JP5415013B2 - Method for recovering metals from processed materials - Google Patents

Method for recovering metals from processed materials Download PDF

Info

Publication number
JP5415013B2
JP5415013B2 JP2008101407A JP2008101407A JP5415013B2 JP 5415013 B2 JP5415013 B2 JP 5415013B2 JP 2008101407 A JP2008101407 A JP 2008101407A JP 2008101407 A JP2008101407 A JP 2008101407A JP 5415013 B2 JP5415013 B2 JP 5415013B2
Authority
JP
Japan
Prior art keywords
metal
molten
furnace
melting
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008101407A
Other languages
Japanese (ja)
Other versions
JP2009249711A (en
Inventor
庄五 松岡
忠男 石田
明 下倉
貴弘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oil Gas and Metals National Corp
Original Assignee
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oil Gas and Metals National Corp filed Critical Japan Oil Gas and Metals National Corp
Priority to JP2008101407A priority Critical patent/JP5415013B2/en
Publication of JP2009249711A publication Critical patent/JP2009249711A/en
Application granted granted Critical
Publication of JP5415013B2 publication Critical patent/JP5415013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、還元溶融炉を用いて処理物を溶融して金属を回収するため処理物からの金属回収方法に関する。   The present invention relates to a method for recovering a metal from a processed material in order to recover the metal by melting the processed material using a reduction melting furnace.

近年、資源セキュリティーの面から資源循環システム構築の必要性が高まり、ごみ焼却灰や、携帯電話などの電子機器廃棄物や、歯冠材料の廃棄物等、金属を含む処理物からの金属の回収が焦眉の急となってきている。   In recent years, the need to construct a resource recycling system has increased from the aspect of resource security, and recovery of metals from processed products containing metals such as waste incineration ash, waste of electronic devices such as mobile phones, and waste of dental crown materials Has become a keen eye.

従来、金属を含む処理物から金属を回収する方法として、還元溶融炉内で金属を含む処理物を溶融し、溶融メタルや溶融飛灰として金属を回収する方法が知られている。還元溶融炉内は高温かつ還元雰囲気でとされているため、金属成分は還元されて溶融メタルや溶融飛灰の中に単体として回収される。   2. Description of the Related Art Conventionally, as a method of recovering a metal from a processed product containing metal, a method of melting the processed product containing metal in a reduction melting furnace and recovering the metal as molten metal or molten fly ash is known. Since the inside of the reducing and melting furnace is at a high temperature and in a reducing atmosphere, the metal component is reduced and recovered as a simple substance in the molten metal or molten fly ash.

例えば、焼却灰から金属を取り出す技術として、サブマージドアーク炉を用いたごみ焼却灰の溶融処理がある(例えば特許文献1)。サブマージドアーク炉は、炉の中に挿入したカーボン電極を介して処理物自体に通電し、ジュール熱で加熱する炉であり、溶融を酸素の少ない強還元雰囲気で行なうことができるという特徴がある。このため、ごみ焼却灰中のFe、Pb、Cr、Cd、Zn、Cu、Au、Ag等の金属成分が金属単体まで還元され、低沸点成分であるZn、Pb、Cd等が溶融飛灰として集塵機で回収され、高沸点成分であるFe、Au、Ag、Cu等は溶融スラグの下に集まり、有価物として回収することができる。また、溶融スラグは溶融前のごみ焼却灰に比べて重金属の溶出が極めて少なくなり、そのまま埋立処分を行っても安全性は高いものとなる。また、減容効果も大きいため、埋立処分場の延命化も図ることができる。   For example, as a technique for extracting metal from incineration ash, there is a melting process of refuse incineration ash using a submerged arc furnace (for example, Patent Document 1). The submerged arc furnace is a furnace in which the processed material itself is energized through a carbon electrode inserted into the furnace and heated by Joule heat, and can be melted in a strong reducing atmosphere with little oxygen. . For this reason, metal components such as Fe, Pb, Cr, Cd, Zn, Cu, Au, and Ag in the waste incineration ash are reduced to simple metals, and Zn, Pb, Cd, etc., which are low-boiling components, are used as molten fly ash. Fe, Au, Ag, Cu, and the like, which are collected by a dust collector and are high-boiling components, gather under the molten slag and can be collected as valuable materials. Also, the molten slag has extremely less elution of heavy metals than the waste incineration ash before melting, and the safety is high even if landfill disposal is performed as it is. Moreover, since the volume reduction effect is great, the life of the landfill site can be extended.

特開平9−196573号公報JP-A-9-196573

しかし、上記従来の還元溶融炉を利用した処理物からの金属回収方法では、処理物中に含まれる各種の金属が、溶融スラグや溶融メタルや溶融飛灰にどのような割合で分配されるかについて、Pb、Zn、Cu、Au、Pd、Pt及びAgについては、ある程度知られていたが、その他のレアメタル等の金属については詳細には検討されていなかった。このため、還元溶融炉を用いて得られる溶融スラグや溶融メタルや溶融飛灰中に含まれるレアメタル等の金属を効率よく回収することが困難であった。   However, in the metal recovery method from the processed material using the conventional reduction melting furnace, what proportion of various metals contained in the processed material is distributed to molten slag, molten metal, and molten fly ash. As for Pb, Zn, Cu, Au, Pd, Pt and Ag, it was known to some extent, but other rare metals and other metals were not studied in detail. For this reason, it has been difficult to efficiently recover metals such as molten slag, molten metal, and rare metals contained in molten fly ash obtained using a reducing melting furnace.

本発明は、上記従来の実情に鑑みてなされたものであって、還元溶融炉を利用した処理物からの金属回収方法において、溶融スラグや溶融メタルや溶融飛灰中に含まれるレアメタル等の各種の金属を、効率よく回収し利用できる方法を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and in a method for recovering metal from a processed material using a reduction melting furnace, various kinds of metals such as molten slag, molten metal, and rare metal contained in molten fly ash are provided. It is an issue to be solved to provide a method for efficiently recovering and using these metals.

発明者らは、還元溶融炉を利用した処理物からの金属回収方法において溶融条件と、溶融スラグや溶融メタルや溶融飛灰に含まれる各種の金属の分配割合の関係について、詳しい検討を行なった。その結果、原料となる金属を含む処理物中の塩素分濃度と、処理物を溶融するときの溶融物の温度と、溶融物を取り出す時間間隔とを制御することによって、溶融スラグや溶融メタルや溶融飛灰に含まれるレアメタル等の各種の金属の分配割合を制御できることを見出し、本発明を完成するに至った。   The inventors have made a detailed examination on the relationship between the melting conditions and the distribution ratios of various metals contained in molten slag, molten metal, and molten fly ash in a method for recovering metal from a processed product using a reducing melting furnace. . As a result, by controlling the chlorine content concentration in the processed material containing the metal as a raw material, the temperature of the molten material when the processed material is melted, and the time interval at which the molten material is taken out, molten slag, molten metal, It has been found that the distribution ratio of various metals such as rare metals contained in the molten fly ash can be controlled, and the present invention has been completed.

すなわち、本発明の処理物からの金属回収方法は、金属を含む処理物を還元溶融炉内に投入する投入工程と、該処理物を溶融して溶融物とする溶融工程と、該溶融物を炉外に取り出し冷却して溶融スラグ及び溶融メタルを回収するとともに該還元溶融炉から排出される溶融飛灰を回収する回収工程とを備える金属を含む処理物からの金属回収方法において、
前記投入工程における処理物中の塩素分濃度と、前記溶融工程における溶融物の温度と、前記回収工程において溶融物を取り出す時間間隔とを制御することによって溶融スラグ、溶融メタル及び溶融飛灰に含まれる各種金属の分配率を制御することを特徴とする。
That is, the method for recovering a metal from the processed product of the present invention includes a charging step of charging a processed product containing metal into a reduction melting furnace, a melting step of melting the processed product to form a molten product, In a method for recovering metal from a processed product including a metal comprising a recovery step of recovering molten fly ash discharged from the reduction melting furnace while recovering molten slag and molten metal by taking out and cooling outside the furnace,
Included in molten slag, molten metal and molten fly ash by controlling the chlorine content concentration in the treated product in the charging step, the temperature of the molten material in the melting step, and the time interval for taking out the molten material in the recovery step The distribution ratio of various metals is controlled.

本発明の処理物からの金属回収方法では、金属を含む処理物の溶融に、還元溶融炉が用いられる。ここで、還元溶融炉とは、還元雰囲気下で溶融する炉のことをいう。このような炉としては、例えば電気エネルギーによって溶融する電気式溶融炉(交流アーク式溶融炉、交流電気抵抗式溶融炉、直流電気抵抗式溶融炉、プラズマ式溶融炉、誘導式溶融炉等)、重油やガス等の燃料を燃焼させて溶融する燃料燃焼式溶融炉(回転式表面溶融炉、反射式表面溶融炉、輻射式表面溶融炉、旋回流式溶融炉、ロータリーキルン式溶融炉、コークスベット式灰溶融炉等)、直接式溶融炉(コークスベット式溶融炉、熱分解・旋回流式溶融炉、内部式溶融炉等)等が挙げられる。ただし、溶融工程を還元雰囲気で行うために、カーボン質物質をいっしょに投入しておき、カーボン質物質の還元作用によって還元雰囲気を作り出す必要がある。カーボン質物質とは、主としてカーボンからなる物質であり、通常コークスが用いられるが、可燃ごみから得られたごみ炭化物粉等のカーボン質物質を混合してもよい。また、ごみ炭化物と飛灰や焼却灰とを混合した炭化物内装ペレットを投入しても良い。還元溶融炉内は外界とほぼ遮断されているため、還元雰囲気となり、処理物中の金属分は還元され、その一部は溶融物の底に溶融メタルとして沈む。   In the method for recovering metal from the processed product of the present invention, a reduction melting furnace is used for melting the processed product containing metal. Here, the reductive melting furnace refers to a furnace that melts in a reducing atmosphere. As such a furnace, for example, an electric melting furnace (AC arc melting furnace, AC electric resistance melting furnace, DC electric resistance melting furnace, plasma melting furnace, induction melting furnace, etc.) that melts by electric energy, Fuel combustion type melting furnace that burns and melts fuel such as heavy oil and gas (rotary surface melting furnace, reflection type surface melting furnace, radiation type surface melting furnace, swirl flow type melting furnace, rotary kiln type melting furnace, coke bed type Ash melting furnace), direct melting furnace (coke bed melting furnace, pyrolysis / swirl flow melting furnace, internal melting furnace, etc.). However, in order to perform the melting step in a reducing atmosphere, it is necessary to add a carbonaceous material together and create a reducing atmosphere by the reducing action of the carbonaceous material. The carbonaceous substance is a substance mainly composed of carbon, and usually coke is used, but a carbonaceous substance such as garbage carbide powder obtained from combustible garbage may be mixed. Moreover, you may throw in the carbide | carbonized_material interior pellet which mixed refuse carbide | carbonized_material, fly ash, and incineration ash. Since the inside of the reductive melting furnace is substantially cut off from the outside, a reducing atmosphere is created, the metal content in the treated product is reduced, and a part of the metal sinks to the bottom of the melt as molten metal.

還元溶融炉内に投入された金属を含む処理物は、溶融工程で溶融されて溶融物となる。そして、所定時間ごとに溶融物が炉底から取り出され、容器に入れられて冷却される。このとき、溶融物の下層には溶融メタルが沈殿し、その上に溶融スラグが浮かんだ状態で冷却固化する。また、還元溶融炉からの排ガスとともに排出された溶融飛灰は、バグフィルター等によって回収される。   The processed product containing the metal charged into the reduction melting furnace is melted in the melting step to become a melt. Then, the melt is taken out from the furnace bottom every predetermined time, placed in a container and cooled. At this time, the molten metal precipitates in the lower layer of the melt, and is cooled and solidified with the molten slag floating thereon. The molten fly ash discharged together with the exhaust gas from the reduction melting furnace is collected by a bag filter or the like.

本発明の処理物からの金属回収方法では、投入工程における処理物中の塩素分濃度と、溶融工程における溶融物の温度と、回収工程において溶融物を取り出す時間間隔とを制御する。発明者らの試験結果によれば、溶融スラグ、溶融メタル及び溶融飛灰に含まれる各種金属の分配率は、これらの処理物中の塩素分濃度、溶融物の温度、及び溶融物を取り出す時間によって影響されるため、これらの因子を制御することにより、溶融メタルや溶融飛灰に選択的に集めることができる。こうして溶融メタルや溶融飛灰に選択的に集められた金属を回収すれば、効率の良い金属の回収方法となる。   In the metal recovery method from the processed product of the present invention, the chlorine concentration in the processed product in the charging step, the temperature of the melt in the melting step, and the time interval for taking out the melt in the recovery step are controlled. According to the test results of the inventors, the distribution ratio of various metals contained in molten slag, molten metal, and molten fly ash is the concentration of chlorine in these processed products, the temperature of the melt, and the time for taking out the melt. Therefore, by controlling these factors, it can be selectively collected in molten metal or molten fly ash. If the metal selectively collected in the molten metal or the molten fly ash is recovered in this way, an efficient metal recovery method is obtained.

例えば溶融工程における溶融物の溶融温度を1300℃以上1500℃未満とし、回収工程において溶融物を取り出す時間間隔を1時間以上5時間未満とし、投入工程における処理物中の塩素分濃度を2%未満とすれば、溶融飛灰にBi、Ga、Ge、Sb及びTeの多くが集まる。このため、これらの金属を溶融飛灰から回収するためには、この条件で還元溶融炉を稼動すればよい。   For example, the melting temperature of the melt in the melting process is set to 1300 ° C or more and less than 1500 ° C, the time interval for taking out the melt in the recovery process is set to 1 hour or more and less than 5 hours, and the chlorine concentration in the processed product in the charging process is less than 2% If so, most of Bi, Ga, Ge, Sb and Te gather in the molten fly ash. For this reason, in order to recover these metals from the molten fly ash, the reduction melting furnace may be operated under these conditions.

また、溶融工程における溶融物の溶融温度を1300℃以上1500℃未満とし、前記回収工程において溶融物を取り出す時間間隔を5時間以上10時間未満とし、前記投入工程における処理物中の塩素分濃度を2%未満とすれば、溶融飛灰に多くのZn、Pbが集まる(すなわち、溶融飛灰中のZn及びPbの濃度及び総量ともに高くなる)。このため、これらの金属を溶融飛灰から回収するためには、この条件で還元溶融炉を稼動すればよい。
また、この条件下では、溶融メタル中のタングステンが濃度及び総量ともに著しく高くなる。このため、タングステンを溶融メタルから回収するためには、この条件で還元溶融炉を稼動すればよい。
Further, the melting temperature of the melt in the melting step is set to 1300 ° C. or more and less than 1500 ° C., the time interval for taking out the melt in the recovery step is set to 5 hours or more and less than 10 hours, and the chlorine concentration in the treated product in the charging step is set to If it is less than 2%, a large amount of Zn and Pb collects in the molten fly ash (that is, both the concentration and the total amount of Zn and Pb in the molten fly ash increase). For this reason, in order to recover these metals from the molten fly ash, the reduction melting furnace may be operated under these conditions.
Also, under this condition, the concentration and total amount of tungsten in the molten metal are significantly increased. For this reason, in order to collect | recover tungsten from a molten metal, what is necessary is just to operate a reduction | restoration melting furnace on these conditions.

さらに、溶融工程における溶融物の溶融温度を1500℃以上1600℃未満とし、前記回収工程において溶融物を取り出す時間間隔を1時間以上5時間未満とし、前記投入工程における処理物中の塩素分濃度を2%未満とすれば、溶融メタル中のCu、Ag、Au、Ge及びVが濃度及び総量ともに高くなる。このため、これらの金属を溶融メタルから回収するためには、この条件で還元溶融炉を稼動すればよい。   Furthermore, the melting temperature of the melt in the melting step is set to 1500 ° C. or more and less than 1600 ° C., the time interval for taking out the melt in the recovery step is set to 1 hour or more and less than 5 hours, and the chlorine content concentration in the processed product in the charging step is set to If the content is less than 2%, Cu, Ag, Au, Ge and V in the molten metal are both high in concentration and total amount. For this reason, in order to recover these metals from the molten metal, the reduction melting furnace may be operated under these conditions.

また、溶融工程における溶融物の溶融温度を1300℃以上1500℃未満とし、前記回収工程において溶融物を取り出す時間間隔を1時間以上5時間未満とし、前記投入工程における処理物中の塩素分濃度を2%以上30%未満とすれば、溶融メタル中のAgの濃度及び総量がともに高くなる。このため、Agを溶融メタルから回収するためには、この条件で還元溶融炉を稼動すればよい。   In addition, the melting temperature of the melt in the melting step is set to 1300 ° C. or more and less than 1500 ° C., the time interval for taking out the melt in the recovery step is set to 1 hour or more and less than 5 hours, and the chlorine concentration in the processed product in the charging step is set to If it is 2% or more and less than 30%, both the concentration and the total amount of Ag in the molten metal are increased. For this reason, in order to collect Ag from the molten metal, the reducing melting furnace may be operated under these conditions.

(実施形態)
本発明の実施形態として、サブマージドアーク炉を用いたごみ焼却灰からの金属回収方法について、以下に述べる。ただし、本発明の処理物からの金属回収方法では、サブマージドアーク炉以外にも、上述した全ての還元溶融炉に適用することができることは、いうまでもない。
(Embodiment)
As an embodiment of the present invention, a metal recovery method from waste incineration ash using a submerged arc furnace will be described below. However, it is needless to say that the metal recovery method from the processed product of the present invention can be applied to all the above-described reduction melting furnaces other than the submerged arc furnace.

実施形態において用いられるサブマージドアーク炉は、炉内にカーボン電極が設置される。電源としては、単相や三相の交流電電源や直流電源が用いられ、炉内のカーボン電極を介して通電される。サブマージドアーク炉では、炉内の溶融スラグがいまだ溶融していない焼却灰によって覆われるので、電気アークと電気抵抗ジュール熱とによってスラグを溶融することができる。溶融した焼却灰は導電性を有するために、電気回路を形成し、通電によりジュール熱を発生する。また、焼却灰とともにコークスを投入することにより、コークスの電気伝導性によってもジュール熱が発生する。このため、コークスの投入量を増やすと、炉内の温度は上昇し、溶融スラグや溶融メタルの温度も高くなる。なお、運転中に装入原料から発生する有害ガスを外気と遮断するための炉蓋が必要である。焼却灰等の原料を運転中順次追加装入してサブマージドアーク電気溶融法を実現するためには、炉蓋に装入孔を設けて気密式の粉粒状原料の装入を可能にしておくと共に、装入された粉粒体の均一な分散を図ることが好ましい。炉内で焼却灰は溶解し、上層に溶融スラグ層が形成され、下層に溶融メタル層が形成される。そして、溶融スラグ層の上に、まだ溶解していない焼却灰やコークスが浮かんだ状態となる。また、炉底には出湯口が設けられており、所定時間ごとに溶融スラグと溶融メタルとが取り出され、一旦鉄製の取鍋に移され、さらに取鍋から溶融スラグと溶融メタルとが別々に他の容器に取り分けられる。また、炉から発生する排ガスは、溶融飛灰とともに排出され、電気集塵機やバグフィルター等で捕捉され回収される。   In the submerged arc furnace used in the embodiment, a carbon electrode is installed in the furnace. As the power source, a single-phase or three-phase AC power source or DC power source is used, and is energized through a carbon electrode in the furnace. In the submerged arc furnace, the molten slag in the furnace is covered with the incinerated ash that has not yet melted, so that the slag can be melted by the electric arc and the electric resistance Joule heat. Since the molten incineration ash has electrical conductivity, it forms an electric circuit and generates Joule heat when energized. In addition, when coke is added together with incinerated ash, Joule heat is also generated due to the electrical conductivity of the coke. For this reason, if the input amount of coke is increased, the temperature in the furnace rises and the temperature of the molten slag and molten metal also increases. In addition, a furnace lid is necessary to block harmful gas generated from the charged raw material during operation from the outside air. In order to realize the submerged arc electric melting method by sequentially charging raw materials such as incinerated ash during operation, a charging hole is provided in the furnace lid to allow charging of airtight granular raw materials. At the same time, it is preferable to achieve uniform dispersion of the charged granular material. Incinerated ash melts in the furnace, a molten slag layer is formed in the upper layer, and a molten metal layer is formed in the lower layer. And the incinerated ash and coke which have not yet melt | dissolved floated on the molten slag layer. In addition, a tapping outlet is provided at the bottom of the furnace, and molten slag and molten metal are taken out every predetermined time, once transferred to an iron ladle, and the molten slag and molten metal are separated separately from the ladle. Separated into other containers. Further, the exhaust gas generated from the furnace is discharged together with the molten fly ash, and is captured and collected by an electric dust collector or a bag filter.

本発明の処理物からの金属回収方法では、処理物中の塩素分濃度と、前記溶融工程における溶融物の温度と、前記回収工程において溶融物を取り出す時間間隔とを制御することによって溶融スラグ、溶融メタル及び溶融飛灰に含まれる各種金属の分配率を制御する。処理物中には、多量の塩化ナトリウムが含まれており、その塩分濃度を調節するためには、処理物を水に投入して塩分を除去しておき、塩分が除去された処理物を適宜混合することにより、塩素分濃度の調整を行うことができる。また、溶融スラグ及び溶融メタルの温度は、前述したように、焼却灰に対するコークスの投入量で制御することができる。   In the metal recovery method from the processed product of the present invention, the molten slag is controlled by controlling the chlorine content concentration in the processed product, the temperature of the melt in the melting step, and the time interval for taking out the melt in the recovery step. Controls the distribution ratio of various metals contained in molten metal and molten fly ash. The treated product contains a large amount of sodium chloride, and in order to adjust the salt concentration, the treated product is poured into water to remove the salt, and the treated product from which the salt content has been removed is appropriately used. By mixing, the chlorine concentration can be adjusted. Further, the temperature of the molten slag and the molten metal can be controlled by the amount of coke supplied to the incinerated ash as described above.

(実施例)
以下、本発明の処理物からの金属回収方法をさらに具体化した実施例について図面を参照しつつ説明する。
実施例では、直径3.3m、深さ1.8m:容積15.4mの交流サブマージ式電気炉を用いた。この交流サブマージ式電気炉は、図1に示すように、円筒容器形状の電気炉本体1が炉蓋2で覆われており、炉蓋2には3本のカーボン電極3a、3b,3cが正三角形の頂点の位置に高さ調節可能に立設されている。カーボン電極3a、3b,3cは、三相交流電源4に接続されている。また、炉蓋2には原料投入口5が設けられており、スクリューフィーダー6によって運ばれたごみ焼却灰及びコークスAが原料投入口5から電気炉本体1内に投入可能とされている。
また、炉蓋2には排ガス管7が取り付けられており、排ガス管7は、図示しないでバグフィルターに接続されている。
さらに電気炉本体1の底には出湯口8が開閉可能に接続されており、電気炉本体1の溶融スラグS及び溶融メタルMを鉄製鍋9に取り出し可能とされている。
(Example)
Hereinafter, an embodiment in which a method for recovering a metal from a treated product of the present invention is further embodied will be described with reference to the drawings.
In the examples, an AC submerged electric furnace having a diameter of 3.3 m, a depth of 1.8 m, and a volume of 15.4 m 3 was used. In this AC submerged electric furnace, as shown in FIG. 1, a cylindrical container-shaped electric furnace main body 1 is covered with a furnace lid 2, and three carbon electrodes 3 a, 3 b, 3 c are positively connected to the furnace lid 2. It is erected so that the height can be adjusted at the position of the apex of the triangle. The carbon electrodes 3a, 3b, 3c are connected to a three-phase AC power source 4. Further, the furnace lid 2 is provided with a raw material charging port 5, so that incineration ash and coke A carried by the screw feeder 6 can be charged into the electric furnace main body 1 from the raw material charging port 5.
An exhaust gas pipe 7 is attached to the furnace lid 2, and the exhaust gas pipe 7 is connected to a bag filter (not shown).
Furthermore, a hot water outlet 8 is connected to the bottom of the electric furnace body 1 so as to be openable and closable, and the molten slag S and the molten metal M of the electric furnace body 1 can be taken out into the iron pan 9.

以上のように構成された交流サブマージドアーク炉によってごみ焼却灰の溶融処理を、表1に示す4つの条件(基本条件、条件1、条件2及び条件3)で行なった。表中の滞留時間とは、溶融スラグ及び溶融メタルを出湯口8から定期的に取り出す時間間隔をいう。また、塩素分の調整は、ごみ焼却施設から得られたごみ焼却灰を水に投入して塩分を抽出除去し乾燥させた脱塩ごみ焼却灰と、ごみ焼却灰を処理せずに用いた無処理ごみ焼却灰との混合割合によって調節した。また、電流は13,000A、電圧150Vとした。   The incineration ash was melted by the AC submerged arc furnace configured as described above under the four conditions shown in Table 1 (basic conditions, conditions 1, conditions 2 and 3). The residence time in the table refers to a time interval at which molten slag and molten metal are periodically taken out from the tap 8. In addition, the chlorine content is adjusted by adding desalted incineration ash obtained from a waste incineration facility to the water, extracting the salt to remove the desalted incineration ash, and using the waste incineration ash without any treatment. It adjusted with the mixing ratio with the treatment waste incineration ash. The current was 13,000 A and the voltage was 150V.

Figure 0005415013
Figure 0005415013

4つの条件(基本条件、条件1、条件2及び条件3)における出湯口8から出たスラグの温度及び回収された溶融飛灰、溶融スラグ及び溶融メタルの算出割合を表2に示す。   Table 2 shows the temperature of the slag discharged from the hot water outlet 8 under four conditions (basic conditions, condition 1, condition 2 and condition 3) and the calculated ratios of the recovered molten fly ash, molten slag and molten metal.

Figure 0005415013
Figure 0005415013

こうして、4つの条件(基本条件、条件1、条件2及び条件3)で得られた溶融飛灰、溶融スラグ及び溶融メタルを粉砕した後、表3に示す方法で前処理(溶液化)した後、溶液に含まれる元素をICP−AES、ICP−MS、原子吸光及びイオンクロマト法によって行なった。分析した元素は表4に示すとおりであり、分析方法の詳細は表5に示すとおりである。   After pulverizing the molten fly ash, molten slag and molten metal obtained under the four conditions (basic conditions, condition 1, condition 2 and condition 3) in this way, after pre-treatment (solution) by the method shown in Table 3 The elements contained in the solution were measured by ICP-AES, ICP-MS, atomic absorption, and ion chromatography. The analyzed elements are as shown in Table 4, and the details of the analysis method are as shown in Table 5.

Figure 0005415013
Figure 0005415013

Figure 0005415013
Figure 0005415013

Figure 0005415013
Figure 0005415013

<分析結果>
溶融飛灰中に含まれている金属の濃度を図2に、溶融メタル中の金属の濃度を図3に、溶融スラグ中の金属の濃度を図4にそれぞれ示す。
図2から、溶融飛灰中に多く含まれているZnは、基本条件より条件1(コークス添加量を上げて、溶融温度を高くする)、条件2(無処理ごみ焼却灰を入れて塩素量を上げる)、条件3(滞留時間を長くする)での含有量が高い。その中で、滞留時間を6時間と長くした条件3で、一番含有量が高くなった。鉛の場合は後述する分析データから、条件1,2,3のほうが基本条件より溶融飛灰中の含有量が若干高いことが分かった。
<Analysis results>
FIG. 2 shows the concentration of the metal contained in the molten fly ash, FIG. 3 shows the concentration of the metal in the molten metal, and FIG. 4 shows the concentration of the metal in the molten slag.
Figure 2 shows that Zn, which is abundantly contained in molten fly ash, is condition 1 (increase the amount of coke added to increase the melting temperature), condition 2 (add untreated waste incineration ash and add chlorine to the basic condition) ), And the content under condition 3 (increase the residence time) is high. Among them, the content was the highest under the condition 3 where the residence time was increased to 6 hours. In the case of lead, it was found from the analysis data described later that the contents in the molten fly ash were slightly higher in the conditions 1, 2 and 3 than in the basic conditions.

また図3に示すように、溶融メタルに多く含まれているCuは条件1(コークス添加量を上げることにより溶融温度及び還元度上昇)で含有量が高くなった。また、Au、Ag、Pbも条件1で、溶融メタル中含有量が高くなっている。Sbは条件1と2で含有量が高い。スラグ中PbとZnの含有量は基本条件のほうが、条件1,2,3よりも高くなった。これは、条件1,2,3で多くのPb、Znが溶融飛灰又は溶融メタルに移行したことによると推定される。   Further, as shown in FIG. 3, the content of Cu contained in a large amount in the molten metal was high under the condition 1 (the melting temperature and the reduction degree were increased by increasing the amount of coke added). Further, Au, Ag, and Pb are also in the condition 1, and the content in the molten metal is high. Sb is high in conditions 1 and 2. The contents of Pb and Zn in the slag were higher under the basic conditions than under the conditions 1, 2 and 3. This is presumed to be due to the fact that many Pb and Zn migrated to molten fly ash or molten metal under conditions 1, 2, and 3.

以上の金属回収のための最適条件は、溶融メタルや溶融飛灰に含まれている金属の濃度の観点からのみで評価した場合であるが、実際に金属を回収して資源的価値を有するか否かについては、濃度以外に量も関係する。すなわち、有価金属が高濃度で含まれており、かつ多量に産出されるものであれば、資源的価値を持つ(すなわち、図5におけるB領域)。そこで、処理物1kgを溶融処理する際に発生する溶融飛灰又は溶融メタルに含まれている金属の総量を計算し、溶融飛灰又は溶融メタル中の金属の濃度と一緒にプロットすることにより最適溶融条件の評価を行なった。   The optimum conditions for metal recovery are those evaluated only from the viewpoint of the concentration of molten metal and the metal contained in molten fly ash. Whether or not is related to the amount in addition to the concentration. That is, if a valuable metal is contained in a high concentration and is produced in a large amount, it has a resource value (that is, region B in FIG. 5). Therefore, calculate the total amount of metal contained in the molten fly ash or molten metal generated when melting 1 kg of the processed material, and plot it together with the concentration of the metal in the molten fly ash or molten metal. Evaluation of melting conditions was performed.

(溶融飛灰)
溶融飛灰についての結果を図6に示す。溶融飛灰に分配される金属元素中ZnとPbは条件3が最適である。Bi、Ga、Ge、Sb、Teは基本条件が最適である。Agは、絶対量は少ないが、条件1と2で含有量が高くなっている。
(Molten fly ash)
The results for the molten fly ash are shown in FIG. Condition 3 is optimal for Zn and Pb in the metal elements distributed to the molten fly ash. Basic conditions are optimal for Bi, Ga, Ge, Sb, and Te. Although the absolute amount of Ag is small, the content is high under conditions 1 and 2.

(溶融メタル)
また、溶融メタルについては、図7に示すように、Cu、Ag、Au、Ge、Vは条件1で含有量と絶対量、両方とも高くなっている。Wは他の条件に比較して、条件3で著しく含有量及び絶対量が高い。Sbは基本条件から条件1,2,3に変化することにより含有量及び絶対量が増加する。
(Molten metal)
As for the molten metal, as shown in FIG. 7, Cu, Ag, Au, Ge, and V are both high in content and absolute amount under condition 1. W is significantly higher in content and absolute amount in Condition 3 than in other conditions. The content and absolute amount of Sb increase by changing from basic conditions to conditions 1, 2, and 3.

以上のように、本発明の処理物からの金属回収方法では、還元溶融炉を利用した処理物からの金属回収方法において、溶融条件を制御することにより、溶融スラグや溶融メタルや溶融飛灰中に含まれるレアメタル等の各種の金属を、効率よく回収し利用できる。   As described above, in the metal recovery method from the processed product of the present invention, in the metal recovery method from the processed product using the reduction melting furnace, by controlling the melting conditions, the molten slag, the molten metal, or the molten fly ash Various metals such as rare metals contained in can be efficiently recovered and used.

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

実施例で用いたサブマージドアーク炉の模式図である。It is a schematic diagram of the submerged arc furnace used in the Example. 溶融飛灰の分析結果を示すグラフである。It is a graph which shows the analysis result of molten fly ash. 溶融メタルの分析結果を示すグラフである。It is a graph which shows the analysis result of a molten metal. 溶融スラグの分析結果を示すグラフである。It is a graph which shows the analysis result of molten slag. 最適溶融条件を示す概念図である。It is a conceptual diagram which shows optimal melting conditions. 溶融飛灰についての処理物1kgを溶融処理する際に発生する金属の量と、溶融飛灰の金属の濃度とをプロットしたグラフである。It is the graph which plotted the quantity of the metal which generate | occur | produces when melt-treating 1kg of processed materials about molten fly ash, and the density | concentration of the metal of molten fly ash. 溶融メタルについての処理物1kgを溶融処理する際に発生する金属の量と、溶融飛灰の金属の濃度とをプロットしたグラフである。It is the graph which plotted the quantity of the metal which generate | occur | produces when melt-treating 1kg of processed materials about a molten metal, and the density | concentration of the metal of molten fly ash.

符号の説明Explanation of symbols

A…ごみ焼却灰
C…コークス(カーボン質物質)
S…溶融スラグ
M…溶融メタル
A ... Waste incineration ash C ... Coke (carbonaceous material)
S ... Molten slag M ... Molten metal

Claims (6)

金属を含む処理物を還元溶融炉内に投入する投入工程と、該処理物を溶融して溶融物とする溶融工程と、該溶融物を炉外に取り出し冷却して溶融スラグ及び溶融メタルを回収するとともに該還元溶融炉から排出される溶融飛灰を回収する回収工程とを備える金属を含む処理物からの金属回収方法において、
前記投入工程における処理物中の塩素分濃度を2%未満とし、前記溶融工程における溶融物の温度を1300℃以上1500℃未満とし、前記回収工程において溶融物を取り出す時間間隔を1時間以上5時間未満とすることを特徴とする処理物からの金属回収方法。
A charging process in which a processed material containing metal is charged into a reduction melting furnace, a melting process in which the processed material is melted to form a molten material, and the molten material is taken out of the furnace and cooled to recover molten slag and molten metal. In the method for recovering metal from the processed material including the metal, comprising a recovery step of recovering the molten fly ash discharged from the reduction melting furnace,
The chlorine concentration in the treated product in the charging step is less than 2% , the temperature of the melt in the melting step is 1300 ° C. or more and less than 1500 ° C., and the time interval for taking out the melt in the recovery step is 1 hour or more and 5 hours A method for recovering a metal from a treated product, characterized by comprising less than
金属を含む処理物を還元溶融炉内に投入する投入工程と、該処理物を溶融して溶融物とする溶融工程と、該溶融物を炉外に取り出し冷却して溶融スラグ及び溶融メタルを回収するとともに該還元溶融炉から排出される溶融飛灰を回収する回収工程とを備える金属を含む処理物からの金属回収方法において、
前記投入工程における処理物中の塩素分濃度を2%未満とし、前記溶融工程における溶融物の温度を1300℃以上1500℃未満とし、前記回収工程において溶融物を取り出す時間間隔を5時間以上10時間未満とすることを特徴とする処理物からの金属回収方法。
A charging process in which a processed material containing metal is charged into a reduction melting furnace, a melting process in which the processed material is melted to form a molten material, and the molten material is taken out of the furnace and cooled to recover molten slag and molten metal. In the method for recovering metal from the processed material including the metal, comprising a recovery step of recovering the molten fly ash discharged from the reduction melting furnace,
The chlorine concentration in the treated product in the charging step is less than 2% , the temperature of the melt in the melting step is 1300 ° C. or more and less than 1500 ° C., and the time interval for taking out the melt in the recovery step is 5 hours or more and 10 hours. A method for recovering a metal from a treated product, characterized by comprising less than
金属を含む処理物を還元溶融炉内に投入する投入工程と、該処理物を溶融して溶融物とする溶融工程と、該溶融物を炉外に取り出し冷却して溶融スラグ及び溶融メタルを回収するとともに該還元溶融炉から排出される溶融飛灰を回収する回収工程とを備える金属を含む処理物からの金属回収方法において、
前記投入工程における処理物中の塩素分濃度を2%未満とし、前記溶融工程における溶融物の温度を1500℃以上1600℃未満とし、前記回収工程において溶融物を取り出す時間間隔を1時間以上5時間未満とすることを特徴とする処理物からの金属回収方法。
A charging process in which a processed material containing metal is charged into a reduction melting furnace, a melting process in which the processed material is melted to form a molten material, and the molten material is taken out of the furnace and cooled to recover molten slag and molten metal. In the method for recovering metal from the processed material including the metal, comprising a recovery step of recovering the molten fly ash discharged from the reduction melting furnace,
The chlorine content concentration in the treated product in the charging step is less than 2% , the temperature of the melt in the melting step is 1500 ° C. or more and less than 1600 ° C., and the time interval for taking out the melt in the recovery step is 1 hour or more and 5 hours A method for recovering a metal from a treated product, characterized by comprising less than
金属を含む処理物を還元溶融炉内に投入する投入工程と、該処理物を溶融して溶融物とする溶融工程と、該溶融物を炉外に取り出し冷却して溶融スラグ及び溶融メタルを回収するとともに該還元溶融炉から排出される溶融飛灰を回収する回収工程とを備える金属を含む処理物からの金属回収方法において、
前記投入工程における処理物中の塩素分濃度を2%以上30%未満とし、前記溶融工程における溶融物の温度を1300℃以上1500℃未満とし、前記回収工程において溶融物を取り出す時間間隔を1時間以上5時間未満とすることを特徴とする処理物からの金属回収方法。
A charging process in which a processed material containing metal is charged into a reduction melting furnace, a melting process in which the processed material is melted to form a molten material, and the molten material is taken out of the furnace and cooled to recover molten slag and molten metal. In the method for recovering metal from the processed material including the metal, comprising a recovery step of recovering the molten fly ash discharged from the reduction melting furnace,
The chlorine content concentration in the treated product in the charging step is 2% or more and less than 30% , the temperature of the melt in the melting step is 1300 ° C. or more and less than 1500 ° C., and the time interval for taking out the melt in the recovery step is 1 hour A method for recovering a metal from a treated product, characterized in that it is less than 5 hours .
還元溶融炉はサブマージドアーク炉であることを特徴とする請求項1乃至のいずれか1項記載の処理物からの金属回収方法。 The method for recovering metal from a treated product according to any one of claims 1 to 4 , wherein the reduction melting furnace is a submerged arc furnace. 前記溶融工程における溶融物の溶融温度をカーボン質物質の投入量で制御することを特徴とする請求項記載の処理物からの金属回収方法。 6. The method for recovering metal from a treated product according to claim 5, wherein the melting temperature of the melt in the melting step is controlled by the amount of carbonaceous material introduced.
JP2008101407A 2008-04-09 2008-04-09 Method for recovering metals from processed materials Active JP5415013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101407A JP5415013B2 (en) 2008-04-09 2008-04-09 Method for recovering metals from processed materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101407A JP5415013B2 (en) 2008-04-09 2008-04-09 Method for recovering metals from processed materials

Publications (2)

Publication Number Publication Date
JP2009249711A JP2009249711A (en) 2009-10-29
JP5415013B2 true JP5415013B2 (en) 2014-02-12

Family

ID=41310682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101407A Active JP5415013B2 (en) 2008-04-09 2008-04-09 Method for recovering metals from processed materials

Country Status (1)

Country Link
JP (1) JP5415013B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769594B2 (en) 2016-05-13 2020-10-14 節 安斎 Plasma melting method for processing processed materials
JP7393582B1 (en) 2023-09-07 2023-12-06 中部リサイクル株式会社 Method for manufacturing copper-containing products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179907A (en) * 1984-09-25 1986-04-23 Daido Steel Co Ltd Waste material processing method
JPH07242955A (en) * 1994-03-08 1995-09-19 Nippon Steel Corp Treatment of dust produced in steelmaking furnace for reusing as steelmaking raw material
JP3935989B2 (en) * 1996-01-18 2007-06-27 ラサ商事株式会社 DC electric melting furnace for reducing molten slag production

Also Published As

Publication number Publication date
JP2009249711A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
CN104105802B (en) Base metal is reclaimed
RU2144571C1 (en) Method of producing foundry pig iron
CN102216476A (en) Method for recovering metals contained in electronic waste
WO2022019172A1 (en) Method for recovering valuable metal
CA2047807A1 (en) Ash vitrification
RU2455599C2 (en) Device and method for producing metals or metal compounds
US5490869A (en) Process and device for treating pollutant, fusible materials
JP5415013B2 (en) Method for recovering metals from processed materials
JP6591675B2 (en) Method for producing metal manganese
CN109073215B (en) Plasma melting method for treating object to be treated and plasma furnace used therefor
US5766303A (en) Process for the remediation of lead-contaminated soil and waste battery casings
JP5532823B2 (en) Method for recovering valuable metals from waste batteries
JP5633034B2 (en) Simultaneous implementation of metal refining and asbestos treatment in electric furnace
JP2007186761A (en) Method for recovering valuable metal
JP7393582B1 (en) Method for manufacturing copper-containing products
WO2023026854A1 (en) Electric furnace and method for producing valuable metal
JP3732561B2 (en) Simultaneous implementation of iron alloy production and incineration ash melting in an electric furnace
JP4420943B2 (en) Self-heating material for steel making in electric furnace and electric furnace operating method using the same
JP2016044823A (en) Ash melting device and ash melting method
JPS6179907A (en) Waste material processing method
JP3645934B2 (en) Treatment method of black dross generated by aluminum dissolution
JP5971031B2 (en) Method for recovering metals separated from incineration ash
KR20240042471A (en) Electric furnace, manufacturing method of valuable metals
JP2023028122A (en) Manufacturing method of valuable metal
JP2005171266A (en) Method for operating electric furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250