-IB controller Co1 so that the microwave output value from the third power monitor 21 becomes a certain balance setting value.
(5) GP-IB so that the value of the third power monitor 21 introduced with the reflected microwave reflected from the sample 14a and guided to the circulator 6 is balanced with the microwave output value from the second power monitor 20. Adjustment is performed by turning a stepping motor (not shown) of the coaxial attenuator 40 immediately before the second microwave monitor 20 by the controller Co4.
(6) Stepping of the phase shifter 41 installed in the reference arm waveguide 02 by the GP-IB controller Co5 so that a part of the detected current value after passing through the differential amplifier 43 is minimized in this state. Turn the motor (not shown) to adjust the phase.
(7) In the XY recorder 45 (XY recording device or digital oscilloscope), the sweep magnetic field or sweep frequency is input on the horizontal axis, and the ESR intensity signal 100 obtained by magnetic field modulation is input on the vertical axis. An ESR spectrum and a frequency sweep type ESR spectrum are obtained.

本発明装置は、前述の優れた効果を呈する。このため以下に紹介の各種分野に適用でき、この種産業に多大な貢献をするものである。
1.物理学・化学の基礎科学分野での各種固相・液相・気相物質の基礎研究
2.医学での臨床検査室での血液・生体組織の迅速検査
3.医薬学分野でのレドックス関連の加齢現象及び難治疾患(癌・糖尿病・虚血・高血圧・アルツハイマー等)の機作解明と新薬の開発。
4.環境科学分野での大気処理、水処理・水質検査、ジーゼルエンジン等の粉塵検査。
5.MRIコイルを用いたESRイメージング、さらにはESR-STM (走査型トンネル顕微鏡)装置開発と選択された高分解能ESRイメージング像の獲得。
6.アラニン及びアラニンイメージングプレートを用いた放射線線量3次元計測システムの構築。試料の非破壊ESR年代測定法への応用。
7.他の診断機器(X線コンピュータトモグラフィー、超音波画像診断等、PET等)との同時/連続検査診断が可能となる。
The device of the present invention exhibits the excellent effects described above. For this reason, it can be applied to various fields introduced below and makes a great contribution to this kind of industry.
1. 1. Basic research on various solid-phase, liquid-phase, and gas-phase substances in the basic science fields of physics and chemistry 2. Rapid examination of blood and biological tissues in medical clinical laboratories. Elucidation of redox-related aging phenomena and intractable diseases (cancer, diabetes, ischemia, hypertension, Alzheimer, etc.) in the pharmaceutical field and development of new drugs.
4). Air treatment in the field of environmental science, water treatment / water quality inspection, dust inspection of diesel engines, etc.
5. ESR imaging using MRI coil, and further development of ESR-STM (scanning tunneling microscope) equipment and acquisition of selected high resolution ESR imaging images.
6). Construction of radiation dose 3D measurement system using alanine and alanine imaging plate. Application to non-destructive ESR dating of samples.
7). Simultaneous / continuous examination diagnosis with other diagnostic devices (X-ray computer tomography, ultrasonic imaging diagnosis, PET, etc.) becomes possible.

電磁ホーン型電子スピン共鳴装置の一例である周波数掃引方式及び磁場掃引方式の双方を兼ねたX-band反射方式電磁ホーン型ESR装置のマイクロ波立体回路のブロック線図である。It is a block diagram of a microwave solid circuit of an X-band reflection type electromagnetic horn type ESR device that serves both as a frequency sweep method and a magnetic field sweep method as an example of an electromagnetic horn type electron spin resonance device. 磁路磁場発生装置の具体例を示すブロック線図である。It is a block diagram which shows the specific example of a magnetic path magnetic field generator. (1)と(2)は磁路磁場発生装置の解析モデルをしめす説明図である。(1) and (2) are explanatory diagrams showing an analysis model of the magnetic path magnetic field generator. 従来のK-band反射方式電磁ホーン型ESR装置のマイクロ波立体回路のブロック線図である。It is a block diagram of the microwave solid circuit of the conventional K-band reflection system electromagnetic horn type | mold ESR apparatus.

図1において
01:メインアーム
02:リファレンスアーム
1:アイソレータ
4:方向性結合器
6:サ−キュレータ
12:電磁ホーン
13:放射凸面型レンズ
14a:試料
14:試料載置台
15a:凹面型反射板
20,21,22,23:パワーモニター
RP1、:試料載置台の位置調節機構(ラックピニオン式)
RP2:凹面型反射板の位置調節機構(ラックピニオン式)
Co:統括制御装置
200:開磁路磁場発生装置
210:開磁路特殊ヨーク
220:第一永久磁石
230:第二永久磁石
240:磁場変調コイル
260:磁場掃引コイル
In FIG.
01: Main arm
02: Reference arm 1: Isolator 4: Directional coupler 6: Circulator
12: Electromagnetic horn
13: Radiation convex lens
14a: Sample
14: Sample mounting table
15a: Concave reflector
20, 21, 22, 23: Power monitor
RP1: Sample mounting table position adjustment mechanism (rack and pinion type)
RP2: Position adjustment mechanism for concave reflector (rack and pinion type)
Co: General control device
200: Open magnetic path magnetic field generator
210: Open magnetic circuit special yoke
220: First permanent magnet
230: Second permanent magnet
240: Magnetic field modulation coil
260: Magnetic field sweep coil

Claims (2)

マイクロ波発信装置からのマイクロ波をマイクロ波導波管のメインアーム(01)を介して試料載置台(14)上の試料(14a)に放射する電磁ホーン(12)、
試料載置台(14)の試料(14a)の周囲に設ける開磁路磁場発生器(200)、
電磁ホーン(12)から試料(14a)を介してのマイクロ波を再び試料(14a)を介して電磁ホーン(12)に反射するマイクロ波反射器(15)、
前記マイクロ波導波管のメインアーム(01)から分岐したリファレンスアーム(02)からの参照用の発信マイクロ波と、マイクロ波反射器15から試料と電磁ホーン(12)とメインアーム(01)を介しての反射マイクロ波をミキサー(42)に導入して、試料中の不対電子のスピンが反転する磁気共鳴時にマイクロ波エネルギーを試料が吸収した際のマイクロ波パワーの極微量変化を検出し記録する差動増幅装置(43)・ロックイン増幅装置(44),記録装置(45)とからなる電磁ホーン型電子スピン共鳴装置において、
前記開磁路磁場発生器(200)として、前記試料載置台(14)上の試料(14a)の周囲の上方部、下方部、左方部、右方部、あるいはこれら間の他方部の何れか一方部の両側各々に、ヨーク(210)を平行に設け、この各ヨーク(210)に、前方の試料側に傾斜対向させて磁場変調コイル(240)と磁場掃引コイル(260)を設置すると共にその後方に平行対向させて磁化の方向成分を同一にした第一永久磁石(220)を平行配置し、この第一永久磁石(220)間に磁化方向を第一永久磁石と同一方向にした第二永久磁石(230)を配置し、前記第二永久磁石(230)の反試料側に磁性金属(231)を装着したことを有することを特徴とする電磁ホーン型電子スピン共鳴装置。
An electromagnetic horn (12) that radiates the microwave from the microwave transmission device to the sample (14a) on the sample mounting table (14) through the main arm (01) of the microwave waveguide,
An open magnetic path magnetic field generator (200) provided around the sample (14a) of the sample mounting table (14),
A microwave reflector (15) that reflects the microwave from the electromagnetic horn (12) through the sample (14a) to the electromagnetic horn (12) through the sample (14a) again,
The reference transmission microwave from the reference arm (02) branched from the main arm (01) of the microwave waveguide, the sample from the microwave reflector 15, the electromagnetic horn (12), and the main arm (01) All the reflected microwaves are introduced into the mixer (42) to detect and record minute changes in the microwave power when the sample absorbs microwave energy during magnetic resonance in which the spin of unpaired electrons in the sample is reversed. In an electromagnetic horn type electron spin resonance apparatus comprising a differential amplifying device (43), a lock-in amplifying device (44), and a recording device (45),
As the open magnetic path magnetic field generator (200), any one of an upper part, a lower part, a left part, a right part around the sample (14a) on the sample mounting table (14), or the other part therebetween. A yoke (210) is provided in parallel on each side of either part, and a magnetic field modulation coil (240) and a magnetic field sweep coil (260) are installed on each yoke (210) so as to be inclined and opposed to the front sample side. In addition, a first permanent magnet (220) having the same direction component of magnetization is arranged in parallel behind it, and the magnetization direction is the same as that of the first permanent magnet between the first permanent magnets (220). An electromagnetic horn type electron spin resonance apparatus comprising a second permanent magnet (230) and a magnetic metal (231) mounted on the opposite side of the second permanent magnet (230).
前記電磁ホーンの表面(射出口)に凸面型放射レンズ(13)を設け、前記マイクロ波反射器(15)に凹面型反射板(15a)を設け、
前記試料載置台(14)とマイクロ波反射器(15)に電磁ホーン方向への位置調節装置(RP1,RP2)を設け、
試料(14a)に放射する放射マイクロ波の出力を表示・記録する第一パワーモニター(22)とリファレンスアーム(02)のミキサー(42)直前でのマイクロ波の出力を表示・記録する第二パワーモニター(20)と凹面型反射板(15a)から試料(14a)、電磁ホーン(12)、サーキュレーター(6)を順次介した後の反射マイクロ波の出力を表示・記録する第三パワーモニター(21)を設け、これらパワーモニターからのマイクロ波の出力測定値を導入して、第三パワーモニター(21)からのマイクロ波出力値を、あるバランス用設定値になるように前記位置調節装置を調節して第二パワーモニター(20)からのマイクロ波出力値にバランスさせる制御装置(Co)を設けたことを特徴とする請求項1に記載の電磁ホーン型電子スピン共鳴装置。
A convex radiation lens (13) is provided on the surface (exit) of the electromagnetic horn, and a concave reflector (15a) is provided on the microwave reflector (15).
The sample mounting table (14) and the microwave reflector (15) are provided with a position adjusting device (RP1, RP2) in the direction of the electromagnetic horn,
The first power monitor (22) that displays and records the output of the microwave emitted to the sample (14a) and the second power that displays and records the microwave output just before the mixer (42) of the reference arm (02) A third power monitor (21) that displays and records the output of the reflected microwave after passing through the sample (14a), electromagnetic horn (12), and circulator (6) in sequence from the monitor (20) and concave reflector (15a) ) And introduce the microwave output measurement value from these power monitors, and adjust the position adjustment device so that the microwave output value from the third power monitor (21) becomes a certain set value for balance The electromagnetic horn type electron spin resonance apparatus according to claim 1, further comprising a control device (Co) for balancing the microwave output value from the second power monitor (20).
JP2010019956A 2010-02-01 2010-02-01 Electromagnetic horn type electron spin resonance device (3) Expired - Fee Related JP5417616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019956A JP5417616B2 (en) 2010-02-01 2010-02-01 Electromagnetic horn type electron spin resonance device (3)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019956A JP5417616B2 (en) 2010-02-01 2010-02-01 Electromagnetic horn type electron spin resonance device (3)

Publications (2)

Publication Number Publication Date
JP2011158348A JP2011158348A (en) 2011-08-18
JP5417616B2 true JP5417616B2 (en) 2014-02-19

Family

ID=44590419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019956A Expired - Fee Related JP5417616B2 (en) 2010-02-01 2010-02-01 Electromagnetic horn type electron spin resonance device (3)

Country Status (1)

Country Link
JP (1) JP5417616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016207998B3 (en) * 2016-05-10 2017-09-21 Bruker Biospin Gmbh MAS stator of an NMR probe head with optimized microwave radiation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003485B2 (en) * 2002-03-05 2007-11-07 日立金属株式会社 Magnetic field generator and NMR apparatus using the same

Also Published As

Publication number Publication date
JP2011158348A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
US7704923B2 (en) High throughput screening of catalysts using spin resonance
CN101971011B (en) Magnetic resonance imaging using hyperpolarization of liquids or solids by light with orbital angular momentum
US20090128272A1 (en) Halbach magnet array for nmr investigations
Shchelokova et al. Volumetric wireless coil based on periodically coupled split‐loop resonators for clinical wrist imaging
US4398150A (en) Ironless high-homogenety magnet and its application to nuclear magnetic resonance imaging
Algarin et al. Analysis of the resolution of split-ring metamaterial lenses with application in parallel magnetic resonance imaging
CN106872917B (en) It is a kind of test magnetic material ferromagnetic resonance line width face in distribution method and system
JP7250005B2 (en) microwave resonant cavity
EP1784932B1 (en) Integrated ewp-stm spin resonance microscope
JP4266216B2 (en) NMR / ESR antenna and analyzer using the same
US8289022B2 (en) Magnetic resonance compatible magnetic field detection, based on diffuse reflectance of nano-magnet sets
JP5481643B2 (en) Electromagnetic horn type electron spin resonance device (1)
JP6027086B2 (en) Separation of active multiple electron spin signals in electron paramagnetic resonance
JP5417616B2 (en) Electromagnetic horn type electron spin resonance device (3)
Xin et al. Numerical optimization of a three‐channel radiofrequency coil for open, vertical‐field, MR‐guided, focused ultrasound surgery using the hybrid method of moment/finite difference time domain method
Petrovic et al. Antenna applicator concepts using diffraction phenomena for direct visualization of brain hemorrhages
JP5434492B2 (en) Electromagnetic horn type electron spin resonance device
Slobozhanyuk et al. An endoscope based on extremely anisotropic metamaterials for applications in magnetic resonance imaging
Falchi et al. Analysis and design of holographic magnetic metasurfaces in the very near field for sensing applications at quasi-static regime
US4442714A (en) Microscope and method of use
EP3516407A1 (en) Quantum power sensor
Weidemann et al. Measurements of RF power reflected and radiated by multichannel transmit MR coils at 7T
CN114113151A (en) Coupling magnetic imaging device and measuring method
Ono et al. Experimental investigation of RF magnetic field homogeneity in a bridged loop‐gap resonator
CN115778355B (en) Handheld magnetic particle imaging system and imaging method based on field-free line rotation

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5417616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees