JP5413270B2 - Fireproof and heat insulating mortar and its construction method - Google Patents

Fireproof and heat insulating mortar and its construction method Download PDF

Info

Publication number
JP5413270B2
JP5413270B2 JP2010069025A JP2010069025A JP5413270B2 JP 5413270 B2 JP5413270 B2 JP 5413270B2 JP 2010069025 A JP2010069025 A JP 2010069025A JP 2010069025 A JP2010069025 A JP 2010069025A JP 5413270 B2 JP5413270 B2 JP 5413270B2
Authority
JP
Japan
Prior art keywords
aerosil
heat insulating
organic solvent
resin
insulating mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010069025A
Other languages
Japanese (ja)
Other versions
JP2011201713A (en
Inventor
禎公 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010069025A priority Critical patent/JP5413270B2/en
Publication of JP2011201713A publication Critical patent/JP2011201713A/en
Application granted granted Critical
Publication of JP5413270B2 publication Critical patent/JP5413270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、顆粒状のエアロジルを含有し、施工後に乾燥して硬化させた硬化成形体は高温下であっても断熱性に優れた断熱材として機能する耐火断熱モルタル並びにその施工方法に関する。   The present invention relates to a fire-resistant and heat-insulating mortar containing granular aerosil and functioning as a heat-insulating material excellent in heat-insulating properties even at high temperatures, and a method for its construction.

鉄やアルミニウムなどの高温溶融体の保持容器などでは、熱ロスを抑制するために、断熱材として高性能のエアロジル断熱材が使用されている。このエアロジル断熱材は、静止空気に近い低熱伝導率であるため、薄い断熱材であっても必要な熱抵抗が得られるという特長を有し、しかも、1000℃程度の耐熱性を有するために、広く使用されている(例えば、特許文献1を参照)。   In a container for holding a high-temperature melt such as iron or aluminum, a high-performance aerosil heat insulating material is used as a heat insulating material in order to suppress heat loss. Since this aerosil heat insulating material has a low thermal conductivity close to that of still air, it has a feature that a necessary heat resistance can be obtained even with a thin heat insulating material, and because it has a heat resistance of about 1000 ° C., Widely used (see, for example, Patent Document 1).

このエアロジル断熱材は、数10nm程度のシリカに代表される金属酸化物(「エアロジル」という)を0.3〜0.5g/cm3程度の比重に圧縮成形したもので、0.02〜0.05W/(m・K)程度の低い熱伝導率を持つことが特長であり(例えば、特許文献2を参照)、厚み3〜20mm程度のシートが溶融金属用に使用されている。 This aerosil heat insulating material is compression-molded with a metal oxide typified by silica of about several tens of nanometers (referred to as “aerosil”) to a specific gravity of about 0.3 to 0.5 g / cm 3. It has the feature of having a low thermal conductivity of about .05 W / (m · K) (see, for example, Patent Document 2), and a sheet with a thickness of about 3 to 20 mm is used for molten metal.

最近では、このエアロジルを顆粒状にした製品(以下、「エアロジル顆粒」と記す)も出現し、充填用断熱材料としての使用が期待されている。しかしながら、エアロジル顆粒は、そのままでは垂直壁などには施工することができず、その施工性には問題がある。垂直壁などでの施工性改善のためには、建築材料などとして一般的に使用されるモルタルなどと同様に、エアロジル顆粒にセメント及び水などを添加し、モルタル状にすることが望ましいが、エアロジル顆粒は、水と接触すると吸水し、吸水後に乾燥すると収縮して熱伝導率が数倍に増加してしまうという欠点がある。つまり、エアロジル顆粒の特長を発揮できなくなってしまうという問題がある。   Recently, a product obtained by granulating the aerosil (hereinafter referred to as “aerosil granule”) has also appeared, and is expected to be used as a heat insulating material for filling. However, the aerosil granule cannot be applied to a vertical wall or the like as it is, and there is a problem in its workability. In order to improve workability on vertical walls, etc., it is desirable to add cement and water to aerosil granules in the same way as mortar generally used as building materials. The granule has a drawback that it absorbs water when it comes into contact with water, and shrinks when dried after water absorption, thereby increasing the thermal conductivity several times. That is, there is a problem that the characteristics of the aerosil granule cannot be exhibited.

そのために、従来、エアロジル顆粒を含有し、エアロジル断熱材と同等の低熱伝導性を示す硬化成形体を得るための、施工性に優れたモルタル状製品は開発されていなかった。   Therefore, conventionally, a mortar-like product excellent in workability for obtaining a cured molded body containing aerosil granules and exhibiting low thermal conductivity equivalent to that of an aerosil heat insulating material has not been developed.

特開2000−104110号公報JP 2000-104110 A 特公昭51−40088号公報Japanese Patent Publication No.51-40088

上記のように、エアロジル顆粒を含有し、1000℃程度の耐熱性を有し且つエアロジル断熱材と同等の低熱伝導性を示す硬化成形体を得るための、施工性に優れたモルタル状製品、つまり耐火断熱モルタルが切望されていたにも拘わらず、従来、そのような製品は開発されておらず、やむなく断熱性に劣る一般的な断熱材を使用しており、熱ロスの増大を余儀なくされていた。   As described above, a mortar-like product excellent in workability for obtaining a cured molded article containing aerosil granules, having a heat resistance of about 1000 ° C. and exhibiting low thermal conductivity equivalent to an aerosil heat insulating material, Despite the long-awaited refractory thermal insulation mortar, such products have not been developed in the past, and general insulation materials that are inevitably inferior in heat insulation are used, which inevitably increases heat loss. It was.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、高温溶融体の保持容器などに最適な、エアロジル顆粒を含有し、エアロジル断熱材と同等の低熱伝導性を呈する硬化成形体を得るための耐火断熱モルタルを提供すると同時に、その施工方法を提供することである。   The present invention has been made in view of the above circumstances, and the object thereof is a cured molding that contains aerosil granules and exhibits low thermal conductivity equivalent to that of an aerosil heat insulating material, which is optimal for a container for holding a high-temperature melt. It is to provide a fireproof and heat insulating mortar for obtaining a body, and at the same time to provide a method for its construction.

上記課題を解決するための第1の発明に係る耐火断熱モルタルは、1〜100nmの粒径のエアロジルからなる、粒径が0.1〜10mmのエアロジル顆粒と有機溶媒系樹脂とからなることを特徴とする。 The refractory heat insulating mortar according to the first invention for solving the above-mentioned problems comprises an aerosil granule having a particle size of 0.1 to 10 mm and an organic solvent-based resin. Features.

第2の発明に係る耐火断熱モルタルは、第1の発明において、前記エアロジル顆粒の100質量部に対して、前記有機溶媒系樹脂が乾燥後の固形分換算で10〜100質量部配合されたものであることを特徴とする。
第3の発明に係る耐火断熱モルタルは、第1または第2の発明において、前記有機溶媒系樹脂がフェノール樹脂からなることを特徴とする。
The fire-resistant and heat-insulating mortar according to the second aspect of the present invention is the one according to the first aspect, wherein the organic solvent-based resin is blended in an amount of 10 to 100 parts by mass in terms of solid content after drying with respect to 100 parts by mass of the aerosil granules. It is characterized by being.
The fireproof and heat insulating mortar according to the third invention is characterized in that, in the first or second invention, the organic solvent-based resin is made of a phenol resin.

第4の発明に係る耐火断熱モルタルの施工方法は、第1ないし第3の発明の何れか1つに記載の耐火断熱モルタルを、施工面に吹き付ける、または、こて塗りして施工し、その後、有機溶媒を乾燥除去し且つ樹脂を硬化させることを特徴とする。   The construction method of the refractory heat insulation mortar according to the fourth aspect of the invention is to apply the refractory insulation mortar according to any one of the first to third aspects by spraying or troweling on the construction surface, and thereafter The organic solvent is removed by drying and the resin is cured.

本発明によれば、有機溶媒系樹脂をエアロジル顆粒の結合材として使用するので、エアロジル顆粒の低熱伝導性を損なうことなく、施工性に優れる、エアロジル顆粒を原料とする耐火断熱モルタルを得ることが実現され、高温環境における断熱効果を従来以上に増加することが達成される。   According to the present invention, since an organic solvent-based resin is used as a binder for aerosil granules, it is possible to obtain a heat-resistant and heat-insulating mortar made of aerosil granules, which is excellent in workability without impairing the low thermal conductivity of the aerosil granules. Realized and achieved to increase the thermal insulation effect in high temperature environment more than before.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明に係る耐火断熱モルタルは、エアロジル顆粒と有機溶媒系樹脂とからなることを特徴とする。耐火断熱モルタルの原料としてエアロジル顆粒を使用することで、当該耐火断熱モルタルの施工により得られる硬化成形体は、静止空気に近い低熱伝導率を呈する。   The refractory heat insulating mortar according to the present invention is characterized by comprising aerosil granules and an organic solvent-based resin. By using aerosil granules as a raw material for the refractory heat insulating mortar, the cured molded body obtained by the construction of the refractory heat insulating mortar exhibits a low thermal conductivity close to that of still air.

エアロジル顆粒は、1〜100nmサイズのシリカ(SiO2)、アルミナ(Al23)、チタニア(TiO2)、ジルコニア(ZrO2)などの金属酸化物の超微粉、SiCの超微粉、シリカやアルミナなどの短繊維などを含み、0.1〜10mm程度の粒径を持ち、約90%の気孔率を持つものである。粒子が小さく、粒子充填率が低く、粒子間の接触が面ではなく点であるので、固体熱伝導率が低く、且つ、気孔径が空気(窒素及び酸素)分子の平均自由行程よりも小さいので、気体熱伝導率が低いことを特長とする。 Aerosil granules consist of 1-100 nm size silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ) and other metal oxide ultrafine powders, SiC ultrafine powders, silica and It contains short fibers such as alumina, has a particle size of about 0.1 to 10 mm, and has a porosity of about 90%. Because the particles are small, the particle packing rate is low, and the contact between the particles is not a surface, but the solid thermal conductivity is low and the pore diameter is smaller than the mean free path of air (nitrogen and oxygen) molecules It is characterized by low gas thermal conductivity.

そして、本発明に係る耐火断熱モルタルは、エアロジル顆粒の結合材として有機溶媒系樹脂を使用する。有機溶媒系樹脂中の樹脂成分は、粘着性を有するために、エアロジル顆粒の施工においては垂直壁への施工を可能とし、簡便な施工を実現させる。一方、有機溶媒系樹脂中の有機溶媒成分は、前記樹脂成分をエアロジル顆粒に対して均等に混合する効果を発揮する。   And the fireproof heat insulation mortar which concerns on this invention uses organic-solvent resin as a binder of an aerosil granule. Since the resin component in the organic solvent-based resin has adhesiveness, it can be applied to the vertical wall in the construction of the aerosil granule, thereby realizing a simple construction. On the other hand, the organic solvent component in the organic solvent-based resin exhibits the effect of mixing the resin component evenly with the aerosil granules.

ここで、有機溶媒を使用せずに水を使用した場合には、水の乾燥後にエアロジル顆粒が収縮し、熱伝導率が増加して断熱性を大幅に損なう。この収縮は、エアロジル顆粒内の気孔中及びエアロジル顆粒間の気孔中に浸透した水の浸透圧に支配され、浸透圧に抗して水系溶媒を排出することで、気孔が収縮してしまうことに起因する。   Here, when water is used without using an organic solvent, the aerosil granules shrink after drying the water, the thermal conductivity increases, and the heat insulation is greatly impaired. This contraction is governed by the osmotic pressure of water that has permeated into the pores in the aerosil granules and between the aerosil granules, and the pores contract by discharging the aqueous solvent against the osmotic pressure. to cause.

本発明者は、詳細な実験により、この収縮は溶媒の表面張力に支配され、表面張力の高い水では大きな収縮が起こり、この収縮に伴って熱伝導率の増加が引き起こされるが、表面張力の低い有機溶媒では、収縮はなく、エアロジル顆粒の熱伝導率が維持されることを見出し、本発明に至った。   The inventor has shown that this shrinkage is governed by the surface tension of the solvent through detailed experiments, and in water with high surface tension, a large shrinkage occurs, which causes an increase in thermal conductivity. It has been found that a low organic solvent does not shrink and the thermal conductivity of the aerosil granules is maintained, and the present invention has been achieved.

有機溶媒の表面張力は、水の表面張力(72.7mN/m)と比較して十分低いため、本発明で使用する有機溶媒としては、樹脂が安定に存在する有機溶媒であれば組成には限定されずに適用可能であるが、エタノール、アセトン、ヘキサン、ベンゼン、メタノールなどが施工性の観点からも好適である。水の混入は極力避けることが好ましいが、水が混入した場合でも、表面張力が40mN/m以下であれば適用可能である。また、樹脂成分としては、特に限定されないが、成形段階で或る程度の強度を維持でき、高温加熱時は炭化する熱硬化性樹脂、特に、フェノール、エポキシなどの一般の接着剤に使用される樹脂が使用できるが、耐熱性の観点からフェノール樹脂が好ましい。有機溶媒と樹脂との混合比率は、耐火断熱モルタルの施工が容易となるように、適宜選択すればよい。   Since the surface tension of the organic solvent is sufficiently low compared to the surface tension of water (72.7 mN / m), the organic solvent used in the present invention includes any organic solvent in which the resin is stably present. Although applicable without limitation, ethanol, acetone, hexane, benzene, methanol, and the like are preferable from the viewpoint of workability. It is preferable to avoid mixing water as much as possible, but even when water is mixed, it is applicable if the surface tension is 40 mN / m or less. The resin component is not particularly limited, but can be used for general adhesives such as thermosetting resins that can maintain a certain degree of strength in the molding stage and carbonize when heated at high temperatures, particularly phenol and epoxy. Although a resin can be used, a phenol resin is preferable from the viewpoint of heat resistance. What is necessary is just to select the mixing ratio of an organic solvent and resin suitably so that construction of a fireproof heat insulation mortar may become easy.

また、エアロジル顆粒の100質量部に対して、有機溶媒系樹脂を乾燥後の固形分換算で10〜100質量部の範囲で配合して混練し、本発明に係る耐火断熱モルタルを構成することが好ましい。有機溶媒系樹脂の乾燥後の固形分換算での配合量が10質量部未満では、樹脂の配合が少なくなって耐火断熱モルタルの施工性が悪くなり、一方、乾燥後の固形分換算での配合量が100質量部を超えると、エアロジル顆粒の配合が少なくなって熱伝導率の低下効果が小さくなる。有機溶媒系樹脂中の樹脂成分濃度は、混練物の性状と施工性を勘案して適宜選択すればよいが、3〜70質量%とすることが好ましい。   In addition, the organic solvent-based resin is blended in the range of 10 to 100 parts by mass in terms of solid content after drying with respect to 100 parts by mass of the aerosil granule, thereby constituting the fireproof and heat insulating mortar according to the present invention. preferable. If the blending amount in terms of solid content after drying of the organic solvent-based resin is less than 10 parts by mass, the blending of resin is reduced and the workability of the refractory heat insulating mortar is deteriorated, while the blending in terms of solid content after drying is reduced. When the amount exceeds 100 parts by mass, the blending of aerosil granules is reduced and the effect of lowering the thermal conductivity is reduced. The resin component concentration in the organic solvent-based resin may be appropriately selected in consideration of the properties and workability of the kneaded product, but is preferably 3 to 70% by mass.

このようにして構成される本発明に係る耐火断熱モルタルの施工にあたっては、施工面に吹き付ける、または、こて塗りなどで施工し、その後、有機溶媒を乾燥除去し、更に樹脂を硬化させ、当該耐火断熱モルタルからなる硬化成形体を形成させる。   In construction of the refractory heat insulation mortar according to the present invention configured in this way, spray on the construction surface, or apply by trowel, etc., then dry-removing the organic solvent, further cure the resin, A cured molded body made of refractory heat insulating mortar is formed.

乾燥は、使用する有機溶媒の沸点よりも10℃程度以上高い温度で実施することが効率的である。樹脂の硬化条件は使用する樹脂種類によって決定される。例えば、フェノール樹脂を使用した場合には、150〜250℃の温度で0.5〜3.0時間程度、保持することが通例である。   It is efficient to carry out the drying at a temperature higher by about 10 ° C. than the boiling point of the organic solvent used. Resin curing conditions are determined by the type of resin used. For example, when a phenol resin is used, it is usually held at a temperature of 150 to 250 ° C. for about 0.5 to 3.0 hours.

本発明に係る耐火断熱モルタルを、溶鋼を保持する取鍋などに施工する場合には、樹脂の硬化後に、耐火断熱モルタルからなる硬化成形体の内面側(溶鋼側)にワーク耐火物などを配置し、ライニング層を形成する。   When the refractory heat insulating mortar according to the present invention is applied to a ladle for holding molten steel, a work refractory is disposed on the inner surface side (molten steel side) of the cured molded body made of the refractory heat insulating mortar after the resin is cured And a lining layer is formed.

以上説明したように、本発明に係る耐火断熱モルタルによれば、有機溶媒系樹脂をエアロジル顆粒の結合材として使用するので、エアロジル顆粒の低熱伝導性を損なうことなく、施工性に優れた、エアロジル顆粒を原料とする耐火断熱モルタルを得ることが実現される。   As described above, according to the refractory and heat insulating mortar according to the present invention, since the organic solvent resin is used as a binder for the aerosil granule, the aerosil granule has excellent workability without impairing the low thermal conductivity of the aerosil granule. It is realized to obtain a refractory heat insulating mortar made from granules.

エアロジル顆粒(SiO2:62質量%、TiO2:31質量%、Al23:0.5質量%、顆粒径(最大径):10mm)と有機溶媒系樹脂とを使用して、本発明に係る耐火断熱モルタルを作製した。また、比較のために、水溶媒系樹脂を使用して比較用のモルタルを作製した。何れのモルタルも、通常のモルタルと同様にこて塗り施工が可能であった。 Aerosil granules (SiO 2 : 62 mass%, TiO 2 : 31 mass%, Al 2 O 3 : 0.5 mass%, granule diameter (maximum diameter): 10 mm) and an organic solvent resin are used in the present invention. The refractory heat insulation mortar which concerns on was produced. In addition, for comparison, a comparative mortar was prepared using an aqueous solvent-based resin. All mortars could be troweled in the same way as normal mortars.

本発明例及び比較例のモルタルを、縦:100mm、横:100mm、深さ:5mmの型枠中に、こて塗り施工により充填し、その後、60℃で1日間、更に110℃で1日間乾燥した後、180℃で3時間保持して樹脂を硬化させ、更に、950℃で3時間焼成した。   The mortars of the present invention and the comparative example were filled in a mold having a length of 100 mm, a width of 100 mm, and a depth of 5 mm by troweling, and then at 60 ° C. for 1 day and further at 110 ° C. for 1 day. After drying, the resin was cured by holding at 180 ° C. for 3 hours, and further calcined at 950 ° C. for 3 hours.

表1に、使用した樹脂の種類、溶媒の種類、溶媒−樹脂における樹脂濃度、エアロジル顆粒100質量部に対する溶媒−樹脂の配合量(質量部)、及び180℃での硬化後と950℃での焼成後との収縮量及び熱伝導率を示す。   Table 1 shows the type of resin used, the type of solvent, the resin concentration in the solvent-resin, the blending amount of solvent-resin (parts by mass) with respect to 100 parts by mass of aerosil granules, and after curing at 180 ° C and at 950 ° C. The shrinkage and the thermal conductivity after firing are shown.

Figure 0005413270
Figure 0005413270

比較例1のモルタルでは、180℃での硬化後に18%、950℃での焼成後に20%の線収縮を起こし、熱伝導率は0.1W/(m・K)程度となった。これに対して、本発明1〜3のモルタルでは、180℃での硬化後及び950℃での焼成後の線収縮は高々1.8%であり、熱伝導率は0.05W/(m・K)以下であり、優れた断熱性を発現した。   The mortar of Comparative Example 1 caused 18% linear shrinkage after curing at 180 ° C. and 20% after firing at 950 ° C., and the thermal conductivity was about 0.1 W / (m · K). On the other hand, in the mortars of the present invention 1 to 3, the linear shrinkage after curing at 180 ° C. and after firing at 950 ° C. is at most 1.8%, and the thermal conductivity is 0.05 W / (m · K) or less, and exhibited excellent heat insulation.

以上のように、本発明に係る耐火断熱モルタルにより、優れた施工性と優れた伝熱性とが得られることが確認できた。   As described above, it was confirmed that the fireproof and heat insulating mortar according to the present invention provides excellent workability and excellent heat conductivity.

Claims (4)

1〜100nmの粒径のエアロジルからなる、粒径が0.1〜10mmのエアロジル顆粒と有機溶媒系樹脂とからなることを特徴とする耐火断熱モルタル。 A refractory and heat-insulating mortar comprising an aerosil granule having a particle size of 0.1 to 10 mm and an organic solvent-based resin composed of aerosil having a particle size of 1 to 100 nm . 前記エアロジル顆粒の100質量部に対して、前記有機溶媒系樹脂が乾燥後の固形分換算で10〜100質量部配合されたものであることを特徴とする、請求項1に記載の耐火断熱モルタル。   The refractory and heat insulating mortar according to claim 1, wherein the organic solvent-based resin is blended in an amount of 10 to 100 parts by mass in terms of solid content after drying with respect to 100 parts by mass of the aerosil granules. . 前記有機溶媒系樹脂がフェノール樹脂からなることを特徴とする、請求項1または請求項2に記載の耐火断熱モルタル。   The refractory heat insulating mortar according to claim 1 or 2, wherein the organic solvent-based resin is a phenol resin. 請求項1ないし請求項3の何れか1つに記載の耐火断熱モルタルを、施工面に吹き付ける、または、こて塗りして施工し、その後、有機溶媒を乾燥除去し且つ樹脂を硬化させることを特徴とする、耐火断熱モルタルの施工方法。   The fireproof and heat insulating mortar according to any one of claims 1 to 3 is applied to a construction surface by spraying or troweling, and then the organic solvent is removed by drying and the resin is cured. A construction method for refractory and heat-insulating mortar.
JP2010069025A 2010-03-25 2010-03-25 Fireproof and heat insulating mortar and its construction method Active JP5413270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069025A JP5413270B2 (en) 2010-03-25 2010-03-25 Fireproof and heat insulating mortar and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069025A JP5413270B2 (en) 2010-03-25 2010-03-25 Fireproof and heat insulating mortar and its construction method

Publications (2)

Publication Number Publication Date
JP2011201713A JP2011201713A (en) 2011-10-13
JP5413270B2 true JP5413270B2 (en) 2014-02-12

Family

ID=44878808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069025A Active JP5413270B2 (en) 2010-03-25 2010-03-25 Fireproof and heat insulating mortar and its construction method

Country Status (1)

Country Link
JP (1) JP5413270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116239335A (en) * 2023-03-08 2023-06-09 四川唯新绿能科技有限公司 High-temperature-resistant and corrosion-resistant special heat insulation material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264124A (en) * 1985-05-20 1986-11-22 Nippon Kokan Kk <Nkk> Annealing furnace
JP2659646B2 (en) * 1992-03-27 1997-09-30 日本碍子株式会社 Vacuum insulated container
JP2008081370A (en) * 2006-09-28 2008-04-10 Shin Etsu Chem Co Ltd Method for manufacturing sapphire crystal

Also Published As

Publication number Publication date
JP2011201713A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5566301B2 (en) Formulations and refractories with high hydration resistance produced therefrom
US8633291B2 (en) Reactive liquid ceramic binder resin
JP5101509B2 (en) Layer or coating and composition for its production
EP3666858A3 (en) A method of preparing ceramic composite particles
JP2008526658A (en) Coating system
TWI827655B (en) Potting composition, method for the electrical insulation of an electrical or electronic component, and electrically insulated component
JP2010132549A (en) Ceramic component containing inclusion
CN106633652A (en) Preparation method of bicontinuous-phase alumina/epoxy resin composite material
CN109369181B (en) Volume-stable high-purity zirconia refractory product
TW200930687A (en) High resistivity silicon carbide
JP5833152B2 (en) Insulating material and manufacturing method thereof
Shimamura et al. Effect of amounts and types of silicon nitride on thermal conductivity of Si3N4/epoxy resin composite
WO2016125910A1 (en) Heat-insulating monolithic refractory material
JP5413270B2 (en) Fireproof and heat insulating mortar and its construction method
JP2009137808A (en) Monolithic refractory having low expansion, high strength and crack extension resistance
CN103011867B (en) Preparation method of unfired Al-Al2O3 carbon-free composite sliding plate
CN106220193A (en) A kind of silicon carbide brick
JP2009137809A (en) Nonprecipitating refractory mortar
WO2011115352A1 (en) Unshaped refractory composition added with alumina sol binder
CN104311065A (en) Self-flow refractory castable
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
KR100491123B1 (en) High intensity castable refractories with good adiabatic and high thermal shock resistance
KR100503353B1 (en) CHEMICAL COMPOSITION FOR MgO-CARBON REFRACTORY
Birru et al. Effect of reinforced silicon carbide nanoparticles in epoxy composites
KR100613259B1 (en) A zirconia-carbon refractory composition

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5413270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250