JP5411496B2 - Method and apparatus for diluting a liquefied natural gas stream - Google Patents

Method and apparatus for diluting a liquefied natural gas stream Download PDF

Info

Publication number
JP5411496B2
JP5411496B2 JP2008502388A JP2008502388A JP5411496B2 JP 5411496 B2 JP5411496 B2 JP 5411496B2 JP 2008502388 A JP2008502388 A JP 2008502388A JP 2008502388 A JP2008502388 A JP 2008502388A JP 5411496 B2 JP5411496 B2 JP 5411496B2
Authority
JP
Japan
Prior art keywords
stream
heat exchanger
natural gas
outlet
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008502388A
Other languages
Japanese (ja)
Other versions
JP2008535961A (en
Inventor
パラマシウァム・センシル・クマル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2008535961A publication Critical patent/JP2008535961A/en
Application granted granted Critical
Publication of JP5411496B2 publication Critical patent/JP5411496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • F25J2200/92Details relating to the feed point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、液化天然ガス(LNG)流(液化天然ガスの流れ)から天然ガス液を抽出して、液化天然ガス流を希薄化する方法及び装置に関する。得られる希薄化液化天然ガスの流れは、例えば引続く再ガス化に利用する液体相及び/又は蒸気相であり得る。   The present invention relates to a method and apparatus for extracting a natural gas liquid from a liquefied natural gas (LNG) stream (liquefied natural gas stream) to dilute the liquefied natural gas stream. The resulting dilute liquefied natural gas stream can be, for example, a liquid phase and / or a vapor phase utilized for subsequent regasification.

本明細書及び特許請求の範囲では用語“希薄化(deriching)”は、富化又は高濃度化(enriching)の反対用語として使用し、メタンより高級の炭化水素化合物を除去する、即ち、“ストリッピングする”又は“一層希薄にする”意味を含むものと理解する。用語“天然ガス液”は、エタン、エチレン、プロパン、プロピレン、ブタン及びその異性体変形物、並びにブチレン及びその異性体変形物等のメタンより高級の炭化水素を含むものと理解する。   In the present specification and claims, the term “deriching” is used as an opposite term for enrichment or enrichment to remove hydrocarbon compounds higher than methane, ie, “stoichiometric”. It is understood to include the meaning of “rip” or “thinner”. The term “natural gas liquid” is understood to include higher hydrocarbons than methane, such as ethane, ethylene, propane, propylene, butane and isomer variants thereof, and butylene and isomer variants thereof.

発明の背景
液化天然ガスは、メタンの他、通常、エタン、プロパン、及びブタンの各種異性体形態等、更に高級の炭化水素化合物を含有する。これらの付加的化合物は、メタンより高い熱量を有する。液化天然ガスには、特に熱量に関して異なる規格が各種市場で要求されている。
BACKGROUND OF THE INVENTION Liquefied natural gas usually contains higher hydrocarbon compounds such as various isomeric forms of ethane, propane, and butane in addition to methane. These additional compounds have a higher calorie than methane. Different standards for liquefied natural gas are required in various markets, particularly regarding the amount of heat.

したがって、低熱量を要するパイプライン規格に合わせるには、再ガス化流を基準線網(grid)に送る前に、再ガス化設備において液化天然ガス流を希薄化する必要があり得る。
希薄化の一形成方法は、液化天然ガス流から天然ガス液を回収するというものである。
Thus, to meet pipeline standards requiring low heat, it may be necessary to dilute the liquefied natural gas stream in the regasification facility before sending the regasification stream to the grid.
One method of dilution is to recover a natural gas liquid from a liquefied natural gas stream.

米国特許第6,604,380号は、このような天然ガス液の回収方法を開示している。開示された方法では、液化天然ガス原料流が分割される。この特許の特に図2を参照すると、分割流の一部は熱交換器中で加熱され、これにより部分的に気化され、次いで原料分離器に供給される。原料分離器から天然ガス液の豊富な底部流が取出され、安定器を含む第二分離法の経路に案内される。分割流の他の一部は、この熱交換器を迂回した経路を通り、約−157℃(−250°F)という極めて低い温度で第二分離法に外部還流として供給される。メタン豊富な塔頂蒸気流は、原料分離器及び安定器から抜き出され、組合わされて熱交換器に向かい、ここで分割原料流の前記一部により(against)冷却される。   US Pat. No. 6,604,380 discloses such a natural gas liquid recovery method. In the disclosed method, the liquefied natural gas feed stream is split. With particular reference to FIG. 2 of this patent, a portion of the split stream is heated in a heat exchanger, thereby partially vaporized and then fed to the feed separator. A bottom stream rich in natural gas liquid is withdrawn from the feed separator and guided to the path of the second separation process including the stabilizer. The other part of the split flow passes through this heat exchanger path and is supplied as external reflux to the second separation process at a very low temperature of about -157 ° C (-250 ° F). The methane-rich overhead vapor stream is withdrawn from the feed separator and stabilizer and combined into a heat exchanger where it is cooled against the portion of the split feed stream.

WO 2004/109180は、プラント中でLNGを処理する方法を開示している。プラントでは、加圧LNGを熱源により気化させ、次いで膨張させて、開放出力サイクルで働かせる。
前述の方法は、必ずしも効率的ではないことが見出された。
米国特許第6,604,380号 WO 2004/109180 Joseph Cho等による論文“各種LNG供給源による刷新的ガス処理(Innovative gas processing with various LNG sources)”,LNG Journal January/February 2005,pp23−27
WO 2004/109180 discloses a method for treating LNG in a plant. In the plant, pressurized LNG is vaporized by a heat source and then expanded to work in an open power cycle.
It has been found that the above method is not always efficient.
US Pat. No. 6,604,380 WO 2004/109180 Article by Joseph Cho et al. "Innovative gas processing with various LNG sources", LNG Journal January / February 2005, pp 23-27.

発明の概要
本発明の目的は、前記問題を最小限にすることである。
本発明の更なる目的は、液化天然ガス流を希薄化する代わりの方法を提供することである。
SUMMARY OF THE INVENTION The object of the present invention is to minimize the above problems.
It is a further object of the present invention to provide an alternative method for diluting a liquefied natural gas stream.

前記目的又は他の目的の1つ以上は、本発明に従って、液化天然ガス流から天然ガス液を抽出して、液化天然ガス流を希薄化する方法において、少なくとも下記工程を含む該方法を提供することにより達成される。即ち、本方法は、
液化天然ガス流を含む原料流を第一熱交換器配列中で加熱して、中間原料流を形成する工程、
中間原料流を少なくとも第一部分と第二部分とに分割する工程、
第一部分を蒸留塔に通すと共に、該第一部分を第一供給点経由で供給する工程、
第二部分を第二熱交換器配列に通し、ここで第二部分を更に加熱し、次いで、加熱された第二部分を第二供給点経由で蒸留塔に供給する工程、
蒸留塔の下部から天然ガス液含有液体流を取出す工程、
蒸留塔の上部から塔頂蒸気流を取出す工程、
塔頂蒸気流を第二熱交換器配列に通し、ここで塔頂蒸気流を、中間原料流の第二部分により冷却して、中間希薄化流を形成し、次いで、該中間希薄化流の少なくとも一部を第一熱交換器配列に通して更に原料流により冷却し、希薄化天然ガスの生成物流を形成する工程、
を含む。ここで第二熱交換器配列での塔頂蒸気流の冷却中、該蒸気流は部分的に凝縮されて、中間凝縮物及び中間蒸気を形成し、該中間凝縮物の少なくとも一部は、第三供給点経由で蒸留塔に通され、該中間蒸気は第一熱交換器配列に通される。
One or more of the above objects or other objects provide a method according to the present invention for extracting a natural gas liquid from a liquefied natural gas stream to dilute the liquefied natural gas stream, comprising at least the following steps: Is achieved. That is, this method
Heating a feed stream comprising a liquefied natural gas stream in a first heat exchanger array to form an intermediate feed stream;
Dividing the intermediate feed stream into at least a first portion and a second portion;
Passing the first portion through a distillation column and supplying the first portion via a first feed point;
Passing the second part through a second heat exchanger arrangement, wherein the second part is further heated, and then the heated second part is fed to the distillation column via a second feed point;
Removing the natural gas liquid-containing liquid stream from the bottom of the distillation column;
A process of taking the top vapor stream from the top of the distillation tower,
The overhead vapor stream is passed through a second heat exchanger arrangement, where the overhead vapor stream is cooled by a second portion of the intermediate feed stream to form an intermediate dilute stream, and then the intermediate dilute stream Passing at least a portion through the first heat exchanger arrangement and further cooling with the raw material stream to form a dilute natural gas product stream;
including. Here, during cooling of the overhead vapor stream in the second heat exchanger arrangement, the vapor stream is partially condensed to form an intermediate condensate and an intermediate vapor, at least a portion of the intermediate condensate being Via three feed points, it is passed to the distillation column and the intermediate steam is passed to the first heat exchanger arrangement.

本発明の利点は、蒸留塔での温度分布の選択に一層の柔軟性を与え、これにより蒸留塔におけるプロセス条件の効率的な制御が容易になることである。   An advantage of the present invention is that it gives more flexibility in the choice of temperature distribution in the distillation column, thereby facilitating efficient control of process conditions in the distillation column.

更に、還流流の発生に中間希薄化流を使用すると、天然ガス液の回収率が著しく向上することが見出された。蒸留塔からの塔頂蒸気流は、第二熱交換器での冷却中、部分的に凝縮され、こうして中間希薄化流は中間凝縮物及び中間蒸気を含有し、中間凝縮物は第三供給点経由で蒸留塔に通すことができ、また中間蒸気は第一熱交換器配列に通すことができる。   Furthermore, it has been found that the use of an intermediate dilute stream to generate a reflux stream significantly improves natural gas liquid recovery. The overhead vapor stream from the distillation column is partially condensed during cooling in the second heat exchanger, so that the intermediate dilute stream contains intermediate condensate and intermediate steam, the intermediate condensate being the third feed point. Can be passed through to the distillation column, and the intermediate steam can be passed through the first heat exchanger arrangement.

更なる利点は、中間凝縮物が天然ガス液を含む重質成分に富むことである。この凝縮物は、第一熱交換器配列に供給する代わりに、蒸留塔に内部還流として再供給される。こうして、天然ガス液の回収率は著しく改良される。   A further advantage is that the intermediate condensate is rich in heavy components including natural gas liquids. This condensate is re-supplied to the distillation column as internal reflux instead of being supplied to the first heat exchanger arrangement. Thus, the recovery rate of natural gas liquid is significantly improved.

第一及び第二熱交換器配列において相対的冷却を選択することにより、凝縮物の組成を注文通り作製することが可能な中間希薄化流での中間温度が選択できる。   By selecting relative cooling in the first and second heat exchanger arrangements, an intermediate temperature can be selected in the intermediate dilute stream where the condensate composition can be made to order.

本発明の他の利点は、蒸留塔の上流及び下流でそれぞれ加熱、冷却が少なくとも2段階で行なわれることである。こうして、少なくとも2段階の間で得られる中間流は、それぞれ充分に加熱された流れ及び冷却された流れの他に、本方法を使用するのに有効なことである。   Another advantage of the present invention is that heating and cooling are respectively performed in at least two stages upstream and downstream of the distillation column. Thus, the intermediate stream obtained between at least two stages is effective for using the present method in addition to the fully heated and cooled streams, respectively.

中間原料流を利用する一方法は、元の原料流ほど低温ではないが、第二供給点経由で蒸留塔に供給される部分よりは低温の外部還流として使用することである。   One method of utilizing an intermediate feed stream is to use it as an external reflux that is not as cold as the original feed stream but is cooler than the portion fed to the distillation column via the second feed point.

液化天然ガス(約−157℃付近又は−140℃未満)ほどの低温を有する外部還流流は、一般に液化天然ガスから天然ガス液成分を効果的に分離するには必要としないことが見出された。本発明の利点は、外部還流の温度を原料流よりも高く、例えば−140℃よりも高く選択できることである。その結果、蒸留塔又は再沸器(もし備えていれば)のような装置を小型化でき、再沸器中で消費される出力が少なくて済むことである。こうして、原料流での高品質の冷たさは、希薄化天然ガスの再凝縮に充分、利用可能となる。   It has been found that an external reflux stream having a temperature as low as liquefied natural gas (around -157 ° C or below -140 ° C) is generally not required to effectively separate natural gas liquid components from liquefied natural gas. It was. An advantage of the present invention is that the temperature of the external reflux can be selected higher than the feed stream, for example higher than -140 ° C. As a result, devices such as distillation columns or reboilers (if equipped) can be miniaturized and less power is consumed in the reboiler. Thus, high quality coldness in the feed stream is sufficient for recondensing dilute natural gas.

第一熱交換器配列に適用される熱量及び原料流の圧力によっては、中間原料流は、完全に液体であり得るし、或いは部分的に気化し得る。   Depending on the amount of heat applied to the first heat exchanger arrangement and the pressure of the feed stream, the intermediate feed stream may be completely liquid or partially vaporized.

第一熱交換器配列での原料流の加熱工程が原料流の部分的な気化工程を含み、これにより中間原料流が液体中間原料フラクションと蒸気状中間原料フラクションとの混合物を含む場合、少なくとも液体中間原料フラクションは、少なくとも前記第一部分と第二部分とに分割することが有利である。蒸気状中間原料フラクションは、第二加熱後の温度に比べて比較的低温なので、天然ガス液から既に比較的希薄(lean)になっていて、更に蒸留する必要はない。このフラクションは、最終生成物流中に又は最終生成物流と混合できる。   When the feed stream heating step in the first heat exchanger arrangement includes a partial vaporization step of the feed stream, whereby the intermediate feed stream comprises a mixture of a liquid intermediate feed fraction and a vaporous intermediate feed fraction, at least liquid The intermediate raw material fraction is advantageously divided into at least the first part and the second part. Since the vaporous intermediate feed fraction is relatively cool compared to the temperature after the second heating, it is already relatively lean from the natural gas liquid and does not require further distillation. This fraction can be mixed in or with the final product stream.

更なる局面では本発明は、本発明方法で得られる希薄化天然ガス流、及び本発明を実施するのに好適な装置を提供する。   In a further aspect, the present invention provides a dilute natural gas stream obtained by the method of the present invention and an apparatus suitable for carrying out the present invention.

装置についての好ましい実施態様は、以下に述べる方法の好ましい実施態様及び/又は実施態様の詳細な説明から誘導できる。
以上説明した本発明の特徴及びその他の特徴を、実施例により、また添付の非限定的な図面を参照して更に説明する。
Preferred embodiments for the apparatus can be derived from the preferred embodiments and / or detailed description of the embodiments described below.
The features of the invention described above and other features will be further described by way of example and with reference to the accompanying non-limiting drawings.

図面の簡単な説明
添付図面において、図1及び図2は、本発明の全ての特徴は含まないが、説明目的のために取り入れた系統工程及び装置の概略を示す。
図3は、本発明の系統工程及び装置の概略を示す。
BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings, FIGS. 1 and 2 show an overview of system processes and apparatus incorporated for illustrative purposes, but not all features of the present invention.
FIG. 3 shows an outline of the system process and apparatus of the present invention.

図4は、図2の系統工程を図3の系統工程と組合わせた本発明の好ましい実施態様の概略を示す。
この説明目的のため、同様な符号は同様な部品に対応する。ラインに対応する符号もこれらのラインに流れるそれぞれの流れを言うのに用いた。
FIG. 4 outlines a preferred embodiment of the present invention combining the system steps of FIG. 2 with the system steps of FIG.
For purposes of this description, like numerals correspond to like parts. The symbols corresponding to the lines are also used to refer to the respective flows that flow through these lines.

図面の詳細な説明
図1は、液化天然ガス流から天然ガス液を抽出して、液化天然ガス流を希薄化する装置の概略図である。原料ライン1は、液化天然ガスの供給源に接続可能である。任意のポンプ3は、原料ライン1中に備えられ、その高圧出口はライン2を介して第一熱交換器配列5と流通可能である。
DETAILED DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an apparatus for extracting a natural gas liquid from a liquefied natural gas stream and diluting the liquefied natural gas stream. The raw material line 1 can be connected to a supply source of liquefied natural gas. An optional pump 3 is provided in the raw material line 1 and its high-pressure outlet is able to communicate with the first heat exchanger array 5 via the line 2.

中間原料ライン7は、分配器14を備えた第一熱交換器配列5の出口6と流動可能に接続している。分配器14は、ライン17、19に接続した2つの出口を有する。所望ならば、分配器14は3つ以上の出口を有する。ライン17は、蒸留塔21の上部に設けた、任意の第一制御バルブ23と、第一供給点25とを介して蒸留塔21に接続している。他のライン19も第二熱交換器配列26、ライン20を介する他は、蒸留塔21に接続している。ライン20は、第二制御バルブ27及び第二供給点29を任意に備えることができる。この方法では、第一熱交換器配列5の第一出口6は、第二熱交換器配列26と流通可能である。ライン17は、第二熱交換器配列26を迂回した経路を通る。蒸留塔21の第二供給点29は、第一供給点25よりも重力的に低く配置することが好ましい。   The intermediate raw material line 7 is fluidly connected to the outlet 6 of the first heat exchanger array 5 provided with the distributor 14. The distributor 14 has two outlets connected to the lines 17 and 19. If desired, the distributor 14 has more than two outlets. The line 17 is connected to the distillation column 21 via an optional first control valve 23 and a first supply point 25 provided at the upper portion of the distillation column 21. The other line 19 is connected to the distillation column 21 except for the second heat exchanger array 26 and the other via the line 20. The line 20 can optionally include a second control valve 27 and a second supply point 29. In this manner, the first outlet 6 of the first heat exchanger array 5 can be circulated with the second heat exchanger array 26. The line 17 passes through a path that bypasses the second heat exchanger array 26. The second supply point 29 of the distillation column 21 is preferably arranged to be lower than the first supply point 25 in a gravitational manner.

蒸留塔21は、該塔21から液体流35を取出すための排出口31を備えた下部を有する。任意の再沸器33は、排出口31に接続するライン35中に設けてよい。再沸戻りライン37は、再沸器33から蒸留塔21の下部にフィードバックさせる。任意の再沸器33は、図示の外部配列の代わりに、蒸留塔21と一体化してよい。ライン38は、ライン35に接続するか、或いは天然ガス液排出用の任意の再沸器33に接続している。   The distillation column 21 has a lower part with a discharge port 31 for taking out the liquid stream 35 from the column 21. An optional reboiler 33 may be provided in the line 35 connected to the outlet 31. The reboiling return line 37 feeds back from the reboiler 33 to the lower part of the distillation column 21. The optional reboiler 33 may be integrated with the distillation column 21 instead of the external arrangement shown. Line 38 is connected to line 35 or to an optional reboiler 33 for natural gas liquid discharge.

蒸留塔21は、塔頂蒸気出口39を備えた上部も有する。塔頂蒸気出口39は、第二熱交換器配列26を介して第一熱交換器配列5と流通可能である。ライン40は、塔頂蒸気出口39と第二熱交換器配列26間に伸びて、ライン48に接続し、またライン48は、第二熱交換器配列26と第一熱交換器配列5間に伸びて、第一熱交換器配列5の第二出口41を介して第一熱交換器配列5の下流のライン55に接続している。   The distillation column 21 also has an upper part with a top vapor outlet 39. The tower top steam outlet 39 can communicate with the first heat exchanger array 5 via the second heat exchanger array 26. Line 40 extends between overhead vapor outlet 39 and second heat exchanger array 26 and connects to line 48, and line 48 is between second heat exchanger array 26 and first heat exchanger array 5. It extends and is connected via a second outlet 41 of the first heat exchanger array 5 to a line 55 downstream of the first heat exchanger array 5.

ライン55には、地域の規格に従って、或る圧力で希薄化液化天然ガスを製造する圧力を上げるため、ライン67に排出する任意のポンプ65を設けることができる。ライン67は、Joseph Cho等による表題“各種LNG供給源による刷新的ガス処理(Innovative gas processing with various LNG sources)”,LNG Journal January/February 2005,pp23−27(その内容はここに援用する)から公知のシステムを含む、いかなる種類の再ガス化システムにも接続できる。   Line 55 may be provided with an optional pump 65 that discharges to line 67 to increase the pressure at which the diluted liquefied natural gas is produced at a certain pressure in accordance with local standards. Line 67 is the title “Innovative gas processing with various LNG sources” by Joseph Cho et al., LNG Journal January / February, 2005, pp23-27, the contents of which are incorporated by reference from 2005 to pp23-27. It can be connected to any kind of regasification system, including known systems.

前記装置は、液化天然ガス流から天然ガス液を抽出して、液化天然ガス流を希薄化することができる。ライン1、又は第一熱交換器配列5上流のポンプ3の高圧出口を第一熱交換器配列5下流のライン55と流動可能に接続するため、任意の迂回ライン59を備えることができる。任意の迂回ライン59は、制御バルブ61を備えることができる。迂回ライン59により、希薄化用配列は迂回できるし、また天然ガス液の抽出も回避できる。   The apparatus can extract a natural gas liquid from a liquefied natural gas stream to dilute the liquefied natural gas stream. An optional bypass line 59 may be provided to fluidly connect the high pressure outlet of the pump 3 upstream of the line 1 or the first heat exchanger array 5 with the line 55 downstream of the first heat exchanger array 5. The optional bypass line 59 can include a control valve 61. By the bypass line 59, the diluting array can be bypassed and the extraction of the natural gas liquid can be avoided.

図1の装置は、操作時、次のように働く。液化天然ガス流を含有する原料流は原料ライン1経由で供給され、第一熱交換器配列5において、ライン48内の中間希薄化流により加熱されて、中間原料流7を形成する。原料流1を第一熱交換器配列5に供給する前に、原料流は加圧するか、或いは任意のポンプ3を用いて、その圧力を上げることができる。これは、特に液化天然ガスを常圧又はほぼ常圧で供給する場合に有用である。   The apparatus of FIG. 1 works as follows during operation. A feed stream containing a liquefied natural gas stream is fed via feed line 1 and heated in the first heat exchanger array 5 by the intermediate dilute stream in line 48 to form an intermediate feed stream 7. Prior to feeding the feed stream 1 to the first heat exchanger array 5, the feed stream can be pressurized or its pressure can be increased using an optional pump 3. This is particularly useful when liquefied natural gas is supplied at or near normal pressure.

中間原料流7は、分配器14中で少なくとも第一部分17と第二部分19とに分割される。第一部分17は蒸留塔21に通され、第一供給点25経由で塔中に供給される。圧力及び温度は制御バルブ23を利用して制御できる。   The intermediate feed stream 7 is divided into at least a first part 17 and a second part 19 in the distributor 14. The first portion 17 is passed through the distillation column 21 and fed into the column via the first feed point 25. The pressure and temperature can be controlled using the control valve 23.

中間原料流7の第二部分19は、第二熱交換器配列26に通され、ここで第二部分はライン40中の塔頂流により更に加熱される。次いで、こうして更に加熱された流れは、ライン20及び第二供給点29経由で蒸留塔21に供給される。圧力は制御バルブ27を用いて制御できる。   The second portion 19 of the intermediate feed stream 7 is passed through a second heat exchanger arrangement 26 where the second portion is further heated by the overhead stream in line 40. The further heated stream is then fed to the distillation column 21 via the line 20 and the second feed point 29. The pressure can be controlled using the control valve 27.

第二熱交換器配列26での更なる加熱中、中間原料流7の第二部分19は、少なくとも部分的に気化する。一般に少なくとも60%のモル分率まで気化させることを推奨する。   During further heating in the second heat exchanger arrangement 26, the second portion 19 of the intermediate feed stream 7 is at least partially vaporized. It is generally recommended to evaporate to a molar fraction of at least 60%.

第一部分17の温度を第二部分19の温度よりも低くできる場合、第一部分17は、この蒸留プロセスで外部還流流として作用する。第一部分17は、第二部分19及び任意の再沸器33で発生した蒸気から天然ガス液をスクラビングするのを助ける。優先的に第一供給点25を第二供給点29よりも重力的に高く配置すると、スクラビングは容易になる。   If the temperature of the first part 17 can be lower than the temperature of the second part 19, the first part 17 acts as an external reflux stream in this distillation process. The first portion 17 helps to scrub the natural gas liquid from the vapor generated in the second portion 19 and optional reboiler 33. If the first supply point 25 is preferentially positioned higher than the second supply point 29, scrubbing is facilitated.

次いで天然ガス液含有液体流は、排出口31経由で蒸留塔21の下部からライン35中に取出される。任意に、液体流は加熱され、部分的にライン37経由で蒸留塔21の下部にフィードバックされて、比較的軽質の分子を含む若干の蒸気を形成する。残りは、天然ガス液としてライン38に排出される。   The natural gas liquid-containing liquid stream is then withdrawn into the line 35 from the lower part of the distillation column 21 via the outlet 31. Optionally, the liquid stream is heated and partially fed back to the bottom of the distillation column 21 via line 37 to form some vapor containing relatively light molecules. The remainder is discharged to line 38 as natural gas liquid.

蒸留塔21の他の側では、該塔21の上部から塔頂蒸気流40が取出される。塔頂蒸気流40は、主としてメタンを含み、時には例えばエタン、及びプロパンの残部のような他の成分も含む希薄化流である。   On the other side of the distillation column 21, a top vapor stream 40 is taken from the top of the column 21. The overhead vapor stream 40 is a dilute stream that contains primarily methane and sometimes other components such as ethane and the remainder of the propane.

塔頂蒸気流40は、第二熱交換器配列26に通され、ここで塔頂蒸気流は、中間原料流により冷却されて、中間希薄化流48を形成し、次いで、該中間希薄化流の少なくとも一部は第一熱交換器配列5に通されて、更に原料流1により冷却され、希薄化天然ガスの生成物流55を形成する。生成物流55は充分に再凝縮できる。   The overhead vapor stream 40 is passed to the second heat exchanger arrangement 26, where the overhead vapor stream is cooled by the intermediate feed stream to form an intermediate dilute stream 48, which is then the intermediate diluted stream. At least a portion is passed through the first heat exchanger array 5 and further cooled by the feed stream 1 to form a dilute natural gas product stream 55. The product stream 55 can be fully recondensed.

任意に生成物流55は、ライン59経由で原料流2から抜き出された迂回流と組合わされる。次いで、ライン55中の生成物流の圧力は任意のポンプ65により所望の圧力レベルに上げることができる。ライン55中の流れは、一般に充分に凝縮し易いので、ポンプ65は一般に更にエネルギー効率的である。生成物流は、ライン67から排出され、その後、例えば生成物流を加熱によりガス状流に転化する再ガス化のように、更に処理できる(図示せず)。幾つかの可能な再ガス化方法は、前記LNG Journal January/February 2005の論文に記載されている。   Optionally, product stream 55 is combined with a detour stream extracted from feed stream 2 via line 59. The product stream pressure in line 55 can then be raised to a desired pressure level by optional pump 65. Pump 65 is generally more energy efficient because the flow in line 55 is generally sufficiently susceptible to condensation. The product stream is discharged from line 67 and can then be further processed (not shown), for example regasification, which converts the product stream to a gaseous stream by heating. Some possible regasification methods are described in the LNG Journal January / February 2005 article.

厳密には必要としないが、第一熱交換器配列5の出口41から出るライン55内の生成物流を充分に再凝縮するばかりでなく、満足な程度まで過冷却することを保証するため、圧力に充分な余裕を生じ得るように、ライン40には任意の圧縮機(図示せず)を設けることができる。圧縮機の設置は、原料流2の相当量をライン59経由で迂回させる場合は、余り重要ではない。この場合、第一熱交換器配列5を出る生成物流は直接、熱交換を受けるからである。   Although not strictly necessary, in order to ensure that the product stream in the line 55 leaving the outlet 41 of the first heat exchanger arrangement 5 is not only sufficiently recondensed, but is also supercooled to a satisfactory level, The line 40 can be provided with an optional compressor (not shown) so that a sufficient margin can be provided. The installation of the compressor is not very important when a substantial amount of the feed stream 2 is diverted via the line 59. This is because the product stream leaving the first heat exchanger array 5 is directly subjected to heat exchange.

2つの熱交換器配列5、26を有する利点は、中間流7及び/又は48を本方法に使用するのに役立つことである。図1の実施態様では、中間流7の一部(第一部分17)は、原料流1ほど低温ではないが、第二供給点29経由で蒸留塔21に供給される部分(第二部分19)よりは低温の外部還流として利用される。第一熱交換器配列5対第二熱交換器配列26での加熱容量の適切なバランスにより、米国特許第6,604,380号に記載の方法で可能なものに比べて、還流流17及び更に加熱された原料流20に対する温度制御の向上が達成される。このような柔軟性の向上により、蒸留塔21におけるプロセス条件の効率的な制御が可能となり、選択された天然ガス液成分についての塔頂流40と塔底流38との所望の分離が達成される。   The advantage of having two heat exchanger arrangements 5, 26 is that the intermediate streams 7 and / or 48 are useful for use in the present method. In the embodiment of FIG. 1, a part of the intermediate stream 7 (first part 17) is not as cold as the feed stream 1 but is fed to the distillation column 21 via the second feed point 29 (second part 19). It is used as a lower temperature external reflux. With an appropriate balance of heating capacity in the first heat exchanger array 5 vs. the second heat exchanger array 26, the reflux stream 17 and the one possible with the method described in US Pat. No. 6,604,380 Furthermore, improved temperature control for the heated feed stream 20 is achieved. Such increased flexibility allows efficient control of process conditions in the distillation column 21 and achieves the desired separation of the top stream 40 and bottom stream 38 for selected natural gas liquid components. .

図2は、前述の図1について図示し、説明した実施態様を基本とし、第一熱交換器配列5の第一出口6と分配器14との接続部に配置した気体/液体分離器9(特許請求の範囲では“第二気体/液体分離器”とした)を示す。この気体/液体分離器は、ここでは原料分離容器9の形態で設けた。第一熱交換器配列5の第一出口6は、原料分離容器9と接続している。原料分離容器9は、底部出口11及び頂部出口13を有する。底部出口11はライン15を介して分配器14に接続している。頂部出口13は、第一熱交換器配列5上流のライン15を介してライン48に流動可能に接続している。   FIG. 2 shows a gas / liquid separator 9 (based on the embodiment shown and described above for FIG. 1 and arranged at the connection between the first outlet 6 of the first heat exchanger arrangement 5 and the distributor 14. In the claims, "second gas / liquid separator" is indicated. This gas / liquid separator is provided here in the form of a raw material separation vessel 9. The first outlet 6 of the first heat exchanger array 5 is connected to the raw material separation container 9. The raw material separation container 9 has a bottom outlet 11 and a top outlet 13. The bottom outlet 11 is connected to a distributor 14 via a line 15. The top outlet 13 is fluidly connected to a line 48 via a line 15 upstream of the first heat exchanger array 5.

図2の実施態様は次のように働く。原料流が第一熱交換器配列5中で加熱されると、原料流は部分的に気化できる。頂部出口13から蒸気が抜き出され、ライン48中の中間希薄化流と組合わされる。この組合わせ流は、次に原料流2により第一熱交換器配列5中で共に更に冷却、再凝縮される。   The embodiment of FIG. 2 works as follows. When the feed stream is heated in the first heat exchanger array 5, the feed stream can be partially vaporized. Vapor is withdrawn from the top outlet 13 and combined with the intermediate dilute stream in line 48. This combined stream is then further cooled and recondensed together in the first heat exchanger array 5 by the feed stream 2.

温度はなお比較的低いので、蒸気は主としてメタンのような一層稀薄な成分を含む。これより高い熱量を有する、プロパンのような成分は、この液体相中にエタン及びメタンと一緒に、なお本質的に充分、存在する。気化したフラクションは、更に蒸留する必要はなく、ライン48内の蒸留流と混合して、第一熱交換器配列5中で再凝縮できる。   Since the temperature is still relatively low, the vapor mainly contains more dilute components such as methane. Components such as propane, which have a higher calorific value, are still essentially sufficient, together with ethane and methane, in this liquid phase. The vaporized fraction does not need to be further distilled and can be mixed with the distillation stream in line 48 and recondensed in the first heat exchanger arrangement 5.

蒸気のモル分率は、1〜90%の範囲であり得る。蒸気のモル分率が高いほど、抽出装置下流での物質荷重(mass load)は低い。この点、通常の液化天然ガスの組成は、蒸気相中で50モル%以上であることが好ましい。一方、蒸気のモル分率が高いほど、分離容器での物質分離は、蒸留塔21の場合ほど高くないので、天然ガス液の回収率は低くなる。この点、蒸気のモル分率は80%以下が好ましい。   The mole fraction of steam can range from 1 to 90%. The higher the steam mole fraction, the lower the mass load downstream of the extractor. In this respect, the composition of the normal liquefied natural gas is preferably 50 mol% or more in the vapor phase. On the other hand, the higher the mole fraction of the vapor, the lower the natural gas liquid recovery rate because the material separation in the separation vessel is not as high as in the case of the distillation column 21. In this respect, the mole fraction of steam is preferably 80% or less.

分離器9の底部出口11から抜き出される液体は、分配器14に案内され、ここで液体の一部はライン17経由で蒸留塔21に外部還流として送られ、これにより第二熱交換器配列26を迂回する。   The liquid withdrawn from the bottom outlet 11 of the separator 9 is guided to the distributor 14, where a part of the liquid is sent as an external reflux to the distillation column 21 via line 17, whereby a second heat exchanger arrangement. Detour 26.

この実施態様の利点は、外部還流が完全に液体なので、スクラビング媒体として充分、効果的になり得ることである。外部還流の温度は、第二供給点29経由で蒸留塔に供給される部分の温度よりも低いが、元の原料流1の温度ほど低くない。温度は、第一熱交換器配列5で熱交換量を選択することにより、任意に制御バルブ23での膨張量を制御する共同(co)依存性中で制御できる。   The advantage of this embodiment is that the external reflux can be fully effective as a scrubbing medium because it is completely liquid. The temperature of the external reflux is lower than the temperature of the portion fed to the distillation column via the second feed point 29, but not as low as the temperature of the original feed stream 1. The temperature can be controlled in a joint (co) dependency that arbitrarily controls the amount of expansion at the control valve 23 by selecting the amount of heat exchange in the first heat exchanger array 5.

任意の制御バルブ23、27の利点は、蒸留塔21が原料分離器9よりも低圧で操作され、これにより塔21での天然ガス液成分の分離効率が向上することである。   An advantage of the optional control valves 23, 27 is that the distillation column 21 is operated at a lower pressure than the raw material separator 9, thereby improving the separation efficiency of the natural gas liquid component in the column 21.

更に図2を参照すると、蒸留塔21の塔頂蒸気出口39と第二熱交換器配列26との間に任意の頂部圧縮機63を備えることができる。これにより、バルブ23、27での任意の圧力降下を補償でき、こうしてライン48内の圧力は、ライン7内の原料流により設定した圧力レベルに到達させることができる。   Still referring to FIG. 2, an optional top compressor 63 may be provided between the top vapor outlet 39 of the distillation column 21 and the second heat exchanger array 26. This can compensate for any pressure drop across the valves 23, 27, thus allowing the pressure in the line 48 to reach the pressure level set by the feed flow in the line 7.

塔頂流40は、蒸留塔21のおかげで、常に充分、蒸気状であるのに対し、第二熱交換器配列26の下流では生成物流が多相性であり得るので、第二熱交換器配列26の上流に圧縮機63を配置することが好ましい。   The top stream 40 is always sufficiently vaporous thanks to the distillation column 21, whereas the product stream can be multiphase downstream of the second heat exchanger array 26, so that the second heat exchanger array It is preferable to arrange the compressor 63 upstream of 26.

或いは、ライン57には、ライン57内の圧力をライン48内の圧力に低下させるため、Joule−Thompsonバルブ(図示せず)のような膨張装置を備えることができる。以上、図1及び図2の系統工程を説明したが、図3は、前述の図1について図示し、説明した実施態様を基本とし、蒸留塔の塔頂蒸気出口39と第一熱交換器配列5との間の接続ライン48内に内部還流システムを備えたものである。ここで示した還流システムは、還流分離容器43の形態で設けた気体/液体分離器(特許請求の範囲では“第一気体/液体分離器”とした)を有する。ライン48内で還流分離容器43は、第二熱交換器配列26の下流に配置され、ライン42を介して第二熱交換器配列26に接続している。分離器43は、底部出口45及び頂部出口47を有する。底部出口45は、ライン49及び還流流を供給するための第三供給点51を介して蒸留塔21に接続している。ライン49内には任意の制御バルブ53を備えることができる。一般に還流流49の温度は、更に加熱された原料流20の温度よりも低く、かつ第一供給点25よりも重力的に低いので、第三供給点51は、第二供給点29よりも重力的に高く配置するのが最も良い。   Alternatively, line 57 can include an expansion device such as a Joule-Thompson valve (not shown) to reduce the pressure in line 57 to the pressure in line 48. 1 and FIG. 2 have been described above. FIG. 3 is based on the embodiment shown and described with reference to FIG. 1, and the top steam outlet 39 of the distillation column and the first heat exchanger arrangement are shown in FIG. 5 with an internal reflux system in the connecting line 48 between the two. The reflux system shown here has a gas / liquid separator (referred to as “first gas / liquid separator” in the claims) provided in the form of a reflux separation vessel 43. The reflux separation vessel 43 is arranged in the line 48 downstream of the second heat exchanger array 26 and is connected to the second heat exchanger array 26 via the line 42. Separator 43 has a bottom outlet 45 and a top outlet 47. The bottom outlet 45 is connected to the distillation column 21 via a line 49 and a third supply point 51 for supplying a reflux stream. An optional control valve 53 can be provided in the line 49. In general, the temperature of the reflux stream 49 is lower than the temperature of the further heated feed stream 20 and gravitationally lower than the first supply point 25, so that the third supply point 51 is more gravitational than the second supply point 29. It is best to place it higher.

還流分離容器43の頂部出口47は、ライン48を介して第一熱交換器配列5と流動可能に接続している。
操作時、メタン、エタン及びプロパンを含有する、液化天然ガスの原料流を本プロセスに供給する場合、プロパンの大部分は蒸留塔21で回収される。塔頂蒸気流40中に存在する可能性がある残りのプロパン成分を第二熱交換器26中で凝縮すれば、プロパンの選択的回収量は増加できる。還流分離容器43から中間凝縮物49が抜き出され、冷還流流として蒸留塔21にフィードバックされる。プロパンは、その他、出口31経由で本プロセスを離れる機会もある。
The top outlet 47 of the reflux separation vessel 43 is fluidly connected to the first heat exchanger array 5 via a line 48.
In operation, when a liquefied natural gas feed stream containing methane, ethane and propane is fed to the process, most of the propane is recovered in the distillation column 21. If the remaining propane components that may be present in the overhead vapor stream 40 are condensed in the second heat exchanger 26, the selective recovery of propane can be increased. The intermediate condensate 49 is extracted from the reflux separation vessel 43 and fed back to the distillation column 21 as a cold reflux stream. Propane also has the opportunity to leave the process via outlet 31.

第二熱交換器配列26は、中間希薄化流を中間温度にするだけなので、還流流の物質選択性は、この温度選択により、また任意バルブ53での任意の圧力降下によっても注文どおりに作製できる。更に、メタン又はエタンを蒸留塔に不必要に循環させ、これによりエネルギーを消費するだけで、ライン55経由で本プロセスを離れる希薄化天然ガスの製造量を増加させないことが避けられる。   Since the second heat exchanger arrangement 26 only brings the intermediate dilute stream to an intermediate temperature, the material selectivity of the reflux stream is made as ordered by this temperature selection and by any pressure drop at the optional valve 53. it can. Furthermore, it is avoided that methane or ethane is unnecessarily circulated through the distillation column, thereby only consuming energy and not increasing the production of dilute natural gas leaving the process via line 55.

図1の系統工程(本発明の全ての特徴は含まない)と図3の系統工程(本発明による)とを比較すると、プロパンの回収率を予想した計算から、図1の系統工程による方法では所定のプロセス条件下で69%のプロパン回収率が得られたのに対し、図3の系統工程による方法では同じ所定のプロセス条件下で90%のプロパン回収率が得られた。   Comparing the system process of FIG. 1 (not including all the features of the present invention) and the system process of FIG. 3 (according to the present invention), the calculation based on the prediction of the propane recovery rate shows that the method using the system process of FIG. While the propane recovery rate of 69% was obtained under the predetermined process conditions, the method according to the system process of FIG. 3 gave a propane recovery rate of 90% under the same predetermined process conditions.

蒸気のモル分率は、通常、50〜95%であり得る。蒸気のモル分率が高いほど、還流ループ中で循環する稀薄成分の量は少なく、良くなる。この点、60モル%以上が蒸気相であることが好ましい。一方、蒸気のモル分率が高いほど、天然ガス液成分が余り再凝縮されず、蒸留塔21にフィードバックされるので、天然ガス液の回収率は低くなる。この点、最も普通の液化天然ガス組成物では、蒸気のモル分率は、90%以下が好ましい。   The mole fraction of steam can usually be 50-95%. The higher the mole fraction of steam, the less and better the amount of dilute components circulating in the reflux loop. In this respect, 60 mol% or more is preferably a vapor phase. On the other hand, the higher the molar fraction of the vapor, the less the natural gas liquid component is recondensed and the feedback to the distillation column 21, so the recovery rate of the natural gas liquid becomes lower. In this regard, the most common liquefied natural gas composition preferably has a vapor mole fraction of 90% or less.

図4は、図2及び図3で示す方法及び装置を組合わせた本発明の好ましい実施態様の概略図である。詳細な説明のため、図1、図2及び図3の前記説明を参照した。   FIG. 4 is a schematic diagram of a preferred embodiment of the present invention combining the methods and apparatus shown in FIGS. For the detailed description, reference is made to the description of FIGS.

下記第I表に、本方法での各種ラインを通る流れの温度及び圧力の推奨する下限及び上限、並びに特定の操作例での温度及び圧力の通常値を示す。   Table I below shows the recommended lower and upper limits of the temperature and pressure of the flow through the various lines in this method, as well as the normal values of temperature and pressure for specific operating examples.

第I表に示す実施例ではライン7での蒸気のモル分率は66%、ライン20では69%であった。ライン20での蒸気のモル分率は75%であった。図4の装置及び方法は、液化天然ガス原料流から天然ガス液成分を90%を超える回収率で回収するための効率的な手段を提供することが、質量収支の計算に基づいて予想された。
本発明に関連して、熱交換器配列は、1つの熱交換器、或いは複数の熱交換器を並列及び/又は直列に備えることができる。
In the examples shown in Table I, the vapor mole fraction in line 7 was 66% and in line 20 it was 69%. The vapor mole fraction in line 20 was 75%. Based on mass balance calculations, the apparatus and method of FIG. 4 was expected to provide an efficient means for recovering natural gas liquid components from a liquefied natural gas feed stream with a recovery rate exceeding 90%. .
In the context of the present invention, the heat exchanger arrangement can comprise one heat exchanger or a plurality of heat exchangers in parallel and / or in series.

本発明の全ての特徴は含まないが、説明目的のために取り入れた系統工程及び装置の概略を示す。It does not include all the features of the present invention, but outlines the system processes and equipment taken for illustrative purposes. 本発明の全ての特徴は含まないが、説明目的のために取り入れた系統工程及び装置の概略を示す。It does not include all the features of the present invention, but outlines the system processes and equipment taken for illustrative purposes. 本発明の系統工程及び装置の概略を示す。The outline of the system | strain process and apparatus of this invention is shown. 図2の系統工程を図3の系統工程と組合わせた本発明の好ましい実施態様の概略を示す。Fig. 4 shows a schematic of a preferred embodiment of the present invention combining the system steps of Fig. 2 with the system steps of Fig. 3;

符号の説明Explanation of symbols

1 液化天然ガス流又は原料流
5 第一熱交換器配列
6 第一熱交換器配列の出口
7 中間原料流
9 第二気体/液体分離器
11 第二気体/液体分離器の出口
14 分配器
15 液体中間原料フラクション
17 中間原料流の第一部分
19 中間原料流の第二部分
20 加熱された第二部分
21 蒸留塔
25 第一供給点
26 第二熱交換器配列
29 第二供給点
35 天然ガス液含有液体流又は天然ガス液
39 塔頂蒸気出口
40 塔頂蒸気流
43 第一気体/液体分離器又は第一分離器
45 第一分離器の出口
47 第一分離器の出口
48 中間希薄化流
49 中間凝縮物の少なくとも一部
51 第三供給点
55 希薄化天然ガスの生成物流
57 蒸気状中間原料フラクション
63 圧縮機
1 liquefied natural gas stream or feed stream 5 first heat exchanger array 6 outlet of first heat exchanger array 7 intermediate feed stream 9 second gas / liquid separator 11 outlet of second gas / liquid separator 14 distributor 15 Liquid intermediate feed fraction 17 First portion 19 of the intermediate feed stream Second portion 20 of the intermediate feed stream Heated second portion 21 Distillation tower 25 First feed point 26 Second heat exchanger array 29 Second feed point 35 Natural gas liquid Containing liquid stream or natural gas liquid 39 Overhead steam outlet 40 Overhead steam stream 43 First gas / liquid separator or first separator 45 First separator outlet 47 First separator outlet 48 Intermediate dilute stream 49 At least a part of the intermediate condensate 51 Third feed point 55 Product stream of diluted natural gas 57 Steam intermediate raw material fraction 63 Compressor

Claims (11)

液化天然ガス流から、メタンより高級の炭化水素化合物を天然ガス液(35)の形態で除去することにより、液化天然ガス流(1)を希薄化する方法において、
液化天然ガス流を含む原料流(1)を第一熱交換器配列(5)中で加熱して、中間原料流(7)を形成する工程、
中間原料流(7)を少なくとも第一部分(17)と第二部分(19)とに分割する工程、
第一部分(17)を蒸留塔(21)に通すと共に、該第一部分(17)を第一供給点(25)経由で供給する工程、
第二部分(19)を第二熱交換器配列(26)に通し、ここで第二部分を更に加熱し、
次いで、加熱された第二部分(20)を第二供給点(29)経由で蒸留塔(21)に供給する工程、
蒸留塔(21)の下部から天然ガス液含有液体流(35)を取出す工程、
蒸留塔(21)の上部から塔頂蒸気流(40)を取出す工程、
塔頂蒸気流(40)を第二熱交換器配列(26)に通し、ここで塔頂蒸気流(40)を、中間原料流(7)の第二部分(19)により冷却して、中間希薄化流(48)を形成し、次いで、該中間希薄化流の少なくとも一部を第一熱交換器配列(5)に通して更に原料流(1)により冷却し、希薄化天然ガスの生成物流(55)を形成する工程、
を含み、第二熱交換器配列(26)での塔頂蒸気流(40)の冷却中、該蒸気流は部分的に凝縮されて、中間凝縮物及び中間蒸気を形成し、該中間凝縮物の少なくとも一部(49)は、第三供給点(51)経由で蒸留塔(21)に通され、該中間蒸気は第一熱交換器配列(5)に通される該方法。
In a method of diluting a liquefied natural gas stream (1) by removing hydrocarbon compounds higher than methane in the form of a natural gas liquid (35) from the liquefied natural gas stream,
Heating a feed stream (1) comprising a liquefied natural gas stream in a first heat exchanger array (5) to form an intermediate feed stream (7);
Dividing the intermediate feed stream (7) into at least a first part (17) and a second part (19);
Passing the first part (17) through the distillation column (21) and supplying the first part (17) via the first feed point (25);
The second part (19) is passed through a second heat exchanger array (26), where the second part is further heated,
Next, supplying the heated second part (20) to the distillation column (21) via the second supply point (29),
Removing the natural gas liquid-containing liquid stream (35) from the lower part of the distillation column (21);
Removing the top vapor stream (40) from the top of the distillation column (21);
The overhead vapor stream (40) is passed through a second heat exchanger arrangement (26) where the overhead vapor stream (40) is cooled by the second part (19) of the intermediate feed stream (7) A dilute stream (48) is formed and then at least a portion of the intermediate dilute stream is passed through a first heat exchanger array (5) and further cooled by a feed stream (1) to produce dilute natural gas. Forming the logistics (55);
And during cooling of the overhead vapor stream (40) in the second heat exchanger arrangement (26), the vapor stream is partially condensed to form intermediate condensate and intermediate vapor, the intermediate condensate At least a portion of (49) is passed to the distillation column (21) via a third feed point (51) and the intermediate steam is passed to the first heat exchanger arrangement (5).
第一熱交換器配列(5)での前記原料流の加熱工程が、原料流を部分的に気化する工程を含み、これにより中間原料流(7)は液体中間原料フラクションと蒸気状中間原料フラクションとの混合物を含むと共に、少なくとも液体中間原料フラクション(15)は、少なくとも前記第一部分と第二部分(17、19)とに分割される請求項1に記載の方法。   The step of heating the raw material stream in the first heat exchanger arrangement (5) includes a step of partially vaporizing the raw material stream, whereby the intermediate raw material stream (7) is a liquid intermediate raw material fraction and a vaporous intermediate raw material fraction. And at least the liquid intermediate feed fraction (15) is divided into at least the first part and the second part (17, 19). 前記混合物が原料分離容器(9)に通され、ここから、液体中間原料フラクション(15)及び蒸気状中間原料フラクション(57)は、前記少なくとも第一部分と第二部分(17、19)とに分割する前に、それぞれ抜き出される請求項2に記載の方法。   The mixture is passed through the raw material separation vessel (9), from which the liquid intermediate raw material fraction (15) and the vaporous intermediate raw material fraction (57) are divided into the at least first part and the second part (17, 19). The method according to claim 2, wherein each is extracted before performing. 前記第二供給点(29)が、第一供給点(25)より重力的に低い位置に配置される請求項1〜3のいずれか1項記載の方法。 The method according to any one of claims 1 to 3, wherein the second supply point (29) is arranged at a position gravitationally lower than the first supply point (25). 前記第三供給点(51)が、第一供給点(25)より重力的に低い位置にある請求項1〜4のいずれか1項記載の方法。 The method according to any one of the preceding claims, wherein the third supply point (51) is at a position that is gravitationally lower than the first supply point (25). 前記第三供給点(51)が、第二供給点(29)より重力的に高い位置にある請求項1〜4のいずれか1項記載の方法。 The method according to any one of the preceding claims, wherein the third supply point (51) is at a position that is gravitationally higher than the second supply point (29). 前記塔頂蒸気流(40)が、第二熱交換器配列(26)に通す前に、圧縮される請求項1〜6のいずれか1項記載の方法。 The method according to any one of the preceding claims, wherein the overhead vapor stream (40) is compressed before passing through the second heat exchanger arrangement (26). 前記希薄化天然ガスの生成物流が、引続き再ガス化される請求項1〜7のいずれか1項記載の方法。 The method according to any one of claims 1 to 7, wherein the dilute natural gas product stream is subsequently regasified. 液化天然ガス流から、メタンより高級の炭化水素化合物を天然ガス液(35)の形態除去することにより、液化天然ガス流(1)を希薄化する装置において、
第一熱交換器配列(5)中で液化天然ガス流を含む原料流(1)を加熱することにより形成される中間原料流(7)の排出用出口(6)を備え、液化天然ガス流を含む原料流(
1)を受けるために配置された該第一熱交換器配列(5);
第一熱交換器配列(5)の出口(6)と流通可能な第二熱交換器配列(26);
少なくとも第一、第二及び第三の供給点(25、29、51)を有し、下部に天然ガス液含有液体流(35)の取出し用排出口(31)を備えると共に、上部に、少なくとも第二熱交換器配列(26)を介して第一熱交換器配列(5)と流通可能な塔頂蒸気出口(39)を備えた蒸留塔(21);
蒸留塔(21)の第一供給点(25)に接続した第一出口、及び第二熱交換器配列(26)を介して蒸留塔(21)の第二供給点(29)に接続した第二出口を有すると共に、第一熱交換器配列(5)の出口(6)に接続した分配器(14);及び
第一分離器(43)は蒸留塔(21)の第三供給点(51)に接続した出口(45)、及び第一熱交換器配列(5)と流通可能な出口(47)を備えると共に、塔頂蒸気出口(39)の下流で、かつ第二熱交換器配列(26)と第一熱交換器配列(5)との間にある第一気液分離器(43);
を有する該装置。
In an apparatus for diluting a liquefied natural gas stream (1) by removing hydrocarbon compounds higher than methane in the form of a natural gas liquid (35) from the liquefied natural gas stream,
A liquefied natural gas stream comprising a discharge outlet (6) for an intermediate feed stream (7) formed by heating a feed stream (1) comprising a liquefied natural gas stream in a first heat exchanger arrangement (5) Raw material stream containing (
1) the first heat exchanger arrangement (5) arranged for receiving;
A second heat exchanger array (26) in communication with the outlet (6) of the first heat exchanger array (5);
It has at least first, second and third supply points (25, 29, 51), is provided with a discharge outlet (31) for removal of the natural gas liquid-containing liquid stream (35) in the lower part and at least in the upper part. A distillation column (21) with a top steam outlet (39) that can communicate with the first heat exchanger array (5) via a second heat exchanger array (26);
A first outlet connected to the first supply point (25) of the distillation column (21) and a second outlet (29) connected to the second supply point (29) of the distillation column (21) via the second heat exchanger array (26). A distributor (14) having two outlets and connected to the outlet (6) of the first heat exchanger array (5); and the first separator (43) is a third feed point (51 ) And an outlet (47) capable of communicating with the first heat exchanger array (5), downstream of the top steam outlet (39) and in the second heat exchanger array ( 26) and a first gas-liquid separator (43) between the first heat exchanger arrangement (5);
The device.
第一熱交換器配列(5)の出口(6)に接続した入口、及び分配器(14)に接続した底部出口(11)を備えた第二気液分離器(9)を更に有する請求項9に記載の装置。   The second gas-liquid separator (9) with an inlet connected to the outlet (6) of the first heat exchanger arrangement (5) and a bottom outlet (11) connected to the distributor (14). 9. The apparatus according to 9. 蒸留塔(21)の出口(39)と第二熱交換器配列(26)との間に圧縮機(63)を更に有する請求項9又は10に記載の装置。   The apparatus according to claim 9 or 10, further comprising a compressor (63) between the outlet (39) of the distillation column (21) and the second heat exchanger array (26).
JP2008502388A 2005-03-22 2006-03-20 Method and apparatus for diluting a liquefied natural gas stream Expired - Fee Related JP5411496B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05102252.3 2005-03-22
EP05102252 2005-03-22
PCT/EP2006/060867 WO2006100218A1 (en) 2005-03-22 2006-03-20 Method and apparatus for deriching a stream of liquefied natural gas

Publications (2)

Publication Number Publication Date
JP2008535961A JP2008535961A (en) 2008-09-04
JP5411496B2 true JP5411496B2 (en) 2014-02-12

Family

ID=34939026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008502388A Expired - Fee Related JP5411496B2 (en) 2005-03-22 2006-03-20 Method and apparatus for diluting a liquefied natural gas stream

Country Status (6)

Country Link
US (1) US20090056371A1 (en)
EP (1) EP1861671B1 (en)
JP (1) JP5411496B2 (en)
ES (1) ES2561808T3 (en)
RU (1) RU2386091C2 (en)
WO (1) WO2006100218A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1782010A4 (en) * 2004-06-30 2014-08-13 Fluor Tech Corp Lng regasification configurations and methods
US20080148771A1 (en) * 2006-12-21 2008-06-26 Chevron U.S.A. Inc. Process and apparatus for reducing the heating value of liquefied natural gas
MY162643A (en) * 2009-04-07 2017-06-30 Twister Bv Separation system comprising a swirl valve
EP3604222A1 (en) * 2018-07-30 2020-02-05 Evonik Operations GmbH Process for the purification of hydrogen cyanide

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL240371A (en) * 1958-06-23
FR1501013A (en) * 1966-09-13 1967-11-10 Air Liquide Process for the production of a gas rich in methane under high pressure from liquid natural gas under low pressure
US3452548A (en) * 1968-03-26 1969-07-01 Exxon Research Engineering Co Regasification of a liquefied gaseous mixture
US3837821A (en) * 1969-06-30 1974-09-24 Air Liquide Elevating natural gas with reduced calorific value to distribution pressure
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US6510706B2 (en) * 2000-05-31 2003-01-28 Exxonmobil Upstream Research Company Process for NGL recovery from pressurized liquid natural gas
US7069743B2 (en) * 2002-02-20 2006-07-04 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US6941771B2 (en) * 2002-04-03 2005-09-13 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US6564579B1 (en) * 2002-05-13 2003-05-20 Black & Veatch Pritchard Inc. Method for vaporizing and recovery of natural gas liquids from liquefied natural gas
US6964181B1 (en) * 2002-08-28 2005-11-15 Abb Lummus Global Inc. Optimized heating value in natural gas liquids recovery scheme
ATE535752T1 (en) * 2003-06-05 2011-12-15 Fluor Corp CONFIGURATION AND METHOD FOR RE-VAPORIZATION OF LIQUEFIED NATURAL GASES
US6907752B2 (en) * 2003-07-07 2005-06-21 Howe-Baker Engineers, Ltd. Cryogenic liquid natural gas recovery process
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
JP4447639B2 (en) * 2004-07-01 2010-04-07 オートロフ・エンジニアーズ・リミテッド Treatment of liquefied natural gas
US20060130520A1 (en) * 2004-12-17 2006-06-22 Abb Lummus Global Inc. Method for recovery of natural gas liquids for liquefied natural gas

Also Published As

Publication number Publication date
US20090056371A1 (en) 2009-03-05
WO2006100218A1 (en) 2006-09-28
RU2386091C2 (en) 2010-04-10
EP1861671A1 (en) 2007-12-05
JP2008535961A (en) 2008-09-04
RU2007138916A (en) 2009-04-27
EP1861671B1 (en) 2015-12-23
ES2561808T3 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP4691192B2 (en) Treatment of liquefied natural gas
JP4966856B2 (en) Method for extracting ethane from liquefied natural gas
JP5997798B2 (en) Nitrogen removal by isobaric open frozen natural gas liquid recovery
JP4763039B2 (en) Integration of LNG regasification with purification and power generation
US7310972B2 (en) Process and apparatus for separation of hydrocarbons from liquefied natural gas
EP1819800B1 (en) Method and apparatus for producing a liquefied natural gas stream
JP5613684B2 (en) Method for nitrogen removal and / or helium recovery in an LNG liquefaction plant
JP2009538962A5 (en)
JP6591983B2 (en) Hydrocarbon gas treatment
JP5770870B2 (en) Isobaric open frozen NGL recovery
US20120096896A1 (en) Process for separating and recovering ethane and heavier hydrocarbons from LNG
US20110036120A1 (en) Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream
CN106715368A (en) Process for increasing ethylene and propylene yield from a propylene plant
JP5411496B2 (en) Method and apparatus for diluting a liquefied natural gas stream
US9581385B2 (en) Methods for separating hydrocarbon gases
JP2021047003A (en) Split feed addition to iso-pressure open refrigeration lpg recovery
US6931889B1 (en) Cryogenic process for increased recovery of hydrogen
US20140202207A1 (en) Methods for separating hydrocarbon gases
CA2902811A1 (en) Methods for separating hydrocarbon gases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090717

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20090717

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120709

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120821

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120910

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees