JP5412461B2 - Remote surface inspection apparatus, remote surface inspection method, and underwater remote surface inspection method for reactor internal structure - Google Patents

Remote surface inspection apparatus, remote surface inspection method, and underwater remote surface inspection method for reactor internal structure Download PDF

Info

Publication number
JP5412461B2
JP5412461B2 JP2011091029A JP2011091029A JP5412461B2 JP 5412461 B2 JP5412461 B2 JP 5412461B2 JP 2011091029 A JP2011091029 A JP 2011091029A JP 2011091029 A JP2011091029 A JP 2011091029A JP 5412461 B2 JP5412461 B2 JP 5412461B2
Authority
JP
Japan
Prior art keywords
subject
replica agent
gap
remote
replica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011091029A
Other languages
Japanese (ja)
Other versions
JP2012225671A (en
Inventor
聡 青池
孝一 黒澤
信哉 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011091029A priority Critical patent/JP5412461B2/en
Publication of JP2012225671A publication Critical patent/JP2012225671A/en
Application granted granted Critical
Publication of JP5412461B2 publication Critical patent/JP5412461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、遠隔操作により原子炉炉内構造物等の表面形状をレプリカ剤で調査する遠隔表面調査装置及び遠隔表面調査方法並びに原子炉炉内構造物の水中遠隔表面調査方法に関する。   The present invention relates to a remote surface inspection apparatus, a remote surface inspection method, and a method for underwater remote surface inspection of a reactor internal structure, in which a surface shape of a nuclear reactor internal structure or the like is investigated remotely by a replica agent.

例えば、原子力発電プラントの原子炉炉内構造物にき裂が生じた場合、き裂の寸法や形状は、き裂の発生原因究明やその後の進展予測を行う上で重要な評価指標となる。このため、原子炉炉内構造物表面の表面形状を簡易に観察することが望まれている。原子炉炉内構造物表面の表面形状を観察する方法としては、被検体表面への検査員の接近が原子炉運転後困難となるため、原子炉炉内構造物の表面形状を遠隔操作で転写したレプリカを拡大観察することが、特許文献4に示されている。また、原子炉炉内構造物の表面形状を遠隔操作で転写する方法および装置については、被検体表面とレプリカ採取装置により密閉空間を形成し、密閉空間内にレプリカ剤を注入する方法および装置が特許文献1から特許文献4に示されている。   For example, when a crack occurs in a reactor internal structure of a nuclear power plant, the size and shape of the crack are an important evaluation index for investigating the cause of the crack and predicting its subsequent progress. For this reason, it is desired to easily observe the surface shape of the surface of the reactor internal structure. As a method of observing the surface shape of the surface of the reactor internal structure, it is difficult for the inspector to approach the surface of the specimen after the operation of the reactor, so the surface shape of the reactor internal structure is transferred remotely. It is shown in Patent Document 4 that the observed replica is magnified. As for the method and apparatus for remotely transferring the surface shape of the reactor internal structure, there is a method and apparatus for forming a sealed space by the specimen surface and the replica collection device and injecting the replica agent into the sealed space. Patent Document 1 to Patent Document 4 show.

特許文献1から特許文献4の方法は、いずれも構造物の表面形状を遠隔操作で転写する方法および装置に関して、被検体表面とレプリカ採取装置により密閉空間を形成し、密閉空間内にレプリカ剤を注入する特徴を有している。   Patent Documents 1 to 4 all relate to a method and apparatus for remotely transferring the surface shape of a structure by forming a sealed space by a specimen surface and a replica collection device, and applying a replica agent in the sealed space. It has the characteristics to inject.

特開平7−325184号公報JP-A-7-325184 特開2002−71537号公報JP 2002-71537 A 特開2003−262695号公報JP 2003-262695 A 特開2010−96563号公報JP 2010-96563 A

しかしながら、原子炉底部の溶接部など複雑な曲面形状については、被検体表面とレプリカ採取装置により密閉空間を形成するのが困難な場合もあり、密閉空間を形成する必要がないレプリカ採取方法が望まれている。
本発明は、上記課題を鑑みなされたものであり、その目的は、人が直接近づけない場所に存在し、特に複雑な曲面形状の構造物に対し、密閉空間を形成することなく簡易に構造物の表面形状をレプリカに転写し、表面形状を観察できる遠隔表面調査装置又は遠隔表面調査方法或いは原子炉炉内構造物の水中遠隔表面調査方法を提供することにある。
However, for complex curved surfaces such as welds at the bottom of the reactor, it may be difficult to form a sealed space with the specimen surface and the replica collection device, and a replica collection method that does not require the formation of a sealed space is desired. It is rare.
The present invention has been made in view of the above-mentioned problems, and its purpose is to exist in a place where a person cannot approach directly, and in particular to a structure having a complicated curved surface shape, without easily forming a sealed space. It is an object to provide a remote surface inspection apparatus or a remote surface inspection method that can transfer the surface shape of the surface of the reactor to a replica and observe the surface shape or an underwater remote surface inspection method of a reactor internal structure.

本発明は、上記目的を達成するために、少なくとも下記の特徴を有する。
被検体の表面にレプリカ剤を供給し、前記被検体の表面形状を遠隔操作で転写し調査する遠隔表面調査装置において、前記被検体の表面との間に隙間を形成する隙間形成部材と、前記隙間形成部材と被検体により形成される隙間にレプリカ剤を遠隔操作で供給する装置移送手段と、前記隙間形成部材と前記レプリカ剤供給手段を被検体の表面近傍まで移送する装置移送手段とを備えることを第1の特徴とする。
In order to achieve the above object, the present invention has at least the following features.
In a remote surface inspection apparatus that supplies a replica agent to the surface of the subject, and remotely transfers and investigates the surface shape of the subject, a gap forming member that forms a gap with the surface of the subject; and An apparatus transfer means for remotely supplying a replica agent to a gap formed by the gap forming member and the subject, and an apparatus transfer means for transferring the gap forming member and the replica agent supply means to the vicinity of the surface of the subject. This is the first feature.

また、本発明は、被検体の表面にレプリカ剤を供給し、前記被検体の表面形状を遠隔操作で転写し調査する遠隔表面調査方法において、前記被検体に対面する面を有する対面部材を前記被検体に遠隔で対面させて前記被検体の表面との間に隙間を形成させ、その後前記レプリカ剤を前記隙間内に供給し、前記レプリカ剤を隙間内に所定時間保持して前記レプリカ剤を硬化させて前記被検体の表面形状を前記レプリカ剤に転写させることを第2の特徴とする。   Further, the present invention provides a remote surface inspection method in which a replica agent is supplied to the surface of a subject, and the surface shape of the subject is transferred and investigated by remote operation, and the facing member having a surface facing the subject is A subject is remotely faced to form a gap with the surface of the subject, and then the replica agent is supplied into the gap, and the replica agent is held in the gap for a predetermined time. The second feature is that the surface shape of the subject is cured and transferred to the replica agent.

さらに、本発明は、前記隙間形成部材は、前記被検体に対面する面を有する対面部材と、前記隙間内に前記レプリカ剤を前記レプリカ剤の表面張力で保持できる位置に前記対面する面を離間させる離間部材とを有することを第3の特徴とする。   Further, the present invention provides the gap forming member having a facing member having a surface facing the subject, and the facing surface at a position where the replica agent can be held by the surface tension of the replica agent in the gap. The third feature is to have a separating member.

また、本発明は、前記対面する面は、前記被検体の凹凸形状に類似した形状を有することを第4特徴とする。
さらに、前記レプリカ剤は二液硬化型であることを第5の特徴とする。
また、本発明は、前記レプリカ剤を前記隙間に供給するレプリカ剤供給口を前記対面する面に設けたことを第6の特徴とする
さらに、本発明は、水中にある被検体にレプリカ剤を供給し、前記被検体の表面形状を遠隔操作で転写し観察する原子炉炉内構造の水中遠隔表面調査方法において、第1又は第3乃至第6の特徴のいずれかの遠隔表面調査装置の前記隙間形成部材を水上からの遠隔操作で被検体まで誘導して前記被検体の表面との間に隙間を形成した状態で固定し、前記隙間内にレプリカ剤を供給し、前記レプリカ剤を隙間内に所定時間保持して前記レプリカ剤を硬化させて前記被検体の表面形状を前記レプリカ剤に転写させ、その後前記遠隔表面調査装置とともに前記被検体の表面形状を転写したレプリカ剤を回収し、前記回収したレプリカ剤に転写された被検体の表面形状を観察することを第7の特徴とする。
In addition, the present invention is characterized in that the facing surface has a shape similar to the uneven shape of the subject.
Furthermore, a fifth feature is that the replica agent is a two-component curing type.
Further, the present invention is characterized in that a replica agent supply port for supplying the replica agent to the gap is provided on the facing surface. Further, the present invention provides a replica agent for a subject in water. In the remote surface inspection method for an in-reactor structure in which the surface shape of the subject is transferred and observed by remote operation, the remote surface inspection device according to any one of the first or third to sixth features is provided. The gap forming member is guided to the subject by remote operation from the water and fixed in a state where a gap is formed between the surface and the surface of the subject, and the replica agent is supplied into the gap, Holding the replica agent for a predetermined time to transfer the surface shape of the subject to the replica agent, and then collecting the replica agent having transferred the surface shape of the subject together with the remote surface inspection device, Recovered A seventh feature is that the surface shape of the subject transferred to the replica agent is observed.

本発明によれば、人が直接近づけない場所に存在し、特に複雑な曲面形状の構造物に対し、密閉空間を形成することなく簡易に当該領域の表面形状をレプリカに転写し、表面形状を観察できる遠隔表面調査装置又は遠隔表面調査方法或いは原子炉炉内構造物の水中遠隔表面調査方法を提供できる。   According to the present invention, the surface shape of a region existing in a place where a person cannot approach directly, particularly a complicated curved surface shape, can be easily transferred to a replica without forming a sealed space. A remote surface inspection device or a remote surface inspection method that can be observed or an underwater remote surface inspection method for a reactor internal structure can be provided.

人が直接近づけない場所に存在する構造物の表面形状を二液硬化型のレプリカ剤により転写する装置の第1の実施例を説明する図である。It is a figure explaining the 1st Example of the apparatus which transfers the surface shape of the structure which exists in the place where a person cannot approach directly with a two-component curing type replica agent. 人が直接近づけない場所に存在する構造物の表面形状を転写する方法の実施例を説明する図である。It is a figure explaining the Example of the method of transcribe | transferring the surface shape of the structure which exists in the place where a person cannot approach directly. 曲面の被検体表面との間に隙間を形成する部材の実施例を説明する図である。It is a figure explaining the Example of the member which forms a clearance gap between the curved object surface. 原子炉炉内構造物表面形状を調査する水中遠隔調査方法の実施例を説明する図である。It is a figure explaining the Example of the underwater remote investigation method which investigates the nuclear reactor internal structure surface shape. 原子炉炉内構造物表面形状を調査する水中遠隔調査方法の実施例の手順を説明する図である。It is a figure explaining the procedure of the Example of the underwater remote investigation method which investigates the nuclear reactor internal structure surface shape.

以下、本発明の実施形態を図面を用いて説明する。
(実施例1)
まず、本実施形態の特徴である構造物表面形状を調査する遠隔表面調査装置2について、図1を用いて説明する。図1は、人が直接近づけない場所に存在する構造物の表面形状を二液硬化型のレプリカ剤により転写し、調査する遠隔表面調査装置の実施例を示すものである。本実施例は、操作ポール1の先端に取付けた構造物表面形状を調査する遠隔表面調査装置2の本体部分を遠隔操作で構造物(被検体3)まで誘導して、被検体3表面との間に隙間4を形成し、被検体3の表面形状をレプリカ剤5に転写し、調査する遠隔表面調査装置の例である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Example 1
First, a remote surface inspection device 2 that investigates the structure surface shape, which is a feature of the present embodiment, will be described with reference to FIG. FIG. 1 shows an embodiment of a remote surface inspection apparatus for transferring and investigating a surface shape of a structure existing in a place where a person cannot approach directly with a two-component curing type replica agent. In this embodiment, the main body portion of the remote surface inspection device 2 for investigating the surface shape of the structure attached to the tip of the operation pole 1 is guided to the structure (subject 3) by remote operation, This is an example of a remote surface inspection device that forms a gap 4 between them and transfers the surface shape of the subject 3 to the replica agent 5 for investigation.

構造物表面形状を調査する遠隔表面調査装置2には少なくとも、被検体3の表面との間に隙間を形成する隙間形成部材6と、隙間形成部材6と被検体3により形成される隙間4に二液硬化型のレプリカ剤5を遠隔操作で供給するレプリカ剤供給手段7と、前記隙間形成部材6と前記レプリカ剤供給手段7を被検体3の表面まで移送する装置移送手段8を備えている。   The remote surface inspection device 2 that investigates the surface shape of the structure includes at least a gap forming member 6 that forms a gap with the surface of the subject 3, and a gap 4 that is formed by the gap forming member 6 and the subject 3. A replica agent supply means 7 for supplying the two-component curing type replica agent 5 by remote operation, and a device transfer means 8 for transferring the gap forming member 6 and the replica agent supply means 7 to the surface of the subject 3 are provided. .

被検体表面との間に隙間を形成する隙間形成部材6は、少なくとも、被検体表面に対面する面を有する対面部材9と、対面部材9と被検体3で形成する隙間4に二液硬化型のレプリカ剤5を供給するレプリカ剤供給口10と、使用するレプリカ剤5の表面張力で隙間内にレプリカ剤5が保持できる隙間4の最大寸法以下の高さ寸法、即ち対面部材9の対面と被検体との離間距離を規定する離間部材である突起物11とを備えている。レプリカ剤供給口10はレプリカ剤供給管12により二液硬化型のレプリカ剤5のレプリカ剤カートリッジ13と連結されている。   The gap forming member 6 that forms a gap between the subject surface and the subject surface is at least a facing member 9 having a surface facing the subject surface, and a gap 4 formed by the facing member 9 and the subject 3 in a two-component curing type. A replica agent supply port 10 for supplying the replica agent 5 and a height dimension equal to or smaller than the maximum dimension of the gap 4 that can hold the replica agent 5 in the gap by the surface tension of the replica agent 5 to be used, that is, And a protrusion 11 that is a separation member that defines a separation distance from the subject. The replica agent supply port 10 is connected to a replica agent cartridge 13 of the two-component curing type replica agent 5 by a replica agent supply pipe 12.

レプリカ剤供給手段7は、少なくとも、前記レプリカ剤カートリッジ13と水圧シリンダ14とを備えている。前記水圧シリンダ14に耐圧ホース15を介して接続される手押しポンプ等から水を供給することで前記水圧シリンダ14を伸ばし、前記レプリカ剤カートリッジ13から隙間4にレプリカ剤5を供給できる。   The replica agent supply means 7 includes at least the replica agent cartridge 13 and a hydraulic cylinder 14. By supplying water from a hand pump or the like connected to the hydraulic cylinder 14 via a pressure hose 15, the hydraulic cylinder 14 can be extended and the replica agent 5 can be supplied from the replica agent cartridge 13 to the gap 4.

装置移送手段8としては、本実施例では操作ポール1を用いている。他の方法としては、構造物に設けられたレール上を遠隔表面調査装置2の架台27を摺動させて、被検体3まで移動させる方法がある。   As the device transfer means 8, the operation pole 1 is used in this embodiment. As another method, there is a method in which the base 27 of the remote surface inspection device 2 is slid on the rail provided in the structure and moved to the subject 3.

次に、本実施例1における構造物表面形状の表面転写方法について、図1と図2を用いて説明する。図2は人が直接近づけない場所に存在する構造物の表面形状を図1の遠隔表面調査装置2を用いて転写する方法の例を示すものであり、施工手順の例である。   Next, the surface transfer method of the structure surface shape in the first embodiment will be described with reference to FIGS. FIG. 2 shows an example of a method for transferring the surface shape of a structure existing in a place where a person cannot approach directly using the remote surface inspection apparatus 2 of FIG. 1, and is an example of a construction procedure.

被検体3の表面形状のレプリカ転写では、まず、装置移送手段8を用いて隙間形成部材6とレプリカ剤供給手段7とを被検体3の表面形状のレプリカ転写位置まで移送する(Step1)。この際、周辺の干渉物および目的位置を図示しないCCDカメラ等により確認しながら操作ポール1を操作するのが望ましい。隙間形成部材6の突起物11を被検体3の表面に接触させることで被検体3と対面部材9との間に隙間4を形成する(Step2)。続いて、例えば、架台16が被検体3の方向に押圧されるように装置移送手段8である操作ポール1を固定することで隙間4の状態を保持する(Step3)。続いて、レプリカ剤供給手段7の水圧シリンダ14を伸ばして二液硬化型のレプリカ剤5を隙間4内に供給する(Step4)。この際、供給されたレプリカ剤5は自己の表面張力により隙間4内に保持される。レプリカ剤5が硬化するまでの時間が経過後(Step5)、装置移送手段8による固定を解除し、被検体3の表面形状が転写されたレプリカ剤5を回収する(Step6)。   In replica transfer of the surface shape of the subject 3, first, the gap forming member 6 and the replica agent supply means 7 are transferred to the replica transfer position of the surface shape of the subject 3 using the device transfer means 8 (Step 1). At this time, it is desirable to operate the operation pole 1 while checking the surrounding interference object and the target position with a CCD camera or the like (not shown). A gap 4 is formed between the subject 3 and the facing member 9 by bringing the protrusion 11 of the gap forming member 6 into contact with the surface of the subject 3 (Step 2). Subsequently, for example, the state of the gap 4 is maintained by fixing the operation pole 1 as the device transfer means 8 so that the gantry 16 is pressed in the direction of the subject 3 (Step 3). Subsequently, the hydraulic cylinder 14 of the replica agent supply means 7 is extended to supply the two-component curing type replica agent 5 into the gap 4 (Step 4). At this time, the supplied replica agent 5 is held in the gap 4 by its own surface tension. After the time until the replica agent 5 is cured (Step 5), the fixing by the apparatus transfer means 8 is released, and the replica agent 5 to which the surface shape of the subject 3 is transferred is recovered (Step 6).

以上の説明した実施例1によれば、レプリカ剤を対面部材9と被検体3との間に隙間4を設け、形成困難な密閉空間を形成することなく、遠隔で構造物の表面形状を転写したレプリカを得ることができる遠隔表面調査装置及び遠隔表面調査方法を提供できる。
(実施例2)
次に、本発明の構造物表面形状を調査する遠隔表面調査装置2を構成する被検体表面との間に隙間を形成する隙間形成部材6のより具体的な構成について、図3を用いて説明する。図3は曲面形状の被検体3表面との間に隙間4を形成する隙間形成部材6の例で、原子炉炉底部溶接部23に代表される曲面形状の被検体3表面形状のレプリカを得る場合を示す図である。
According to the first embodiment described above, the replica agent is transferred to the surface shape of the structure remotely without providing the gap 4 between the facing member 9 and the subject 3 and forming a difficult-to-form sealed space. A remote surface inspection apparatus and a remote surface inspection method capable of obtaining a replicated replica can be provided.
(Example 2)
Next, a more specific configuration of the gap forming member 6 that forms a gap with the surface of the subject constituting the remote surface inspection apparatus 2 that investigates the surface shape of the structure of the present invention will be described with reference to FIG. To do. FIG. 3 shows an example of the gap forming member 6 that forms the gap 4 between the curved surface of the surface of the subject 3 and a replica of the curved shape of the surface of the specimen 3 represented by the reactor bottom weld 23 is obtained. It is a figure which shows a case.

隙間形成部材6は、少なくとも被検体に対面する面を有する対面部材9と、対面部材9と被検体3で形成した隙間4に二液硬化型のレプリカ剤5を供給可能なレプリカ剤供給口12と、対面部材9と被検体3との間に形成する隙間4の高さ寸法、即ち対面部材9の対面と被検体と離間距離を規定する離間部材である突起物11を備えている。対面部材9と被検体3との間に形成する隙間4の高さ寸法(離間距離)については、レプリカ採取位置と同等の環境下(温度、圧力、気中または水中)で、事前に使用するレプリカ剤5の表面張力で隙間内にレプリカ剤5が保持できる最大隙間高さ寸法を確認しておき、最大隙間高さ寸法以下となる様に突起物11の高さを設定する。具体的には、設定した隙間高さ寸法で隙間内にレプリカ剤5が保持できない場合には、隙間内にレプリカ剤5が保持できるまで突起物11の高さを低くする。また、前記対面部材9の形状は被検体3の凹凸形状に類似した形状を採用するのが望ましい。例えば、図3に示すような被検体3が曲面形状を有する場合には、前記対面部材9の形状を被検体3の形状に類似した曲面とする。   The gap forming member 6 includes at least a facing member 9 having a surface facing the subject, and a replica agent supply port 12 capable of supplying the two-component curing type replica agent 5 to the gap 4 formed by the facing member 9 and the subject 3. And a protrusion 11 that is a separation member that defines a distance between the facing member 9 and the subject 3, that is, a distance between the facing member 9 and the subject. The height dimension (separation distance) of the gap 4 formed between the facing member 9 and the subject 3 is used in advance in an environment equivalent to the replica collection position (temperature, pressure, air or water). The maximum gap height dimension that the replica agent 5 can hold in the gap is confirmed by the surface tension of the replica agent 5, and the height of the protrusion 11 is set so as to be equal to or less than the maximum gap height dimension. Specifically, when the replica agent 5 cannot be held in the gap with the set gap height dimension, the height of the protrusion 11 is lowered until the replica agent 5 can be held in the gap. The shape of the facing member 9 is preferably a shape similar to the uneven shape of the subject 3. For example, when the subject 3 as shown in FIG. 3 has a curved surface shape, the shape of the facing member 9 is a curved surface similar to the shape of the subject 3.

以上の説明した実施例2によれば、レプリカ剤を対面部材9と被検体3との間に形成した隙間4内にレプリカ剤5をその表面張力で保持する高さを有する突起物11を設けることで、原子炉炉底部溶接部23に代表される曲面形状の場合に形成困難な密閉空間を形成することなく、遠隔で構造物の表面に設けられた被検体3の表面形状を転写したレプリカを得ることできる遠隔表面調査装置及び遠隔表面調査方法を提供できる。   According to the second embodiment described above, the protrusion 11 having a height for holding the replica agent 5 with its surface tension is provided in the gap 4 formed between the facing member 9 and the subject 3. Thus, a replica in which the surface shape of the subject 3 provided remotely on the surface of the structure is transferred without forming a sealed space that is difficult to form in the case of a curved surface shape typified by the reactor bottom weld 23. Remote surface inspection device and remote surface inspection method can be provided.

また、以上説明した実施例2によれば、被検体表面の凹凸形状が異なる場合でも、対面部材9の表面形状が被検体3の表面形状に類似し、レプリカ剤5の表面張力で前記隙間4内にレプリカ剤5を保持できる範囲では、同じ対面部材9を使用して被検体3の表面形状を転写したレプリカを得ることできる。
(実施例3)
本発明の遠隔表面調査装置2を原子炉炉内構造物表面形状を調査する遠隔調査方法に用いた実施例3を、図4と図5を用いて説明する。図4は原子炉炉内構造物表面形状を調査する遠隔調査方法の例、図5は調査手順の例である。
Further, according to Example 2 described above, even when the uneven shape of the subject surface is different, the surface shape of the facing member 9 is similar to the surface shape of the subject 3, and the gap 4 is caused by the surface tension of the replica agent 5. As long as the replica agent 5 can be held inside, a replica obtained by transferring the surface shape of the subject 3 using the same facing member 9 can be obtained.
(Example 3)
A third embodiment in which the remote surface inspection apparatus 2 of the present invention is used in a remote inspection method for investigating the surface shape of a reactor internal structure will be described with reference to FIGS. FIG. 4 shows an example of a remote survey method for investigating the surface shape of the reactor internal structure, and FIG. 5 shows an example of the survey procedure.

原子炉炉内構造物の表面形状を観察する方法では、まず、構造物表面形状を調査する遠隔表面調査装置2を水上からの遠隔操作で被検体3まで誘導して被検体3表面との間に隙間4を形成した状態で固定する(Step1〜Step3)。水上からの遠隔操作は操作ポール1を採用できるが、図示しないマニュプレータも採用できる。なお、採用するマニュプレータは先端の座標位置を制御できることが望ましい。また、被検体3までの誘導は、周辺の干渉物および目的位置をCCDカメラ16により撮影し、その映像をテレビモニタ17で確認しながら実施する(Step1)。突起物11が被検体3に接触することで被検体3の表面と対面部材9の間に隙間4を形成する(Step2)。この状態で水圧シリンダ18により構造物表面形状を調査する遠隔表面調査装置2を被検体3表面に押付けて固定する(Step3)。水圧シリンダ18は、耐圧ホース19に接続された手押しポンプ20により水を水圧シリンダ18に供給することで駆動する。なお、水圧シリンダ18は、原子炉炉内構造物である支柱25に接触している支持台座26に設けられている。支柱25の具体例としては、シュラウドサポートレグや制御棒駆動機構ハウジングなどが採用できる。   In the method of observing the surface shape of the structure inside the nuclear reactor, first, the remote surface inspection device 2 for investigating the surface shape of the structure is guided to the subject 3 by remote operation from the water, and between the surface of the subject 3 It fixes in the state which formed the clearance gap 4 in (Step1-Step3). The operation pole 1 can be used for remote control from the water, but a manipulator (not shown) can also be used. Note that it is desirable that the manipulator to be used can control the coordinate position of the tip. Further, the guidance to the subject 3 is performed while photographing the surrounding interference object and the target position with the CCD camera 16 and confirming the image on the television monitor 17 (Step 1). A gap 4 is formed between the surface of the subject 3 and the facing member 9 by the protrusion 11 contacting the subject 3 (Step 2). In this state, the remote surface inspection device 2 for investigating the surface shape of the structure by the hydraulic cylinder 18 is pressed against the surface of the subject 3 and fixed (Step 3). The hydraulic cylinder 18 is driven by supplying water to the hydraulic cylinder 18 by a hand pump 20 connected to the pressure hose 19. The hydraulic cylinder 18 is provided on a support pedestal 26 that is in contact with a support 25 that is a reactor internal structure. As a specific example of the column 25, a shroud support leg, a control rod drive mechanism housing, or the like can be adopted.

その後、被検体3表面との間に形成した隙間4内にレプリカ剤5を供給する(Step4)。レプリカ剤5の供給はレプリカ剤供給手段7により実施する。具体的には、耐圧ホース15に接続された手押しポンプ21により水を水圧シリンダ14に供給することで水圧シリンダ14を駆動し、レプリカ剤カートリッジ13内からレプリカ剤供給管12を介して、レプリカ剤供給口10からレプリカ剤5を隙間4内に供給する。この際、供給されたレプリカ剤5は自己の表面張力により隙間4内に保持される。   Thereafter, the replica agent 5 is supplied into the gap 4 formed between the surface of the subject 3 (Step 4). The replica agent 5 is supplied by the replica agent supply means 7. Specifically, the hydraulic cylinder 14 is driven by supplying water to the hydraulic cylinder 14 by a hand pump 21 connected to the pressure hose 15, and the replica agent is supplied from the replica agent cartridge 13 through the replica agent supply pipe 12. The replica agent 5 is supplied into the gap 4 from the supply port 10. At this time, the supplied replica agent 5 is held in the gap 4 by its own surface tension.

次に、レプリカ剤5が硬化するまでの時間が経過後(Step5)、水圧シリンダ18による構造物の表面形状を調査する遠隔表面調査装置2の固定を解除し(Step6)、被検体3の表面形状が転写されたレプリカ剤5を構造物表面形状を調査する遠隔表面調査装置2とともに回収する(Step7)。回収したレプリカ剤5に転写された被検体3の表面形状を光学顕微鏡等で拡大観察することで、原子炉炉内構造物の表面形状を詳細に観察する(Step8)。   Next, after the time until the replica agent 5 is cured (Step 5), the remote surface inspection device 2 for investigating the surface shape of the structure by the hydraulic cylinder 18 is released (Step 6), and the surface of the subject 3 is removed. The replica agent 5 to which the shape is transferred is collected together with the remote surface inspection device 2 that investigates the surface shape of the structure (Step 7). By observing the surface shape of the specimen 3 transferred to the recovered replica agent 5 with an optical microscope or the like, the surface shape of the reactor internal structure is observed in detail (Step 8).

以上説明した実施例3によれば、形成困難な密閉空間を形成することなく、遠隔で水中間環境にある原子炉炉内構造物の表面形状を転写したレプリカを得ることができ、原子炉炉内構造物の表面形状を詳細に観察できる遠隔表面調査装置及びその遠隔表面調査方法を提供できる。   According to the third embodiment described above, it is possible to obtain a replica in which the surface shape of the reactor internal structure in the water intermediate environment is transferred remotely without forming a sealed space that is difficult to form. It is possible to provide a remote surface inspection apparatus and a remote surface inspection method for observing the surface shape of the internal structure in detail.

以上説明したように、本発明によれば、被検体の表面形状のレプリカを採取する際の要求事項が、被検体表面を含む密閉空間の形成から、被検体表面との間の隙間形成へと変更される。これにより、被検体の三次元形状とレプリカ採取装置の寸法誤差に対する許容値が大幅に大きくなるため、レプリカ採取装置の適用範囲が大幅に拡大することができる。   As described above, according to the present invention, the requirement for collecting a replica of the surface shape of the subject is from the formation of a sealed space including the subject surface to the formation of a gap with the subject surface. Be changed. As a result, the tolerance for the three-dimensional shape of the subject and the dimensional error of the replica collection device is greatly increased, so that the application range of the replica collection device can be greatly expanded.

本発明は、人が直接近づけない温度、圧力、気中または水中の環境下において、レプリカを作成するための密閉空間を形成するのが困難な構造部の表面状態の調査に適用できる。特に、水中遠隔操作で適用することが可能であり、原子力発電所の原子炉炉内構造物に対する調査に最適である。   INDUSTRIAL APPLICABILITY The present invention can be applied to the investigation of the surface state of a structure part in which it is difficult to form a sealed space for creating a replica in a temperature, pressure, air or underwater environment that cannot be approached directly by humans. In particular, it can be applied by underwater remote operation, and is optimal for investigations into nuclear reactor nuclear reactor structures.

1:操作ポール 2:遠隔表面調査装置
3:被検体 4:隙間
5:レプリカ剤 6:隙間形成部材
7:レプリカ剤供給手段 8:装置移送手段
9:対面部材 10:レプリカ剤供給口
11:突起物 12:レプリカ剤供給管
13:レプリカ剤カートリッジ 14、18:水圧シリンダ
15、19:耐圧ホース 16:CCDカメラ
17:テレビモニタ 20、21:手押しポンプ
23:原子炉炉底部溶接部 25:支柱
26:支持台座 27:架台
1: Operation pole 2: Remote surface inspection device 3: Subject 4: Gap 5: Replica agent 6: Gap forming member 7: Replica agent supply means 8: Device transfer means 9: Facing member 10: Replica agent supply port 11: Projection Material 12: Replica agent supply pipe 13: Replica agent cartridge 14, 18: Hydraulic cylinder 15, 19: Pressure hose 16: CCD camera 17: Television monitor 20, 21: Hand pump 23: Reactor bottom weld 25: Strut 26 : Support base 27: Mounting base

Claims (6)

被検体の表面にレプリカ剤を供給し、前記被検体の表面形状を遠隔操作で転写し調査する遠隔表面調査装置において、
前記被検体の表面との間に隙間を形成する隙間形成部材と、前記隙間形成部材と前記被検体により形成される隙間にレプリカ剤を遠隔操作で供給するレプリカ剤供給手段と、前記隙間形成部材と前記レプリカ剤供給手段を前記被検体の表面近傍まで移送する装置移送手段とを備え、
前記隙間形成部材は、前記被検体に対面する面を有する対面部材と、前記隙間内の前記レプリカ剤を前記レプリカ剤の表面張力で保持できる位置に前記対面する面を離間させる離間部材と、を有することを特徴とする遠隔表面調査装置。
In a remote surface inspection device that supplies a replica agent to the surface of a subject and transcribes and investigates the surface shape of the subject by remote control.
Wherein the gap forming member forming a gap between the object surface, and the replica agent supply means for supplying remotely replica agent into the gap formed by the subject and the gap forming member, the gap forming member a device transfer means for transferring to the vicinity of the surface of the subject to the replica agent supply means and,
The gap forming member includes a facing member having a surface facing the subject, and a spacing member that separates the facing surface at a position where the replica agent in the gap can be held by a surface tension of the replica agent. A remote surface inspection device characterized by comprising:
前記レプリカ剤を前記隙間に供給するレプリカ剤供給口を前記対面する面に設けたことを特徴とする請求項に記載の遠隔表面調査装置。 The remote surface inspection apparatus according to claim 1 , wherein a replica agent supply port for supplying the replica agent to the gap is provided on the facing surface. 前記対面する面は、前記被検体の凹凸形状に類似した形状を有することを特徴とする請求項1叉は2に記載の遠隔表面調査装置。 Said facing surfaces, said claim 1 or, characterized in that it has a shape similar to the subject of the irregularities is remote surface inspection apparatus according to 2. 前記レプリカ剤は二液硬化型であることを特徴とする請求項1叉は2に記載の遠隔表面調査装置。 The remote surface inspection apparatus according to claim 1 or 2 , wherein the replica agent is a two-component curing type. 被検体の表面にレプリカ剤を供給し、前記被検体の表面形状を遠隔操作で転写し調査する遠隔表面調査方法において、
前記被検体に対面する面を有する対面部材を前記被検体に遠隔で対面させて前記被検体の表面との間に隙間を形成させ、その後前記レプリカ剤を前記隙間内に供給し、前記レプリカ剤を前記隙間内に所定時間保持して前記レプリカ剤を硬化させて前記被検体の表面形状を前記レプリカ剤に転写させ
前記隙間の形成は、前記対面する面を前記隙間内の前記レプリカ剤を前記レプリカ剤の表面張力で保持できる位置に離間させて行うことを特徴とする遠隔表面調査方法。
In a remote surface inspection method in which a replica agent is supplied to the surface of an object, and the surface shape of the object is transferred and investigated by remote operation.
A facing member having a surface facing the subject is remotely faced to the subject to form a gap with the surface of the subject, and then the replica agent is supplied into the gap, and the replica agent the surface shape of the subject by curing the replica agent is maintained for a predetermined time in the gap is transferred to the replica agent,
The gap is formed by separating the facing surfaces at a position where the replica agent in the gap can be held by the surface tension of the replica agent .
原子炉炉内構造物の水中にある被検体にレプリカ剤を供給し、前記被検体の表面形状を遠隔操作で転写し観察する原子炉炉内構造の水中遠隔表面調査方法において、
請求項1から請求項のいずれかの遠隔表面調査装置の前記隙間形成部材を水上からの遠隔操作で前記被検体まで誘導して前記被検体の表面との間に隙間を形成した状態で固定し、前記隙間内に前記レプリカ剤を供給し、前記レプリカ剤を前記隙間内に所定時間保持して前記レプリカ剤を硬化させて前記被検体の表面形状を前記レプリカ剤に転写させ、その後前記遠隔表面調査装置とともに前記被検体の表面形状を転写した前記レプリカ剤を回収し、前記回収した前記レプリカ剤に転写された前記被検体の表面形状を観察することを特徴とする原子炉炉内構造物の水中遠隔表面調査方法。
In a remote underwater surface inspection method for a reactor internal structure in which a replica agent is supplied to a subject underwater in a reactor internal structure, and the surface shape of the specimen is transferred and observed remotely.
Fixing claims 1 in a state that a gap is formed between the fourth aspect of any of the remote surface inspection apparatus wherein the gap forming member induces to the subject remotely from the water to the subject surface of the and, wherein said replica agent is supplied to the gap, it is transferred to the replica agent the gap within a predetermined time held to the surface shape of the subject by curing the replica agent to the replica agent, then the remote wherein together with the surface inspection apparatus by collecting the replica agent transferring the object surface shape, the recovered the transferred to the replica agent, characterized in that to observe the subject surface shape nuclear reactor internal structure Underwater remote surface inspection method.
JP2011091029A 2011-04-15 2011-04-15 Remote surface inspection apparatus, remote surface inspection method, and underwater remote surface inspection method for reactor internal structure Active JP5412461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091029A JP5412461B2 (en) 2011-04-15 2011-04-15 Remote surface inspection apparatus, remote surface inspection method, and underwater remote surface inspection method for reactor internal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091029A JP5412461B2 (en) 2011-04-15 2011-04-15 Remote surface inspection apparatus, remote surface inspection method, and underwater remote surface inspection method for reactor internal structure

Publications (2)

Publication Number Publication Date
JP2012225671A JP2012225671A (en) 2012-11-15
JP5412461B2 true JP5412461B2 (en) 2014-02-12

Family

ID=47276015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091029A Active JP5412461B2 (en) 2011-04-15 2011-04-15 Remote surface inspection apparatus, remote surface inspection method, and underwater remote surface inspection method for reactor internal structure

Country Status (1)

Country Link
JP (1) JP5412461B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361375B (en) * 2018-02-13 2019-07-09 中国核动力研究设计院 Visualization segmented seal cylinder for nuclear power plant's chemical effect research

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759152A (en) * 1980-09-26 1982-04-09 Mitsubishi Heavy Ind Ltd Apparatus for in-liquid sump (suzuki's universal micro-printing) method
JP3267442B2 (en) * 1994-05-31 2002-03-18 株式会社東芝 Shape measuring device for control rod drive mechanism housing installation part
JP3035159B2 (en) * 1994-07-11 2000-04-17 三菱重工業株式会社 Replica collection device
JP3587773B2 (en) * 2000-08-31 2004-11-10 株式会社日立製作所 Defect replica collection device
JP2003255074A (en) * 2002-03-05 2003-09-10 Hitachi Ltd Replica-sampling apparatus, surface-inspecting apparatus, and method for repairing inside of reactor
JP3890239B2 (en) * 2002-03-11 2007-03-07 株式会社東芝 Underwater remote surface inspection device in a nuclear reactor
JP5113012B2 (en) * 2008-10-15 2013-01-09 日立Geニュークリア・エナジー株式会社 Underwater remote surface inspection method for reactor components and its underwater remote surface inspection device
JP5119213B2 (en) * 2009-07-03 2013-01-16 日立Geニュークリア・エナジー株式会社 Method and apparatus for investigating metallographic structure in nuclear reactor

Also Published As

Publication number Publication date
JP2012225671A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP6243855B2 (en) Inspection apparatus and method for inspecting nuclear reactor parts using the inspection apparatus
US20200350087A1 (en) Apparatus and method to remotely inspect piping and piping attachment welds
US9739695B2 (en) Water jet peening compressive residual stress test method, test device, and test facility
JP5412461B2 (en) Remote surface inspection apparatus, remote surface inspection method, and underwater remote surface inspection method for reactor internal structure
JP2011089785A (en) Underwater remote investigation device, and underwater remote investigation method
TW200540879A (en) Method and apparatus for examining obstructed welds
JP2008256586A (en) Access device in riser pipe section work of jet pump, using method of access device, and access device rotation auxiliary device
CN105973732A (en) Temperature vibration fatigue test on-line loading device and method thereof
JP2006075844A (en) Device and method for repairing crack of structural member
Montesanti et al. Lessons from building laser-driven fusion ignition targets with the precision robotic assembly machine
JP2016024022A (en) Cutting device, cutting method, and disassembly system using cutting device
JPH02116747A (en) Inspector for nuclear reactor pressure vessel
JP2016001151A (en) Wall surface image acquisition apparatus
CN108344550A (en) A kind of gradual cracking destruction observation device of tunneling vibrational platform test structure model
Noguchi et al. Development of in-vessel pipe alignment tool for ITER blanket remote maintenance
JP6029466B2 (en) Abutment repair method and reactor vessel
KR20170101017A (en) Laser Peening Apparatus
Ye et al. An air-filled microgripper in microassembly system with coaxial alignment function
JP2013145202A (en) Repair work support method and repair work support device
KR20150022523A (en) Inserting device for in-pipe robot
JP2004330300A (en) Welding method and welding equipment
JP2013128965A (en) Underwater plate bending apparatus and method for underwater re-racking using the apparatus
JP6803745B2 (en) Inspection equipment
RU113057U1 (en) TECHNOLOGICAL CHANNEL OF THE NUCLEAR URANIUM-GRAPHITE REACTOR
Hatchressian et al. Development of an inspection robot under iter relevant vacuum and temperature conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Ref document number: 5412461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150