JP5417289B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5417289B2
JP5417289B2 JP2010202559A JP2010202559A JP5417289B2 JP 5417289 B2 JP5417289 B2 JP 5417289B2 JP 2010202559 A JP2010202559 A JP 2010202559A JP 2010202559 A JP2010202559 A JP 2010202559A JP 5417289 B2 JP5417289 B2 JP 5417289B2
Authority
JP
Japan
Prior art keywords
heat exchanger
water
electrostatic atomizer
tip
application electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010202559A
Other languages
Japanese (ja)
Other versions
JP2012057883A (en
JP2012057883A5 (en
Inventor
怜司 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010202559A priority Critical patent/JP5417289B2/en
Publication of JP2012057883A publication Critical patent/JP2012057883A/en
Publication of JP2012057883A5 publication Critical patent/JP2012057883A5/ja
Application granted granted Critical
Publication of JP5417289B2 publication Critical patent/JP5417289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、静電霧化現象によりナノメータサイズのミスト(微粒子水)を発生させる静電霧化装置を搭載した空気調和機に関するものである。   The present invention relates to an air conditioner equipped with an electrostatic atomizer that generates nanometer-size mist (particulate water) by an electrostatic atomization phenomenon.

従来、ペルチェ素子を用いて空気中の水分を金属棒表面に集めて、その金属棒に高電圧を印加することで、水を破砕して空気中に放出する、ユーザによる給水が不要な静電霧化装置を搭載した空気調和機が提案されている(特許文献1参照)。   Conventionally, electrostatic energy that collects moisture in the air on the surface of a metal bar using a Peltier element and crushes the water into the air by applying a high voltage to the metal bar. An air conditioner equipped with an atomizing device has been proposed (see Patent Document 1).

水を高電圧によって破砕して生成されたミストは、粒径が3〜50nm(ナノメートル=10−9メートル)程度で、人体の角質細胞の大きさより小さいため、人体の角質に浸透して肌に保湿効果を付与するものである。また、高電圧によりミストは帯電しているため、電位差を生じる人に寄りやすく、広い部屋でも効果が得られる。 Mist produced by crushing water with a high voltage has a particle size of about 3 to 50 nm (nanometer = 10-9 meters) and is smaller than the size of the horny cells of the human body. It provides a moisturizing effect. Further, since the mist is charged by a high voltage, it is easy to approach a person who generates a potential difference, and an effect can be obtained even in a large room.

特開2006−234245号公報JP 2006-234245 A

しかしながら、上記特許文献1に記載された従来の静電霧化装置を有する空気調和機は、熱交換器の上流側であって、吸い込み口近傍に静電霧化装置を設置する構成が開示されているが(図3)、ペルチェユニットや放電極等の具体的な構成については記載されていない。   However, the air conditioner having the conventional electrostatic atomizer described in Patent Document 1 discloses a configuration in which the electrostatic atomizer is installed in the vicinity of the suction port on the upstream side of the heat exchanger. However, the specific configuration of the Peltier unit, discharge electrode, etc. is not described.

以下、静電霧化装置を空気調和機の吸い込み口の下流側且つ熱交換器の上流に設置する場合の課題について説明する。静電霧化装置が接地極である対向電極を備える場合と、静電霧化装置が接地極である対向電極を備えない場合とに分けて説明する。   Hereinafter, the subject in the case of installing an electrostatic atomizer in the downstream of the suction opening of an air conditioner and the upstream of a heat exchanger is demonstrated. The case where the electrostatic atomizer is provided with a counter electrode which is a ground electrode and the case where the electrostatic atomizer is not provided with a counter electrode which is a ground electrode will be described separately.

先ず、接地極である対向電極を備える静電霧化装置を空気調和機の吸い込み口の下流側且つ熱交換器の上流に設置する場合の課題について説明する。
(1)熱交換器が接地されているため、静電霧化装置が熱交換器に近接すると、熱交換器の影響を受けてミストの発生が安定的でない、という課題があった。
(2)空気調和機の室内機の製造時の組み付け誤差によって、静電霧化装置の放電極や接地極と熱交換器が接触または近接してしまうと、気中で静電霧化装置から熱交換器へと向かう不要な放電を起こしてしまい、ノイズや異音が発生したり、ミスト発生が阻害されたりする、という課題があった。
(3)空気調和機の室内機の製造時の組み付け誤差によって、熱交換器とペルチェユニットに備えられたフィンが接触してしまうと、暖房時の熱影響を受けて、所望の吸熱性能(冷却性能)が得られない、また、異常時(例えば、室内機の電気回路の故障(短絡等)により、熱交換器の電位が商用電源の電圧レベルになる状態)に、商用電源の電圧(100Vまたは200V)がペルチェユニットに流れこんでしまい、ペルチェユニットが破損してしまう懸念がある、という課題があった。
First, the subject in the case of installing an electrostatic atomizer provided with the counter electrode which is a ground electrode in the downstream of the suction opening of an air conditioner and the upstream of a heat exchanger is demonstrated.
(1) Since the heat exchanger is grounded, when the electrostatic atomizer is close to the heat exchanger, there is a problem that generation of mist is not stable due to the influence of the heat exchanger.
(2) If the discharge electrode or grounding electrode of the electrostatic atomizer and the heat exchanger come in contact with or close to each other due to an assembly error during the manufacture of the indoor unit of the air conditioner, the electrostatic atomizer from the air There was a problem that unnecessary discharge toward the heat exchanger was caused, noise and noise were generated, and generation of mist was hindered.
(3) If the heat exchanger and the fins provided in the Peltier unit come into contact with each other due to assembly errors during the manufacture of the indoor unit of the air conditioner, the desired heat absorption performance (cooling) is affected by the heat effect during heating. Performance) is not obtained, and the voltage of the commercial power supply (100V) is not normal (for example, a state where the electric potential of the heat exchanger becomes the voltage level of the commercial power supply due to a failure (short circuit etc.) of the electric circuit of the indoor unit). Or 200V) flows into the Peltier unit and there is a problem that the Peltier unit may be damaged.

次に、接地極である対向電極を備えない静電霧化装置を空気調和機の吸い込み口の下流側且つ熱交換器の上流に設置する場合の課題について説明する。
(1)特別な電界を設けずに、気中に向かってミストを放出する場合、対向する熱交換器が接地されているため、熱交換器が静電霧化装置に近接する場合に、熱交換器の影響を受けてミストの発生が安定的でない、という課題があった。
(2)特別な対向電極を設けずに、熱交換器を接地電極として活用する場合には、熱交換器と静電霧化装置の水印加電極との距離(極間距離)が、組み付け誤差によって変動すると、ミストの発生が安定的でない、という課題があった。
(3)製造時の組み付け誤差によって、熱交換器とペルチェユニットに備えられた放熱部または冷却部が接触してしまうと、異常時(例えば、室内機の電気回路の故障(短絡等)により、熱交換器の電位が商用電源の電圧レベルになる状態)に商用電源の電圧(100Vまたは200V)がペルチェユニットに流れこんでしまい、ペルチェユニットが破損してしまう懸念がある、という課題があった。
(4)製造時の組み付け誤差によって、熱交換器とペルチェユニットに備えられたヒートシンクが接触してしまうと、暖房運転時に熱交換器からの熱影響を直接受けて、放熱することができず、ペルチェユニットが正常に働かず、冷却部を冷やせない、結露水が得られない、という課題があった。
Next, a problem in the case where an electrostatic atomizer that does not include a counter electrode that is a ground electrode is installed on the downstream side of the air inlet of the air conditioner and upstream of the heat exchanger will be described.
(1) When a mist is emitted toward the air without providing a special electric field, the opposing heat exchanger is grounded, so that when the heat exchanger is close to the electrostatic atomizer, heat is generated. There was a problem that the generation of mist was not stable under the influence of the exchanger.
(2) When a heat exchanger is used as a ground electrode without providing a special counter electrode, the distance between the heat exchanger and the water application electrode of the electrostatic atomizer (distance between the electrodes) is an assembly error. When it fluctuates according to, there was a problem that generation of mist was not stable.
(3) When the heat exchanger or the cooling unit provided in the Peltier unit comes into contact with each other due to an assembly error during manufacture, when an abnormality occurs (for example, due to a failure (short circuit etc.) in the electric circuit of the indoor unit, There is a problem that the voltage of the commercial power supply (100V or 200V) flows into the Peltier unit in a state where the potential of the heat exchanger becomes the level of the commercial power supply, and the Peltier unit may be damaged. .
(4) If the heat exchanger and the heat sink provided in the Peltier unit come into contact with each other due to an assembly error during production, the heat effect from the heat exchanger is directly received during heating operation, and heat cannot be dissipated. There was a problem that the Peltier unit did not work properly, the cooling part could not be cooled, and condensed water could not be obtained.

以上のように、高電圧が印加される静電霧化装置(接地極である対向電極を備える静電霧化装置、もしくは接地極である対向電極を備えない静電霧化装置)が、空気調和機の吸い込み口の下流側且つ熱交換器の上流側に設けられる場合には、熱交換器が一定の距離以上に水印加電極に近づくのを防止する必要がある。   As described above, an electrostatic atomizer to which a high voltage is applied (an electrostatic atomizer that includes a counter electrode that is a ground electrode or an electrostatic atomizer that does not include a counter electrode that is a ground electrode) When the heat exchanger is provided on the downstream side of the inlet of the conditioner and on the upstream side of the heat exchanger, it is necessary to prevent the heat exchanger from approaching the water application electrode beyond a certain distance.

この発明は、上記のような課題を解決するためになされたもので、静電霧化装置と熱交換器の距離を規定して、安定して多くの量の静電ミストが得られるとともに、長期に渡ってミスト発生以外の不要な気中放電を起こさず、安全な静電霧化装置を備えた空気調和機を提供する。   This invention was made in order to solve the above-described problems, and by defining the distance between the electrostatic atomizer and the heat exchanger, a large amount of electrostatic mist can be stably obtained. Provided is an air conditioner equipped with a safe electrostatic atomizer without causing unnecessary air discharge other than mist generation over a long period of time.

この発明に係る空気調和機は、吸い込み口と、熱交換器と、送風ファンと、吹き出し口を備えた空気調和機であって、
吸い込み口の下流側且つ熱交換器の上流側に設けられ、水を供給する水供給部と、水供給部から供給された水を受け取り、高電圧が印加されることで水を先端霧化部で霧化させる水印加電極と、水印加電極の先端霧化部の周囲に配置された対向電極と、を有する静電霧化装置と、
静電霧化装置または静電霧化装置を保持する静電霧化装置保持枠に設けられ、熱交換器に向かって突出する凸部と、を備え、
対向電極と熱交換器との間の最短長さをL1、L1と平行な長さであって、凸部の端部と熱交換器との間の最短長さをL2とした場合に、L1>L2≧0となる位置に、凸部の端部が配置されるものである。
An air conditioner according to the present invention is an air conditioner including a suction port, a heat exchanger, a blower fan, and a blowout port,
Provided on the downstream side of the suction port and the upstream side of the heat exchanger, the water supply unit for supplying water, the water supplied from the water supply unit is received, and the water is supplied to the tip atomizing unit by applying a high voltage. An electrostatic atomizer having a water application electrode to be atomized with a counter electrode disposed around the tip atomization portion of the water application electrode,
Provided with an electrostatic atomizer or an electrostatic atomizer holding frame for holding the electrostatic atomizer, and a convex portion protruding toward the heat exchanger,
When the shortest length between the counter electrode and the heat exchanger is L1 and parallel to L1, and the shortest length between the end of the convex portion and the heat exchanger is L2, L1 The end of the convex portion is arranged at a position where> L2 ≧ 0.

この発明に係る空気調和機は、熱交換器と静電霧化装置の距離が変動することによる、不要な気中放電や異音を防止でき、安全でミスト発生量が安定するという効果を奏する。   The air conditioner according to the present invention can prevent unnecessary air discharge and noise due to variation in the distance between the heat exchanger and the electrostatic atomizer, and has an effect that the amount of mist generated is stable and stable. .

実施の形態1を示す図で、静電霧化装置100の概略構成図。FIG. 3 shows the first embodiment, and is a schematic configuration diagram of the electrostatic atomizer 100. 実施の形態1を示す図で、静電霧化装置100の側面図。FIG. 5 shows the first embodiment and is a side view of the electrostatic atomizer 100. 実施の形態1を示す図で、水印加電極2に用いる発泡金属の説明用拡大概念図。FIG. 5 shows the first embodiment, and is an enlarged conceptual diagram for explaining metal foam used for the water application electrode 2. 実施の形態1を示す図で、静電霧化装置100,150を備えた空気調和機50の縦断面図。FIG. 5 shows the first embodiment, and is a longitudinal sectional view of an air conditioner 50 including electrostatic atomizers 100 and 150. 実施の形態1を示す図で、変形例1の静電霧化装置150の縦断面図。FIG. 5 shows the first embodiment, and is a longitudinal sectional view of an electrostatic atomizer 150 of a first modification. 実施の形態1を示す図で、静電霧化装置150の分解斜視図。FIG. 5 shows the first embodiment, and is an exploded perspective view of the electrostatic atomizer 150. FIG. 実施の形態1を示す図で、水供給部保持枠60の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a water supply unit holding frame 60. 実施の形態1を示す図で、保持枠70の斜視図。FIG. 5 is a diagram illustrating the first embodiment, and is a perspective view of a holding frame 70. 実施の形態1を示す図で、風防止壁30の斜視図。FIG. 5 shows the first embodiment and is a perspective view of the wind prevention wall 30. FIG. 実施の形態1を示す図で、変形例1の静電霧化装置150の背面図。FIG. 5 shows the first embodiment, and is a rear view of the electrostatic atomizer 150 of a first modification. 実施の形態1を示す図で、変形例2の静電霧化装置200を示す縦断面図。FIG. 5 shows the first embodiment, and is a longitudinal sectional view showing an electrostatic atomizer 200 according to a second modification. 実施の形態1を示す図で、変形例3の静電霧化装置300を示す縦断面図。FIG. 8 is a diagram illustrating the first embodiment, and is a longitudinal sectional view illustrating an electrostatic atomizer 300 according to a third modification. 実施の形態1を示す図で、変形例4の静電霧化装置400を示す縦断面図。FIG. 8 is a diagram illustrating the first embodiment, and is a longitudinal sectional view illustrating an electrostatic atomizer 400 according to a fourth modification. 実施の形態1を示す図で、変形例5の静電霧化装置500を示す縦断面図。FIG. 5 is a diagram illustrating the first embodiment and is a longitudinal sectional view illustrating an electrostatic atomizer 500 according to a fifth modification. 実施の形態1を示す図で、変形例1の静電霧化装置150を空気調和機50に搭載した場合の平面図。FIG. 5 shows the first embodiment, and is a plan view when the electrostatic atomizer 150 of Modification 1 is mounted on the air conditioner 50. FIG. 実施の形態1を示す図で、変形例1の静電霧化装置150を空気調和機50に搭載した場合の部分断面図。FIG. 5 shows the first embodiment, and is a partial cross-sectional view when the electrostatic atomizer 150 of Modification 1 is mounted on the air conditioner 50. 実施の形態1を示す図で、静電霧化装置保持枠68に静電霧化装置150を取り付けた状態を示す断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view showing a state where the electrostatic atomizer 150 is attached to the electrostatic atomizer holding frame 68; 実施の形態1を示す図で、静電霧化装置保持枠68に取り付ける静電霧化装置150の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of an electrostatic atomizer 150 attached to the electrostatic atomizer holding frame 68. FIG. 実施の形態1を示す図で、ミスト発生部の平面図。Fig. 5 shows the first embodiment, and is a plan view of a mist generating unit. 実施の形態1を示す図で、ミスト発生部の正面図。Fig. 5 shows the first embodiment, and is a front view of a mist generating unit. 実施の形態1を示す図で、別のミスト発生部の平面図。Fig. 5 shows the first embodiment, and is a plan view of another mist generating unit. 実施の形態1を示す図で、別のミスト発生部の正面図。It is a figure which shows Embodiment 1, and is a front view of another mist generating part.

実施の形態1.
図1、図2は実施の形態1を示す図で、図1は静電霧化装置100の概略構成図、図2は静電霧化装置100の側面図である。先ず、図1、図2を参照しながら、静電霧化装置100の構成を説明する。
Embodiment 1 FIG.
1 and 2 are diagrams showing Embodiment 1, FIG. 1 is a schematic configuration diagram of an electrostatic atomizer 100, and FIG. 2 is a side view of the electrostatic atomizer 100. FIG. First, the structure of the electrostatic atomizer 100 is demonstrated, referring FIG. 1, FIG.

本実施の形態の静電霧化装置100は、図1、図2に示すように、ナノメータ(10−9m)サイズの静電ミスト1を発生するために、放電極である水印加電極2と接地極である対向電極3とを備えている。 As shown in FIGS. 1 and 2, the electrostatic atomization apparatus 100 according to the present embodiment generates a nanometer (10 −9 m) size electrostatic mist 1, which is a water application electrode 2 that is a discharge electrode. And a counter electrode 3 that is a ground electrode.

水印加電極2は、ともに板状の胴部28と先端霧化部29から成り、胴部28に供給された水を先端霧化部29に移動(搬送)する。先端霧化部29の先端29a(突端)が、対向電極3に向くように配置される。水印加電極2は材料に多孔質体が用いられる。   The water application electrode 2 is composed of a plate-shaped body portion 28 and a tip atomizing portion 29, and moves (conveys) the water supplied to the body portion 28 to the tip atomizing portion 29. The tip 29 a (protruding tip) of the tip atomizing portion 29 is arranged so as to face the counter electrode 3. The water application electrode 2 is made of a porous material.

水印加電極2と対向電極3との間には、高電圧電源部4から供給される約4〜6kVの高電圧が、給電端子25(例えば、図6参照)を介して印加される。ここでは、対向電極3が接地極(グランド極とも言う)となって電位0Vであり、水印加電極2に、−4〜−6kVのマイナスの直流電圧が印加される。一定のミスト量を保つために、電圧を可変させて、定電流制御を行うと良い。   A high voltage of about 4 to 6 kV supplied from the high voltage power supply unit 4 is applied between the water application electrode 2 and the counter electrode 3 via a power supply terminal 25 (for example, see FIG. 6). Here, the counter electrode 3 serves as a ground electrode (also referred to as a ground electrode) and has a potential of 0 V, and a negative DC voltage of −4 to −6 kV is applied to the water application electrode 2. In order to maintain a constant amount of mist, it is preferable to perform constant current control by varying the voltage.

水印加電極2の胴部28の形状は略矩形であり、その胴部28の上方には、所定の距離L10の隙間を空けて水供給部の一部であるペルチェユニット6の冷却面に接する冷却部8の複数の冷却フィン8bが略水平方向に所定の間隔を空けて並列した状態で位置している。胴部28は、冷却フィン8bの並列する方向に長辺方向幅(長手方向の幅)を伸ばして形成されている。即ち、略矩形の胴部28の長辺方向(長手方向)が冷却部8の冷却フィン8bの積層方向に略一致している。   The shape of the body portion 28 of the water application electrode 2 is substantially rectangular, and a space of a predetermined distance L10 is provided above the body portion 28 to contact the cooling surface of the Peltier unit 6 that is a part of the water supply unit. The plurality of cooling fins 8b of the cooling unit 8 are positioned in a state where they are arranged in parallel at a predetermined interval in a substantially horizontal direction. The body portion 28 is formed by extending the width in the long side direction (width in the longitudinal direction) in the direction in which the cooling fins 8b are arranged in parallel. That is, the long side direction (longitudinal direction) of the substantially rectangular trunk portion 28 substantially coincides with the stacking direction of the cooling fins 8 b of the cooling portion 8.

水印加電極2は、冷却フィン8bの下方に所定の距離L10の隙間を空けて位置し、冷却フィン8bの並列する方向に長手方向(長辺方向)の幅を伸ばす平板状の胴部28を有している。そして、胴部28の短辺方向が冷却フィン8bが突出する方向に略一致している。胴部28は、長辺方向の幅が短辺方向の幅の3倍以上ある細長い形状である。そして板状の水印加電極2は、その板厚が胴部28の短辺方向幅よりも小さいものである。尚、胴部28の形状は略矩形と説明しているが、長辺と短辺のなす角度が直角である完全なる長方形に限定されるものではなく、平行四辺形や台形も含まれるものである。   The water application electrode 2 is provided with a plate-shaped body portion 28 that is positioned below the cooling fin 8b with a gap of a predetermined distance L10 and extends in the longitudinal direction (long side direction) in the direction in which the cooling fins 8b are arranged in parallel. Have. And the short side direction of the trunk | drum 28 is substantially corresponded to the direction from which the cooling fin 8b protrudes. The body portion 28 has an elongated shape having a width in the long side direction that is at least three times the width in the short side direction. The plate-like water application electrode 2 has a plate thickness smaller than the width in the short side direction of the body portion 28. In addition, although the shape of the trunk | drum 28 is demonstrated as a substantially rectangular shape, it is not limited to the perfect rectangle whose angle between a long side and a short side is a right angle, A parallelogram and a trapezoid are also included. is there.

さらに水印加電極2は、図1に示すように、胴部28の一方の長辺(冷却フィン8bが突出する方向側)の側面の途中に、その側面から突出するように先端霧化部29が形成されている。先端霧化部29は胴部28に連続する同じ厚さの板状突起で、その形状は上面視で三角形状である。三角形状の先端霧化部29は、底辺の面が胴部28の一方の長辺の側面につながり、頂点である先端29a(突端)が、対向電極3に向いている。この先端29aが対向電極3に対する放電部となる。   Further, as shown in FIG. 1, the water application electrode 2 has a tip atomizing portion 29 that protrudes from the side surface of one long side of the body portion 28 (in the direction in which the cooling fin 8b protrudes). Is formed. The tip atomizing portion 29 is a plate-like protrusion having the same thickness and continuing from the body portion 28, and its shape is triangular when viewed from above. In the triangular tip atomizing portion 29, the bottom surface is connected to one long side surface of the body portion 28, and the tip 29 a (protruding tip) that is the apex faces the counter electrode 3. The tip 29a becomes a discharge portion for the counter electrode 3.

また、胴部28の形状は、略矩形に限定されず、断面が円形の円柱でもよい。その場合、水印加電極は、円柱の胴部の先に先端部が尖った円錐形状の先端霧化部がつながった使用中の鉛筆のような形状であってもよい。先端霧化部は電界が集まりやすいように鋭角でもよいし、テーラーコーンを形成しやすいように曲面部であってもよい。尚、テーラーコーンについては、後で説明する。   Moreover, the shape of the trunk | drum 28 is not limited to a substantially rectangular shape, A cylinder with a circular cross section may be sufficient. In this case, the water application electrode may have a shape like a pencil in use in which a conical tip atomizing portion with a sharp tip is connected to the tip of a cylindrical body. The tip atomizing portion may be an acute angle so that an electric field is likely to gather, or may be a curved surface portion so as to easily form a tailor cone. The tailor cone will be described later.

図1、図2においては、先端霧化部29である突起が一つの場合を示したが、突起が複数であってもよいし、略鉛筆形状の水印加電極を3〜10本程度複数本を横に並べることで、水を受け取りやすくしても良い。その場合、各水印加電極に均一に電界がかかれば、ミスト霧化量も増加する。   1 and 2 show the case where the tip atomizing portion 29 has one protrusion, but there may be a plurality of protrusions, or a plurality of approximately 10 to 10 substantially pencil-shaped water application electrodes. You can make it easier to receive water by arranging them side by side. In that case, if an electric field is uniformly applied to each water application electrode, the amount of mist atomization also increases.

水印加電極2の材料は、充分な吸水性能、搬送性能を持ちながら、低い電気抵抗率(体積抵抗率)、高い電気伝導性を有して、霧化する水に効率よく電気を伝えて帯電させることができる材料であることが望ましい。より具体的な例としては、チタン、ステンレス、ニッケルなどの金属多孔質体である発泡金属がよく、この実施の形態では、チタンを素材とする発泡金属で水印加電極2を形成している。   The material of the water application electrode 2 has a sufficient electrical absorption performance and transport performance, and has a low electrical resistivity (volume resistivity) and high electrical conductivity, and efficiently transmits electricity to the atomized water for charging. It is desirable that the material be able to be made. A more specific example is a foam metal that is a porous metal such as titanium, stainless steel, or nickel. In this embodiment, the water application electrode 2 is formed of a foam metal made of titanium.

図3は実施の形態1を示す図で、水印加電極2に用いる発泡金属の説明用拡大概念図である。   FIG. 3 is a diagram showing the first embodiment, and is an enlarged conceptual diagram for explaining the foam metal used for the water application electrode 2.

図3は、平面(二次元)状で示しているため、各々の気孔が独立しているように見えるが、実際の発泡金属は、三次元的に気孔が連続している連続気孔構造体である。図3に示すように、本実施の形態の静電霧化装置にて水印加電極2として用いられる発泡金属は、焼き固まった金属部22と空隙部となる気孔21で構成される。ここで、気孔21の直径を孔径と定義する。孔径は、電子顕微鏡で撮影される画像により、その大きさを判断することができる。また、水銀圧入式ポロシメータやガス吸着測定装置を使って、孔径だけでなく、気孔の分布状態を測定することも可能である。   Since FIG. 3 shows a plane (two-dimensional) shape, each pore appears to be independent. However, an actual foam metal is a continuous pore structure in which pores are three-dimensionally continuous. is there. As shown in FIG. 3, the foam metal used as the water application electrode 2 in the electrostatic atomizer of the present embodiment is composed of a baked and solidified metal portion 22 and pores 21 that become void portions. Here, the diameter of the pores 21 is defined as the hole diameter. The size of the hole diameter can be determined from an image taken with an electron microscope. It is also possible to measure not only the pore diameter but also the pore distribution using a mercury intrusion porosimeter or a gas adsorption measuring device.

水印加電極2の発泡金属の孔径は10〜1000μmが妥当であるが、孔径が50〜600μmの発泡金属が、吸水性や目詰まり防止の観点から好適であり、さらに剛性や生産性(加工性)を考慮すると150〜300μmが最適である。   The pore diameter of the foam metal of the water application electrode 2 is 10 to 1000 μm, but the foam metal with a pore diameter of 50 to 600 μm is suitable from the viewpoint of water absorption and clogging, and further has rigidity and productivity (workability). ) Is optimally 150 to 300 μm.

セラミックのように孔径が10μm未満であると、孔径が細かくなり過ぎて(小さ過ぎて)目詰まりする危険性が高いし、吸水量も小さい。また、気孔21の大きさを安定して小さく揃えることは発泡金属の製造上、困難なものである。逆に、孔径が1000μmを超えると、連続する気孔21を通して吸水した水が漏れ出しやすくなり、水を胴部28から先端霧化部29へと搬送しがたくなる。   When the pore diameter is less than 10 μm like ceramic, the pore diameter becomes too fine (too small) and there is a high risk of clogging, and the amount of water absorption is also small. In addition, it is difficult to stably arrange the pores 21 in a small size in the production of foam metal. On the other hand, when the pore diameter exceeds 1000 μm, the water absorbed through the continuous pores 21 is likely to leak, making it difficult to transport the water from the body portion 28 to the tip atomizing portion 29.

その他にも、水の搬送と放電を兼ねる多孔質体材料として、気孔率が20〜50%程度で、孔径が数〜数十μm程度のチタニア、ムライト、シリカ、アルミナなどのセラミックが使用できる。セラミックは毛細管現象で水の搬送ができ、また加工性がよく、高電圧からの耐摩耗性にも優れるなどの利点を有しているが、目詰まりに注意する必要がある。また、有機材料としては、インクペン等で使用されているPE(ポリエチレン)などの吸水材料を使用することもできる。また、有機材料に導電材料を混ぜて構成してもよく、金属材料に比べて安価で、円形など様々な形状の水印加電極を得ることができる。   In addition, ceramics such as titania, mullite, silica, and alumina having a porosity of about 20 to 50% and a pore diameter of about several to several tens of μm can be used as a porous material that serves as both water transport and discharge. Ceramics have the advantages of being able to transport water by capillarity, having good workability and excellent wear resistance from high voltages, but it is necessary to pay attention to clogging. Further, as the organic material, a water-absorbing material such as PE (polyethylene) used in an ink pen or the like can be used. In addition, a conductive material may be mixed with an organic material, and the water application electrode having various shapes such as a circle can be obtained at a lower cost than a metal material.

対向電極3は、導電性のある金属もしくは導電ポリマーやフィラを混ぜた抵抗の低い樹脂にて板状に成形されたもので、略中央に開口3aを有している。この開口3aが水印加電極2の先端霧化部29と対向するように、対向電極3は、先端霧化部29の先端29aと一定の距離を隔てて位置している。この距離によって電界強度が決定される。   The counter electrode 3 is formed into a plate shape with a resin having a low resistance mixed with a conductive metal or a conductive polymer or filler, and has an opening 3a at substantially the center. The counter electrode 3 is located at a certain distance from the tip 29a of the tip atomizing portion 29 so that the opening 3a faces the tip atomizing portion 29 of the water application electrode 2. The electric field strength is determined by this distance.

次に水印加電極2よりも上方に位置する水供給部について説明する。図1、図2に示す静電霧化装置100は、ペルチェユニット6と、そのペルチェユニット6の放熱面に接する放熱部7と、放熱面の反対側に位置する冷却面に接する冷却部8で構成される水供給部を有する。そしてこの水供給部で生成した水を、水印加電極2の胴部28上面に重力により滴下させて供給する。   Next, the water supply part located above the water application electrode 2 will be described. The electrostatic atomizer 100 shown in FIGS. 1 and 2 includes a Peltier unit 6, a heat radiating part 7 in contact with the heat radiating surface of the Peltier unit 6, and a cooling part 8 in contact with a cooling surface located on the opposite side of the heat radiating surface. Having a water supply configured; And the water produced | generated in this water supply part is dripped at the upper surface of the trunk | drum 28 of the water application electrode 2, and is supplied.

放熱部7は、ペルチェユニット6と接するベース板7aと、ベース板7aの反ペルチェユニット側の面に略垂直に立設する複数の放熱フィン7bとを有する。   The heat dissipating part 7 has a base plate 7a in contact with the Peltier unit 6 and a plurality of heat dissipating fins 7b erected substantially vertically on the surface of the base plate 7a opposite to the Peltier unit.

また、冷却部8は、ペルチェユニット6と接するベース板8aと、そのベース板8aの反ペルチェユニット側の面に略垂直に立設する複数の冷却フィン8bを有する。   The cooling unit 8 includes a base plate 8a that is in contact with the Peltier unit 6 and a plurality of cooling fins 8b that are erected substantially perpendicularly to the surface of the base plate 8a opposite to the Peltier unit.

放熱部7の複数の放熱フィン7bと冷却部8の複数の冷却フィン8bは、各々の放熱フィン7b、冷却フィン8bが通過する空気流と略平行となるように通過する空気流と略直交する方向に互いに所定の間隔を空けて並列している。ここでは、空気流が概ね重力方向であるため、放熱部7の複数の放熱フィン7bと冷却部8の複数の冷却フィン8bは、重力方向とほぼ直交する方向となる略水平方向に並列している。尚、冷却部8を効率よく冷却するために、放熱部7の放熱フィン7bの方が冷却部8の冷却フィン8bよりもフィン表面積が大きく構成されている。   The plurality of radiating fins 7b of the radiating unit 7 and the plurality of cooling fins 8b of the cooling unit 8 are substantially orthogonal to the air flow passing through the radiating fins 7b and the cooling fins 8b so as to be substantially parallel to the air flow. Parallel to each other at a predetermined interval in the direction. Here, since the air flow is substantially in the direction of gravity, the plurality of heat radiation fins 7b of the heat radiation unit 7 and the plurality of cooling fins 8b of the cooling unit 8 are arranged in parallel in a substantially horizontal direction that is substantially perpendicular to the direction of gravity. Yes. In order to efficiently cool the cooling unit 8, the heat radiation fin 7 b of the heat radiation unit 7 has a larger fin surface area than the cooling fin 8 b of the cooling unit 8.

ペルチェユニット6内部には、複数のP型N型半導体が交互に直列に接続されている。低電圧電源部5から1〜5V程度の直流電圧がペルチェユニット6に印加されると、一方向に電流が流れ、ペルチェ効果によって放熱面の熱量が増え、冷却面では吸熱がなされる。これにより、放熱部7は暖められ、冷却部8は冷却される。   A plurality of P-type N-type semiconductors are alternately connected in series inside the Peltier unit 6. When a DC voltage of about 1 to 5 V is applied from the low voltage power supply unit 5 to the Peltier unit 6, a current flows in one direction, the amount of heat on the heat dissipation surface increases due to the Peltier effect, and heat is absorbed on the cooling surface. Thereby, the thermal radiation part 7 is warmed and the cooling part 8 is cooled.

ペルチェユニット6によって、冷却部8の温度が、通過する空気の露点以下まで冷やされると、冷却部8の冷却フィン8bの表面には、その空気中の水分が結露した結露水10が生成される。   When the temperature of the cooling unit 8 is cooled below the dew point of the passing air by the Peltier unit 6, the condensed water 10 in which moisture in the air is condensed is generated on the surface of the cooling fin 8b of the cooling unit 8. .

ここで冷却部8の重力方向下方には、この冷却フィン8bの下端とは、所定の距離L10の空間を介して水印加電極2が配置されている。冷却部8と水印加電極2は、互いが直接的に接触する部分を有していない。冷却フィン8bの下端から重力により滴下された結露水10は、水印加電極2の胴部28上面に落下する。即ち、水印加電極2の略矩形の胴部28が、冷却フィン8bが並列する方向に長辺方向を伸ばし、且つ冷却フィン8bの真下(直下)に距離L10の空間を隔てて配置されているのである。   Here, below the cooling unit 8 in the direction of gravity, the water application electrode 2 is disposed through a space of a predetermined distance L10 from the lower end of the cooling fin 8b. The cooling unit 8 and the water application electrode 2 do not have a portion in direct contact with each other. The condensed water 10 dripped by gravity from the lower end of the cooling fin 8 b falls on the upper surface of the trunk portion 28 of the water application electrode 2. That is, the substantially rectangular trunk portion 28 of the water application electrode 2 extends in the long side direction in the direction in which the cooling fins 8b are arranged in parallel, and is disposed directly below the cooling fins 8b with a space of a distance L10. It is.

胴部28の上面に重力落下した結露水10は、金属多孔質体の水印加電極2内部に吸水され、内部の互いが三次元的につながる空隙(気孔21)内を表面拡散により移動する。結露水10は、このような表面拡散現象により、水印加電極2の内部にて胴部28から先端霧化部29へと搬送される。   Condensed water 10 that has fallen by gravity onto the upper surface of the body portion 28 is absorbed into the water application electrode 2 of the metal porous body, and moves inside the gap (pore 21) in which the inside is three-dimensionally connected by surface diffusion. The condensed water 10 is conveyed from the trunk portion 28 to the tip atomizing portion 29 inside the water application electrode 2 by such a surface diffusion phenomenon.

水印加電極2の先端霧化部29の先端29a近傍まで水(結露水10)が搬送されると、グランド極である対向電極3に対して水印加電極2には、−4〜−6kVのマイナス高電圧が印加されているので、先端29a近傍の水にその高電圧がかかり、水(結露水10)は水印加電極2と同電位、即ちマイナスの高電圧に帯電している。そのため、帯電している水は、静電界中のクーロン力の作用によって、先端29aから局所的に水印加電極2の外部へ引っ張られテーラーコーンと呼ばれる盛り上がりを形成する。このときテーラーコーンを形成している水は、水印加電極2に付いているので、引き続き帯電している。そして、作用するクーロン力が水の表面張力を超えることで、テーラーコーンを形成していた水が飛び出し、はじけるように分裂(この分裂はレイリー分裂と呼ばれている)を繰り返し、ナノメータサイズの帯電した静電ミスト1が生成される。静電ミスト1は対向電極3に向かって移動し、対向電極3の開口3aから外部へと放出される。   When water (condensation water 10) is transported to the vicinity of the tip 29a of the tip atomization portion 29 of the water application electrode 2, the water application electrode 2 has a voltage of -4 to -6 kV with respect to the counter electrode 3 that is the ground electrode. Since a negative high voltage is applied, the high voltage is applied to the water near the tip 29a, and the water (condensation water 10) is charged to the same potential as the water application electrode 2, that is, a negative high voltage. Therefore, the charged water is pulled locally from the tip 29a to the outside of the water application electrode 2 by the action of Coulomb force in an electrostatic field, and forms a swell called a tailor cone. At this time, the water forming the tailor cone is attached to the water application electrode 2 and is continuously charged. Then, when the coulomb force acting exceeds the surface tension of water, the water that formed the tailor cone pops out and repeats splitting (this splitting is called Rayleigh splitting), and the nanometer-size charging The electrostatic mist 1 is generated. The electrostatic mist 1 moves toward the counter electrode 3 and is discharged from the opening 3a of the counter electrode 3 to the outside.

このように生成された静電ミスト1は、単にミストや微粒子水と呼ばれたり、帯電していることから、帯電ミストや帯電微粒子水と呼ばれたりすることがある。また、大きさがナノメータサイズであることから、ナノミストと呼ばれることもある。いずれであっても、水に高電圧をかけ、レイリー分裂により微細化されて生成される帯電したナノメータサイズのミスト(微粒子水)であり、ここでは、このようにして生成されたミストのことを静電ミスト1と呼ぶこととする。また、このように静電ミスト1を生成することを静電霧化と呼び、霧化するとは水をミスト化することである。そして、霧化量とは、静電ミスト1の生成量(発生量)のことである。   The electrostatic mist 1 generated in this way is simply called mist or fine particle water, or since it is charged, it may be called charged mist or charged fine particle water. Moreover, since the magnitude | size is a nanometer size, it may be called nanomist. In any case, it is a charged nanometer-size mist (particulate water) generated by applying high voltage to water and being refined by Rayleigh splitting. Here, the mist generated in this way It will be referred to as electrostatic mist 1. Moreover, producing | generating the electrostatic mist 1 in this way is called electrostatic atomization, and atomizing is making water mist. The atomization amount is the generation amount (generation amount) of the electrostatic mist 1.

上方に位置する複数の冷却フィン8bと、その下方に隙間L10を介して冷却部8とは非接触に位置する水印加電極2の胴部28とは、このような位置関係にあるので、重力により複数の冷却フィン8bの下端から冷却フィン8bの並列方向であり略水平方向に幅広く滴下される多くの結露水10を、胴部28の上面が水受け取り面となって、無駄なく確実に受け取ることができ、それらを先端霧化部29に搬送できるので、安定して多くの量の静電ミスト1を発生させることができる。   Since the plurality of cooling fins 8b positioned above and the body portion 28 of the water application electrode 2 positioned below the cooling unit 8 via the gap L10 are in contact with each other, the gravity is Thus, a large amount of condensed water 10 dripped widely in the horizontal direction of the cooling fins 8b from the lower ends of the plurality of cooling fins 8b is reliably received without waste, with the upper surface of the body portion 28 serving as a water receiving surface. Since they can be conveyed to the tip atomizing section 29, a large amount of electrostatic mist 1 can be generated stably.

先端霧化部29が胴部28の一方の長辺(冷却フィン8bが突出する方向側)の側面の途中に形成されていれば、短辺の側面に設けるのに比べて、胴部28で受け取った結露水10を素早く先端霧化部29に搬送できる。このため、結露水10が水印加電極2へ至るまでの経路が、重力による胴部28への直接的な滴下であることと相まって、この静電霧化装置100の運転開始から短時間で静電ミスト1を発生させることができる。各冷却フィン8bから同量の結露水10が滴下されるものとして、先端霧化部29が一つだけの場合には、先端霧化部29は、胴部28の一方の長辺の側面にあって、冷却フィン8bの積層方向幅の中央に相当する位置に配置されるのが、水の搬送の安定度から最も好ましい。   If the tip atomizing portion 29 is formed in the middle of the side surface of one long side (the direction in which the cooling fin 8b protrudes) of the body portion 28, the body portion 28 has a larger portion than that provided on the side surface of the short side. The received condensed water 10 can be quickly conveyed to the tip atomizing section 29. For this reason, coupled with the fact that the path from the dew condensation water 10 to the water application electrode 2 is direct dripping onto the body portion 28 due to gravity, the static atomization apparatus 100 can be quietly moved in a short time from the start of operation. Electric mist 1 can be generated. When the same amount of condensed water 10 is dropped from each cooling fin 8b and there is only one tip atomizing portion 29, the tip atomizing portion 29 is placed on the side surface of one long side of the trunk portion 28. And it is most preferable from the stability of conveyance of water to arrange | position in the position corresponded to the center of the lamination direction width | variety of the cooling fin 8b.

尚、対向電極3は、水印加電極2との電位差を一定に保つために設置しているが、対向電極3を設置しないで気中との放電(気中の浮遊電位との放電)で静電ミスト1を発生させるようにしてもよい。また、この静電霧化装置100を搭載する機器のあらかじめ電位が0V近辺にある部材(例えば、空気調和機の室内機に搭載するとして、室内機内部に設置される金属製の室内熱交換器がある。室内熱交換器はアースされている)を対向電極3の代替として用いて、水印加電極2との電位差を保つようにして静電ミスト1を生成するようにしてもよい。   The counter electrode 3 is installed in order to keep the potential difference with the water application electrode 2 constant. However, the counter electrode 3 is not installed and is statically discharged by discharge in the air (discharge from the floating potential in the air). The electric mist 1 may be generated. Further, a member in which the electrostatic atomizer 100 is mounted in advance is a member whose potential is in the vicinity of 0 V (for example, a metal indoor heat exchanger installed inside the indoor unit as being mounted in the indoor unit of the air conditioner) The electrostatic mist 1 may be generated so as to maintain a potential difference from the water application electrode 2 by using the indoor heat exchanger as a substitute for the counter electrode 3.

以下、本実施の形態の静電霧化装置100を、空気調和機50の内部に搭載した場合について説明する。さらに空気調和機50に搭載するのに適した形状の静電霧化装置150を変形例1として詳細に説明する。   Hereinafter, the case where the electrostatic atomizer 100 of this Embodiment is mounted in the inside of the air conditioner 50 is demonstrated. Further, an electrostatic atomizer 150 having a shape suitable for being mounted on the air conditioner 50 will be described in detail as a first modification.

図4は実施の形態1を示す図で、静電霧化装置100,150を備えた空気調和機50の縦断面図である。図4に示す空気調和機50は、一般的な壁掛け型のものであるが、天井に埋め込まれた空気調和機であって、吸い込み口41の後流且つ熱交換器51の上流に静電霧化装置が配置される空気調和機でもよい。   FIG. 4 shows the first embodiment, and is a longitudinal sectional view of an air conditioner 50 provided with electrostatic atomizers 100 and 150. The air conditioner 50 shown in FIG. 4 is a general wall-hanging type, but is an air conditioner embedded in the ceiling, and is an electrostatic mist upstream of the heat exchanger 51 and downstream of the suction port 41. It may be an air conditioner in which the control device is arranged.

空気調和機50は、室内空気を吸い込む吸い込み口41と、調和空気を室内へ吹き出す吹き出し口42と、室内空気から調和空気(冷却、加熱もしくは除湿された空気)を生成する逆V字型の熱交換器51(前面上部熱交換器51a、前面下部熱交換器51b、背面熱交換器51cからなる)と、熱交換器51で結露した水を受けるドレンパン40(前面上部熱交換器51a、背面熱交換器51cの下方の二箇所)と、送風ファン43とを備えている。空気調和機50本体の上方に位置する吸い込み口41から送風ファン43の回転によって流入した室内空気は、熱交換器51を通過する際に冷凍サイクルの冷媒と熱交換されて温度湿度が調節されて、送風ファン43を通過して、下方に位置する吹き出し口42から調和空気となって室内に吹き出される。   The air conditioner 50 includes a suction port 41 that sucks indoor air, a blow-out port 42 that blows conditioned air into the room, and an inverted V-shaped heat that generates conditioned air (cooled, heated, or dehumidified air) from the room air. An exchanger 51 (consisting of a front upper heat exchanger 51a, a front lower heat exchanger 51b, and a rear heat exchanger 51c) and a drain pan 40 (front upper heat exchanger 51a, rear heat) that receives water condensed in the heat exchanger 51 2 places below the exchanger 51c) and a blower fan 43. The room air that has flowed in through the rotation of the blower fan 43 from the suction port 41 located above the air conditioner 50 main body is heat-exchanged with the refrigerant of the refrigeration cycle when passing through the heat exchanger 51, and the temperature and humidity are adjusted. Then, the air passes through the blower fan 43 and is blown into the room as conditioned air from the outlet 42 located below.

吹き出し口42には、吹き出される調和空気の風向を変更できる左右風向板44と上下風向板45が設置されていて、吹き出し流の吹き出し方向が調整されている。吹き出し流の左右方向の風向を変更可能な左右風向板44が、吹き出し流の上下方向の風向を変更可能な上下風向板45の上流側に位置している。また、ドレンパン40で回収した熱交換器51の結露水は、図示しないドレンホースを通って、屋外に排出される。   A left and right wind direction plate 44 and an up and down wind direction plate 45 that can change the wind direction of the conditioned air to be blown out are installed at the blowout port 42, and the blowout direction of the blowout flow is adjusted. A left and right wind direction plate 44 that can change the wind direction in the left and right direction of the blown flow is located upstream of the vertical wind direction plate 45 that can change the vertical direction of the blown flow. Moreover, the dew condensation water of the heat exchanger 51 collected by the drain pan 40 is discharged outdoors through a drain hose (not shown).

ここで、この空気調和機50では、静電霧化装置100,150を、前面下部熱交換器51bの風上側(上流側)、もしくは背面熱交換器51cの風上側(上流側)のいずれかであって、ドレンパン40の上方に設置している。ドレンパン40の上方に静電霧化装置100,150を設置すれば、冷却部8の結露水10が多量であって余剰水分が生じた場合であっても、ドレンパン40がそのような余剰水分を受け取って、熱交換器51の結露水と共に屋外へ排出するので、設置した静電霧化装置100,150の余剰水分が室内へ漏れ出す恐れがない。   Here, in the air conditioner 50, the electrostatic atomizers 100 and 150 are either the windward side (upstream side) of the front lower heat exchanger 51b or the windward side (upstream side) of the rear heat exchanger 51c. However, it is installed above the drain pan 40. If the electrostatic atomizers 100 and 150 are installed above the drain pan 40, even if the condensed water 10 in the cooling unit 8 is large and surplus moisture is generated, the drain pan 40 can remove such surplus moisture. Since it is received and discharged to the outside together with the dew condensation water of the heat exchanger 51, there is no possibility that excess moisture of the installed electrostatic atomizers 100 and 150 leaks into the room.

空気調和機50に、静電霧化装置100,150のいずれかを設置することにより、静電霧化装置100,150から放出された多量の静電ミスト1を、吸い込み口41から吸い込まれた室内空気と共に熱交換器51を通過させ、吹き出し口42から調和空気ととともに、室内へ放出させることができる。送風ファン43の回転によって生成される調和空気の吹き出し流に乗って、調和空気とともに静電ミスト1も室内へと放出されるのである。   By installing one of the electrostatic atomizers 100 and 150 in the air conditioner 50, a large amount of electrostatic mist 1 discharged from the electrostatic atomizers 100 and 150 was sucked from the suction port 41. The heat exchanger 51 can be passed along with the room air and discharged into the room together with the conditioned air from the blowout port 42. The electrostatic mist 1 is also discharged into the room together with the conditioned air by riding on a conditioned air blowing flow generated by the rotation of the blower fan 43.

空気調和機50の吹き出し口42には、自動で方向を変更できる左右風向板44と上下風向板45が備えられている。上下風向板45は、中央で2枚に分割されており、手前と奥など室内の任意の奥行き方向2箇所に風を届けることができる。また、左右風向板44も中央を境に左部分と右部分でそれぞれ独立したモータ(例えば、ステッピングモータ)により駆動されて、室内の任意の左右方向二箇所に風を届けることができる。また、これらを同時に組み合わせることで、複数の風を作りだすことができる。   The outlet 42 of the air conditioner 50 is provided with a left and right wind direction plate 44 and an up and down wind direction plate 45 that can automatically change the direction. The up-and-down wind direction plate 45 is divided into two at the center, and can deliver the wind to two arbitrary depth directions in the room such as the front and back. The left and right wind direction plates 44 are also driven by independent motors (for example, stepping motors) at the left and right portions with the center as a boundary, so that the wind can be delivered to two arbitrary left and right directions in the room. Moreover, a plurality of winds can be created by combining these simultaneously.

静電霧化装置100,150を備えた空気調和機50について、更に詳細に述べる。   The air conditioner 50 including the electrostatic atomizers 100 and 150 will be described in more detail.

ペルチェユニット6の両面には、放熱部7と冷却部8を備えるが、冷却部8は放熱部7よりも容量が充分に小さい。放熱部7は放熱量が増えるのでスペースが許す限り大きくするのがよいが、冷却部8は小さくしすぎると表面温度は下がるものの、通過する風量が少なくなるために除湿量(結露量)が低下する。逆に、大きすぎると通過風量が多くなり除湿量(結露量)が増えるものの、通過する空気に吸熱能力を持っていかれてしまうため、表面の温度が充分に下がらない。必要な除湿量に応じて、冷却部8の容量を決めればよいが、冬場(暖房時)の絶対湿度は非常に低く、露点温度は概ね10℃以下であり、相対湿度30%〜35%RHの悪条件では2〜5℃程度である。従って、冷却フィン8bの温度を0℃近傍まで下げないと静電ミスト1の原料となる結露水10を得ることはできないため、冷却フィン8bの容量は放熱部7に比べて充分に小さくするのが好ましい。また、ペルチェユニット6の吸熱性能を最大限発揮するために放熱部7はできるだけ容積を大きくとった方がよい。   Although both sides of the Peltier unit 6 are provided with a heat radiating part 7 and a cooling part 8, the cooling part 8 has a sufficiently smaller capacity than the heat radiating part 7. Since the heat dissipation part 7 increases the heat dissipation amount, it is better to make it as large as space allows. However, if the cooling part 8 is too small, the surface temperature will drop, but the amount of air passing will decrease, so the dehumidification amount (condensation amount) will decrease. To do. On the other hand, if it is too large, the passing air volume increases and the dehumidification amount (condensation amount) increases, but the surface air does not drop sufficiently because the passing air has an endothermic ability. The capacity of the cooling unit 8 may be determined according to the required amount of dehumidification, but the absolute humidity in winter (during heating) is very low, the dew point temperature is approximately 10 ° C. or less, and the relative humidity is 30% to 35% RH. It is about 2-5 degreeC in bad conditions of. Therefore, since the condensed water 10 as the raw material of the electrostatic mist 1 cannot be obtained unless the temperature of the cooling fin 8b is lowered to around 0 ° C., the capacity of the cooling fin 8b is made sufficiently smaller than that of the heat radiating portion 7. Is preferred. Further, in order to maximize the heat absorption performance of the Peltier unit 6, it is preferable that the heat radiating section 7 has a volume as large as possible.

尚、熱交換器51の風上側に静電霧化装置100,150を設置するにあたって、冷却フィン8bや放熱フィン7bの積層方向が空気調和機50本体の左右方向となるように配置するのがよい。これにより吸い込み口41からの吸い込み空気流が、フィン(冷却フィン8bや放熱フィン7b)に沿って流れるようになって放熱部7の放熱が促進され、冷却部8へスムーズに風が流れて冷却フィン8b上で結露量が増加する。   In addition, when installing the electrostatic atomizer 100,150 in the windward side of the heat exchanger 51, it arrange | positions so that the lamination direction of the cooling fin 8b and the radiation fin 7b may become the left-right direction of the air conditioner 50 main body. Good. As a result, the suction air flow from the suction port 41 flows along the fins (cooling fins 8b and heat radiating fins 7b), and the heat radiation of the heat radiating unit 7 is promoted. The amount of condensation increases on the fins 8b.

また、フィン容積を増加する場合には、幅方向(図5)に伸ばせばよく、製造が容易な短いフィン高さのまま実現することができ、全体の奥行きを増やすことなく少ないスペースに設置できる。   Further, when the fin volume is increased, it is only necessary to extend in the width direction (FIG. 5), and it can be realized with a short fin height that is easy to manufacture, and can be installed in a small space without increasing the overall depth. .

放熱部7は、熱交換器51に対向した位置に略平行に配置される。この時、所定の隙間を空けることで、放熱部7に対する熱交換器51の暖房時に起こる熱影響を少なくすることができる。熱影響を受けると放熱部7での放熱がされにくくなり、冷却部8での冷却能力が下がってしまう。   The heat radiating unit 7 is disposed substantially parallel to the position facing the heat exchanger 51. At this time, by making a predetermined gap, it is possible to reduce the thermal effect that occurs when the heat exchanger 51 is heated with respect to the heat radiating section 7. If it receives heat influence, it will become difficult to radiate heat in the heat radiating part 7, and the cooling capacity in the cooling part 8 will fall.

また、所定の隙間を空けることで、対向電極3から熱交換器51に対して、異常な放電が起こることも無い。熱交換器51に略平行に配置することで、局所的な影響を受けにくくなる。所定の距離は、少なくとも4mm以上として好適であり距離が大きいほど影響は少ないが、スペース性を考慮して決定する。   In addition, by providing a predetermined gap, abnormal discharge does not occur from the counter electrode 3 to the heat exchanger 51. Arranging substantially parallel to the heat exchanger 51 makes it less susceptible to local effects. The predetermined distance is preferably at least 4 mm, and the influence is smaller as the distance is larger, but is determined in consideration of space characteristics.

吸い込み口41からの吸い込み空気流は、熱交換器51に近いほど風速が早い。前面下部熱交換器51bの風上側に、厚み10〜30mm前後の静電霧化装置100,150を前面下部熱交換器51bと4〜10mm程度の距離をおいて設置した場合、前面下部熱交換器51bの近傍の風速は、前面パネル46に近い側に比べて2〜3倍程度早い。   The closer to the heat exchanger 51, the higher the wind speed of the suction air flow from the suction port 41. When the electrostatic atomizers 100 and 150 having a thickness of about 10 to 30 mm are installed at a distance of about 4 to 10 mm from the front lower heat exchanger 51b on the windward side of the front lower heat exchanger 51b, the front lower heat exchange is performed. The wind speed in the vicinity of the vessel 51b is about 2 to 3 times faster than the side near the front panel 46.

また、背面熱交換器51cの風上側に設置した場合も同様に、背面熱交換器51cの近傍の風速は、背面カバー47に近い側に比べて2〜3倍程度早い。   Similarly, when installed on the windward side of the back surface heat exchanger 51 c, the wind speed in the vicinity of the back surface heat exchanger 51 c is about 2 to 3 times faster than the side near the back surface cover 47.

放熱部7が熱交換器51と向き合うように配置した方が、放熱部7を通過する空気(室内吸い込み空気)流の流量が多くなり、放熱がより促進されてよい。   If the heat dissipating part 7 is arranged so as to face the heat exchanger 51, the flow rate of the air (indoor suction air) flowing through the heat dissipating part 7 increases, and the heat dissipation may be further promoted.

また、冷却部8が熱交換器51から遠く、前面パネル46または背面カバー47に近い側に配置された方が、冷却部8を通過する空気(室内吸い込み空気)流の流量を放熱部7に比べて抑制することができ、吸熱能力を冷却部8の通過風が奪うことなく、冷却フィン8bの温度を露点以下まで下げることができる。   Further, when the cooling unit 8 is arranged farther from the heat exchanger 51 and closer to the front panel 46 or the back cover 47, the flow rate of the air (indoor suction air) flow passing through the cooling unit 8 is reduced to the heat radiating unit 7. In comparison, the temperature of the cooling fins 8b can be lowered to the dew point or less without the heat absorption capability being taken away by the passing air of the cooling unit 8.

更に、放熱部7は風がよく通るように空気中に露出していて、冷却部8は過度の空気流入を防止するために水供給部保持枠60で覆われ、冷却フィン8bの風上にあって幅方向に一つまたは複数個設けられた空気量調整穴61によって通過風速および通過風量を制御している。   Furthermore, the heat radiating unit 7 is exposed to the air so that the wind can pass well, and the cooling unit 8 is covered with a water supply unit holding frame 60 to prevent excessive air inflow, and on the wind of the cooling fin 8b. Then, the passing air speed and the passing air volume are controlled by one or a plurality of air quantity adjusting holes 61 provided in the width direction.

このように構成することで、放熱部7の容積を抑えて省スペース性を損なわずに、充分に放熱することができ、冷却部8の温度を充分に低下させて暖房時のような乾燥条件でも結露水を得ることができる。   By constituting in this way, it is possible to sufficiently dissipate heat without reducing the volume of the heat dissipating part 7 and impairing the space saving, and sufficiently lower the temperature of the cooling part 8 to dry conditions such as during heating. But you can get condensed water.

この効果は、前面上部熱交換器51aの風上側に静電霧化装置100,150を設置した場合にも得ることができるが、前面上部熱交換器51aの風上側では冷却部8を通過する風が速いため、より空気量調整穴61の開口を小さくする必要がある。空気量の調整は、風速を低下させて風量を低下させることが目的であるので、空気量調整穴61である必要はなく、邪魔となるリブなどを設けて空気量を調整しても良い。   This effect can also be obtained when the electrostatic atomizers 100 and 150 are installed on the windward side of the front upper heat exchanger 51a, but pass through the cooling unit 8 on the windward side of the front upper heat exchanger 51a. Since the wind is fast, it is necessary to make the opening of the air amount adjustment hole 61 smaller. The purpose of adjusting the air amount is to reduce the air speed by lowering the air speed. Therefore, the air amount does not need to be the air amount adjusting hole 61, and the air amount may be adjusted by providing an obstructing rib or the like.

これまで、多孔質体からなる水印加電極2は、水を受け取るための胴部28と、胴部28に接続される先端霧化部29とで構成されることを説明してきたが、胴部28と先端霧化部29を一体に同じ材質で形成した方が水の移動が円滑であるが、一体である必要はなく、胴部28を水を受けるための保水部として、保水部に複数の先端霧化部29を差し込むなど接続して使用しても、先端霧化部29が水搬送能を有していれば問題はなく、本実施の形態で説明してきた種々の効果を得ることができる。保水部は、セラミックの他に吸水性のある有機材による不織布を用いて好適である。   Up to now, it has been explained that the water application electrode 2 made of a porous body is composed of a body part 28 for receiving water and a tip atomizing part 29 connected to the body part 28. The movement of water is smoother if the body 28 and the tip atomizing section 29 are integrally formed of the same material. However, the movement of the water is not necessarily integral, and the body section 28 is provided as a water retaining section for receiving water. Even if the tip atomizing portion 29 is connected and used, there is no problem as long as the tip atomizing portion 29 has a water carrying ability, and various effects described in the present embodiment can be obtained. Can do. The water retaining part is preferably made of a non-woven fabric made of an organic material having water absorption in addition to ceramic.

また、静電霧化装置100,150の天面方向にブラシやパッドを設けた自動フィルター清掃装置(図示せず)、もしくは自動フィルター清掃装置によって掻き取られたホコリを収納するダストボックス(図示せず)がある場合には、静電霧化装置100,150にホコリが重力落下してしまう可能性があるため、静電霧化装置100,150の天面に水供給部(放熱部7、ペルチェユニット6、冷却部8)を覆うようにホコリ受けを設けると良い。   Moreover, the automatic filter cleaning apparatus (not shown) which provided the brush and the pad in the top | upper surface direction of the electrostatic atomizer 100,150, or the dust box (not shown) which accommodates the dust scraped off by the automatic filter cleaning apparatus. ), There is a possibility of dust falling on the electrostatic atomizers 100 and 150, so that the water supply unit (heat dissipating unit 7, Peltier) is placed on the top surface of the electrostatic atomizers 100 and 150. A dust receiver may be provided so as to cover the unit 6 and the cooling unit 8).

また、放熱部7を熱交換器51と向き合わせて配置する場合、先端霧化部29を胴部28の放熱部7側の長辺方向側面上に、冷却フィン8bの突出方向とは反対方向に突出するように設ければ、放熱部7を通過する流量の多い空気流にのせて静電ミスト1を吹き出し口42まで素早く確実に導くことができる。   Moreover, when arrange | positioning the thermal radiation part 7 facing the heat exchanger 51, the front-end atomization part 29 is the direction opposite to the protrusion direction of the cooling fin 8b on the long side direction side surface by the side of the thermal radiation part 7 of the trunk | drum 28. If it is provided so as to protrude in the direction, the electrostatic mist 1 can be quickly and surely guided to the blowout port 42 on the air flow having a large flow rate passing through the heat radiating portion 7.

それにより、吹き出し口42からの多くの静電ミスト1の放出を、空気調和機50の運転開始から短時間で実施できる。尚、この場合静電ミスト1の生成部分の上方には、図5に示すように庇30aを設置して、静電ミスト1の生成部分への放熱部7を通った空気流の通過を抑制した方がよい。また、壁30bを設置して、静電ミスト1の生成部分への冷却部8を通った空気流の通過を抑制した方がよい。   Thereby, many electrostatic mists 1 can be discharged from the outlet 42 in a short time from the start of operation of the air conditioner 50. In this case, a cage 30a is installed above the generation portion of the electrostatic mist 1 as shown in FIG. 5 to suppress the passage of airflow through the heat radiating portion 7 to the generation portion of the electrostatic mist 1. You should do it. Moreover, it is better to install the wall 30b and suppress the passage of the air flow through the cooling unit 8 to the generation part of the electrostatic mist 1.

また、静電霧化装置100,150により生成される静電ミスト1は、この静電霧化装置100,150が搭載される空気調和機50が設置される室内の空気中の水分を原料としているので、即ち、室内空気中の水分を結露させ、それを霧化して室内に放出しているものであるので、室内の絶対湿度が上昇することがない。そのため、室内の壁や窓に放出された静電ミスト1に起因した結露が生じることがない。よって、結露による室内の壁等のカビの発生を回避しながら、人の肌水分の蒸発を抑制し、肌表皮水分量を増加させることが可能となる。   Moreover, the electrostatic mist 1 produced | generated by the electrostatic atomizer 100,150 uses the water | moisture content in the air in the room | chamber interior in which the air conditioner 50 in which this electrostatic atomizer 100,150 is mounted as a raw material. In other words, the moisture in the room air is condensed, which is atomized and released into the room, so that the absolute humidity in the room does not increase. Therefore, condensation due to the electrostatic mist 1 discharged to the indoor wall or window does not occur. Therefore, it is possible to suppress the evaporation of human skin moisture and increase the amount of skin epidermis moisture while avoiding the occurrence of mold on indoor walls due to condensation.

また、空気調和機50の送風ファン43を用いて、水供給部のペルチェユニット6に室内空気を供給し、そこで静電ミスト1となる結露水を得るとともに、且つ吹き出し口42からの調和空気の吹き出し流に搬送させて、室内に静電ミスト1を提供(放出)するので、静電霧化装置専用のファンを別途に設ける必要がなく、静電霧化装置の構造をシンプル化し、少スペースにも設置できる静電霧化装置とすることができる。   In addition, indoor air is supplied to the Peltier unit 6 of the water supply unit by using the blower fan 43 of the air conditioner 50, and condensed water that becomes the electrostatic mist 1 is obtained there, and the conditioned air from the outlet 42 is supplied. Since the electrostatic mist 1 is provided (released) in the room by being transported in a blow-off flow, there is no need to provide a separate fan dedicated to the electrostatic atomizer, the structure of the electrostatic atomizer is simplified, and the space is small It can be set as the electrostatic atomizer which can also be installed.

次に空気調和機に搭載するのに適した形状の静電霧化装置150を変形例1として詳細に説明する。図5乃至図10は実施の形態1を示す図で、図5は変形例1の静電霧化装置150の縦断面図、図6は静電霧化装置150の分解斜視図、図7は水供給部保持枠60の斜視図、図8は保持枠70の斜視図、図9は風防止壁30の斜視図、図10は変形例1の静電霧化装置150の背面図である。   Next, an electrostatic atomizer 150 having a shape suitable for mounting on an air conditioner will be described in detail as a first modification. 5 to 10 show the first embodiment, FIG. 5 is a longitudinal sectional view of the electrostatic atomizer 150 according to the first modification, FIG. 6 is an exploded perspective view of the electrostatic atomizer 150, and FIG. FIG. 8 is a perspective view of the holding frame 70, FIG. 9 is a perspective view of the wind prevention wall 30, and FIG. 10 is a rear view of the electrostatic atomizer 150 of the first modification.

図5に示す静電霧化装置150では、水印加電極2の先端霧化部29を、冷却フィン8bの突出方向の面とは反対側の長辺方向側面上に、即ち放熱部7のフィン突出方向に突出するように設けている。対向電極3もその時の先端霧化部29に対向するように放熱部7側に設けられる。このような配置にすると、冷却部8に比べて流量が大きい放熱部7を通過する空気流にのせて対向電極3の開口から放出された静電ミスト1を広く拡散させることができる効果が追加される。   In the electrostatic atomizer 150 shown in FIG. 5, the tip atomizing portion 29 of the water application electrode 2 is placed on the side surface in the long side opposite to the surface in the protruding direction of the cooling fin 8 b, that is, the fin of the heat radiating portion 7. It is provided so as to protrude in the protruding direction. The counter electrode 3 is also provided on the heat radiating part 7 side so as to face the tip atomizing part 29 at that time. With such an arrangement, there is an additional effect that the electrostatic mist 1 emitted from the opening of the counter electrode 3 can be widely diffused on the air flow passing through the heat radiating unit 7 having a larger flow rate than the cooling unit 8. Is done.

静電霧化装置150を構成する主要な要素は、以下に示す通りである。夫々の要素は、既に詳しく説明したものもあるし、未だ説明されていないものについては追って詳細を説明するので、ここでは簡単に述べる(主に、図6の分解斜視図を参照のこと)。   The main elements constituting the electrostatic atomizer 150 are as follows. Each element has already been described in detail, and those not yet described will be described in detail later, so they will be described briefly here (mainly see the exploded perspective view of FIG. 6).

(1)水供給部:水供給部は、既に説明したペルチェユニット6と、そのペルチェユニット6の放熱面に接する放熱部7と、放熱面の反対側に位置する冷却面に接する冷却部8で構成される。ペルチェユニット6は、低電圧電源部5(図1のものと同じ)に電気的に接続するリード線6aを有する。   (1) Water supply unit: The water supply unit includes the Peltier unit 6 described above, the heat radiation unit 7 in contact with the heat radiation surface of the Peltier unit 6, and the cooling unit 8 in contact with the cooling surface located on the opposite side of the heat radiation surface. Composed. The Peltier unit 6 has a lead wire 6a that is electrically connected to the low-voltage power supply unit 5 (the same as that in FIG. 1).

(2)冷却部保持枠63:冷却部保持枠63は、樹脂製であり、水供給部の冷却部8を放熱部7に係合により固定する。詳細は後述する。   (2) Cooling unit holding frame 63: The cooling unit holding frame 63 is made of resin, and fixes the cooling unit 8 of the water supply unit to the heat radiating unit 7 by engagement. Details will be described later.

(3)水供給部保持枠60:水供給部保持枠60は、冷却部8が冷却部保持枠63で放熱部7に固定された水供給部を、冷却部8側から保持する。冷却部8が冷却部収納部60a(図7参照)に収納される。また、放熱部7が放熱部収納部60b(図7参照)に収納される。冷却部8は、空気流の上流側が水供給部保持枠60で覆われ、幅方向に複数設けられた空気量調整穴61(空気量調整部)によって通過風速および通過風量が制御される。さらに、水供給部保持枠60は、ペルチェユニット6のリード線6a及び水印加電極2に給電端子25を介して接続するリード線25aを口出しするリード線口出し部60cを備える。また、水供給部保持枠60は、冷却部8を収納する冷却部収納部60aの左右に遮断壁62を備える。放熱部7のフィンを有しない面であって、ペルチェユニット6を有する面のペルチェユニット6から露出している部分である放熱露出部(図示せず)を通過した風が冷却部8に来ないようにするために、遮断壁62を設ける。放熱部収納部60bの左右の遮断壁62により、放熱露出部を通過した空気は冷却部8に触れることなく下方に流れていく。   (3) Water supply unit holding frame 60: The water supply unit holding frame 60 holds the water supply unit in which the cooling unit 8 is fixed to the heat radiating unit 7 with the cooling unit holding frame 63 from the cooling unit 8 side. The cooling unit 8 is stored in the cooling unit storage unit 60a (see FIG. 7). Further, the heat radiating portion 7 is accommodated in the heat radiating portion accommodating portion 60b (see FIG. 7). The cooling unit 8 is covered with the water supply unit holding frame 60 on the upstream side of the air flow, and the passing air speed and the passing air amount are controlled by a plurality of air amount adjusting holes 61 (air amount adjusting units) provided in the width direction. Furthermore, the water supply part holding frame 60 includes a lead wire lead part 60 c that feeds out the lead wire 25 a connected to the lead wire 6 a of the Peltier unit 6 and the water application electrode 2 via the power supply terminal 25. In addition, the water supply unit holding frame 60 includes blocking walls 62 on the left and right of the cooling unit storage unit 60 a that stores the cooling unit 8. Wind that has passed through a heat radiation exposed portion (not shown) that is a surface that does not have fins of the heat dissipation portion 7 and that is exposed from the Peltier unit 6 on the surface that has the Peltier unit 6 does not reach the cooling portion 8. For this purpose, a blocking wall 62 is provided. Due to the left and right blocking walls 62 of the heat radiating part storage 60 b, the air that has passed through the heat radiating exposed part flows downward without touching the cooling part 8.

(4)水供給部抑え枠90:水供給部抑え枠90は、冷却部保持枠63と同様樹脂製であり、冷却部保持枠63との間に水供給部を挟持する。水供給部抑え枠90と冷却部保持枠63との係合は、爪と孔とで行う。また、水供給部抑え枠90は、水供給部保持枠60と同様にペルチェユニット6のリード線6a及び水印加電極2のリード線25aを口出しするリード線口出し部90aを備える。水供給部保持枠60のリード線口出し部60cと水供給部抑え枠90のリード線口出し部90aとで、ペルチェユニット6のリード線6a及び水印加電極2のリード線25aを挟持する。   (4) Water supply unit holding frame 90: The water supply unit holding frame 90 is made of resin like the cooling unit holding frame 63, and sandwiches the water supply unit with the cooling unit holding frame 63. Engagement between the water supply unit holding frame 90 and the cooling unit holding frame 63 is performed by a claw and a hole. Further, the water supply part holding frame 90 includes a lead wire lead part 90 a that feeds out the lead wire 6 a of the Peltier unit 6 and the lead wire 25 a of the water application electrode 2 in the same manner as the water supply part holding frame 60. The lead wire lead portion 60 c of the water supply portion holding frame 60 and the lead wire lead portion 90 a of the water supply portion holding frame 90 sandwich the lead wire 6 a of the Peltier unit 6 and the lead wire 25 a of the water application electrode 2.

(5)水印加電極2:既に説明済みの図1の静電霧化装置100の水印加電極2と同じものである。但し、静電霧化装置150では、水印加電極2の先端霧化部29が、冷却フィン8bの突出方向の面とは反対側の長辺方向側面上に、即ち放熱部7のフィン突出方向に突出するように配置されている。水印加電極2には、給電端子25を介してリード線25aが接続される。   (5) Water application electrode 2: The same as the water application electrode 2 of the electrostatic atomizer 100 of FIG. However, in the electrostatic atomizer 150, the tip atomizing portion 29 of the water application electrode 2 is on the side surface in the long side opposite to the surface in the protruding direction of the cooling fin 8b, that is, the fin protruding direction of the heat radiating portion 7. It is arranged to protrude. A lead wire 25 a is connected to the water application electrode 2 via a power supply terminal 25.

(6)保持枠70:保持枠70は、水印加電極2を下方から保持する部材である。詳細は後述するが、図8に示すように、保持枠70は外周と胴部28の短辺方向の格子70aを有して、大きな四角形状の開口26(図8参照)を持った箱型形状をしている。短辺方向に伸びた格子70aは水印加電極2の胴部28を支えるが、胴部28の幅(長辺方向)より充分に短い幅をしている。また、保持枠70の下部には、対向電極3を保持する対向電極保持部70bが形成されている。また、胴部28から滴下した水滴が、保持枠70を伝って落ちる場合、対向電極3の中央に面した部分から滴下される、または風で飛散した場合に、対向電極3に付着する可能性があり危険である。そこで、保持枠70の下端部(水印加電極2の先端霧化部29を支持する部分)は、対向電極3の中心部分に対向する位置を頂点凸部として左右方向に向かって半円を描くように円弧70c(図8)状に伸びるとともに、円弧70c端部を角部として更に左右方向に伸ばして形成した(図8の左右延伸部70d)。このように構成することで、胴部28から滴下した水滴は、対向電極3の中心部分に対向する位置から滴下されることがなく、樹脂(保持枠70)を伝って左右方向に誘導されて円弧70c端部から滴下されるので、例えブリッジした水滴が飛散しても対向電極3に付着しにくい。円弧70c端部幅はなるべく左右方向に広げる方がよく、水印加電極2の先端霧化部29から見た対向電極3の露出部の左右方向の幅と同等以上とするのが好ましい。   (6) Holding frame 70: The holding frame 70 is a member that holds the water application electrode 2 from below. As will be described in detail later, as shown in FIG. 8, the holding frame 70 has a lattice 70a in the short side direction of the outer periphery and the body portion 28, and has a box shape having a large rectangular opening 26 (see FIG. 8). It has a shape. The lattice 70a extending in the short side direction supports the body portion 28 of the water application electrode 2, but has a width sufficiently shorter than the width of the body portion 28 (long side direction). Further, a counter electrode holding portion 70 b that holds the counter electrode 3 is formed below the holding frame 70. In addition, when water droplets dropped from the body portion 28 fall down along the holding frame 70, they may adhere to the counter electrode 3 when dropped from a portion facing the center of the counter electrode 3 or scattered by wind. There is a danger. Therefore, the lower end portion of the holding frame 70 (the portion that supports the tip atomizing portion 29 of the water application electrode 2) draws a semicircle in the left-right direction with the position facing the center portion of the counter electrode 3 as the apex convex portion. As shown in FIG. 8, the circular arc 70c (FIG. 8) extends and the ends of the circular arc 70c are further extended in the left and right directions (corner portions 70d in FIG. 8). With this configuration, water droplets dripped from the body portion 28 are not dripped from a position facing the central portion of the counter electrode 3, and are guided in the left-right direction through the resin (holding frame 70). Since it is dropped from the end of the arc 70c, even if the bridged water droplets scatter, it is difficult to adhere to the counter electrode 3. The end width of the arc 70c is preferably widened in the left-right direction as much as possible, and is preferably equal to or greater than the width in the left-right direction of the exposed portion of the counter electrode 3 viewed from the tip atomizing portion 29 of the water application electrode 2.

(7)対向電極3:既に説明済みの図1の静電霧化装置100の対向電極3と同じものである。対向電極3は、保持枠70の対向電極保持部70bにネジ3cにより固定される。また、対向電極3には接地用のリード線3bが接続される。   (7) Counter electrode 3: This is the same as the counter electrode 3 of the electrostatic atomizer 100 of FIG. The counter electrode 3 is fixed to the counter electrode holding portion 70b of the holding frame 70 with screws 3c. A ground lead wire 3 b is connected to the counter electrode 3.

(8)風防止壁30:風防止壁30は、保持枠70の上部に係合して、水印加電極2を保持枠70とで挟持する。風防止壁30は、水印加電極2の先端霧化部29及び対向電極3を覆う庇30aと、先端霧化部29の胴部28に対する付け根部分および胴部28の長辺を上方から抑えながら天面方向に向かって伸びて形成されている壁30b(第一の壁)とを備える(図9も参照)。   (8) Wind prevention wall 30: The wind prevention wall 30 engages with the upper part of the holding frame 70 to sandwich the water application electrode 2 with the holding frame 70. The wind prevention wall 30 suppresses the heel 30a that covers the tip atomizing portion 29 and the counter electrode 3 of the water application electrode 2, the root portion of the tip atomizing portion 29 with respect to the trunk portion 28, and the long side of the trunk portion 28 from above. And a wall 30b (first wall) formed extending in the top surface direction (see also FIG. 9).

以下、静電霧化装置150について、さらに詳しく説明する。図5に示すように、風防止壁30の庇30aは、水印加電極2の先端霧化部29の先端29aの上方に位置し、水供給部の放熱部7の放熱フィン7bが突出する方向に伸びて設けられる。それにより、水供給部の放熱部7を通過してくる風が水印加電極2の先端霧化部29の先端29aに流入してくるのを防止する。   Hereinafter, the electrostatic atomizer 150 will be described in more detail. As shown in FIG. 5, the flange 30 a of the wind preventing wall 30 is located above the tip 29 a of the tip atomizing portion 29 of the water application electrode 2, and the direction in which the radiating fins 7 b of the heat radiating portion 7 of the water supply portion protrude. It is provided to extend. Thereby, the wind passing through the heat radiating part 7 of the water supply part is prevented from flowing into the tip 29a of the tip atomizing part 29 of the water application electrode 2.

水印加電極2の先端霧化部29の先端29aは、長期信頼性から汚れ付着を防止するのが好ましい。先端29aに汚れが付着すると、放電力が低下して静電ミスト1の発生量が低下したり、発生が不安定になったりする。そのために先端29aにはなるべく風を通さず、移動してきた空気に触れさせないようにするとよい。   It is preferable that the tip 29a of the tip atomizing portion 29 of the water application electrode 2 prevent contamination from being adhered due to long-term reliability. If dirt is attached to the tip 29a, the discharge force is reduced and the generation amount of the electrostatic mist 1 is reduced or the generation is unstable. For this purpose, it is preferable to keep the tip 29a from passing air as much as possible and avoiding contact with the moving air.

このように構成することで、水印加電極2の先端霧化部29の先端29aは、汚れが通過しないため汚れにくくなり、放電力が低下することなく、長期に渡って静電ミスト1を安定して発生することができる。また、通過する流量の大なる空気流が過度に水印加電極2の先端霧化部29の先端29aに触れることによって、水のテーラーコーン形成やレイリー分裂が阻害され、正確で安定した静電ミスト1の発生が損なわれる懸念もなくなる。   By configuring in this manner, the tip 29a of the tip atomizing portion 29 of the water application electrode 2 is less likely to get dirty because dirt does not pass through it, and the electrostatic mist 1 can be stabilized over a long period of time without lowering the discharge power. Can occur. Further, when the air flow having a large flow rate passes excessively on the tip 29a of the tip atomizing portion 29 of the water application electrode 2, formation of tailor cone of water and Rayleigh splitting is inhibited, and an accurate and stable electrostatic mist is obtained. There is no concern that the occurrence of 1 will be impaired.

水印加電極2は、先端霧化部29の根元部分(胴部28に接続する部分)を保持枠70と、風防止壁30の壁30bとで挟持されて位置決めされている。保持枠70は、外周と水印加電極2の胴部28の短辺方向の複数の格子70aを有する、大きな四角形状の開口を備える箱型形状をしている。水印加電極2の胴部28の短辺方向に伸びる格子70aは、水印加電極2の胴部28を支える。保持枠70は、格子70a以外の水印加電極2の周囲が大きな開口26となっており、水を溜めることなく過度な水を排出できるようになっている。   The water application electrode 2 is positioned by sandwiching the root portion of the tip atomizing portion 29 (the portion connected to the body portion 28) between the holding frame 70 and the wall 30b of the wind preventing wall 30. The holding frame 70 has a box shape having a large rectangular opening having a plurality of lattices 70 a in the short side direction of the outer periphery and the body portion 28 of the water application electrode 2. A lattice 70 a extending in the short side direction of the body portion 28 of the water application electrode 2 supports the body portion 28 of the water application electrode 2. The holding frame 70 has a large opening 26 around the water application electrode 2 other than the lattice 70a, so that excessive water can be discharged without accumulating water.

また、胴部28から滴下した水滴が、保持枠70を伝って落ちる場合、対向電極3の中央に面した部分から滴下されて水滴が対向電極3とブリッジする、または風で飛散した場合に、対向電極3に付着する可能性があり危険である。   Further, when water drops dropped from the body portion 28 fall along the holding frame 70, when the water drops are dropped from the portion facing the center of the counter electrode 3 and bridge with the counter electrode 3 or are scattered by wind, There is a possibility of adhering to the counter electrode 3, which is dangerous.

そこで、保持枠70の下端部(水印加電極2の先端霧化部29を支持する部分)は、対向電極3の中心部分に対向する位置を樹脂で埋める閉塞部77を設け、そこから左右に外部に開口した空洞部78を設けている(図10参照)。このように構成することで、胴部28から滴下した水滴は、対向電極3の中心部分に対向する位置から滴下されることがなく、樹脂(保持枠70)を伝って左右方向に誘導されて滴下される余剰水排水経路を通るので、水滴が飛散しても対向電極3に付着することがない。また、対向電極3に対向する位置を水滴が移動することが無いので、気中で対向電極3と放電を起こすことも無い。空洞部78を通った水滴はなるべく左右方向に広げる方がよく、更に左右方向にリブで誘導して好適である。   Therefore, the lower end portion of the holding frame 70 (the portion that supports the tip atomizing portion 29 of the water application electrode 2) is provided with a blocking portion 77 that fills the position facing the central portion of the counter electrode 3 with resin, and from there to the left and right A cavity 78 opened to the outside is provided (see FIG. 10). With this configuration, water droplets dripped from the body portion 28 are not dripped from a position facing the central portion of the counter electrode 3, and are guided in the left-right direction through the resin (holding frame 70). Since it passes through the dripping surplus water drainage path, it does not adhere to the counter electrode 3 even if water droplets scatter. In addition, since the water droplets do not move to the position facing the counter electrode 3, there is no discharge with the counter electrode 3 in the air. It is better to spread the water droplets that have passed through the cavity portion 78 in the left-right direction as much as possible, and it is preferable that the water droplets are guided by ribs in the left-right direction.

この時、前述の閉塞部77の位置は、対向電極3の中心部分に対向する位置であるともに、先端霧化部29の先端29aの対向する位置でもある。樹脂で開口部を埋める閉塞部77を設けることで、空気量調整穴61を通った空気が、胴部28の近傍を通り抜けた後に、直下方向に抜けることが無く左右に誘導されるので、送風ファン43にひかれて回流した空気が先端霧化部29の先端29aに向かうことも無い。   At this time, the position of the closing portion 77 described above is a position facing the central portion of the counter electrode 3 and also a position facing the tip 29 a of the tip atomizing portion 29. By providing the blocking portion 77 that fills the opening with resin, the air that has passed through the air amount adjustment hole 61 passes through the vicinity of the body portion 28 and is then guided to the left and right without passing through directly below. The air circulated by the fan 43 does not travel toward the tip 29 a of the tip atomizing portion 29.

従って、閉塞部77を設けて左右に空洞部78を設けることで、余剰水滴を左右に誘導して気中放電を防止する効果に加えて、回流した空気流によって、先端霧化部29の先端29aの汚れを防止する効果を有する。   Therefore, by providing the blocking portion 77 and the hollow portions 78 on the left and right, in addition to the effect of inducing excess water droplets to the left and right to prevent air discharge, the tip of the tip atomizing portion 29 is caused by the circulated air flow. 29a has the effect of preventing dirt.

この静電霧化装置150では、放熱部7および冷却部8に重力方向、即ち上方から下方への空気流が通過するが、冷却部8における吸熱量低下を防止して効率よく冷却フィン8bの温度を下げるために、冷却部8への通風量(通過する空気流の量)は、放熱部7に比べて少なくしている。その実現手段としては、放熱部7はその上流側を開放状態にして放熱部7を通過する空気流に通風抵抗を与えないが、冷却部8側では、上流側に囲いやリブなどを設けて流入口の開口を制限して通風量を下げる。このように通風量を下げて冷却部8を通過する空気流の流速を0.1m/s程度の微風状態まで小さくし、空気流が冷却熱を奪って流出してしまうことを避けている。この結果、冷却フィン8bを効率よく冷却できる。   In the electrostatic atomizer 150, an air flow in the direction of gravity, that is, from the upper side to the lower side, passes through the heat radiating unit 7 and the cooling unit 8, but the heat absorption amount in the cooling unit 8 is prevented from being lowered and the cooling fin 8b is efficiently In order to lower the temperature, the amount of air flow to the cooling unit 8 (the amount of airflow that passes through) is made smaller than that of the heat radiating unit 7. As a means for realizing this, the heat dissipating part 7 opens the upstream side and does not give airflow resistance to the air flow passing through the heat dissipating part 7. Reduce the air flow by limiting the opening of the inlet. In this way, the flow rate of the air flow passing through the cooling unit 8 is reduced to a slight wind state of about 0.1 m / s by reducing the amount of ventilation, and the air flow is prevented from taking out the cooling heat and flowing out. As a result, the cooling fin 8b can be efficiently cooled.

そして流速はたいへん小さいが、冷却部8には空気流が存在するので、水分を含んだ新しい空気が入れ替わるように流入することになり、冷却部8周囲の空気が乾燥してしまうことがなく、効率よく冷却された冷却フィン8bの表面には、結露水10が安定して生成される。   And although the flow velocity is very small, since there is an air flow in the cooling unit 8, it will flow in so that new air containing moisture will be exchanged, and the air around the cooling unit 8 will not dry, Condensed water 10 is stably generated on the surfaces of the cooling fins 8b cooled efficiently.

水印加電極2は金属多孔質体または吸水体から成るものなので、胴部28の上面のどこに結露水10が滴下されても、受け取った水を先端霧化部29に搬送する性質を持っている。水印加電極2自身が、水受け取り部であり、水搬送手段であり、且つ霧化部(静電ミスト1の発生部)である、というように、三つの機能を備えているのである。このため、素早く水を先端霧化部29に集めて、効率よく正確に安定して静電霧化させることができる、という効果を有するのである。   Since the water application electrode 2 is made of a metal porous body or a water absorbing body, it has the property of transporting the received water to the tip atomizing section 29 regardless of where the condensed water 10 is dripped on the upper surface of the body section 28. . The water application electrode 2 itself has three functions such as a water receiving part, a water transport means, and an atomizing part (a generating part of the electrostatic mist 1). For this reason, it has the effect that water can be quickly gathered in the tip atomization part 29, and can be made electrostatic atomization efficiently and accurately stably.

この静電霧化装置150では、冷却部8と、冷却部8に向かって露出している胴部28の上面との間には、空間以外に、冷却部8から滴下する水を集める集水部材や滴下する水を胴部28に案内するガイド部材、また、滴下する水を胴部28に至る前に一時的に溜めておく保水部材などを介在させず、直接的に重力により結露水10を胴部28上面に滴下する。冷却部8から胴部28への水の移動を妨げる要素は何もない。これにより、冷却部8にて生成された結露水10を、短時間で素早く確実に水印加電極2へと供給することができる。   In the electrostatic atomizer 150, the water collecting that collects water dripped from the cooling unit 8 in addition to the space between the cooling unit 8 and the upper surface of the body unit 28 exposed toward the cooling unit 8. Condensed water 10 is directly formed by gravity without a member, a guide member for guiding dripping water to the trunk portion 28, or a water retaining member for temporarily collecting dripping water before reaching the trunk portion 28. Is dropped on the upper surface of the body portion 28. There are no elements that hinder the movement of water from the cooling section 8 to the body section 28. Thereby, the dew condensation water 10 produced | generated in the cooling part 8 can be supplied to the water application electrode 2 quickly and reliably in a short time.

図11乃至図14は実施の形態1を示す図で、図11は変形例2の静電霧化装置200を示す縦断面図、図12は変形例3の静電霧化装置300を示す縦断面図、図13は変形例4の静電霧化装置400を示す縦断面図、図14は変形例5の静電霧化装置500を示す縦断面図である。   11 to 14 are diagrams showing the first embodiment, FIG. 11 is a longitudinal sectional view showing an electrostatic atomizer 200 according to a second modification, and FIG. 12 is a longitudinal section showing an electrostatic atomizer 300 according to the third modification. FIG. 13 is a longitudinal sectional view showing an electrostatic atomizer 400 according to a fourth modification, and FIG. 14 is a longitudinal sectional view showing an electrostatic atomizer 500 according to a fifth modification.

先ず、変形例2の静電霧化装置200の主な特徴について、図11を参照しながら説明する。   First, the main features of the electrostatic atomizer 200 of Modification 2 will be described with reference to FIG.

即ち、変形例2の静電霧化装置200は、静電霧化装置200を熱交換器51の上流側に設けるとともに、水供給部保持枠60等に熱交換器51に向かって突出する凸部65を設けたものである。   That is, the electrostatic atomizer 200 according to the modified example 2 is provided with the electrostatic atomizer 200 on the upstream side of the heat exchanger 51, and the protrusion protruding toward the heat exchanger 51 on the water supply unit holding frame 60 or the like. A portion 65 is provided.

熱交換器51の上流に静電霧化装置200を設置した場合は、熱交換器51が接地されているため、熱交換器51が静電霧化装置200に近接する場合に、熱交換器51の影響を受けてミストの発生が安定的でない、という課題があった。   When the electrostatic atomizer 200 is installed upstream of the heat exchanger 51, since the heat exchanger 51 is grounded, when the heat exchanger 51 is close to the electrostatic atomizer 200, the heat exchanger Under the influence of 51, there was a problem that generation of mist was not stable.

また、製造時の組み付け誤差によって、静電霧化装置200の対向電極3と熱交換器51が接触または近接してしまうと、気中で静電霧化装置200から熱交換器51へと向かう不要な放電を起こしてしまい、ノイズや異音が発生したり、ミスト発生が阻害したりする、という課題があった。   Further, when the counter electrode 3 of the electrostatic atomizer 200 and the heat exchanger 51 come into contact or approach each other due to an assembly error during manufacturing, the electrostatic atomizer 200 moves toward the heat exchanger 51 in the air. There was a problem that unnecessary discharge was caused, noise and noise were generated, and generation of mist was hindered.

高電圧が印加される静電霧化装置200が、空気調和機の吸い込み口41の下流側且つ熱交換器51の上流側に備えられる場合には、熱交換器51が一定の距離以上に対向電極3に近づくのを防止する必要がある。   When the electrostatic atomizer 200 to which a high voltage is applied is provided on the downstream side of the air inlet 41 of the air conditioner and on the upstream side of the heat exchanger 51, the heat exchanger 51 is opposed to a certain distance or more. It is necessary to prevent the electrode 3 from approaching.

そこで、本実施の形態においては、対向電極3の近傍に備えられた枠に熱交換器51に向かって突出する凸部65を設けた。対向電極3の近傍に備えられた枠とは、熱交換器51に対向する凸部65を形成できればよいため、風防止壁30、水供給部保持枠60、保持枠70のいずれであってもよい。材質は、電気を伝えない絶縁物であることが好ましく、風防止壁30、水供給部保持枠60、保持枠70と一体成形して凸部65を形成するのがよい。これに限らず、凸部65の先端65aが対向電極3と熱交換器51の間にあり、対向電極3と熱交換器51の距離を規制できる凸部65が設けられれば、凸部65はいずれの樹脂と一体化していてもよい。   Therefore, in the present embodiment, the convex portion 65 protruding toward the heat exchanger 51 is provided on the frame provided in the vicinity of the counter electrode 3. The frame provided in the vicinity of the counter electrode 3 may be any of the wind prevention wall 30, the water supply unit holding frame 60, and the holding frame 70, as long as the convex portion 65 that faces the heat exchanger 51 can be formed. Good. The material is preferably an insulator that does not transmit electricity, and is preferably integrally formed with the wind prevention wall 30, the water supply unit holding frame 60, and the holding frame 70 to form the convex portion 65. Not only this, if the front-end | tip 65a of the convex part 65 exists between the counter electrode 3 and the heat exchanger 51 and the convex part 65 which can regulate the distance of the counter electrode 3 and the heat exchanger 51 is provided, the convex part 65 will be It may be integrated with any resin.

対向電極3と熱交換器51の最短長さをL1と定義する。L1と平行な長さであって、凸部65の先端65aと熱交換器51の最短長さをL2と定義する。この場合に、L1>L2≧0となる位置に、凸部65の先端65aを配置した(図11参照)。   The shortest length of the counter electrode 3 and the heat exchanger 51 is defined as L1. The length parallel to L1 and the shortest length of the tip 65a of the convex portion 65 and the heat exchanger 51 is defined as L2. In this case, the tip 65a of the convex portion 65 is disposed at a position where L1> L2 ≧ 0 (see FIG. 11).

即ち、通常は対向電極3と熱交換器51の距離は一義的に図面で決定されるが、仮に製造時の組み付け誤差があって、静電霧化装置200の対向電極3と熱交換器51が近接しそうになっても、凸部65が存在することで、凸部65が熱交換器51に当たって止まるので、L2=0となるが、(L1−L2)より小さい距離まで対向電極3と熱交換器51が近接したり接触したりすることがない。   That is, normally, the distance between the counter electrode 3 and the heat exchanger 51 is uniquely determined in the drawing, but there is an assembling error at the time of manufacture, and the counter electrode 3 and the heat exchanger 51 of the electrostatic atomizer 200 are assumed. However, since the convex portion 65 hits the heat exchanger 51 and stops due to the presence of the convex portion 65, L2 = 0, but the distance from the counter electrode 3 to the distance less than (L1-L2) The exchanger 51 does not approach or come into contact.

従って、対向電極3と熱交換器51の間に、(L1−L2)以上の空間距離を確保することができる。(L1−L2)は大きいほど好ましく、30mm以上取れれば申し分ないが、少なくとも印加電圧1kVあたり1mm程度の距離をとると良い。これによって、熱交換器51がミストの発生量に影響を与えることは無くなり安定するとともに、対向電極3から熱交換器51への不要な気中放電が起きることも無くなるという複数の効果が得られる。気中放電を防止することで、これに伴う、異音やノイズの発生も防止できる。   Therefore, a spatial distance of (L1-L2) or more can be ensured between the counter electrode 3 and the heat exchanger 51. (L1-L2) is preferably as large as possible, and if it is 30 mm or more, it is satisfactory, but at least a distance of about 1 mm per 1 kV of applied voltage may be taken. As a result, the heat exchanger 51 does not affect the amount of mist generated and is stabilized, and a plurality of effects can be obtained in which unnecessary air discharge from the counter electrode 3 to the heat exchanger 51 does not occur. . By preventing air discharge, it is possible to prevent the occurrence of abnormal noise and noise.

次に、変形例3の静電霧化装置300の主な特徴について、図12を参照しながら説明する。   Next, main features of the electrostatic atomizer 300 of Modification 3 will be described with reference to FIG.

即ち、変形例3の静電霧化装置300は、以下に示すように構成したものである。
(1)静電霧化装置300を熱交換器51の上流側に設けた。
(2)水供給部保持枠60等に熱交換器51に向かって突出する凸65部を設けた。
(3)構成要件として対向電極3を削除して、水印加電極2から気中もしくは熱交換器51に向けて静電ミスト1を放出する。
That is, the electrostatic atomizer 300 of the modification 3 is comprised as shown below.
(1) The electrostatic atomizer 300 is provided on the upstream side of the heat exchanger 51.
(2) The convex 65 part which protrudes toward the heat exchanger 51 was provided in the water supply part holding frame 60 grade | etc.,.
(3) The counter electrode 3 is deleted as a constituent requirement, and the electrostatic mist 1 is discharged from the water application electrode 2 toward the air or the heat exchanger 51.

特別な電界を設けずに、気中に向かってミストを放出する場合、対向する熱交換器51が接地されているため、熱交換器51が静電霧化装置300に近接する場合に、熱交換器51の影響を受けてミストの発生が安定的でない、という課題があった。   When the mist is emitted toward the air without providing a special electric field, since the opposing heat exchanger 51 is grounded, when the heat exchanger 51 is close to the electrostatic atomizer 300, heat is generated. There was a problem that mist generation was not stable under the influence of the exchanger 51.

また、特別な対向電極3を設けずに、熱交換器51を接地電極として活用する場合には、熱交換器51と静電霧化装置300の水印加電極2との距離(極間距離)が、組み付け誤差によって変動すると、ミストの発生が安定的でない、という課題があった。   Further, when the heat exchanger 51 is used as a ground electrode without providing the special counter electrode 3, the distance (distance between the electrodes) between the heat exchanger 51 and the water application electrode 2 of the electrostatic atomizer 300. However, when it fluctuates due to an assembly error, there is a problem that generation of mist is not stable.

高電圧が印加される静電霧化装置300が、空気調和機の吸い込み口41の下流側且つ熱交換器51の上流側に備えられる場合には、熱交換器51が一定の距離以上に水印加電極2に近づくのを防止する必要がある。   When the electrostatic atomizer 300 to which a high voltage is applied is provided on the downstream side of the air inlet 41 of the air conditioner and on the upstream side of the heat exchanger 51, the heat exchanger 51 has a water mark over a certain distance. It is necessary to prevent approach to the additional electrode 2.

そこで、本実施の形態においては、水印加電極2の近傍に備えられた枠に熱交換器51に向かって突出する凸部65を設けた。水印加電極2の近傍に備えられた枠とは、熱交換器51に対向する凸部65を形成できればよいため、風防止壁30、水供給部保持枠60、保持枠70のいずれであってもよい。材質は、電気を伝えない絶縁物であることが好ましく、風防止壁30、水供給部保持枠60、保持枠70と一体成形して凸部65を形成するのがよい。これに限らず、凸部65の先端65aが水印加電極2と熱交換器51の間にあり、水印加電極2と熱交換器51の距離を規制できる凸部65が設けられれば、凸部65はいずれの樹脂と一体化していてもよい。   Therefore, in the present embodiment, the convex portion 65 protruding toward the heat exchanger 51 is provided on the frame provided in the vicinity of the water application electrode 2. The frame provided in the vicinity of the water application electrode 2 may be any one of the wind prevention wall 30, the water supply unit holding frame 60, and the holding frame 70 as long as it can form the convex portion 65 facing the heat exchanger 51. Also good. The material is preferably an insulator that does not transmit electricity, and is preferably integrally formed with the wind prevention wall 30, the water supply unit holding frame 60, and the holding frame 70 to form the convex portion 65. Not only this, if the front-end | tip 65a of the convex part 65 exists between the water application electrode 2 and the heat exchanger 51, and the convex part 65 which can regulate the distance of the water application electrode 2 and the heat exchanger 51 is provided, a convex part will be provided. 65 may be integrated with any resin.

水印加電極2と熱交換器51の最短長さをL3と定義する。L3と平行な長さであって、凸部65の先端65aと熱交換器51の最短長さをL2と定義する。この場合に、L3>L2≧0となる位置に、凸部65の先端65aを配置した(図12参照)。   The shortest length of the water application electrode 2 and the heat exchanger 51 is defined as L3. The length parallel to L3 and the shortest length of the tip 65a of the convex portion 65 and the heat exchanger 51 is defined as L2. In this case, the tip 65a of the convex portion 65 is disposed at a position where L3> L2 ≧ 0 (see FIG. 12).

即ち、通常は水印加電極2と熱交換器51の距離は一義的に図面で決定されるが、仮に製造時の組み付け誤差があって、静電霧化装置300の水印加電極2と熱交換器51が近接しそうになっても、凸部65が存在することで、凸部65が熱交換器51に当たって止まるので、L2=0となるが、(L3−L2)より小さい距離まで水印加電極2と熱交換器51が近接したり接触したりすることがない。   That is, normally, the distance between the water application electrode 2 and the heat exchanger 51 is uniquely determined by the drawing, but there is an assembling error at the time of manufacture, and heat exchange with the water application electrode 2 of the electrostatic atomizer 300 is performed. Even if the vessel 51 is likely to approach, the convex portion 65 stops by hitting the heat exchanger 51 due to the presence of the convex portion 65, so that L2 = 0, but the water application electrode up to a distance smaller than (L3-L2) 2 and the heat exchanger 51 do not approach or come into contact with each other.

従って、水印加電極2と熱交換器51の間に、(L3−L2)以上の空間距離を確保することができる。(L3−L2)は大きいほど好ましく、30mm以上取れれば申し分ないが、少なくとも印加電圧1kVあたり1mm程度の空間距離をとると良い。4〜6kVを印加していれば6mm以上で好適である。これによって、熱交換器51がミストの発生量に影響を与えることは無くなり、発生量が安定する。   Therefore, a spatial distance of (L3-L2) or more can be ensured between the water application electrode 2 and the heat exchanger 51. (L3-L2) is preferably as large as possible, and if it is 30 mm or more, it is satisfactory, but it is preferable to take a spatial distance of at least about 1 mm per 1 kV of applied voltage. If 4-6 kV is applied, 6 mm or more is suitable. As a result, the heat exchanger 51 does not affect the amount of mist generated, and the amount generated is stabilized.

特に、特別な対向電極3を設けずに、熱交換器51を接地電極として活用する場合には、熱交換器51と静電霧化装置300の水印加電極2との距離(極間距離)は変動してはミスト発生が不安定になるため、L2=0とする位置に凸部65の先端65aを設ける必要がある。この場合、水印加電極2と熱交換器51との最短長さ(極間距離)L3は、クーロン力によって静電霧化現象が起きるだけの電界を与える距離に設定すればよく、L3=4〜10mm程度として好適である。これによって、安定したミスト量を得ることができる。   In particular, when the heat exchanger 51 is used as a ground electrode without providing the special counter electrode 3, the distance (distance between the electrodes) between the heat exchanger 51 and the water application electrode 2 of the electrostatic atomizer 300. Since the mist generation becomes unstable due to fluctuation, it is necessary to provide the tip 65a of the convex portion 65 at a position where L2 = 0. In this case, the shortest length (distance between poles) L3 between the water application electrode 2 and the heat exchanger 51 may be set to a distance that gives an electric field sufficient to cause an electrostatic atomization phenomenon due to the Coulomb force. L3 = 4 It is suitable as about 10 mm. Thereby, a stable mist amount can be obtained.

次に、変形例4の静電霧化装置400の主な特徴について、図13を参照しながら説明する。   Next, main features of the electrostatic atomizer 400 of Modification 4 will be described with reference to FIG.

即ち、変形例4の静電霧化装置400は、以下に示すように構成したものである。
(1)静電霧化装置400を熱交換器51の上流側に設けた。
(2)水供給部保持枠60等に熱交換器51に向かって突出する凸65部を設けた。
(3)更に、凸部65の先端65aを、熱交換器51のパイプ52(冷媒配管)に係止した。
(4)構成要件として対向電極3を削除して、水印加電極2から気中もしくは熱交換器51に向けて静電ミスト1を放出する。
That is, the electrostatic atomizer 400 of the modification 4 is comprised as shown below.
(1) The electrostatic atomizer 400 is provided on the upstream side of the heat exchanger 51.
(2) The convex 65 part which protrudes toward the heat exchanger 51 was provided in the water supply part holding frame 60 grade | etc.,.
(3) Furthermore, the tip 65a of the convex portion 65 is locked to the pipe 52 (refrigerant piping) of the heat exchanger 51.
(4) The counter electrode 3 is deleted as a constituent requirement, and the electrostatic mist 1 is discharged from the water application electrode 2 toward the air or the heat exchanger 51.

静電霧化装置400においても、解決しようとする課題は、静電霧化装置300と同様である。静電霧化装置400は、凸部65の先端65aが熱交換器51のパイプ52(冷媒配管)に係止されているので、凸部65の先端65aと熱交換器51の最短長さをL2と定義すると、L2=0である。また、水印加電極2と熱交換器51の最短長さをL3と定義する(図13参照)。   The problem to be solved in the electrostatic atomizer 400 is the same as that in the electrostatic atomizer 300. In the electrostatic atomizer 400, since the tip 65a of the convex portion 65 is locked to the pipe 52 (refrigerant pipe) of the heat exchanger 51, the minimum length between the tip 65a of the convex portion 65 and the heat exchanger 51 is reduced. When defined as L2, L2 = 0. Moreover, the shortest length of the water application electrode 2 and the heat exchanger 51 is defined as L3 (see FIG. 13).

更に、凸部65の先端65aをパイプ52に係止することで、組み付け誤差等の影響を受けることなく、水印加電極2と熱交換器51との最短長さ(極間距離)L3を確実に固定することができる。L3より小さい距離まで水印加電極2と熱交換器51が近接したり接触したりすることがない。水印加電極2と熱交換器51との最短長さ(極間距離)L3はクーロン力によって静電霧化現象が起きるだけの電界を与える距離に設定すればよく、L3=4〜10mm程度として好適である。これによって、L3が変化しないので、安定したミスト量を得ることができる。   Furthermore, by locking the tip 65a of the convex portion 65 to the pipe 52, the shortest length (distance between the electrodes) L3 between the water application electrode 2 and the heat exchanger 51 can be ensured without being affected by an assembly error or the like. Can be fixed to. The water application electrode 2 and the heat exchanger 51 do not approach or come into contact with each other up to a distance smaller than L3. The shortest length (distance between poles) L3 between the water application electrode 2 and the heat exchanger 51 may be set to a distance that gives an electric field sufficient to cause an electrostatic atomization phenomenon due to Coulomb force. L3 = about 4 to 10 mm Is preferred. Thereby, since L3 does not change, a stable mist amount can be obtained.

凸部65の数は1つでも水印加電極2と熱交換器51の距離を確保することは可能であるが、好ましくは水印加電極2の左右に少なくとも1つずつ設けるとよい。そうすれば、左右に偏った応力がかかることがなくなる。また、好ましくは水印加電極2の上下にも少なくとも1つずつ設けるとよい。そうすれば、上下に偏った応力がかかることがなくなる。したがって、凸部65の数は複数あるほうがよい。   Although it is possible to secure the distance between the water application electrode 2 and the heat exchanger 51 even if the number of the convex portions 65 is one, it is preferable to provide at least one each on the left and right of the water application electrode 2. By doing so, stress biased to the left and right is not applied. Preferably, at least one is provided above and below the water application electrode 2. By doing so, stress that is biased up and down is not applied. Therefore, it is better that there are a plurality of convex portions 65.

凸部65の先端65aの樹脂厚みは、フィン53とフィン53の幅L6(図15参照)よりも小さいことで、フィン53とフィン53との間にスムーズに挿入されて、パイプ52に係止することができる。また、凸部65の先端65aの形状はパイプ52に係止しやすいように、パイプ52に沿う形の円弧形状にして好適である。円弧形状の空隙部はパイプ52からはずれないよう、パイプ52の径と同等かやや小さくして好適である。更に円弧形状の根元に切れ目をいれておけば、凸部65の先端65aをパイプ52に挿入する際やパイプ52に係止されている際の応力を緩和して、樹脂が割れる等の不具合から守ることができる。   The resin thickness at the tip 65a of the convex portion 65 is smaller than the width L6 of the fin 53 and the fin 53 (see FIG. 15), so that the resin is smoothly inserted between the fin 53 and the fin 53 and locked to the pipe 52. can do. The shape of the tip 65 a of the convex portion 65 is preferably an arc shape that follows the pipe 52 so that it can be easily locked to the pipe 52. The arc-shaped gap is preferably equal to or slightly smaller than the diameter of the pipe 52 so as not to be separated from the pipe 52. Further, if a cut is made at the base of the arc shape, the stress at the time of inserting the tip 65a of the convex portion 65 into the pipe 52 or being locked to the pipe 52 is alleviated and the resin breaks. I can protect it.

凸部65の先端65aの形状は円弧形状のみではなく他の形状でも良い。凸部65の先端65aがパイプ52に止まればよいので、凸部65の先端65aを2つに割ってパイプ52と略平行に伸ばして、その内側に微小な突起を設けてパイプ52から外れにくくしたものや、単に押し当てる形にしたもの等でもよい。   The shape of the tip 65a of the convex portion 65 is not limited to the arc shape, but may be other shapes. Since the tip 65a of the convex portion 65 only needs to stop at the pipe 52, the tip 65a of the convex portion 65 is split into two and extended substantially parallel to the pipe 52, and a minute protrusion is provided on the inside to prevent the projection 52 from coming off the pipe 52. It may be the one that has been pressed or simply pressed.

また、凸部65の先端65aの全部ではなく、一部をフィン53とフィン53の間に挿入してもよく、フィン53とフィン53の間隔L6と先端65aの樹脂厚みをほぼ同等として、アルミフィンをつぶしながら先端65aを挿入してフィン53とフィン53の間に固定しても水印加電極2は熱交換器51に近づかないので、同等の効果が得られる。パイプ52に係止したほうが、水印加電極2と熱交換器51の距離を一定に保つ効果は高い。   Further, instead of the entire tip 65a of the convex portion 65, a part of the tip 65a may be inserted between the fin 53 and the fin 53, and the distance L6 between the fin 53 and the fin 53 and the resin thickness of the tip 65a are substantially equal. Even if the tip 65a is inserted and fixed between the fins 53 and 53 while the fins are crushed, the water application electrode 2 does not approach the heat exchanger 51, so that the same effect can be obtained. The effect of keeping the distance between the water application electrode 2 and the heat exchanger 51 constant is higher when locked to the pipe 52.

図13の変形例4の静電霧化装置400では、対向電極3が無い場合を図示したが、対向電極3がある場合でも、凸部65の先端65aをパイプ52に係止することで、組み付け誤差等の影響を受けることなく、対向電極3と熱交換器51との最短長さ(極間距離)L1を確実に固定することができるので、安定したミスト発生量を得ることができる。   In the electrostatic atomizer 400 of the modified example 4 of FIG. 13, the case where the counter electrode 3 is not illustrated is illustrated, but even when the counter electrode 3 is present, by locking the tip 65 a of the convex portion 65 to the pipe 52, Since the shortest length (distance between poles) L1 between the counter electrode 3 and the heat exchanger 51 can be reliably fixed without being affected by an assembly error or the like, a stable mist generation amount can be obtained.

図11〜13の静電霧化装置200〜400では、水印加電極2および対向電極3は、熱交換器51に対向して設置されているが、水印加電極2および対向電極3が熱交換器51の幅方向に平行な場合にも、同様に凸部65を適用することで、上述の効果を得ることができる。   In the electrostatic atomizers 200 to 400 of FIGS. 11 to 13, the water application electrode 2 and the counter electrode 3 are installed facing the heat exchanger 51, but the water application electrode 2 and the counter electrode 3 are heat exchanged. Even when parallel to the width direction of the vessel 51, the above-described effects can be obtained by applying the convex portion 65 in the same manner.

また、水印加電極2および対向電極3が複数ある場合にも、対向電極3と熱交換器51との最短長さをL1、凸部65の先端65aと熱交換器51の最短長さをL2、水印加電極2と熱交換器51との最短長さをL3と定義し、
L1>L2≧0
L3>L2≧0
とすることで、凸部65によって、安定した静電ミスト1を生成することができる。
Further, when there are a plurality of water application electrodes 2 and counter electrodes 3, the shortest length between the counter electrode 3 and the heat exchanger 51 is L1, and the shortest length between the tip 65a of the convex portion 65 and the heat exchanger 51 is L2. The shortest length between the water application electrode 2 and the heat exchanger 51 is defined as L3,
L1> L2 ≧ 0
L3> L2 ≧ 0
By doing so, the stable electrostatic mist 1 can be generated by the convex portion 65.

次に、変形例5の静電霧化装置500の主な特徴について、図14を参照しながら説明する。   Next, main features of the electrostatic atomizer 500 of Modification 5 will be described with reference to FIG.

即ち、変形例5の静電霧化装置500は、以下の示すように構成したものである。
(1)静電霧化装置500を熱交換器51の上流側に設けた。
(2)水供給部保持枠60等に熱交換器51に向かって突出する凸部65を設けた。
(3)放熱部7または冷却部8の端部を水印加電極2または対向電極3より熱交換器51に近い位置に配置した。
(4)構成要件として対向電極3を削除して、水印加電極2から気中もしくは熱交換器51に向けて静電ミスト1を放出する。
That is, the electrostatic atomizer 500 of the modified example 5 is configured as shown below.
(1) The electrostatic atomizer 500 is provided on the upstream side of the heat exchanger 51.
(2) The convex part 65 which protrudes toward the heat exchanger 51 was provided in water supply part holding frame 60 grade | etc.,.
(3) The end of the heat radiating part 7 or the cooling part 8 is arranged at a position closer to the heat exchanger 51 than the water application electrode 2 or the counter electrode 3.
(4) The counter electrode 3 is deleted as a constituent requirement, and the electrostatic mist 1 is discharged from the water application electrode 2 toward the air or the heat exchanger 51.

従来、製造時の組み付け誤差によって、熱交換器51とペルチェユニット6に備えられた放熱部7または冷却部8(以下、ヒートシンクと呼ぶ)が接触してしまうと、異常時(例えば、室内機の電気回路の故障(短絡等)により、熱交換器の電位が商用電源の電圧レベルになる状態)に商用電源の電圧(100Vまたは200V)がペルチェユニットに流れこんでしまい、ペルチェユニットが破損してしまう懸念がある、という課題があった。   Conventionally, if the heat exchanger 51 and the heat radiating unit 7 or the cooling unit 8 (hereinafter referred to as a heat sink) provided in the Peltier unit 6 come into contact with each other due to an assembly error during manufacturing, an abnormal time (for example, an indoor unit) The voltage of the commercial power supply (100V or 200V) flows into the Peltier unit due to a failure of the electric circuit (short circuit, etc.), causing the Peltier unit to break. There was a problem that there was a concern.

また、製造時の組み付け誤差によって、熱交換器とペルチェユニットに備えられたヒートシンクが接触してしまうと、暖房運転時に熱交換器からの熱影響を直接受けて、放熱することができず、ペルチェユニットが正常に働かず、冷却部を冷やせない、結露水が得られない、という課題があった。   In addition, if the heat exchanger and the heat sink provided in the Peltier unit come into contact with each other due to assembly errors during manufacturing, the Peltier unit cannot directly radiate heat due to the direct influence of heat from the heat exchanger during heating operation. There was a problem that the unit did not work properly, the cooling part could not be cooled, and condensed water could not be obtained.

そこで、静電霧化装置500が備えるヒートシンクが、空気調和機50の吸い込み口41の下流側且つ熱交換器51の上流側に備えられる場合には、熱交換器51が一定の距離以上にヒートシンクに近づくのを防止する必要がある。   Therefore, when the heat sink provided in the electrostatic atomizer 500 is provided on the downstream side of the suction port 41 of the air conditioner 50 and on the upstream side of the heat exchanger 51, the heat exchanger 51 is more than a certain distance. It is necessary to prevent it from approaching.

そこで、本実施の形態においては、静電霧化装置500に備えられた枠に熱交換器51に向かって突出する凸部65を設けた。静電霧化装置500に備えられた枠とは、熱交換器51に対向する凸部65を形成できればよいため、風防止壁30、水供給部保持枠60、保持枠70のいずれであってもよい。材質は、電気を伝えない絶縁物であることが好ましく、風防止壁30、水供給部保持枠60、保持枠70と一体成形して凸部を形成するのがよい。これに限らず、凸部の先端65aがヒートシンクと熱交換器51の間にあり、ヒートシンクと熱交換器51の距離を規制できる凸部65が設けられれば、凸部65はいずれの樹脂と一体化していてもよい。   Therefore, in the present embodiment, the convex portion 65 that protrudes toward the heat exchanger 51 is provided on the frame provided in the electrostatic atomizer 500. The frame provided in the electrostatic atomizer 500 may be any of the wind prevention wall 30, the water supply unit holding frame 60, and the holding frame 70 as long as it can form the convex portion 65 facing the heat exchanger 51. Also good. The material is preferably an insulator that does not transmit electricity, and is preferably integrally formed with the wind prevention wall 30, the water supply unit holding frame 60, and the holding frame 70 to form a convex portion. Not only this, but if the convex part 65 is provided between the heat sink 51 and the heat exchanger 51 and the convex part 65 that can regulate the distance between the heat sink 51 and the heat exchanger 51 is provided, the convex part 65 is integrated with any resin. It may be converted.

ヒートシンクと熱交換器51の最短長さをL4と定義する。L4と平行な長さであって、凸部65の先端65aと熱交換器51の最短長さをL2と定義する。この場合に、L4>L2≧0となる位置に、凸部65の先端65aを配置した(図14参照)。   The shortest length of the heat sink and the heat exchanger 51 is defined as L4. The length parallel to L4 and the shortest length of the tip 65a of the convex portion 65 and the heat exchanger 51 is defined as L2. In this case, the tip 65a of the convex portion 65 is disposed at a position where L4> L2 ≧ 0 (see FIG. 14).

即ち、通常はヒートシンクと熱交換器51の距離は一義的に図面で決定されるが、仮に製造時の組み付け誤差があって、静電霧化装置の対向電極3と熱交換器51が近接しそうになっても、凸部65が存在することで、凸部65が熱交換器51に当たって止まるので、L2=0となるが、(L4−L2)より小さい距離まで対向電極3と熱交換器51が近接したり接触したりすることがない。   That is, normally, the distance between the heat sink and the heat exchanger 51 is uniquely determined by the drawing, but it is assumed that there is an assembly error at the time of manufacture and the counter electrode 3 of the electrostatic atomizer and the heat exchanger 51 are close to each other. Even if the convex portion 65 exists, the convex portion 65 hits the heat exchanger 51 and stops, so that L2 = 0, but the counter electrode 3 and the heat exchanger 51 become a distance smaller than (L4-L2). Are not in close proximity or touching.

従って、ヒートシンクと熱交換器51の間に(L4−L2)以上の空間距離を確保することができる。(L4−L2)は大きいほど好ましく、10mm以上取れれば申し分ないが、少なくとも4mm以上の距離をとると良い。これによって、ヒートシンクが熱影響を受けることは無くなり安定した冷却部8の吸熱性能が得られるとともに、ヒートシンクに1次側の電圧が流れ込むことも無くなる、という複数の効果が得られる。   Therefore, a space distance of (L4-L2) or more can be ensured between the heat sink and the heat exchanger 51. (L4-L2) is preferably as large as possible, and it is satisfactory if it is 10 mm or more, but it is preferable to take a distance of at least 4 mm. As a result, the heat sink is not affected by heat, and a stable heat absorption performance of the cooling unit 8 is obtained. In addition, a plurality of effects that the primary voltage does not flow into the heat sink can be obtained.

図15乃至図22は実施の形態1を示す図で、図15は変形例1の静電霧化装置150を空気調和機50に搭載した場合の平面図、図16は変形例1の静電霧化装置150を空気調和機50に搭載した場合の部分断面図、図17は静電霧化装置保持枠68に静電霧化装置150を取り付けた状態を示す断面図、図18は静電霧化装置保持枠68に取り付ける静電霧化装置150の斜視図、図19はミスト発生部の平面図、図20はミスト発生部の正面図、図21は別のミスト発生部の平面図、図22は別のミスト発生部の正面図である。   15 to 22 are diagrams showing the first embodiment. FIG. 15 is a plan view when the electrostatic atomizer 150 according to the first modification is mounted on the air conditioner 50. FIG. 16 is an electrostatic diagram according to the first modification. 17 is a partial cross-sectional view when the atomizing device 150 is mounted on the air conditioner 50, FIG. 17 is a cross-sectional view showing a state in which the electrostatic atomizing device 150 is attached to the electrostatic atomizing device holding frame 68, and FIG. FIG. 19 is a plan view of the mist generating unit, FIG. 20 is a front view of the mist generating unit, and FIG. 21 is a plan view of another mist generating unit. FIG. 22 is a front view of another mist generating part.

図15、図16に示すように、凸部65の先端65aの熱交換器51に対向する面の形状を平面とし、ここを平面部66と定義する。また、この平面部66の幅L5は熱交換器51のフィン53の間隔L6よりも大きくした。通常、熱交換器51のフィン53の間隔L6は、1.0mm〜1.5mm程度である。平面部66の幅L5をフィン53の間隔L6より大きくすることで、静電霧化装置150が熱交換器51に近接した時には、平面部66を熱交換器51に確実に押し当てることができる。従って、熱交換器51が過度に対向電極3、水印加電極2、ヒートシンクに近づくのを防止することができる、という効果を有する。平面部66の幅L5は、3.0mmより大きくして好適である。尚、凸部65は複数あってもよい。   As shown in FIGS. 15 and 16, the shape of the surface facing the heat exchanger 51 of the tip 65 a of the convex portion 65 is defined as a plane, and this is defined as a plane portion 66. Further, the width L5 of the flat portion 66 is larger than the interval L6 between the fins 53 of the heat exchanger 51. Usually, the space | interval L6 of the fin 53 of the heat exchanger 51 is about 1.0 mm-1.5 mm. By making the width L5 of the flat portion 66 larger than the interval L6 of the fins 53, the flat portion 66 can be reliably pressed against the heat exchanger 51 when the electrostatic atomizer 150 is close to the heat exchanger 51. . Therefore, the heat exchanger 51 can be prevented from excessively approaching the counter electrode 3, the water application electrode 2, and the heat sink. The width L5 of the flat portion 66 is preferably larger than 3.0 mm. There may be a plurality of convex portions 65.

図17では、凸部65の別の設置場所として、静電霧化装置保持枠68に凸部65を設置した。静電霧化装置150の水供給部保持枠60には爪部67が備えられ(図18参照)、静電霧化装置150は、水供給部保持枠60の爪部67により、静電霧化装置保持枠68に固定されている。これまでの凸部65は静電霧化装置に設けられたが、凸部65を静電霧化装置保持枠68に設けるようにしても良い。この場合でも、熱交換器51が過度に対向電極3、水印加電極2、ヒートシンクに近づくのを防止することができる、という効果を有する。   In FIG. 17, the convex portion 65 is installed on the electrostatic atomizer holding frame 68 as another installation location of the convex portion 65. The water supply part holding frame 60 of the electrostatic atomizer 150 is provided with a claw part 67 (see FIG. 18), and the electrostatic atomizer 150 is electrostatically fogged by the claw part 67 of the water supply part holding frame 60. The fixing device holding frame 68 is fixed. Although the conventional convex portion 65 is provided in the electrostatic atomizer, the convex portion 65 may be provided in the electrostatic atomizer holding frame 68. Even in this case, it is possible to prevent the heat exchanger 51 from excessively approaching the counter electrode 3, the water application electrode 2, and the heat sink.

図19、図20に示すように、ミスト発生部は凸部65を水印加電極2または対向電極3の幅方向の左右両側に少なくとも一つずつ備える。凸部65が一つのみの場合は、凸部65の近傍は熱交換器51に近接しないが、凸部65から遠い部分が熱交換器51に近づく恐れがある。従って、凸部65を水印加電極2または対向電極3の幅方向の左右両側に少なくとも1つずつ備えることで、水印加電極2または対向電極3の両側で熱交換器51との距離を規制することができ、いずれか片側面だけが熱交換器51に近づくのを防止することができる。つまり、水印加電極2または対向電極3が熱交換器51に近づくのを防止することができる、という効果を有する。水印加電極2または対向電極3ではなく、ヒートシンクであっても同様である。   As shown in FIGS. 19 and 20, the mist generating portion includes at least one convex portion 65 on each of the left and right sides in the width direction of the water application electrode 2 or the counter electrode 3. When there is only one convex portion 65, the vicinity of the convex portion 65 is not close to the heat exchanger 51, but a portion far from the convex portion 65 may approach the heat exchanger 51. Therefore, by providing at least one protrusion 65 on each of the left and right sides in the width direction of the water application electrode 2 or the counter electrode 3, the distance from the heat exchanger 51 is regulated on both sides of the water application electrode 2 or the counter electrode 3. It is possible to prevent only one of the side surfaces from approaching the heat exchanger 51. That is, there is an effect that the water application electrode 2 or the counter electrode 3 can be prevented from approaching the heat exchanger 51. The same applies to a heat sink instead of the water application electrode 2 or the counter electrode 3.

水印加電極2または対向電極3の幅方向の左右両側に設けられる凸部65は、水印加電極2または対向電極3の真横が好ましいが、左右両側に少なくとも1つ以上設けられていれば、凸部65は上下方向のどの位置にあっても良い。   The convex portions 65 provided on the left and right sides in the width direction of the water application electrode 2 or the counter electrode 3 are preferably right side of the water application electrode 2 or the counter electrode 3. The part 65 may be in any position in the vertical direction.

図21、図22に別の凸部65を示す。ここでは、凸部65の形状を幅方向に伸ばし、格子形状とした。凸部65を、水印加電極2または対向電極3の上流側において、水印加電極2の先端部または対向電極3の全幅方向を覆った、格子形状に形成した。全幅方向を覆うことで、上流側から人間が手を伸ばした場合に、水印加電極2や対向電極3に触れることができないので、感電を防止することができる。また、凸部65を格子形状にすることで、吸い込み口41から吸い込んだ空気流が上流から格子を通って対向電極3の近傍を流れ、ミストが効率よく搬送される、という効果を有する。   FIG. 21 and FIG. 22 show another convex portion 65. Here, the shape of the convex portion 65 is extended in the width direction to form a lattice shape. The convex portion 65 was formed in a lattice shape covering the tip of the water application electrode 2 or the entire width direction of the counter electrode 3 on the upstream side of the water application electrode 2 or the counter electrode 3. By covering the entire width direction, when a person reaches out from the upstream side, the water application electrode 2 and the counter electrode 3 cannot be touched, so that an electric shock can be prevented. Further, by forming the convex portion 65 in a lattice shape, the air flow sucked from the suction port 41 flows from the upstream through the lattice and in the vicinity of the counter electrode 3, so that the mist is efficiently conveyed.

これによって、水印加電極2または対向電極3と熱交換器51との距離を規制することができ、水印加電極2または対向電極3が熱交換器51に近づくのを防止することができる、という効果を有する。水印加電極2または対向電極3ではなく、ヒートシンクであっても同様である。凸部65の格子は、ヒートシンクおよび熱交換器51のフィン53と平行に開口部を設けることで風の流入をスムーズにすることができ、ミストが効率よく搬送される。   Thereby, the distance between the water application electrode 2 or the counter electrode 3 and the heat exchanger 51 can be regulated, and the water application electrode 2 or the counter electrode 3 can be prevented from approaching the heat exchanger 51. Has an effect. The same applies to a heat sink instead of the water application electrode 2 or the counter electrode 3. The lattice of the convex portions 65 can provide smooth opening of the wind by providing openings parallel to the heat sinks and the fins 53 of the heat exchanger 51, so that mist is efficiently conveyed.

この発明に係る空気調和機は、熱交換器51と静電霧化装置の距離が変動することによる、不要な気中放電や異音を防止でき、安全でミスト発生量が安定した静電霧化装置を提供するという効果を有する。   The air conditioner according to the present invention can prevent unnecessary air discharge and abnormal noise due to fluctuations in the distance between the heat exchanger 51 and the electrostatic atomizer, and is a safe and stable mist generation amount. This has the effect of providing a conversion device.

以上のように、この発明に係る空気調和機は、吸い込み口と、熱交換器と、送風ファンと、吹き出し口を備えた空気調和機であって、水を供給する水供給部と、水供給部から供給された水を受け取り、高電圧が印加されることで水を先端霧化部で霧化させる水印加電極と、水印加電極の先端霧化部の周囲に配置された対向電極と、を備えた静電霧化装置が、空気調和機の前記吸い込み口の下流側且つ熱交換器の上流側に備えられるとともに、静電霧化装置または静電霧化装置を保持する保持枠には、熱交換器に向かって突出する凸部が備えられ、対向電極と熱交換器の最短長さをL1、L1と平行な長さであって、凸部の端部と熱交換器の最短長さをL2とした場合に、L1>L2≧0となる位置に、凸部の端部が配置されるものであるので、熱交換器と静電霧化装置の距離が変動することによる、不要な気中放電や異音を防止でき、安全でミスト発生量が安定した静電霧化装置を提供できる、という効果を有する。   As described above, the air conditioner according to the present invention is an air conditioner including a suction port, a heat exchanger, a blower fan, and a blower port, and includes a water supply unit that supplies water, and a water supply A water application electrode that receives the water supplied from the unit and atomizes the water at the tip atomization unit by applying a high voltage, and a counter electrode disposed around the tip atomization unit of the water application electrode, Is provided on the downstream side of the suction port of the air conditioner and on the upstream side of the heat exchanger, and the electrostatic atomizer or the holding frame for holding the electrostatic atomizer is provided on the holding frame for holding the electrostatic atomizer. , A protrusion protruding toward the heat exchanger is provided, and the shortest length of the counter electrode and the heat exchanger is a length parallel to L1 and L1, and the end of the protrusion and the shortest length of the heat exchanger When the height is L2, the end of the convex portion is arranged at a position where L1> L2 ≧ 0. It has the effect of being able to provide an electrostatic atomizer that is safe and stable in the amount of mist generation, which can prevent unnecessary air discharge and abnormal noise due to fluctuations in the distance between the heat exchanger and the electrostatic atomizer. .

1 静電ミスト、2 水印加電極、3 対向電極、3a 開口、3b リード線、3c ネジ、4 高電圧電源部、5 低電圧電源部、6 ペルチェユニット、6a リード線、7 放熱部、7a ベース板、7b 放熱フィン、8 冷却部、8a ベース板、8b 冷却フィン、10 結露水、21 気孔、22 金属部、25 給電端子、25a リード線、26 開口、27 開口、28 胴部、29 先端霧化部、29a 先端、30 風防止壁、30a 庇、30b 壁、40 ドレンパン、41 吸い込み口、42 吹き出し口、43 送風ファン、44 左右風向板、45 上下風向板、46 前面パネル、47 背面カバー、50 空気調和機、51 熱交換器、51a 前面上部熱交換器、51b 前面下部熱交換器、51c 背面熱交換器、52 パイプ、53 フィン、60 水供給部保持枠、60a 冷却部収納部、60b 放熱部収納部、60c リード線口出し部、61 空気量調整穴、62 遮断壁、63 冷却部保持枠、65 凸部、65a 先端、66 平面部、67 爪部、68 静電霧化装置保持枠、70 保持枠、70a 格子、70b 対向電極保持部、70c 円弧、70d 左右延伸部、77 閉塞部、78 空洞部、100 静電霧化装置、150 静電霧化装置、200 静電霧化装置、300 静電霧化装置、400 静電霧化装置、500 静電霧化装置。   1 electrostatic mist, 2 water application electrode, 3 counter electrode, 3a opening, 3b lead wire, 3c screw, 4 high voltage power supply unit, 5 low voltage power supply unit, 6 Peltier unit, 6a lead wire, 7 heat dissipation unit, 7a base Plate, 7b Radiation fin, 8 Cooling part, 8a Base plate, 8b Cooling fin, 10 Condensation water, 21 Pore, 22 Metal part, 25 Power supply terminal, 25a Lead wire, 26 Opening, 27 Opening, 28 Body, 29 Tip fog , 29a tip, 30 wind prevention wall, 30a wall, 30b wall, 40 drain pan, 41 suction port, 42 air outlet, 43 blower fan, 44 left and right wind direction plate, 45 top and bottom wind direction plate, 46 front panel, 47 back cover, 50 air conditioner, 51 heat exchanger, 51a front upper heat exchanger, 51b front lower heat exchanger, 51c rear heat exchanger, 52 pack 53, fins, 60 water supply unit holding frame, 60a cooling unit storage unit, 60b heat radiation unit storage unit, 60c lead wire lead-out unit, 61 air amount adjustment hole, 62 barrier wall, 63 cooling unit holding frame, 65 convex portion, 65a tip, 66 plane part, 67 claw part, 68 electrostatic atomizer holding frame, 70 holding frame, 70a lattice, 70b counter electrode holding part, 70c arc, 70d left and right extending part, 77 closing part, 78 cavity part, 100 Electrostatic atomizer, 150 electrostatic atomizer, 200 electrostatic atomizer, 300 electrostatic atomizer, 400 electrostatic atomizer, 500 electrostatic atomizer.

Claims (6)

吸い込み口と、熱交換器と、送風ファンと、吹き出し口を備えた空気調和機であって、
前記吸い込み口の下流側且つ前記熱交換器の上流側に設けられ、水を供給する水供給部と、前記水供給部から供給された前記水を受け取り、高電圧が印加されることで前記水を先端霧化部で霧化させる水印加電極と、前記水印加電極の先端霧化部の周囲に配置された対向電極と、を有する静電霧化装置と、
前記静電霧化装置または前記静電霧化装置を保持する静電霧化装置保持枠に設けられ、前記熱交換器に向かって突出する凸部と、を備え、
前記対向電極と前記熱交換器との間の最短長さをL1、前記L1と平行な長さであって、前記凸部の端部と前記熱交換器との間の最短長さをL2とした場合に、L1>L2≧0となる位置に、前記凸部の端部が配置されることを特徴とする空気調和機。
An air conditioner having a suction port, a heat exchanger, a blower fan, and a blowout port,
A water supply unit that is provided downstream of the suction port and upstream of the heat exchanger, supplies water, receives the water supplied from the water supply unit, and receives the water to apply the water. An electrostatic atomizer having a water application electrode for atomizing the tip at the tip atomization section, and a counter electrode disposed around the tip atomization section of the water application electrode,
A convex part provided on the electrostatic atomizer or the electrostatic atomizer holding frame for holding the electrostatic atomizer, and projecting toward the heat exchanger;
The shortest length between the counter electrode and the heat exchanger is L1, the length parallel to the L1, and the shortest length between the end of the convex portion and the heat exchanger is L2. In this case, the air conditioner is characterized in that the end of the convex portion is arranged at a position where L1> L2 ≧ 0.
吸い込み口と、熱交換器と、送風ファンと、吹き出し口を備えた空気調和機であって、
前記吸い込み口の下流側且つ前記熱交換器の上流側に設けられ、水を供給する水供給部と、前記水供給部から供給された前記水を受け取り、高電圧が印加されることで前記水を先端霧化部で霧化させる水印加電極と、を有する静電霧化装置と、
前記静電霧化装置または前記静電霧化装置を保持する静電霧化装置保持枠に設けられ、前記熱交換器に向かって突出する凸部と、を備え、
前記水印加電極と前記熱交換器との間の最短長さをL3、前記L3と平行な長さであって、前記凸部の端部と前記熱交換器との間の最短長さをL2とした場合に、L3>L2≧0となる位置に、前記凸部の端部が配置されることを特徴とする空気調和機。
An air conditioner having a suction port, a heat exchanger, a blower fan, and a blowout port,
A water supply unit that is provided downstream of the suction port and upstream of the heat exchanger, supplies water, receives the water supplied from the water supply unit, and receives the water to apply the water. A water applying electrode that atomizes the water at the tip atomizing section, and an electrostatic atomizing device having
A convex part provided on the electrostatic atomizer or the electrostatic atomizer holding frame for holding the electrostatic atomizer, and projecting toward the heat exchanger;
The shortest length between the water application electrode and the heat exchanger is L3, the length is parallel to the L3, and the shortest length between the end of the convex portion and the heat exchanger is L2. In this case, the air conditioner is characterized in that an end of the convex portion is arranged at a position where L3> L2 ≧ 0.
吸い込み口と、熱交換器と、送風ファンと、吹き出し口を備えた空気調和機であって、
前記吸い込み口の下流側且つ前記熱交換器の上流側に設けられ、ペルチェユニットと前記ペルチェユニットの放熱面に接し前記熱交換器と対向する位置に配置される放熱部と前記放熱面の反対側に位置する前記ペルチェユニット冷却面に接する冷却部とを有し、前記冷却部にて結露水を生成する水供給部と、前記水供給部から供給される前記結露水を受け取り、高電圧が印加されることで前記結露水を先端霧化部で霧化させる水印加電極と、を有する静電霧化装置と、
前記静電霧化装置または前記静電霧化装置を保持する静電霧化装置保持枠に設けられ、前記熱交換器に向かって突出する凸部と、を備え、
前記放熱部と前記熱交換器との間の最短長さをL4、前記L4と平行な長さであって、前記凸部の端部と前記熱交換器との間の最短長さをL2とした場合に、L4>L2≧0となる位置に、前記凸部の端部が配置されることを特徴とする空気調和機。
An air conditioner having a suction port, a heat exchanger, a blower fan, and a blowout port,
Provided on the downstream side of the suction port and on the upstream side of the heat exchanger, the Peltier unit and a heat radiation part arranged in contact with the heat radiation surface of the Peltier unit and facing the heat exchanger, and the opposite side of the heat radiation surface A cooling unit in contact with the cooling surface of the Peltier unit located at a water supply unit that generates condensed water in the cooling unit, and receives the condensed water supplied from the water supply unit. A water application electrode that causes the condensed water to be atomized at the tip atomization unit by being applied, and an electrostatic atomization device,
A convex part provided on the electrostatic atomizer or the electrostatic atomizer holding frame for holding the electrostatic atomizer, and projecting toward the heat exchanger;
L4 is the shortest length between the heat dissipating part and the heat exchanger, the length is parallel to the L4, and the shortest length between the end of the convex part and the heat exchanger is L2. In this case, the air conditioner is characterized in that an end of the convex portion is arranged at a position where L4> L2 ≧ 0.
前記突出する凸部は、前記水印加電極または前記対向電極の幅方向の左右両側に少なくとも1つずつ設けられることを特徴とする請求項1乃至のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 3 , wherein at least one protruding portion is provided on each of the left and right sides in the width direction of the water application electrode or the counter electrode. 前記凸部の先端は平面に形成され、前記平面の幅は、前記熱交換器のフィン間隔より大きいことを特徴とする請求項1乃至4のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 4 , wherein a tip of the convex portion is formed in a flat surface, and a width of the flat surface is larger than a fin interval of the heat exchanger. 前記凸部は、前記水印加電極または前記対向電極の上流側に、前記水印加電極の先端部または前記対向電極の全幅方向を覆って設けられるとともに、格子形状に形成されていることを特徴とする請求項1乃至5のいずれかに記載の空気調和機。 The convex portion is provided on the upstream side of the water application electrode or the counter electrode so as to cover the front end portion of the water application electrode or the entire width direction of the counter electrode, and is formed in a lattice shape. The air conditioner according to any one of claims 1 to 5 .
JP2010202559A 2010-09-10 2010-09-10 Air conditioner Active JP5417289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202559A JP5417289B2 (en) 2010-09-10 2010-09-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202559A JP5417289B2 (en) 2010-09-10 2010-09-10 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013237644A Division JP5586769B2 (en) 2013-11-18 2013-11-18 Air conditioner

Publications (3)

Publication Number Publication Date
JP2012057883A JP2012057883A (en) 2012-03-22
JP2012057883A5 JP2012057883A5 (en) 2012-07-26
JP5417289B2 true JP5417289B2 (en) 2014-02-12

Family

ID=46055195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202559A Active JP5417289B2 (en) 2010-09-10 2010-09-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP5417289B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346851A (en) * 1991-05-22 1992-12-02 Toshiba Corp Electric precipitator
JP2002276971A (en) * 2001-03-19 2002-09-25 Fujitsu General Ltd Air conditioner
JP2003227623A (en) * 2002-12-11 2003-08-15 Sharp Corp Air conditioner
JP2005049048A (en) * 2003-07-30 2005-02-24 Corona Corp Air conditioner
JP4123211B2 (en) * 2004-09-24 2008-07-23 松下電器産業株式会社 Air conditioner
JP4701746B2 (en) * 2005-02-23 2011-06-15 パナソニック電工株式会社 Air conditioner with air purification function
JP2009090192A (en) * 2007-10-05 2009-04-30 Panasonic Electric Works Co Ltd Electrostatically atomizing device
JP5183274B2 (en) * 2007-11-09 2013-04-17 日立アプライアンス株式会社 Air conditioner
JP5148522B2 (en) * 2009-01-30 2013-02-20 東芝キヤリア株式会社 Air conditioner indoor unit

Also Published As

Publication number Publication date
JP2012057883A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP4818399B2 (en) Electrostatic atomizer and air conditioner
US9816715B2 (en) Humidifier and air-conditioning apparatus with humidifier
JP4778276B2 (en) Air conditioner
JP5686504B2 (en) Electrostatic atomizer and air conditioner
JP5586769B2 (en) Air conditioner
JP4551288B2 (en) Air conditioner
JP5574636B2 (en) Electrostatic atomizer and air conditioner
JP4875941B2 (en) Humidifier
JP6076544B2 (en) Humidifier and air conditioner equipped with humidifier
JP5417289B2 (en) Air conditioner
JP4805421B2 (en) Electrostatic atomizer and air conditioner
JP4841698B2 (en) Electrostatic atomizer and air conditioner
JP5317883B2 (en) Air conditioner
JP5627639B2 (en) Electrostatic atomizer and air conditioner
CN110035828B (en) Electric dust collector and humidifying air purifier comprising same
JP2011173118A (en) Electrostatic atomizer and air conditioner
JP5213811B2 (en) Electrostatic atomizer and air conditioner
JP5159722B2 (en) Electrostatic atomizer and air conditioner
JP5159742B2 (en) Electrostatic atomizer and air conditioner
JP5523415B2 (en) Cooling equipment, electrostatic atomizer and air conditioner
JP4841701B2 (en) Electrostatic atomizer and air conditioner
JP5216518B2 (en) Air conditioner
JP4841699B2 (en) Air conditioner
JP2011033213A (en) Air conditioner
JP2012021763A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5417289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250