JP5411532B2 - Method for reducing liquid state holding temperature of liquid gallium and gallium composition having reduced liquid state holding temperature - Google Patents

Method for reducing liquid state holding temperature of liquid gallium and gallium composition having reduced liquid state holding temperature Download PDF

Info

Publication number
JP5411532B2
JP5411532B2 JP2009054345A JP2009054345A JP5411532B2 JP 5411532 B2 JP5411532 B2 JP 5411532B2 JP 2009054345 A JP2009054345 A JP 2009054345A JP 2009054345 A JP2009054345 A JP 2009054345A JP 5411532 B2 JP5411532 B2 JP 5411532B2
Authority
JP
Japan
Prior art keywords
gallium
liquid
liquid state
fine particles
holding temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009054345A
Other languages
Japanese (ja)
Other versions
JP2010070846A (en
Inventor
豊久 藤田
ドドビバ ジョルジ
賢緒 朴
玲飛 曹
亮嗣 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
University of Tokyo NUC
Original Assignee
Dowa Holdings Co Ltd
University of Tokyo NUC
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, University of Tokyo NUC, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2009054345A priority Critical patent/JP5411532B2/en
Publication of JP2010070846A publication Critical patent/JP2010070846A/en
Application granted granted Critical
Publication of JP5411532B2 publication Critical patent/JP5411532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液体ガリウムの液体状態保持温度の低下方法および液体状態保持温度を低下したガリウム組成物に関し、特に、室温以下の温度で液体状態を長時間保持するように液体ガリウムの液体状態保持温度を低下させる方法および室温以下の温度で液体状態を長時間保持するガリウム組成物に関する。   The present invention relates to a method for lowering the liquid state holding temperature of liquid gallium and a gallium composition having a lowered liquid state holding temperature, and in particular, the liquid state holding temperature of liquid gallium so as to hold the liquid state at a temperature below room temperature for a long time. And a gallium composition that maintains a liquid state for a long time at a temperature below room temperature.

従来、室温以下の温度で液体状態である液体金属として、水銀、アルカリ金属合金、ガリウム合金などが知られている。このような液体金属のうち、水銀やアルカリ金属合金は、電気伝導性および熱伝導性の良好な低融点の液体金属であり、様々なスイッチやセンサなどの導電性液体として使用されている。一方、ガリウム合金は、水銀やアルカリ金属合金と異なり、毒性や空気との反応性が低いため、さらに低い融点のガリウム合金を発見することにより、水銀やアルカリ金属合金の代替物として使用されることが期待されている。   Conventionally, mercury, alkali metal alloys, gallium alloys, and the like are known as liquid metals that are in a liquid state at a temperature of room temperature or lower. Among such liquid metals, mercury and alkali metal alloys are low melting point liquid metals having good electrical and thermal conductivity, and are used as conductive liquids for various switches and sensors. On the other hand, gallium alloys, unlike mercury and alkali metal alloys, have low toxicity and low reactivity with air. Therefore, gallium alloys should be used as a substitute for mercury and alkali metal alloys by discovering gallium alloys with lower melting points. Is expected.

このように水銀やアルカリ金属合金の代替物として使用可能なガリウム合金として、ガリウム−インジウム−錫−亜鉛合金(Ga−In−Sn−Zn合金)に銀(Ag)やアルミニウム(Al)を添加した合金(例えば、特許文献1参照)、Ga−In−Sn合金にAgを添加した合金(例えば、特許文献2参照)、Ga−In−Sn合金にAgやビスマス(Bi)を添加した合金(例えば、特許文献3参照)、Ga−In合金にZnや銅(Cu)を添加した合金(例えば、特許文献4参照)などの様々なガリウム合金が提案されている。   Thus, as a gallium alloy that can be used as a substitute for mercury or an alkali metal alloy, silver (Ag) or aluminum (Al) is added to a gallium-indium-tin-zinc alloy (Ga-In-Sn-Zn alloy). Alloys (for example, refer to Patent Document 1), alloys in which Ag is added to a Ga—In—Sn alloy (for example, refer to Patent Document 2), alloys in which Ag or bismuth (Bi) is added to a Ga—In—Sn alloy (for example, In addition, various gallium alloys such as an alloy in which Zn or copper (Cu) is added to a Ga—In alloy (see, for example, Patent Document 4) have been proposed.

特開昭50−101208号公報(第1頁)JP 50-101208 A (first page) 特開昭59−123736号公報(第1頁)JP 59-1223736 A (first page) 特開平8−510082号公報(第7〜8頁)JP-A-8-510082 (pages 7-8) 特開平11−501365号公報(第4〜8頁)JP-A-11-501365 (pages 4-8)

これらの特許文献1〜4において提案されたガリウム合金は、いずれも20〜30質量%のインジウムを含む合金であり、その他にガリウムに可溶な金属を添加することによって、室温以下の温度で液体状態を保持することができるようにしている。しかし、ガリウム以外の金属を多量に添加することなく、室温以下の温度で液体状態を長時間保持するように液体ガリウムの液体状態保持温度を低下させる方法は知られていない。   These gallium alloys proposed in Patent Documents 1 to 4 are all alloys containing 20 to 30% by mass of indium, and by adding a metal soluble in gallium to the liquid at a temperature below room temperature. The state can be maintained. However, there is no known method for reducing the liquid state holding temperature of liquid gallium so as to hold the liquid state for a long time at a temperature below room temperature without adding a large amount of metal other than gallium.

ガリウムは、融点が29.7℃、沸点が2204.0℃、固体密度が5.91g/cm、液体密度が6.09g/cmであり、広い温度範囲で液体状態を保持し、電気伝導率が高く、蒸気圧が低く、液体状態で水銀と同程度の流動特性を有するため、室温以下の温度で液体状態を長時間保持するように液体ガリウムの液体状態保持温度を低下させることができれば、水銀やアルカリ金属合金の代替物として使用することができるだけでなく、様々な用途に使用することが期待される。 Gallium has a melting point of 29.7 ° C., a boiling point of 2204.0 ° C., a solid density of 5.91 g / cm 3 , and a liquid density of 6.09 g / cm 3 , and maintains a liquid state in a wide temperature range. Because of its high conductivity, low vapor pressure, and flow characteristics similar to mercury in the liquid state, the liquid state holding temperature of liquid gallium can be lowered so as to hold the liquid state for a long time at a temperature below room temperature. If possible, it can be used as a substitute for mercury or an alkali metal alloy, and is expected to be used in various applications.

したがって、本発明は、ガリウム以外の金属を多量に添加することなく、室温以下の温度で液体状態を長時間保持するように液体ガリウムの液体状態保持温度を低下させる方法および室温以下の温度で液体状態を長時間保持するガリウム組成物を提供することを目的とする。   Therefore, the present invention relates to a method for reducing the liquid state holding temperature of liquid gallium so as to hold the liquid state at a temperature below room temperature for a long time without adding a large amount of metal other than gallium and the liquid at a temperature below room temperature. An object of the present invention is to provide a gallium composition that maintains the state for a long time.

本発明者らは、上記課題を解決するために鋭意研究した結果、液体ガリウムにシリカ微粒子を添加することにより、ガリウム以外の金属を多量に添加することなく、室温以下の温度で液体状態を長時間保持するように液体ガリウムの液体状態保持温度を低下させることができることを見出し、本発明を完成するに至った。   As a result of intensive research to solve the above-mentioned problems, the present inventors have added a silica fine particle to liquid gallium, thereby prolonging the liquid state at a temperature below room temperature without adding a large amount of metal other than gallium. It has been found that the liquid state holding temperature of liquid gallium can be lowered so as to hold for a time, and the present invention has been completed.

すなわち、本発明による液体ガリウムの液体状態保持温度の低下方法は、液体ガリウムにシリカ微粒子を添加することにより、液体ガリウムの液体状態保持温度を低下させることを特徴とする。この液体ガリウムの液体状態保持温度の低下方法において、シリカ微粒子を液体ガリウムに添加した後に分散させるのが好ましい。また、シリカ微粒子の平均粒径が100nm以下であるのが好ましく、50nm以下であるのがさらに好ましい。また、シリカ微粒子の添加量が0.1質量%以上であるのが好ましく、0.3〜2.0質量%であるのがさらに好ましい。   That is, the method for reducing the liquid state holding temperature of liquid gallium according to the present invention is characterized in that the liquid state holding temperature of liquid gallium is reduced by adding silica fine particles to liquid gallium. In this method of reducing the liquid state retention temperature of liquid gallium, it is preferable to disperse the silica fine particles after adding them to the liquid gallium. The average particle size of the silica fine particles is preferably 100 nm or less, and more preferably 50 nm or less. Moreover, it is preferable that the addition amount of a silica fine particle is 0.1 mass% or more, and it is further more preferable that it is 0.3-2.0 mass%.

また、本発明によるガリウム組成物は、ガリウムと、このガリウムに添加されたシリカ微粒子とからなることを特徴とする。このガリウム組成物において、シリカ微粒子がガリウムに分散しているのが好ましい。また、シリカ微粒子の平均粒径が100nm以下であるのが好ましく、50nm以下であるのがさらに好ましい。また、シリカ微粒子の添加量が0.1質量%以上であるのが好ましく、0.3〜2.0質量%であるのがさらに好ましい。   The gallium composition according to the present invention is characterized by comprising gallium and silica fine particles added to the gallium. In this gallium composition, the silica fine particles are preferably dispersed in gallium. The average particle size of the silica fine particles is preferably 100 nm or less, and more preferably 50 nm or less. Moreover, it is preferable that the addition amount of a silica fine particle is 0.1 mass% or more, and it is further more preferable that it is 0.3-2.0 mass%.

本発明によれば、ガリウム以外の金属を多量に添加することなく、室温以下の温度で液体状態を長時間保持するように液体ガリウムの液体状態保持温度を低下させる方法および室温以下の温度で液体状態を長時間保持するガリウム組成物を提供することができる。   According to the present invention, without adding a large amount of metal other than gallium, a method for reducing the liquid state holding temperature of liquid gallium so as to hold the liquid state at a temperature below room temperature for a long time and a liquid at a temperature below room temperature A gallium composition that maintains the state for a long time can be provided.

本発明による液体ガリウムの液体状態保持温度の低下方法の実施の形態では、液体ガリウムに平均粒径が100nm以下、好ましくは50nm以下、さらに好ましくは1〜20nm、最も好ましくは5〜10nmのシリカ微粒子(シリカのナノ粒子)を0.1質量%以上、好ましくは0.3〜2.0質量%、さらに好ましくは0.5〜1.5質量%、最も好ましくは0.5〜1.0質量%添加した後、超音波などによって分散させることにより、液体ガリウムの液体状態保持温度を低下させて、液体ガリウムの液体状態を3〜4℃で1時間以上保持させることができる。また、このように3〜4℃で液体状態に保持された液体ガリウムを0.1℃/秒程度の冷却速度で冷却すると、液体ガリウムの液体状態を0℃付近でも保持させることができる。なお、このように液体ガリウムにシリカ微粒子を添加することによって液体ガリウムの液体状態保持温度を低下させることができるのは、ガリウム粒子の表面でシリカ微粒子がブラウン運動を行って凝固を妨げているためであると考えられる。   In the embodiment of the method for reducing the liquid state holding temperature of liquid gallium according to the present invention, silica fine particles having an average particle diameter of 100 nm or less, preferably 50 nm or less, more preferably 1 to 20 nm, most preferably 5 to 10 nm. (Silica nanoparticles) in an amount of 0.1% by mass or more, preferably 0.3 to 2.0% by mass, more preferably 0.5 to 1.5% by mass, and most preferably 0.5 to 1.0% by mass. After the addition, the liquid gallium liquid state holding temperature is lowered by dispersing with ultrasonic waves or the like, and the liquid gallium liquid state can be held at 3 to 4 ° C. for 1 hour or longer. In addition, when the liquid gallium held in a liquid state at 3 to 4 ° C. is cooled at a cooling rate of about 0.1 ° C./second, the liquid state of the liquid gallium can be held even near 0 ° C. Note that the liquid state retention temperature of liquid gallium can be lowered by adding silica fine particles to liquid gallium in this way because the silica fine particles perform Brownian motion on the surface of the gallium particles to prevent solidification. It is thought that.

また、本発明によるガリウム組成物の実施の形態では、平均粒径が100nm以下、好ましくは50nm以下、さらに好ましくは1〜20nm、最も好ましくは5〜10nmのシリカ微粒子が0.1質量%以上、好ましくは0.3〜2.0質量%、さらに好ましくは0.5〜1.5質量%、最も好ましくは0.5〜1.0質量%になるようにガリウムに添加されて分散している。このガリウム組成物は、液体ガリウムの液体状態保持温度より低い温度で液体状態を保持することができ、3〜4℃でも1時間以上液体状態を保持することができる。このように3〜4℃で液体状態に保持されたガリウム組成物を0.1℃/秒程度の冷却速度で冷却すると、0℃付近でも液体状態を保持することができる。なお、本発明によるガリウム組成物中にシリカ微粒子が分散していることは、透過電子顕微鏡(TEM)によって確認した。   In the embodiment of the gallium composition according to the present invention, the silica fine particles having an average particle diameter of 100 nm or less, preferably 50 nm or less, more preferably 1 to 20 nm, and most preferably 5 to 10 nm are 0.1% by mass or more, Preferably 0.3 to 2.0% by mass, more preferably 0.5 to 1.5% by mass, most preferably 0.5 to 1.0% by mass added to gallium and dispersed. . This gallium composition can maintain a liquid state at a temperature lower than the liquid state retention temperature of liquid gallium, and can maintain a liquid state for 1 hour or more even at 3 to 4 ° C. Thus, when the gallium composition held in a liquid state at 3 to 4 ° C. is cooled at a cooling rate of about 0.1 ° C./second, the liquid state can be maintained even near 0 ° C. In addition, it was confirmed with a transmission electron microscope (TEM) that the silica fine particles were dispersed in the gallium composition according to the present invention.

以下、本発明による液体ガリウムの液体状態保持温度の低下方法の実施例について詳細に説明する。   Hereinafter, embodiments of the method for reducing the liquid state holding temperature of liquid gallium according to the present invention will be described in detail.

[実施例1〜3]
まず、平均粒径5nmのシリカ(SiO)微粒子を用意し、このシリカ微粒子をそれぞれ0.1質量%(実施例1)、0.5質量%(実施例2)および1.0質量%(実施例3)になるように液体ガリウム5gに添加した。次に、これらのシリカ微粒子を添加したそれぞれの液体ガリウムを超音波で1時間分散させた後、恒温室内に配置して80℃で1日保持し、その後、80℃で30分間攪拌した後に冷蔵庫内に配置して3〜4℃で保持した。このようにして保持されたそれぞれの液体ガリウムの状態を観察したところ、実施例1では3日、実施例2では120日、実施例3では290日経過まで液体状態を保持していた。
[Examples 1 to 3]
First, silica (SiO 2 ) fine particles having an average particle diameter of 5 nm were prepared, and the silica fine particles were 0.1% by mass (Example 1), 0.5% by mass (Example 2), and 1.0% by mass ( Example 3) was added to 5 g of liquid gallium. Next, after each liquid gallium to which these silica fine particles are added is dispersed with ultrasonic waves for 1 hour, it is placed in a thermostatic chamber and kept at 80 ° C. for 1 day, and then stirred at 80 ° C. for 30 minutes, and then the refrigerator. And placed at 3-4 ° C. When the state of each liquid gallium held in this way was observed, the liquid state was maintained until 3 days in Example 1, 120 days in Example 2, and 290 days in Example 3.

[実施例4〜6]
平均粒径5nmのシリカ微粒子の代わりに平均粒径10nmのシリカ微粒子をそれぞれ0.1質量%(実施例4)、0.5質量%(実施例5)および1.0質量%(実施例6)になるように液体ガリウム5gに添加した以外は、実施例1〜3と同様の処理を行った後に液体ガリウムの状態を観察したところ、実施例4では9日、実施例5では120日、実施例6では400日以上経過しても液体状態を保持していた。
[Examples 4 to 6]
Instead of silica fine particles having an average particle diameter of 5 nm, silica fine particles having an average particle diameter of 10 nm are 0.1% by mass (Example 4), 0.5% by mass (Example 5) and 1.0% by mass (Example 6), respectively. The liquid gallium was observed after the same treatment as in Examples 1 to 3 except that the liquid gallium was added to 5 g of liquid gallium so as to be 9) in Example 4, 120 days in Example 5, In Example 6, the liquid state was maintained even after 400 days had elapsed.

[実施例7〜9]
平均粒径5nmのシリカ微粒子の代わりに平均粒径50nmのシリカ微粒子をそれぞれ0.1質量%(実施例7)、0.5質量%(実施例8)および1.0質量%(実施例9)になるように液体ガリウム5gに添加した以外は、実施例1〜3と同様の処理を行った後に液体ガリウムの状態を観察したところ、実施例7では9日、実施例8では120日、実施例9では290日経過まで液体状態を保持していた。
[Examples 7 to 9]
Instead of silica fine particles having an average particle diameter of 5 nm, silica fine particles having an average particle diameter of 50 nm are 0.1% by mass (Example 7), 0.5% by mass (Example 8) and 1.0% by mass (Example 9), respectively. The liquid gallium was observed after the same treatment as in Examples 1 to 3 except that the liquid gallium was added to 5 g of liquid gallium so as to be 9) in Example 7, 120 days in Example 8, In Example 9, the liquid state was maintained until 290 days had elapsed.

[実施例10〜12]
平均粒径5nmのシリカ微粒子の代わりに平均粒径100nmのシリカ微粒子をそれぞれ0.1質量%(実施例10)、0.5質量%(実施例11)および1.0質量%(実施例12)になるように液体ガリウム5gに添加した以外は、実施例1〜3と同様の処理を行った後に液体ガリウムの状態を観察したところ、実施例10では7日、実施例11では2日、実施例12では1日経過しても液体状態を保持していた。
[Examples 10 to 12]
Instead of silica fine particles having an average particle diameter of 5 nm, silica fine particles having an average particle diameter of 100 nm are 0.1% by mass (Example 10), 0.5% by mass (Example 11) and 1.0% by mass (Example 12), respectively. The liquid gallium was observed after the same treatment as in Examples 1 to 3 except that the liquid gallium was added to 5 g of liquid gallium. In Example 12, the liquid state was maintained even after 1 day.

[比較例1]
シリカ微粒子を添加しなかった以外は、実施例1〜3と同様の処理を行った後に液体ガリウムの状態を観察したところ、1分間しか液体状態を保持することができず、凝固点は7.7℃であった。
[Comparative Example 1]
The liquid gallium state was observed after the same treatment as in Examples 1 to 3 except that the silica fine particles were not added, and the liquid state could be maintained for only 1 minute, and the freezing point was 7.7. ° C.

[比較例2]
シリカ微粒子の代わりにニッケル(Ni)微粒子を25質量%になるように液体ガリウム5gに添加した以外は、実施例1〜3と同様の処理を行った後に液体ガリウムの状態を観察したところ、10分間しか液体状態を保持することができず、凝固点は3.3℃であった。
[Comparative Example 2]
The state of liquid gallium was observed after the same treatment as in Examples 1 to 3 except that nickel (Ni) fine particles were added to 5 g of liquid gallium so as to be 25% by mass instead of silica fine particles. The liquid state could be maintained only for a minute, and the freezing point was 3.3 ° C.

[比較例3]
シリカ微粒子の代わりにニッケル(Fe)微粒子を25質量%になるように液体ガリウム5gに添加した以外は、実施例1〜3と同様の処理を行った後に液体ガリウムの状態を観察したところ、7分間しか液体状態を保持することができず、凝固点は3.3℃であった。
[Comparative Example 3]
The state of liquid gallium was observed after the same treatment as in Examples 1 to 3 except that nickel (Fe) fine particles were added to 5 g of liquid gallium so as to be 25% by mass instead of silica fine particles. The liquid state could be maintained only for a minute, and the freezing point was 3.3 ° C.

これらの実施例1〜12および比較例1〜3の結果を表1に示す。   The results of Examples 1 to 12 and Comparative Examples 1 to 3 are shown in Table 1.

Figure 0005411532
Figure 0005411532

また、実施例1〜12と同様の処理を行って3〜4℃で液体状態に保持されたそれぞれの液体ガリウムを0.1℃/秒程度の冷却速度で0℃付近までさらに冷却して、それぞれの液体ガリウムの状態を観察したところ、いずれも液体状態を保持していた。   Further, each liquid gallium held in a liquid state at 3 to 4 ° C. by performing the same treatment as in Examples 1 to 12 was further cooled to near 0 ° C. at a cooling rate of about 0.1 ° C./second, When the state of each liquid gallium was observed, all kept the liquid state.

これらの結果から、実施例1〜12のように平均粒径100nm以下のシリカ0.1質量%以上を液体ガリウムに添加することにより、液体ガリウムの液体状態保持温度を3〜4℃まで低下させることができ、さらに0℃付近まで低下させることができることわかった。   From these results, the liquid state retention temperature of liquid gallium is lowered to 3 to 4 ° C. by adding 0.1 mass% or more of silica having an average particle diameter of 100 nm or less to liquid gallium as in Examples 1 to 12. It was found that the temperature could be further lowered to around 0 ° C.

本発明による液体ガリウムの液体状態保持温度の低下方法によって、室温以下の温度で液体状態を長時間保持するように液体ガリウムの液体状態保持温度を低下させて、電気伝導性および熱伝導性の良好な液体状態保持温度が低い液体金属を得ることができ、水銀やアルカリ金属合金の代替物として、電気スイッチ、温度センサ、温度計、圧力センサ、圧力駆動スイッチのような様々なスイッチやセンサなどの導電性液体として使用可能な液体金属を得ることができる。   The method for reducing the liquid state holding temperature of liquid gallium according to the present invention reduces the liquid state holding temperature of liquid gallium so as to hold the liquid state for a long time at a temperature below room temperature, and has good electrical and thermal conductivity. As a substitute for mercury and alkali metal alloys, various switches and sensors such as electrical switches, temperature sensors, thermometers, pressure sensors, pressure-driven switches, etc. can be obtained. A liquid metal that can be used as a conductive liquid can be obtained.

Claims (8)

液体ガリウムに平均粒径100nm以下のシリカ微粒子を0.1〜2.0質量%添加することにより、液体ガリウムの液体状態保持温度を低下させることを特徴とする、液体ガリウムの液体状態保持温度の低下方法。 The liquid state holding temperature of liquid gallium is reduced by adding 0.1 to 2.0% by mass of silica fine particles having an average particle size of 100 nm or less to liquid gallium, thereby reducing the liquid state holding temperature of liquid gallium. Lowering method. 前記シリカ微粒子を前記液体ガリウムに添加した後に分散させることを特徴とする、請求項1に記載の液体ガリウムの液体状態保持温度の低下方法。 The method for lowering the liquid state holding temperature of liquid gallium according to claim 1, wherein the silica fine particles are dispersed after being added to the liquid gallium. 前記シリカ微粒子の平均粒径が50nm以下であることを特徴とする、請求項1または2に記載の液体ガリウムの液体状態保持温度の低下方法。 The method for lowering the liquid state holding temperature of liquid gallium according to claim 1 or 2, wherein the silica fine particles have an average particle size of 50 nm or less. 前記シリカ微粒子の添加量が0.3〜2.0質量%であることを特徴とする、請求項1乃至のいずれかに記載の液体ガリウムの液体状態保持温度の低下方法。 The method for lowering the liquid state holding temperature of liquid gallium according to any one of claims 1 to 3 , wherein the addition amount of the silica fine particles is 0.3 to 2.0 mass%. 液体ガリウムと、この液体ガリウムに添加された平均粒径100nm以下のシリカ微粒子とからなり、シリカ微粒子の添加量が0.1〜2.0質量%であることを特徴とする、ガリウム組成物。 A liquid gallium, the Ri Do from the liquid gallium is added to the average particle diameter 100nm or less of the silica fine particles, addition amount of the silica fine particles, wherein 0.1 to 2.0% by mass Rukoto, gallium composition object. 前記シリカ微粒子が前記液体ガリウムに分散していることを特徴とする、請求項に記載のガリウム組成物。 The gallium composition according to claim 5 , wherein the silica fine particles are dispersed in the liquid gallium. 前記シリカ微粒子の平均粒径が50nm以下であることを特徴とする、請求項またはに記載のガリウム組成物。 The gallium composition according to claim 5 or 6 , wherein an average particle diameter of the silica fine particles is 50 nm or less. 前記シリカ微粒子の添加量が0.3〜2.0質量%であることを特徴とする、請求項乃至のいずれかに記載のガリウム組成物。 The gallium composition according to any one of claims 5 to 7 , wherein an addition amount of the silica fine particles is 0.3 to 2.0 mass%.
JP2009054345A 2008-08-18 2009-03-09 Method for reducing liquid state holding temperature of liquid gallium and gallium composition having reduced liquid state holding temperature Active JP5411532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054345A JP5411532B2 (en) 2008-08-18 2009-03-09 Method for reducing liquid state holding temperature of liquid gallium and gallium composition having reduced liquid state holding temperature

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008209425 2008-08-18
JP2008209425 2008-08-18
JP2009054345A JP5411532B2 (en) 2008-08-18 2009-03-09 Method for reducing liquid state holding temperature of liquid gallium and gallium composition having reduced liquid state holding temperature

Publications (2)

Publication Number Publication Date
JP2010070846A JP2010070846A (en) 2010-04-02
JP5411532B2 true JP5411532B2 (en) 2014-02-12

Family

ID=42202898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054345A Active JP5411532B2 (en) 2008-08-18 2009-03-09 Method for reducing liquid state holding temperature of liquid gallium and gallium composition having reduced liquid state holding temperature

Country Status (1)

Country Link
JP (1) JP5411532B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979657B2 (en) * 2008-08-25 2012-07-18 株式会社タイホーコーザイ Temperature-sensitive magnetic particles, production method thereof, and temperature-sensitive magnetic fluid

Also Published As

Publication number Publication date
JP2010070846A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
Tan et al. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions
US8006741B2 (en) Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy
US7393463B2 (en) High temperature magnetorheological fluid compositions and devices
JP2007169765A (en) Copper alloy and its production method
JP2006265731A (en) Copper alloy
WO2004040042A1 (en) A nano icrystals copper material with super high strength and conductivity and method of preparing thereof
CN112941387B (en) Low-melting-point liquid metal and method for continuously reducing melting point of liquid metal from five elements to eight elements
US20230158568A1 (en) Method for preparing powder material and application thereof
CN111334682A (en) Nano porous metal powder and preparation method thereof
JP2009164595A (en) Method for manufacturing thermoelectric conversion element
CN105755345B (en) A kind of rareearth magnetic material with field controllable deformation and preparation method thereof
CN110331405B (en) Liquid metal and graphite composite heat dissipation film and preparation method thereof
Chen et al. Effect of rare earth Ce on the microstructure, physical properties and thermal stability of a new lead-free solder
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
JP4687662B2 (en) Iron-based rare earth alloy magnet
Sobhy et al. Effect of Graphene Oxide Nano-Sheets (GONSs) on thermal, microstructure and stress–strain characteristics of Sn-5 wt% Sb-1 wt% Ag solder alloy
JP2009094497A (en) p-TYPE THERMOELECTRIC MATERIAL AND ITS MANUFACTURING METHOD
JP5411532B2 (en) Method for reducing liquid state holding temperature of liquid gallium and gallium composition having reduced liquid state holding temperature
Vijayan et al. The effect of simultaneous refinement and modification by cerium on microstructure and mechanical properties of Al-8% Si alloy
Mi et al. Effect of solder and barrier layer elements on the thermoelectric properties of Bi0. 5Sb1. 5Te3
CN109722559B (en) Oxygen-alloying-containing copper-zirconium/hafnium-based amorphous alloy and preparation method thereof
JP2006253291A (en) Thermoelectric material
JP6749122B2 (en) Copper alloy plate with excellent strength and conductivity
JP2956696B1 (en) High strength and high conductivity copper alloy and its processing method
JP6294766B2 (en) Copper alloy material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

R150 Certificate of patent or registration of utility model

Ref document number: 5411532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250