JP5412771B2 - Evaluation apparatus, evaluation method, and evaluation program - Google Patents

Evaluation apparatus, evaluation method, and evaluation program Download PDF

Info

Publication number
JP5412771B2
JP5412771B2 JP2008228969A JP2008228969A JP5412771B2 JP 5412771 B2 JP5412771 B2 JP 5412771B2 JP 2008228969 A JP2008228969 A JP 2008228969A JP 2008228969 A JP2008228969 A JP 2008228969A JP 5412771 B2 JP5412771 B2 JP 5412771B2
Authority
JP
Japan
Prior art keywords
discharge
current
charging
overcurrent detection
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008228969A
Other languages
Japanese (ja)
Other versions
JP2010034016A (en
Inventor
敬二 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008228969A priority Critical patent/JP5412771B2/en
Publication of JP2010034016A publication Critical patent/JP2010034016A/en
Application granted granted Critical
Publication of JP5412771B2 publication Critical patent/JP5412771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、Liイオン電池の保護機能を有する電池モジュールの過電流検出回路を評価する評価装置、評価方法および評価プログラムに関する。   The present invention relates to an evaluation apparatus, an evaluation method, and an evaluation program for evaluating an overcurrent detection circuit of a battery module having a Li ion battery protection function.

本発明に関連する技術を紹介する。特許文献1は、スイッチング電源を保護するスイッチング電源保護回路として、スイッチング電源を構成する各素子に過度の電流が流れた場合に過度電流検出信号を発する過電流検出器と、過電流検出器からの過度電流検出信号をサンプリングし所定期間ホールドして出力するホールド回路と、スイッチング電源の出力異常を検出して過負荷検出信号を発する過負荷検出器とを設け、この過負荷検出器からの過負荷検出信号とホールド回路からの過度電流検出信号との論理積をとることにより、スイッチング電源に対する保護処理を、両信号が所定時間持続して出力されるまで保留する構成とする。これにより、入力や負荷の変動によるスイッチング電源装置(スイッチングレギュレータ)の誤動作を効率的に防止する。   The technology related to the present invention will be introduced. Patent Document 1 discloses an overcurrent detector that generates an excessive current detection signal when an excessive current flows through each element constituting a switching power supply as a switching power supply protection circuit that protects the switching power supply. An overload detector is provided with a hold circuit that samples the excessive current detection signal, holds it for a predetermined period and outputs it, and an overload detector that detects an output abnormality of the switching power supply and generates an overload detection signal. By taking the logical product of the detection signal and the excessive current detection signal from the hold circuit, the protection processing for the switching power supply is suspended until both signals are output for a predetermined time. This effectively prevents malfunction of the switching power supply device (switching regulator) due to input and load fluctuations.

特許文献2は、従来の充電過電流検出回路、放電過電流検出回路、遅延手段、放電経路遮断手段(放電制御用FET)、充電経路遮断手段(充電制御用FET)と共に、遅延手段における遅延時間を短縮する短縮回路と、充電器マイナス端子の電位(V−)が、放電時に予め異常放電状態検出用に定められた閾値Vt(Vt>>Vh)よりも高くなること、あるいは、充電時に予め異常充電状態検出用に定められた閾値Ve(Ve<<Vj)よりも低くなることを検出する異常検出回路を設け、この異常検出回路で異常放電状態および異常充電状態を検出すると短縮回路を起動して放電電流経路および充電電流経路の遮断を早める。これにより、従来はテスト用に用いられていた、放電過電流状態および充電過電流状態のそれぞれの検出信号の遅延時間の短縮技術を、通常の放電時および充電時の保護機能に利用する。   Patent Document 2 discloses a delay time in a delay means together with a conventional charge overcurrent detection circuit, discharge overcurrent detection circuit, delay means, discharge path cutoff means (discharge control FET), charge path cutoff means (charge control FET). And the potential (V−) of the negative terminal of the charger becomes higher than a threshold value Vt (Vt >> Vh) previously determined for detecting an abnormal discharge state at the time of discharge, or An abnormality detection circuit is provided to detect that the threshold value Ve (Ve << Vj) set for detecting the abnormal charge state is lower, and when the abnormal discharge state and abnormal charge state are detected by this abnormality detection circuit, the shortening circuit is activated. Thus, the interruption of the discharge current path and the charge current path is accelerated. As a result, the technology for shortening the delay time of each detection signal in the discharge overcurrent state and the charge overcurrent state, which has been conventionally used for testing, is used for the protection function during normal discharge and charge.

また、上記文献と関連する技術について図8から図12を用いて説明する。図8において110は、Li電池の充放電制御を行うLi電池保護ICである。100はLi電池保護IC110、充放電制御スイッチQ2,Q1、外付け抵抗R1,R2コンデンサC1を搭載したLi電池保護モジュールである。 Moreover, the technique relevant to the said literature is demonstrated using FIGS. 8-12. In FIG. 8, reference numeral 110 denotes a Li battery protection IC that performs charge / discharge control of the Li battery . Reference numeral 100 denotes a Li battery protection module including a Li battery protection IC 110, charge / discharge control switches Q2 and Q1, external resistors R1 and R2 , and a capacitor C1.

まず、Li電池保護モジュール100の放電制御について説明する。Li電池保護モジュール100の外部には端子CN1(BATT+)とCN2(BATT−)にリチウムイオン電池等の二次電池102が接続され端子CN4(OUT+)とCN3(OUT−)には携帯電話、ゲーム機器等の機能を構成する電気回路等が接続され、それを負荷103として表わす。   First, the discharge control of the Li battery protection module 100 will be described. A secondary battery 102 such as a lithium ion battery is connected to terminals CN1 (BATT +) and CN2 (BATT-) outside the Li battery protection module 100, and a mobile phone, a game is connected to terminals CN4 (OUT +) and CN3 (OUT-). An electric circuit or the like that constitutes a function of the device or the like is connected and represented as a load 103.

Li電池保護IC110の外付けの電流遮断用としての放電制御スイッチQ1及び充電制御スイッチQ2が接続されており端子CN1からR1を経由してLi電池保護IC110の端子TN1(Vdd)からLi電池保護IC 110に電源が供給されている。   A discharge control switch Q1 and a charge control switch Q2 for cutting off an external current of the Li battery protection IC 110 are connected to the Li battery protection IC from the terminal TN1 (Vdd) of the Li battery protection IC 110 via the terminals CN1 to R1. Power is supplied to 110.

Li電池保護IC 110内の充電過電流検出回路114及び放電過電流検出回路115にはそれぞれ基準電圧Vref_c、Vref_dが設定されている。一方Li電池保護IC 110の端子TN5(V−)には抵抗R2がLi電池保護モジュール 100の端子CN3(OUT−)及び充電制御スイッチQ2のソースの交点に接続されている。論理回路121、レベルシフト118はそれぞれLi電池保護IC 110の端子TN3(Dout)及びTN4(Cout)に接続されて両信号共“H”が出力されており放電制御スイッチQ1の制御端子(ゲート)及び充電制御スイッチQ2の制御端子(ゲート)が“H”となり放電制御スイッチQ1及び充電制御スイッチQ2がオンしている。   Reference voltages Vref_c and Vref_d are set in the charge overcurrent detection circuit 114 and the discharge overcurrent detection circuit 115 in the Li battery protection IC 110, respectively. On the other hand, the resistor R2 is connected to the terminal TN5 (V−) of the Li battery protection IC 110 at the intersection of the terminal CN3 (OUT−) of the Li battery protection module 100 and the source of the charge control switch Q2. The logic circuit 121 and the level shift 118 are connected to the terminals TN3 (Dout) and TN4 (Cout) of the Li battery protection IC 110, respectively, and both signals output “H”, and the control terminal (gate) of the discharge control switch Q1. In addition, the control terminal (gate) of the charge control switch Q2 becomes “H”, and the discharge control switch Q1 and the charge control switch Q2 are turned on.

Li電池保護モジュール100の端子CN4、CN3に前記負荷103を接続すると二次電池102から端子CN1、CN4、負荷103、CN3、充電制御スイッチQ2のソース、ドレイン、放電制御スイッチQ1のドレイン、ソース、端子CN2の順で矢印104の方向に放電電流が流れる。   When the load 103 is connected to the terminals CN4 and CN3 of the Li battery protection module 100, the secondary battery 102 is connected to the terminals CN1, CN4, the load 103, CN3, the source and drain of the charge control switch Q2, the drain and source of the discharge control switch Q1, A discharge current flows in the direction of the arrow 104 in the order of the terminal CN2.

負荷103に流れた放電電流Idと放電制御スイッチQ1のオン抵抗Ron_d及び充電制御スイッチQ2のオン抵抗Ron_cによるLi電池保護IC110の端子TN2(Vss)基準の正電圧が抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される。   The positive voltage based on the terminal TN2 (Vss) of the Li battery protection IC 110 by the discharge current Id flowing through the load 103, the ON resistance Ron_d of the discharge control switch Q1 and the ON resistance Ron_c of the charge control switch Q2 passes through the resistor R2 and the Li battery. The voltage is applied to the terminal TN5 (V−) of the protection IC 110.

この電圧が放電過電流検出回路115に印加され設定された前記基準電圧Vref_dより低い値となっている。負荷が小さくなった場合放電電流Idが大きくなり放電過電流値(Id_det)を超えた時放電過電流検出回路115の基準電圧Vref_dを前記正電圧が超えた時、動作開始信号が放電過電流検出回路115から発振回路113へ入力され所定の発振周波数で発振を開始する。発振回路の次段に接続されたカウンタ116からはあらかじめ設定しておいた時間(tId_delay)後に論理回路121に“H” が出力され論理回路121への他入力との論理和、論理積等の論理結果によりLi電池保護IC110の端子TN3(Dout)に“L”を出力し外付けの放電制御スイッチQ1の制御端子に“L”が出力され放電制御スイッチQ1がオフし放電電流Idが遮断される。   This voltage is lower than the reference voltage Vref_d set by being applied to the discharge overcurrent detection circuit 115. When the load decreases, the discharge current Id increases and exceeds the discharge overcurrent value (Id_det). When the positive voltage exceeds the reference voltage Vref_d of the discharge overcurrent detection circuit 115, the operation start signal is detected as a discharge overcurrent. It is input from the circuit 115 to the oscillation circuit 113 and starts oscillating at a predetermined oscillation frequency. “H” is output to the logic circuit 121 after a preset time (tId_delay) from the counter 116 connected to the next stage of the oscillation circuit, and the logical sum, logical product, etc. with the other input to the logic circuit 121 are output. According to the logic result, “L” is output to the terminal TN3 (Dout) of the Li battery protection IC 110, “L” is output to the control terminal of the external discharge control switch Q1, the discharge control switch Q1 is turned off, and the discharge current Id is cut off. The

負荷103がLi電池保護モジュール100の端子CN4(OUT+)、CN3(OUT−)から開放されると放電過電流(Id_det)検出状態より開放されあらかじめLi電池保護IC110の内部で設定された時定数後に抵抗R2経由で端子TN5(V−)の電位が放電過電流検出回路115の基準電圧Vref_d以下となる。その結果放電過電流検出回路115から論理回路121及び発振回路113へ“L” 信号が出力されあらかじめ設定されていた所定時間(tIdrel_delay)後にLi電池保護IC110の端子TN3(Dout)に“H” が出力され放電過電流状態から復帰する事となる。   When the load 103 is released from the terminals CN4 (OUT +) and CN3 (OUT−) of the Li battery protection module 100, it is released from the discharge overcurrent (Id_det) detection state, and after a time constant set in advance in the Li battery protection IC 110. The potential of the terminal TN5 (V−) becomes equal to or lower than the reference voltage Vref_d of the discharge overcurrent detection circuit 115 via the resistor R2. As a result, an “L” signal is output from the discharge overcurrent detection circuit 115 to the logic circuit 121 and the oscillation circuit 113, and “H” is output to the terminal TN3 (Dout) of the Li battery protection IC 110 after a predetermined time (tIdrel_delay). It will be output and return from the discharge overcurrent state.

次にLi電池保護モジュール100 の充電制御について図9に基づき説明する。放電制御時に説明したブロックで同一動作のものには同一番号を付与している。Li電池保護モジュール100の外部には端子CN1(BATT+)とCN2(BATT−)にリチウムイオン電池等の二次電池102が接続され端子CN4(OUT+)とCN3(OUT−)には二次電池を充電する為の充電器104が接続されている。Li電池保護IC110には外付けの電流遮断用としての放電制御スイッチQ1及び充電制御スイッチQ2が接続されており端子CN1(BATT+)よりR1を経由して端子TN1(Vdd)にはLi電池保護IC 110に電源が供給されている。   Next, charging control of the Li battery protection module 100 will be described with reference to FIG. The same numbers are given to the blocks described in the discharge control and having the same operation. A secondary battery 102 such as a lithium ion battery is connected to terminals CN1 (BATT +) and CN2 (BATT−) outside the Li battery protection module 100, and a secondary battery is connected to terminals CN4 (OUT +) and CN3 (OUT−). A charger 104 for charging is connected. A discharge control switch Q1 and a charge control switch Q2 for cutting off an external current are connected to the Li battery protection IC 110, and the Li battery protection IC is connected to the terminal TN1 (Vdd) from the terminal CN1 (BATT +) via R1. Power is supplied to 110.

Li電池保護IC 110内の充電過電流検出回路114及び放電過電流検出回路115にはそれぞれ基準電圧Vref_c、Vref_dが設定されている。Li電池保護モジュール 100の端子CN4(OUT+)、CN3(OUT−)に前記充電器104を接続すると充電器104から端子CN4、CN1、二次電池102、端子CN2、放電制御スイッチQ1のソース、ドレイン、充電制御スイッチQ2のドレイン、ソース、端子CN3の順で矢印106の方向に充電電流が流れる。充電器104より二次電池102に流れた充電電流Icと放電制御スイッチQ1のオン抵抗Ron_c及び充電制御スイッチQ2のオン抵抗Ron_cによるLi電池保護IC110の端子TN2(Vss)基準の負電圧が抵抗R2を経由してLi電池保護ICの端子TN5(V−)に印加される。この電圧が充電過電流検出回路114に設定された前記基準電圧Vref_cより絶対値で低い値となっている。二次電池102への充電電流Icが大きくなり充電過電流値(Ic_det)を超え充電過電流検出回路114の基準電圧Vref_cより前記負電圧が小さくなった時、動作開始信号が充電過電流検出回路114から発振回路113へ入力され所定の発振周波数で発振を開始する。発振回路の次段に接続されたカウンタ116からはあらかじめ設定しておいた時間(tIc_delay)後に論理回路117に“H”が出力され論理回路の他入力との論理和、論理積等の論理結果がレベルシフト118へ“L”を出力しLi電池保護IC110の端子TN4(Cout)に“L”を出力し、外付けの充電制御スイッチQ2の制御端子に“L”が出力され充電制御スイッチQ2がオフし充電電流Icが遮断される。   Reference voltages Vref_c and Vref_d are set in the charge overcurrent detection circuit 114 and the discharge overcurrent detection circuit 115 in the Li battery protection IC 110, respectively. When the charger 104 is connected to the terminals CN4 (OUT +) and CN3 (OUT−) of the Li battery protection module 100, the terminals CN4 and CN1, the secondary battery 102, the terminal CN2, and the source and drain of the discharge control switch Q1 are connected from the charger 104. The charging current flows in the direction of the arrow 106 in the order of the drain, source of the charging control switch Q2, and the terminal CN3. The negative voltage based on the terminal TN2 (Vss) of the Li battery protection IC 110 by the charging current Ic flowing from the charger 104 to the secondary battery 102, the ON resistance Ron_c of the discharging control switch Q1, and the ON resistance Ron_c of the charging control switch Q2 is the resistance R2. And applied to the terminal TN5 (V−) of the Li battery protection IC. This voltage is lower in absolute value than the reference voltage Vref_c set in the charge overcurrent detection circuit 114. When the charging current Ic to the secondary battery 102 increases and exceeds the charging overcurrent value (Ic_det), and the negative voltage becomes smaller than the reference voltage Vref_c of the charging overcurrent detection circuit 114, the operation start signal becomes the charge overcurrent detection circuit. 114 is input to the oscillation circuit 113 and starts oscillating at a predetermined oscillation frequency. “H” is output to the logic circuit 117 after a preset time (tIc_delay) from the counter 116 connected to the next stage of the oscillation circuit, and a logical result such as logical sum or logical product with other inputs of the logic circuit. Outputs "L" to the level shift 118, outputs "L" to the terminal TN4 (Cout) of the Li battery protection IC 110, and outputs "L" to the control terminal of the external charge control switch Q2, so that the charge control switch Q2 Is turned off and the charging current Ic is cut off.

充電器104が開放され端子TN4(OUT+)とTN3(OUT−)の間に負荷103が接続されると図8に示す状態となりLi電池102の正電圧が端子CN1(BATT+)、CN4(OUT+)、負荷103、CN3(OUT−)、抵抗R2経由で端子TN5(V−)に印加される事となり充電過電流検出回路114の基準電圧Vref_c以上となり充電過電流(Ic_det)状態より復帰する。   When the charger 104 is opened and the load 103 is connected between the terminals TN4 (OUT +) and TN3 (OUT−), the state shown in FIG. 8 is obtained, and the positive voltage of the Li battery 102 becomes the terminals CN1 (BATT +) and CN4 (OUT +). Then, the voltage is applied to the terminal TN5 (V−) via the load 103, CN3 (OUT−) and the resistor R2, and becomes equal to or higher than the reference voltage Vref_c of the charge overcurrent detection circuit 114, and returns from the charge overcurrent (Ic_det) state.

その結果、充電過電流検出回路114から論理回路117及び発振回路113へ“L”信号が出力されあらかじめ設定済の所定時間(tIcrel_delay)後にLi電池保護IC110の端子TN4(Cout)に“H”が出力され充電過電流状態から復帰する事となる。   As a result, an “L” signal is output from the charge overcurrent detection circuit 114 to the logic circuit 117 and the oscillation circuit 113, and “H” is applied to the terminal TN4 (Cout) of the Li battery protection IC 110 after a preset predetermined time (tIcrel_delay). It will be output and return from the charge overcurrent state.

上記記載の充放電検出動作機能を有するLi電池保護モジュール100の上記充放電検出電流値Ic_det及びId_detを計測するべく評価装置(図示せず)がLi電池保護モジュール100のCN3(OUT−)、CN2(BATT−)に接続されている。   In order to measure the charge / discharge detection current values Ic_det and Id_det of the Li battery protection module 100 having the above-described charge / discharge detection operation function, an evaluation device (not shown) determines CN3 (OUT−), CN2 of the Li battery protection module 100. Connected to (BATT-).

図10、11にて放電過電流検出電流値計測時の検査フローを説明する。   The inspection flow at the time of measuring the discharge overcurrent detection current value will be described with reference to FIGS.

まず、放電過電流値(Id_det)以下の放電電流初期値IdをLi電池保護モジュール100の端子CN3、CN2間に流す(ステップS−1)。   First, a discharge current initial value Id equal to or lower than the discharge overcurrent value (Id_det) is passed between the terminals CN3 and CN2 of the Li battery protection module 100 (step S-1).

次に、放電過電流検出遅延時間tId_delay+αとし放電過電流検出が確実に動作する時間の間待つ(ステップS−2)。その後、電流遮断しているかどうかを判断する(ステップS−3)。   Next, a discharge overcurrent detection delay time tId_delay + α is set, and the process waits for a time during which discharge overcurrent detection operates reliably (step S-2). Thereafter, it is determined whether or not the current is interrupted (step S-3).

電流遮断していれば(ステップS−3/YES)、処理を終了する。電流遮断していなければ(ステップS−3/NO)、放電電流をΔIdだけ増加させたId+ΔIdを流す(ステップS−4)。その後、ステップS−2の処理での待ち時間後、ステップS−3の処理で、電流遮断判断の繰返しループを実行し電流遮断するまで実行する。
ここでt_S-2、t_S-3、t_S-4は、ステップS−2、S−3、S−4を実現する為のプログラムステップに要する時間を表わす。
If the current is cut off (step S-3 / YES), the process is terminated. If the current is not interrupted (step S-3 / NO), Id + ΔId obtained by increasing the discharge current by ΔId is passed (step S-4). Then, after the waiting time in the process of step S-2, the process of step S-3 is executed until the current interruption determination repetitive loop is executed and the current is interrupted.
Here, t_S -2 , t_S -3 , and t_S -4 represent time required for the program steps for realizing steps S-2, S-3, and S-4.

この結果計測開始後の時間t1に放電過電流値を検出した場合放電制御スイッチQ1でのオン抵抗Ron_dでの熱損失は、[Ron1_d×Id+Ron2_d×(Id+ΔId)+Ron3_d×(Id+ΔId)+‥‥‥]×(tId_delay) (1)
となる。
As a result, when the discharge overcurrent value is detected at time t1 after the start of measurement, the heat loss at the on-resistance Ron_d in the discharge control switch Q1 is [Ron1_d × Id + Ron2_d × (Id + ΔId) + Ron3_d × (Id + ΔId) +. × (tId_delay) (1)
It becomes.

一方、充電制御スイッチQ2でのオン抵抗Ron_cによる熱損失は[Ron1_c ×Id + Ron2_c ×(Id+ΔId) + Ron3_c ×(Id+ΔId)+‥‥‥]×(tId_delay) (2)となる。
ここでRon_d及びRon_cは、周囲温度が高くなると大きくなる傾向の為上記熱損失による自己発熱によりRon_d及びRon_cは大きくなる。Ron_d及びRon_cが大きくなる事で放電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗Ron_d及びRon_cと放電電流Idによる電圧降下が大きくなり上記抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される正電圧が大きくなる為に見かけ上放電過電流検出電流値の計測結果が小さくなる。同様に充電時の検出も図12にて充電過電流検出電流値計測時の検査フローで示しているように放電過電流検出電流値計測時と同等で有り放電制御スイッチQ1でのオン抵抗Ron_dによる熱損失及び充電制御スイッチQ2でのオン抵抗Ron_cによる熱損失は、それぞれ、以下のようになる。
[Ron4_d×Ic+Ron5_d×(Ic+ΔIc)+Ron6_d×(Ic+ΔIc)+‥‥]×(tIc_delay)‥‥‥‥‥‥‥‥‥‥‥‥‥‥(3)
[Ron4_c×Ic+Ron5_c×(Ic+ΔIc)+Ron6_c×(Ic+ΔIc)+‥‥]×(tIc_delay+α) (4)
On the other hand, the heat loss due to the on-resistance Ron_c in the charge control switch Q2 is [Ron1_c × Id + Ron2_c × (Id + ΔId) + Ron3_c × (Id + ΔId) +...] × (tId_delay) (2).
Here, since Ron_d and Ron_c tend to increase as the ambient temperature increases, Ron_d and Ron_c increase due to self-heating due to the heat loss. As Ron_d and Ron_c increase, the voltage drop due to the on-resistances Ron_d and Ron_c of the discharge control switch Q1 and the charge control switch Q2 and the discharge current Id increases, and the terminal TN5 (V−) of the Li battery protection IC 110 passes through the resistor R2. ), The measurement result of the discharge overcurrent detection current value apparently decreases. Similarly, the detection at the time of charging is equivalent to that at the time of measuring the discharge overcurrent detection current value as shown in the inspection flow at the time of measurement of the charge overcurrent detection current value in FIG. 12, and is based on the on-resistance Ron_d at the discharge control switch Q1. The heat loss and the heat loss due to the on-resistance Ron_c at the charge control switch Q2 are as follows.
[Ron4_d × Ic + Ron5_d × (Ic + ΔIc) + Ron6_d × (Ic + ΔIc) +...] × (tIc_delay) ……………………………………………………………… (3)
[Ron4_c × Ic + Ron5_c × (Ic + ΔIc) + Ron6_c × (Ic + ΔIc) +...] × (tIc_delay + α) (4)

上記熱損失による自己発熱によりRon_d及びRon_cは大きくなる。Ron_d及びRon_cが大きくなる事で放電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗Ron_d及びRon_cと充電電流Icによる電圧降下が大きくなり上記抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される負電圧が大きくなる為に見かけ上充電過電流検出電流値の計測結果が小さくなる。   Ron_d and Ron_c increase due to self-heating due to the heat loss. By increasing Ron_d and Ron_c, the voltage drop due to the on-resistances Ron_d and Ron_c of the discharge control switch Q1 and the charge control switch Q2 and the charging current Ic increases, and the terminal TN5 (V− ), The measurement result of the charge overcurrent detection current value apparently decreases.

上記熱損失を少なくさせる為には上記図11で記載した各フローステップS−2、S−3、S−4の実行プログラム数を少なくするか上記ステップを高速に処理させる事しか対応方法が無い。図10の時間αは、このプログラムステップ動作に消費される時間である。
特開2004−48884号公報 特開2006−262574号公報
The only way to reduce the heat loss is to reduce the number of execution programs in each of the flow steps S-2, S-3, and S-4 described in FIG. 11 or to process the steps at high speed. . The time α in FIG. 10 is the time consumed for this program step operation.
JP 2004-48884 A JP 2006-262574 A

しかし、上記のような充放電過電流検出電流値の計測方法では自己発熱によるオン抵抗増加による検出電流値が小さめに計測される。また、充放電過電流検出遅延時間の計測にはそれぞれ単独で計測する必要があり時間が約2倍かかってしまう。   However, in the method for measuring the charge / discharge overcurrent detection current value as described above, the detection current value due to an increase in on-resistance due to self-heating is measured to be smaller. Moreover, it is necessary to measure each charge / discharge overcurrent detection delay time independently, and the time is about twice as long.

本発明は、放電過電流検出電流値と、充電過電流検出電流値と、の少なくとも1つを高精度に計測することを目的とする。 An object of the present invention is to measure at least one of a discharge overcurrent detection current value and a charge overcurrent detection current value with high accuracy.

本発明にかかる評価装置は、The evaluation apparatus according to the present invention is:
充放電検出動作機能を有するモジュールの放電過電流検出電流値と、充電過電流検出電流値と、の少なくとも1つを計測する評価装置であって、  An evaluation device for measuring at least one of a discharge overcurrent detection current value of a module having a charge / discharge detection operation function and a charge overcurrent detection current value,
前記放電過電流検出電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長くまたは同じ時間に設定した放電通電期間の間流す第1の処理と、  A first process for flowing a discharge current during a discharge energization period set longer than or at the same time as a discharge overcurrent detection delay time, with a discharge current value set smaller than the discharge overcurrent detection current value as an initial value;
前記放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長くまたは同じ時間に設定した放電休止期間経過後、あらかじめ設定した増加幅電流を前記放電電流に加算した放電電流を前記放電通電期間の間流す第2の処理と、を行い、前記放電電流が遮断するまで前記第2の処理を繰り返し行い、前記放電過電流検出電流値を計測する第1の計測手段と、  If the discharge current is not interrupted, a discharge current obtained by adding a preset increase width current to the discharge current after the discharge rest period set longer than or at the same time as the discharge overcurrent recovery delay time is used as the discharge energization period. A first measurement means for performing the second process flowing between, and repeatedly performing the second process until the discharge current is interrupted to measure the discharge overcurrent detection current value;
前記充電過電流検出電流値より小さく設定した充電電流値を初期値として充電電流を充電過電流検出遅延時間より長くまたは同じ時間に設定した充電通電期間の間流す第1の処理と、  A first process for flowing a charging current during a charging energization period set longer than or equal to a charging overcurrent detection delay time with a charging current value set smaller than the charging overcurrent detection current value as an initial value;
前記充電電流が遮断しなかった場合、充電過電流復帰遅延時間より長くまたは同じ時間に設定した充電休止期間経過後、あらかじめ設定した増加幅電流を前記充電電流に加算した充電電流を前記充電通電期間の間流す第2の処理と、を行い、前記充電電流が遮断するまで前記第2の処理を繰り返し行い、前記充電過電流検出電流値を計測する第2の計測手段と、の少なくとも1つの計測手段を有することを特徴とする。  If the charging current is not interrupted, a charging current obtained by adding a preset increase width current to the charging current after a charging suspension period longer than or equal to the charging overcurrent recovery delay time has elapsed And a second measurement unit that performs the second process until the charge current is interrupted and repeats the second process to measure the charge overcurrent detection current value. It has the means.

本発明によれば放電過電流検出電流値と、充電過電流検出電流値と、の少なくとも1つを高精度に計測することができる。 According to the present invention, at least one of a discharge overcurrent detection current value and a charge overcurrent detection current value can be measured with high accuracy .

本発明は、従来の充放電過電流検出電流値の計測方法では自己発熱によるオン抵抗増加による検出電流値が小さめに計測されるという問題点、充放電過電流検出遅延時間の計測にはそれぞれ単独で計測する必要があり時間が約2倍かかってしまうという問題点を解決し、放電過電流検出電流値を高精度に測定することができる。 The present invention has a problem that the conventional method for measuring the charge / discharge overcurrent detection current value measures a smaller detection current value due to an increase in on-resistance due to self-heating, and the charge / discharge overcurrent detection delay time is measured separately. It is possible to measure the charge / discharge overcurrent detection current value with high accuracy by solving the problem that it takes about twice as long as the measurement is required.

上述した本発明を実施する実施の形態について以下に説明していく。   Embodiments for carrying out the present invention described above will be described below.

まず、図1を参照して本発明を説明する。   First, the present invention will be described with reference to FIG.

充放電検出動作機能を有するLi電池保護モジュール100充電過電流検出電流値Ic_det及び放電過電流検出電流値Id_detを計測可能な評価装置200内の機能を説明する。 A function in the evaluation apparatus 200 capable of measuring the charge overcurrent detection current value Ic_det and the discharge overcurrent detection current value Id_det of the Li battery protection module 100 having the charge / discharge detection operation function will be described.

評価装置200の端子CN201とLi電池保護モジュール100の端子CN3が接続されグランド端子CN202とCN2が接続されている。抵抗Rsは電流検出用として挿入されておりQ201、Q202のPNP、NPNトランジスタ、電力増幅器205からなる回路よりプシュプル出力されている。201は電流、電圧フォースを切替える切替回路、203は放電通電期間Ton_d、放電休止期間Toff_d及び充電通電期間Ton_c、充電休止期間Toff_cの時間を制御するPWM制御回路、202は放電電流Id、放電電流値の増加量ΔId及び充電電流Ic、充電電流値の増加量ΔIcを設定する電圧制御回路、204電圧制御回路202で設定した電圧値により、所望の電流値が流れているかを検出しまた電流遮断している事を検出する電流検出回路、206は電流印加開始から電流遮断までの時間を計測する時間計測回路である。 The terminal CN201 of the evaluation device 200 and the terminal CN3 of the Li battery protection module 100 are connected, and the ground terminals CN202 and CN2 are connected. The resistor Rs is inserted for current detection, and is push-pull output from a circuit comprising the PNPs of Q201 and Q202, an NPN transistor, and a power amplifier 205. 201 is a switching circuit for switching current and voltage force, 203 is a discharge energizing period Ton_d, a discharge energizing period Toff_d and a charging energizing period Ton_c, a PWM control circuit for controlling the time of the charging energizing period Toff_c, 202 is a discharging current Id, and a discharging current value increment ΔId and the charging current Ic, the voltage control circuit that sets the increase amount ΔIc charging current value, 204 by a voltage value set by the voltage control circuit 202, detects also current interruption or desired current value is flowing A current detection circuit 206 detects that the current is being applied, and 206 is a time measurement circuit that measures the time from the start of current application to the current interruption .

Ton_dの設定時間は放電過電流検出遅延時間(tId_delay)より長く設定されておりToff_dの設定時間は、放電過電流復帰遅延時間(tIdrel_delay)よりも長く設定されている。また、放電電流初期値Idは、放電過電流検出電流値(Id_det)より小さい電流値に設定されている。また、Ton_cの設定時間は、充電過電流検出遅延時間(tIc_delay)より長く設定されておりToff_cの設定時間は充電過電流復帰遅延時間(tIcrel_delay)よりも長く設定されている。また、充電電流初期値Icは充電過電流検出電流値(Ic_det)より小さい電流値に設定されている。   The set time of Ton_d is set longer than the discharge overcurrent detection delay time (tId_delay), and the set time of Toff_d is set longer than the discharge overcurrent return delay time (tIdrel_delay). The discharge current initial value Id is set to a current value smaller than the discharge overcurrent detection current value (Id_det). The set time of Ton_c is set longer than the charge overcurrent detection delay time (tIc_delay), and the set time of Toff_c is set longer than the charge overcurrent return delay time (tIcrel_delay). The charging current initial value Ic is set to a current value smaller than the charging overcurrent detection current value (Ic_det).

まず図2で時間t0で電圧制御回路202で設定された放電電流初期値Idが時間設定されたTon_dの期間、端子CN201より印加される。この時、時間計測回路206にて時間計測が開始される。   First, in FIG. 2, the discharge current initial value Id set by the voltage control circuit 202 at time t0 is applied from the terminal CN201 during the time period Ton_d. At this time, the time measurement circuit 206 starts time measurement.

放電電流がId<Id_detで有る為Ton_d時間後のt1で放電電流Idは設定したゼロとなる。この時、PWM制御回路203で設定したTon_d以内に電流遮断しない事を時間計測回路206が検出して時間計測を停止し計測値は破棄されリセットされる。   Since the discharge current is Id <Id_det, the discharge current Id is set to zero at t1 after Ton_d time. At this time, the time measurement circuit 206 detects that the current is not interrupted within Ton_d set by the PWM control circuit 203, stops the time measurement, and the measurement value is discarded and reset.

t1よりt2までの放電休止期間Toff_d後放電電流値をΔIdだけ増加させて時間t2よりId+ΔIdの放電電流を端子CN201よりCN3へ印加する。電流が印加された直後時間計測回路206にて時間計測が開始されるが、この時印加される放電電流値がId+ΔId<Id_detで有る為PWM制御回路203で設定したTon_d以内に電流遮断せずt3で放電電流値は、Id=0となり時間計測回路206で計測中の時間計測が停止し計測値が破棄、リセットされる。   After the discharge rest period Toff_d from t1 to t2, the discharge current value is increased by ΔId, and a discharge current of Id + ΔId is applied from terminal CN201 to CN3 from time t2. Immediately after the current is applied, the time measurement circuit 206 starts time measurement. Since the discharge current value applied at this time is Id + ΔId <Id_det, the current is not interrupted within Ton_d set by the PWM control circuit 203. Thus, the discharge current value becomes Id = 0, the time measurement during measurement by the time measurement circuit 206 is stopped, and the measurement value is discarded and reset.

その後、放電休止期間Toff_d後のt4より放電電流がId+ΔId+ΔIdに設定されCN3に印加されると共に時間計測回路206にて時間計測が開始される。この時、印加される放電電流値は、Id+2×ΔId>Id_detとなり、この放電電流値と放電電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗で発生する正電圧が抵抗R2を経由してLi電池保護IC110の端子TN5(V−)に印加される。この印加された正電圧が前記放電電流検出回路115内の基準電圧Vref_dより大きい為放電過電流検出遅延時間(tId_delay)後に論理回路121より端子TN3(Dout)に“L”が出力され放電制御スイッチQ1の制御端子に印加され放電制御スイッチQ1がオフとなる。   Thereafter, the discharge current is set to Id + ΔId + ΔId from t4 after the discharge pause period Toff_d and applied to CN3, and the time measurement circuit 206 starts time measurement. At this time, the applied discharge current value is Id + 2 × ΔId> Id_det, and the positive voltage generated by the discharge current value and the on-resistance of the discharge control switch Q1 and the charge control switch Q2 passes through the resistor R2, and the Li battery. The voltage is applied to the terminal TN5 (V−) of the protection IC 110. Since the applied positive voltage is larger than the reference voltage Vref_d in the discharge current detection circuit 115, “L” is output from the logic circuit 121 to the terminal TN3 (Dout) after the discharge overcurrent detection delay time (tId_delay), and the discharge control switch. Applied to the control terminal of Q1, the discharge control switch Q1 is turned off.

このタイミングが図2のt5である。電流遮断した時間t5にて電流検出回路204で電流遮断を検出し放電過電流検出電流値Id_detが計測される事になる。   This timing is t5 in FIG. At time t5 when the current is cut off, the current detection circuit 204 detects the current cutoff and the discharge overcurrent detection current value Id_det is measured.

ここで放電過電流検出電流値Id_detをよぎった時の図2のB部の拡大図6について説明すると放電電流を放電電流初期値Idから開始し、放電電流値増加量ΔIdの増加ステップで放電電流を増加させていく場合ΔIdの増加ステップの間隔内に放電過電流検出電流値Id_detが存在した場合を示しており、放電過電流検出電流Id_detをよぎった瞬間から放電過電流検出遅延時間(tId_delay)後に放電電流が遮断する。 Discharge With reference to the enlarged view 6 of the B portion 2 when the crossed the overcurrent detection current value Id_det, the discharge current starts from the discharge current initial value Id, an increase step of increasing the amount ΔId of the discharge current value If we increase the discharge current shows the case where discharge overcurrent detection current value Id_det exists within an interval of increasing step of .DELTA.Id, discharge overcurrent detection delay from the moment crossed the discharge overcurrent detection current value Id_det The discharge current is interrupted after time (tId_delay).

電流遮断したt5で時間計測回路206では、時間計測を終了し、放電過電流検出遅延時間(tId_delay)が同時に算出される。   At time t5 when the current is cut off, the time measurement circuit 206 ends the time measurement, and the discharge overcurrent detection delay time (tId_delay) is calculated simultaneously.

ここで放電過電流が検出されるまでの熱損失は放電制御スイッチQ1及び充電制御スイッチQ2のオン抵抗Ron_d、Ron_cと放電電流値、放電通電期間Ton_d、放電休止期間Toff_dで決定され以下の値となる。 Here, the heat loss until the discharge overcurrent is detected is determined by the ON resistances Ron_d and Ron_c of the discharge control switch Q1 and the charge control switch Q2 and the discharge current value, the discharge energization period Ton_d, and the discharge rest period Toff_d, and the following values: Become.

PLoss1+PLoss2+PLoss3=[Id×(Ron_d+Ron_c)+(Id+ΔId)×(Ron_d+Ron_c)]×Ton_d+(Id+2ΔId)×(Ron_d+Ron_c)×tId_delay PLoss1 + PLoss2 + PLoss3 = [Id × (Ron_d + Ron_c) + (Id + ΔId) × (Ron_d + Ron_c)] × Ton_d + (Id + 2ΔId) × (Ron_d + Ron_c) × tId_delay

次に放電過電流検出電流値Id_det及び充電過電流検出電流値Ic_detの同時計測について図3,4,5に基づいて説明する。   Next, simultaneous measurement of the discharge overcurrent detection current value Id_det and the charge overcurrent detection current value Ic_det will be described with reference to FIGS.

放電過電流検出電流値Id_det及び充電過電流検出電流値Ic_detの計測方法は上記放電過電流の検出方法と基本的に同一である。   The method for measuring the discharge overcurrent detection current value Id_det and the charge overcurrent detection current value Ic_det is basically the same as the method for detecting the discharge overcurrent.

放電電流初期値Id、充電電流初期値Icの設定値を初期値としてLi電池保護モジュール100の端子CN3に印加を開始する。   Application is started to the terminal CN3 of the Li battery protection module 100 using the set values of the discharge current initial value Id and the charge current initial value Ic as initial values.

t0〜t4までは放電電流及び充電電流は放電過電流検出電流値(Id_det)及び充電過電流検出電流値(Ic_det)より小さく設定されている為、放電通電期間Ton_d及び充電通電期間Ton_cの期間にて電流遮断は起こらない。時間t4にて放電電流をΔId増加させて印加するがId+ΔId<Id_detの条件の為やはり電流遮断はしない。時間t6より充電電流をΔIc増加させてIc+ΔIcをLi電池保護モジュール100の端子CN3へ印加する。この電流値はIc+ΔIc > Ic_det を満足する為充電電流値がIc_detの値をよぎった瞬間から充電過電流検出遅延時間(tIc_delay)後の時間t7でLi電池保護IC110の端子TN4(Cout)から“L”が出力され充電制御スイッチQ2の制御端子に印加され充電制御スイッチQ2がオフし電流遮断する。この時時間計測回路206にて充電過電流検出遅延時間(tIc_delay)が計測完了されている。   From t0 to t4, the discharge current and the charge current are set to be smaller than the discharge overcurrent detection current value (Id_det) and the charge overcurrent detection current value (Ic_det). Therefore, during the discharge energization period Ton_d and the charge energization period Ton_c Current interruption does not occur. At time t4, the discharge current is applied by increasing ΔId, but the current is not interrupted because of the condition of Id + ΔId <Id_det. The charging current is increased by ΔIc from time t6 and Ic + ΔIc is applied to the terminal CN3 of the Li battery protection module 100. Since this current value satisfies Ic + ΔIc> Ic_det, “L” from the terminal TN4 (Cout) of the Li battery protection IC 110 at the time t7 after the charging overcurrent detection delay time (tIc_delay) from the moment when the charging current value crosses the value of Ic_det. "Is output and applied to the control terminal of the charge control switch Q2, the charge control switch Q2 is turned off and the current is cut off. At this time, measurement of the charge overcurrent detection delay time (tIc_delay) is completed in the time measurement circuit 206.

時間t8の時点で評価装置200の端子CN201から電圧ゼロが出力され、充電過電流復帰遅延時間(tIcrel_delay)後にLi電池保護IC110の端子TN4(Cout)から“H”が出力され充電制御スイッチQ2がオンする。時間t7で電流遮断を時間計測回路206で検出後に時間計測結果を記憶装置(図示せず)に記録し時間計測回路206をリセット後に図4に示すように電圧制御回路202により充電電流値をIc_det以下のIc_relの電流が充電制御スイッチQ2がオンした時流れるような値に設定しLi電池保護モジュール100のCN3(OUT−)へ印加すると、充電過電流復帰遅延時間(tIcrel_delay)後のt7−1で充電制御スイッチQ2がオンするような設定も可能である。 At time t8, zero voltage is output from the terminal CN201 of the evaluation apparatus 200, and after charging overcurrent recovery delay time (tIcrel_delay), “H” is output from the terminal TN4 (Cout) of the Li battery protection IC 110, and the charging control switch Q2 is turned on. Turn on. After the current interruption is detected by the time measurement circuit 206 at time t7, the time measurement result is recorded in a storage device (not shown), and after resetting the time measurement circuit 206, the voltage control circuit 202 sets the charging current value to Ic_det as shown in FIG. When the current Ic_rel is set to a value that flows when the charge control switch Q2 is turned on and applied to CN3 (OUT−) of the Li battery protection module 100, t7-1 after the charge overcurrent return delay time (tIcrel_delay). Thus, it is possible to set so that the charging control switch Q2 is turned on.

もちろん時間計測回路206にて時間計測をt7で開始しており充電過電流復帰遅延時間(tIcrel_delay)も計測完了している。   Of course, the time measurement circuit 206 starts time measurement at t7, and the charge overcurrent return delay time (tIcrel_delay) is also measured.

t8〜t9の期間は、充電休止期間Toff_cを示しtoff_c>tIcrel_delayに設定されている為時間t9では、Li電池保護ジュール100は、通常動作状態に戻っている。   The period from t8 to t9 indicates the charging suspension period Toff_c and is set to toff_c> tIcrel_delay. Therefore, at time t9, the Li battery protection module 100 returns to the normal operation state.

充電過電流検出遅延時間(tIc_delay)の計測終了までの熱損失合計は、PdLoss1+PcLoss1+PdLoss2+PcLoss2={Id×(Ron_d+Ron_c)×Ton_d}+{Ic×(Ron_d+Ron_c)×Ton_c}+{(Id+ΔId)×(Ron_d+Ron_c)×Ton_d}+{(Ic+ΔIc)×(Ron_d+Ron_c)×tIc_delay}   The total heat loss until the end of the measurement of the charge overcurrent detection delay time (tIc_delay) is PdLoss1 + PcLoss1 + PdLoss2 = {Id × (Ron_d + Ron_c) × Ton_d} + {Ic × (Ron_d + Ron_c) × Ton_c + Ton_c + Ton_d} + {(Ic + ΔIc) × (Ron_d + Ron_c) × tIc_delay}

時間t9より放電電流値は、Id+2×ΔIdに設定されLi電池保護モジュール100の端子CN3より印加される。この放電電流値は、Id+2×ΔId>Id_detの値となっている為放電電流がId_detをよぎった瞬間から放電過電流検出遅延時間(tId_delay)後の時間t10でLi電池保護IC110の端子TN3(Dout)から“L”が出力され放電制御スイッチQ1の制御端子に印加され放電制御スイッチQ1がオフし電流遮断する。この瞬間時間計測回路206にて放電過電流検出遅延時間(tId_delay)が計測される。   From time t9, the discharge current value is set to Id + 2 × ΔId, and is applied from the terminal CN3 of the Li battery protection module 100. Since this discharge current value is a value of Id + 2 × ΔId> Id_det, the terminal TN3 (Dout) of the Li battery protection IC 110 at time t10 after the discharge overcurrent detection delay time (tId_delay) from the moment when the discharge current crosses Id_det. ) Is output and applied to the control terminal of the discharge control switch Q1, the discharge control switch Q1 is turned off and the current is cut off. The instantaneous time measurement circuit 206 measures the discharge overcurrent detection delay time (tId_delay).

放電過電流検出遅延時間(tId_delay)の計測終了までの熱損失合計は、以下のようになる。
PdLoss1+PcLoss1+PdLoss2+PcLoss2+PdLoss3={Id×(Ron_d+Ron_c)×Ton_d}+{Ic×(Ron_d+Ron_c)×Ton_c}+{(Id+ΔId)×(Ron_d+Ron_c)×Ton_d}+{(Ic+ΔIc)×(Ron_d+Ron_c)×tIc_delay}+{(Id+ΔId)×(Ron_d+Ron_c)×tId_delay}
時間t11の時点で評価装置200の端子CN201から電圧ゼロが出力され、放電過電流検出遅延時間(tIdrel_delay)後にLi電池保護モジュール100の端子TN3(Dout)から“H”が出力され放電制御スイッチQ1がオンする。
The total heat loss until the measurement of the discharge overcurrent detection delay time (tId_delay) ends is as follows.
PdLoss1 + PcLoss1 + PdLoss2 + PcLoss2 + PdLoss3 = {Id × (Ron_d + Ron_c) × Ton_d} + {Ic × (Ron_d + Ron_c) × Ton_c} + {(Id + ΔId) × (Ron_d + Ron_c) × Ton_d} + {(Ic + ΔIc) × (Ron_d + Ron_c) × tIc_delay} + {(Id + 2 ΔId) × (Ron_d + Ron_c) × tId_delay}
At time t11, the voltage zero is output from the terminal CN201 of the evaluation apparatus 200, and after the discharge overcurrent detection delay time (tIdrel_delay), “H” is output from the terminal TN3 (Dout) of the Li battery protection module 100, and the discharge control switch Q1. Turns on.

時間t10で放電電流遮断を時間計測回路206で検出後に時間計測結果を記憶装置(図示せず)に記録し時間計測回路206をリセット後に図5に示すように電圧制御回路202により放電電流値をId_det以下のId_relの電流が放電制御スイッチQ1がオンした時流れるような値に設定しLi電池保護モジュール100のCN3(OUT−)へ印加すると放電過電流復帰遅延時間(tIdrel_delay)後のt10−1で充電制御スイッチQ1がオンするような設定も可能である。もちろん時間計測回路206にて時間計測をt10で開始しており放電過電流復帰遅延時間(tIdrel_delay)も計測完了している。   After detecting the discharge current interruption at time t10 by the time measurement circuit 206, the time measurement result is recorded in a storage device (not shown), and after resetting the time measurement circuit 206, the voltage control circuit 202 sets the discharge current value as shown in FIG. When the current of Id_rel below Id_det is set to a value that flows when the discharge control switch Q1 is turned on and applied to CN3 (OUT−) of the Li battery protection module 100, t10-1 after the discharge overcurrent recovery delay time (tIdrel_delay) Thus, it is possible to set the charging control switch Q1 to be turned on. Of course, the time measurement circuit 206 starts time measurement at t10, and the discharge overcurrent return delay time (tIdrel_delay) is also measured.

本実施形態において、放電電流初期値Id<Id_det(放電過電流検出電流値)の初期条件を満足し、放電通電期間をTon_d>tId_delay(放電過電流検出遅延時間)に設定し放電過電流検出電流値Id_detの計測を開始し初期条件にて放電過電流を検出しなかった場合、放電電流値をId=0の値に設定してToff_d>tIdrel_delay(放電過電流復帰遅延時間)の条件を満足する放電休止期間Toff_dの期間流し、その後放電電流Id+ΔIdに増加させTon_dの期間流す事を繰返す事により放電過電流検電流値を計測するのでFET_c、FET_dの発熱を抑えて精度良く放電過電流検出電流値を計測する事が出来る。 In this embodiment, the initial condition of discharge current initial value Id <Id_det (discharge overcurrent detection current value) is satisfied, the discharge energization period is set to Ton_d> tId_delay (discharge overcurrent detection delay time), and the discharge overcurrent detection current is set. When measurement of the value Id_det is started and no discharge overcurrent is detected in the initial condition, the discharge current value is set to Id = 0 and the condition of Toff_d> tIdrel_delay (discharge overcurrent return delay time) is satisfied flow period of the discharge pause period Toff_d, then the discharge current Id + .DELTA.Id increased to so measure the discharge overcurrent detection current value by repeating to flow period Ton_d FET_c, by suppressing the heat generation of FET_d accurately discharge overcurrent detection Current value can be measured.

本実施形態においては、放電通電期間(Ton_d)と放電休止期間(Toff_d)を合わせた時間が放電過電流検出遅延時間(tId_delay)と放電過電流復帰遅延時間(tIdrel_delay)を合わせた時間等しくしたので放電過電流検出遅延時間及び放電過電流復帰遅延時間の計測時間の短縮及び最適化が可能となる。 Time In this embodiment, the discharge current period (Ton_d) and the discharge pause period (Toff_d) and time the combined is obtained by combining the discharge overcurrent detection delay time (tId_delay) and the discharge overcurrent return delay time (tIdrel_delay) equal the the discharge overcurrent detection delay time and the discharge overcurrent shortening and optimization of measurement time of the return delay time is possible.

本実施形態においては、充電電流初期値Ic< Ic_det(充電過電流検出電流値)の初期条件を満足し、充電通電期間をTon_d > tIc_delay(充電過電流検出遅延時間)に設定し充電過電流検出電流値Ic_detの計測を開始し初期条件にて充電過電流を検出しなかった場合充電電流値をIc=0の値に設定してToff_c>tIcrel_delay(充電過電流復帰遅延時間)の条件を満足する充電休止期間Toff_cの期間流しその後充電電流Ic+ΔIc増加させTon_dの期間流す事を繰返す事により充電過電流検出電流値を計測するのでFET_c、FET_dの発熱を抑えて精度良く電過電流検出電流値を計測することができる。 In the present embodiment, the charging current initial value Ic <Ic_det (charging overcurrent detection current value) is satisfied, and the charging energization period is set to Ton_d> tIc_delay (charging overcurrent detection delay time). When the measurement of the current value Ic_det is started and the charge overcurrent is not detected in the initial condition , the charge current value is set to Ic = 0 and the condition of Toff_c> tIcrel_delay (charge overcurrent return delay time) is satisfied since the subsequent flow period of the charging suspension period Toff_c charging current to measure the charge overcurrent detection current value by repeating to flow period Ton_d increased to Ic + ΔIc that FET_c, by suppressing heat generation of FET_d accurately charging overcurrent detection The current value can be measured.

本実施形態においては、充電通電期間(Ton_c)と充電休止期間(Toff_c)を合わせた時間が充電過電流検出遅延時間(tIc_delay)と充電過電流復帰遅延時間(tIcrel_delay)を合わせた時間等しくしたので充電過電流検出遅延時間及び充電過電流復帰遅延時間の計測時間の短縮及び最適化が可能となる。 Time In this embodiment, the time of the combined charge conduction period and (Ton_c) and the charging suspension periods (Toff_c) is a combination of the charge overcurrent detection delay time (tIc_delay) and charge overcurrent return delay time (tIcrel_delay) since equal thereby enabling charge overcurrent detection delay time and charge overcurrent return delay time shortening and optimization of measurement time.

本実施形態においては、放電電流が遮断した事を判断し放電過電流検出電流値を計測した時と同時に上記放電過電流検出遅延時間(tId_delay)の計測が放電電流遮断時に同時測定出来るようにしたので計測時間の短縮化が可能となる。   In this embodiment, it is determined that the discharge overcurrent detection delay time (tId_delay) can be simultaneously measured when the discharge current is interrupted at the same time when the discharge current is determined to be interrupted and the discharge overcurrent detection current value is measured. Therefore, the measurement time can be shortened.

本実施形態においては、充電電流が遮断した事を判断し充電過電流検出電流値を計測した時と同時に上記充電過電流検出遅延時間(Ic_delay)の計測が充電電流遮断時に同時測定出来るようにしたので計測時間の短縮化が可能となる。 In the present embodiment, it is determined that the charging current has been cut off and the charging overcurrent detection current value is measured, so that the measurement of the charging overcurrent detection delay time ( t Ic_delay) can be performed simultaneously when the charging current is cut off. Therefore, the measurement time can be shortened.

本実施形態においては、放電過電流検出電流Id_detを計測した時に放電電流を放電過電流検出電流値(Id_det)以下に下げる事で放電過電流検出からの復帰遅延時間:放電過電流復帰遅延時間tIdrel_delayを計測可能としたので計測時間の短縮化が可能となる。 In the present embodiment, when the discharge overcurrent detection current value Id_det is measured, the discharge current is reduced below the discharge overcurrent detection current value (Id_det) so that the return delay time from the discharge overcurrent detection: the discharge overcurrent return delay time Since tIdrel_delay can be measured, the measurement time can be shortened.

本実施形態においては、充電過電流検出電流Ic_detを計測した時に充電電流を充電過電流検出電流値(Ic_det)以下に下げる事で充電過電流検出からの復帰遅延時間:充電過電流復帰遅延時間tIcrel_delayを計測可能としたので計測時間の短縮化が可能となる。 In this embodiment, when the charging overcurrent detection current value Ic_det is measured, the charging current is lowered to the charging overcurrent detection current value (Ic_det) or less to thereby return the charging overcurrent detection delay time: charging overcurrent recovery delay time Since tIcrel_delay can be measured, the measurement time can be shortened.

本実施形態においては、放電過電流検出電流値、放電過電流検出遅延時間、放電過電流復帰遅延時間及び充電過電流検出電流値、充電過電流検出遅延時間、充電過電流復帰遅延時間の順番で順じ繰返し測定する事としたので計測時間の短縮化が可能となる。   In this embodiment, the discharge overcurrent detection current value, the discharge overcurrent detection delay time, the discharge overcurrent recovery delay time and the charge overcurrent detection current value, the charge overcurrent detection delay time, and the charge overcurrent recovery delay time Measurement time can be shortened because measurements are repeated in sequence.

本実施形態における評価装置を示す構成図である。It is a block diagram which shows the evaluation apparatus in this embodiment. 本実施形態において、放電過電流検出電流値の測定と時間との関係を示す図である。In this embodiment, it is a figure which shows the relationship between the measurement of discharge overcurrent detection electric current value, and time. 本実施形態において、放電過電流検出電流値および充電過電流検出電流値同時計測した場合の時間との関係を示す図である。In this embodiment, it is a figure which shows the relationship with the time at the time of measuring simultaneously a discharge overcurrent detection electric current value and a charge overcurrent detection electric current value. 図3におけるC部を拡大した図である。It is the figure which expanded the C section in FIG. 図3におけるD部を拡大した図である。It is the figure which expanded the D section in FIG. 図2のB部と、図10のA部とを拡大した図である。It is the figure which expanded the B section of FIG. 2, and the A section of FIG. 本実施形態において、放電過電流検出遅延時間および放電過電流復帰遅延時間も計測したものを示す図である。In this embodiment, it is a figure which shows what also measured the discharge overcurrent detection delay time and the discharge overcurrent return delay time. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art.

符号の説明Explanation of symbols

100 Li電池保護モジュール
200 評価装置
201 切替回路
202 電圧制御回路
203 PWM制御回路
204 電流制御回路
205 電力増幅器
206 時間計測回路
DESCRIPTION OF SYMBOLS 100 Li battery protection module 200 Evaluation apparatus 201 Switching circuit 202 Voltage control circuit 203 PWM control circuit 204 Current control circuit 205 Power amplifier 206 Time measurement circuit

Claims (6)

充放電検出動作機能を有するモジュールの放電過電流検出電流値と、充電過電流検出電流値と、の少なくとも1つを計測する評価装置であって、
前記放電過電流検出電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長くまたは同じ時間に設定した放電通電期間の間流す第1の処理と、
前記放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長くまたは同じ時間に設定した放電休止期間経過後あらかじめ設定した増加幅電流を前記放電電流に加算した放電電流を前記放電通電期間の間流す第2の処理と、を行い、前記放電電流が遮断するまで前記第2の処理を繰り返し行い、前記放電過電流検出電流値計測する第1の計測手段と、
前記充電過電流検出電流値より小さく設定した充電電流値を初期値として充電電流を充電過電流検出遅延時間より長くまたは同じ時間に設定した充電通電期間の間流す第1の処理と、
前記充電電流が遮断しなかった場合、充電過電流復帰遅延時間より長くまたは同じ時間に設定した充電休止期間経過後、あらかじめ設定した増加幅電流を前記充電電流に加算した充電電流を前記充電通電期間の間流す第2の処理と、を行い、前記充電電流が遮断するまで前記第2の処理を繰り返し行い、前記充電過電流検出電流値を計測する第2の計測手段と、の少なくとも1つの計測手段を有することを特徴とする評価装置。
An evaluation device for measuring at least one of a discharge overcurrent detection current value of a module having a charge / discharge detection operation function and a charge overcurrent detection current value ,
A first processing to between flow of the discharge overcurrent detection current value discharge current period of the discharge current is set to longer or the same time than the discharge overcurrent detection delay time smaller than the set discharge current value as the initial value,
If the discharge current is not cut off, discharge overcurrent return delay time longer or after the discharge pause period has elapsed which is set at the same time, the discharge current period discharge current of the increment current preset by adding to the discharge current It performs a second processing to flow between repeats the second process until the discharge current is cut off, the first measuring means for measuring the discharge overcurrent detection current value,
A first process for flowing a charging current during a charging energization period set longer than or equal to a charging overcurrent detection delay time with a charging current value set smaller than the charging overcurrent detection current value as an initial value;
If the charging current is not interrupted, a charging current obtained by adding a preset increase width current to the charging current after a charging suspension period longer than or equal to the charging overcurrent recovery delay time has elapsed And a second measurement unit that performs the second process until the charge current is interrupted and repeats the second process to measure the charge overcurrent detection current value. evaluation apparatus characterized by having means.
前記放電通電期間と前記放電休止期間とを合わせた時間が前記放電過電流検出遅延時間前記放電過電流復帰遅延時間とを合わせた時間等しく、
前記充電通電期間と前記充電休止期間とを合わせた時間が、前記充電過電流検出遅延時間と前記充電過電流復帰遅延時間とを合わせた時間に等しいことを特徴とする請求項記載の評価装置。
The discharge conduction period and time combined with the discharge pause period is rather equal to the discharge overcurrent detection delay time and the discharge overcurrent return delay time and the time of the combined,
The charging current supply period and the time in which the combination of the charging suspension period, the charge overcurrent detection delay time and evaluation apparatus according to claim 1, wherein the equivalent to the charge overcurrent return delay time and the time the combined .
前記第1の計測手段は、
前記放電電流が遮断した事を判断し、前記放電過電流検出電流値を計測した後、前記放電通電期間に、前記放電過電流検出電流値より小さい放電電流を流し、前記放電過電流復帰遅延時間を計測し、
前記第2の計測手段は、
前記充電電流が遮断した事を判断し、前記充電過電流検出電流値を計測した後、前記充電通電期間に、前記充電過電流検出電流値より小さい充電電流を流し、前記充電過電流復帰遅延時間を計測することを特徴とする請求項1または請求項2記載の評価装置。
The first measuring means includes
Determines that the discharge current is cut off, after measuring the discharge overcurrent detection current value, the discharge current period, flowing the discharge overcurrent detection current value smaller than the discharge current, the discharge overcurrent return delay time Measure
The second measuring means includes
After determining that the charging current has been interrupted and measuring the charging overcurrent detection current value, a charging current smaller than the charging overcurrent detection current value is allowed to flow during the charging energization period, and the charging overcurrent recovery delay time The evaluation apparatus according to claim 1 , wherein the evaluation device is measured.
前記放電過電流検出電流値、前記放電過電流検出遅延時間、前記放電過電流復帰遅延時間、および、前記充電過電流検出電流値、前記充電過電流検出遅延時間、前記充電過電流復帰遅延時間の順番で順じ繰返し計測することを特徴とする請求項記載の評価装置。 The discharge overcurrent detection current value, the discharge overcurrent detection delay time, the discharge overcurrent return delay time, and the charge overcurrent detection current value, the charge overcurrent detection delay time, the charge overcurrent return delay time 4. The evaluation apparatus according to claim 3 , wherein the measurement is repeated in order. 充放電検出動作機能を有するモジュールの放電過電流検出電流値と、充電過電流検出電流値と、の少なくとも1つを計測する評価装置の評価方法であって、
前記放電過電流検出電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長くまたは同じ時間に設定した放電通電期間の間流す第1の処理と、
前記放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長くまたは同じ時間に設定した放電休止期間経過後あらかじめ設定した増加幅電流を前記放電電流に加算した放電電流を前記放電通電期間の間流す第2の処理と、を行い、前記放電電流が遮断するまで前記第2の処理を繰り返し行い、前記放電過電流検出電流値計測する第1の計測工程と、
前記充電過電流検出電流値より小さく設定した充電電流値を初期値として充電電流を充電過電流検出遅延時間より長くまたは同じ時間に設定した充電通電期間の間流す第1の処理と、
前記充電電流が遮断しなかった場合、充電過電流復帰遅延時間より長くまたは同じ時間に設定した充電休止期間経過後、あらかじめ設定した増加幅電流を前記充電電流に加算した充電電流を前記充電通電期間の間流す第2の処理と、を行い、前記充電電流が遮断するまで前記第2の処理を繰り返し行い、前記充電過電流検出電流値を計測する第2の計測工程と、の少なくとも1つの計測工程を有することを特徴とする評価方法。
An evaluation method for an evaluation apparatus that measures at least one of a discharge overcurrent detection current value of a module having a charge / discharge detection operation function and a charge overcurrent detection current value ,
A first processing to between flow of the discharge overcurrent detection current value discharge current period of the discharge current is set to longer or the same time than the discharge overcurrent detection delay time smaller than the set discharge current value as the initial value,
If the discharge current is not cut off, discharge overcurrent return delay time longer or after the discharge pause period has elapsed which is set at the same time, the discharge current period discharge current of the increment current preset by adding to the discharge current It performs a second processing to flow between repeats the second process until the discharge current is cut off, the first measuring step of measuring the discharge overcurrent detection current value,
A first process for flowing a charging current during a charging energization period set longer than or equal to a charging overcurrent detection delay time with a charging current value set smaller than the charging overcurrent detection current value as an initial value;
If the charging current is not interrupted, a charging current obtained by adding a preset increase width current to the charging current after a charging suspension period longer than or equal to the charging overcurrent recovery delay time has elapsed And a second measurement step of measuring the charge overcurrent detection current value by repeatedly performing the second process until the charging current is interrupted. The evaluation method characterized by having a process.
充放電検出動作機能を有するモジュールの放電過電流検出電流値と、充電過電流検出電流値と、の少なくとも1つを計測するコンピュータに実行させる評価プログラムであって、
前記放電過電流検出電流値より小さく設定した放電電流値を初期値として放電電流を放電過電流検出遅延時間より長くまたは同じ時間に設定した放電通電期間の間流す第1の処理と、
前記放電電流が遮断しなかった場合、放電過電流復帰遅延時間より長くまたは同じ時間に設定した放電休止期間経過後あらかじめ設定した増加幅電流を前記放電電流に加算した放電電流を前記放電通電期間の間流す第2の処理と、を行い、前記放電電流が遮断するまで前記第2の処理を繰り返し行い、前記放電過電流検出電流値計測する第1の計測工程と、
前記充電過電流検出電流値より小さく設定した充電電流値を初期値として充電電流を充電過電流検出遅延時間より長くまたは同じ時間に設定した充電通電期間の間流す第1の処理と、
前記充電電流が遮断しなかった場合、充電過電流復帰遅延時間より長くまたは同じ時間に設定した充電休止期間経過後、あらかじめ設定した増加幅電流を前記充電電流に加算した充電電流を前記充電通電期間の間流す第2の処理と、を行い、前記充電電流が遮断するまで前記第2の処理を繰り返し行い、前記充電過電流検出電流値を計測する第2の計測工程と、の少なくとも1つの計測工程を前記コンピュータに実行させることを特徴とする評価プログラム。
An evaluation program to be executed by a computer that measures at least one of a discharge overcurrent detection current value of a module having a charge / discharge detection operation function and a charge overcurrent detection current value ,
A first processing to between flow of the discharge overcurrent detection current value discharge current period of the discharge current is set to longer or the same time than the discharge overcurrent detection delay time smaller than the set discharge current value as the initial value,
If the discharge current is not cut off, discharge overcurrent return delay time longer or after the discharge pause period has elapsed which is set at the same time, the discharge current period discharge current of the increment current preset by adding to the discharge current It performs a second processing to flow between repeats the second process until the discharge current is cut off, the first measuring step of measuring the discharge overcurrent detection current value,
A first process for flowing a charging current during a charging energization period set longer than or equal to a charging overcurrent detection delay time with a charging current value set smaller than the charging overcurrent detection current value as an initial value;
If the charging current is not interrupted, a charging current obtained by adding a preset increase width current to the charging current after a charging suspension period longer than or equal to the charging overcurrent recovery delay time has elapsed And a second measurement step of measuring the charge overcurrent detection current value by repeatedly performing the second process until the charging current is interrupted. An evaluation program for causing a computer to execute a process .
JP2008228969A 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program Expired - Fee Related JP5412771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008228969A JP5412771B2 (en) 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008165126 2008-06-24
JP2008165126 2008-06-24
JP2008228969A JP5412771B2 (en) 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program

Publications (2)

Publication Number Publication Date
JP2010034016A JP2010034016A (en) 2010-02-12
JP5412771B2 true JP5412771B2 (en) 2014-02-12

Family

ID=41738232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008228969A Expired - Fee Related JP5412771B2 (en) 2008-06-24 2008-09-05 Evaluation apparatus, evaluation method, and evaluation program

Country Status (1)

Country Link
JP (1) JP5412771B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157088B2 (en) 2012-11-07 2017-07-05 ルネサスエレクトロニクス株式会社 Battery control IC and control method thereof
JP6195489B2 (en) 2013-08-22 2017-09-13 ルネサスエレクトロニクス株式会社 Semiconductor device, battery pack, and portable terminal
JP6219687B2 (en) 2013-11-12 2017-10-25 ルネサスエレクトロニクス株式会社 Semiconductor device, battery pack and portable terminal
JP6298616B2 (en) 2013-11-14 2018-03-20 ルネサスエレクトロニクス株式会社 Semiconductor device, battery pack and portable terminal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042673A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Method for charging secondary cell and charger
JP3827136B2 (en) * 2000-03-24 2006-09-27 株式会社リコー Charge / discharge protection circuit, battery pack incorporating the charge / discharge protection circuit, and electronic device using the battery pack
JP3498736B2 (en) * 2000-09-28 2004-02-16 株式会社リコー Charge / discharge protection circuit, battery pack incorporating the charge / discharge protection circuit, and electronic device using the battery pack
JP3468220B2 (en) * 2000-12-26 2003-11-17 株式会社リコー Charge / discharge protection circuit, battery pack incorporating the charge / discharge protection circuit, and electronic device using the battery pack
JP2002238174A (en) * 2001-02-14 2002-08-23 Seiko Instruments Inc Charging/discharging control circuit and rechargeable power supply
JP4710212B2 (en) * 2002-11-19 2011-06-29 日本電気株式会社 Lithium ion secondary battery system and method for operating lithium ion secondary battery
JP3986975B2 (en) * 2003-01-29 2007-10-03 株式会社小松製作所 Multistage charger
JP2006340450A (en) * 2005-05-31 2006-12-14 Mitsumi Electric Co Ltd Battery protective circuit
JP4415131B2 (en) * 2005-10-31 2010-02-17 ミツミ電機株式会社 Battery protection device and battery protection circuit
JP5075353B2 (en) * 2006-05-17 2012-11-21 株式会社東芝 Rechargeable battery charging method
JP5064746B2 (en) * 2006-09-13 2012-10-31 株式会社リコー SECONDARY BATTERY PROTECTION SEMICONDUCTOR DEVICE, BATTERY PACK AND ELECTRONIC DEVICE CONTAINING THE SECONDARY BATTERY PROTECTION SEMICONDUCTOR

Also Published As

Publication number Publication date
JP2010034016A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
US7511464B2 (en) Voltage regulator
US10522882B2 (en) Semiconductor device, battery pack, and mobile terminal with multi-speed CPU
JP5412771B2 (en) Evaluation apparatus, evaluation method, and evaluation program
US9541975B2 (en) Semiconductor device, battery pack and personal data assistant
TWI436073B (en) Test device for switchgear
JP5396825B2 (en) Protection circuit
US8901891B2 (en) Voltage polarity determination circuit and charge amount measurement circuit
JP2002017045A (en) Secondary battery device
US20130026974A1 (en) Charging circuit and charging control method
US12027904B2 (en) Systems and methods for low current detection
KR940012750A (en) Charging device and method for performing battery activation
TWI487281B (en) System and method for using an integrated circuit pin as both a current limiting input and an open-drain output
CN102955125A (en) Integrated circuit
EP1612635B1 (en) Short-circuit detection with current-mirror
US7498864B2 (en) Electronic fuse for overcurrent protection
JP2008064700A (en) Internal resistance measuring device for electric double layer capacitor
JPH1127128A (en) Semiconductor integrated circuit device
US9772365B2 (en) Detection circuit
TWI674722B (en) Detection circuit and switch module using the same
JP5685102B2 (en) Charge amplifier
JP2007195351A (en) Storage battery device
JP5663156B2 (en) Secondary battery charge control circuit
KR102025590B1 (en) Integrated circuit and associated method for measurement of an external impedance
US20240044990A1 (en) Semiconductor device, battery pack, method of controlling semiconductor device, and control programs
JP4533554B2 (en) Charge / discharge current detection circuit, battery state monitoring circuit, secondary battery device, and charge / discharge current detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R151 Written notification of patent or utility model registration

Ref document number: 5412771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees